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Temporally shaping the density of electron beams using light forms the basis for a wide range
of established and emerging technologies, including free-electron lasers and attosecond electron mi-
croscopy. The modulation depth of compressed electron pulses is a key figure of merit limiting
applications. In this work, we present an approach for generating background-free attosecond elec-
tron pulse trains by sequential inelastic electron-light scattering. Harnessing quantum interference
in the fractional Talbot effect, we suppress unwanted background density in electron compression by
several orders of magnitude. Our results will greatly enhance applications of coherent electron-light
scattering, such as stimulated cathodoluminescence and streaking.

Actively shaped free-electron beams offer the capabil-
ity for enhanced sensing and microscopy [1–7], with nu-
merous applications employing transverse shaping, incor-
porating tailored phase masks [8–13], quasi-static elec-
tromagnetic optical elements [14–17] or scattering at the
ponderomotive potential [18–20]. In the time domain,
inelastic electron-light scattering (IELS) [21–25] leads to
correlated gain or loss of angular [26, 27] and linear mo-
menta with energy [28–30]. Following dispersive prop-
agation, inelastic interactions can lead to a reshaping
of the electron density into a train of attosecond pulses
[24, 31–33]. These states have been experimentally pre-
pared and characterized by quantum state tomography
[34] or streaking [35–38].

Besides their direct use for attosecond streaking and
spectroscopy, such density-modulated electron beams are
proposed for a multitude of applications, e.g., to imprint
an external phase onto cathodoluminescence (CL) [39–
42], to induce a microscopic polarization in two-level sys-
tems (TLS), or to coherently build up mode amplitudes
or local polarizations using independent electrons [43–
48], thus promising a merger of electron microscopy with
coherent spectroscopy.

A key limitation for these efforts is the quality of com-
pression and the amount of uncompressed background
density [34, 36, 37, 46, 49], sometimes described by the
classical multi-electron bunching factor for SASE-FELs
[50–53]. However, even for a pure single-electron state
[54–56] focused in the quantum regime [34], limited co-
herence arises [40, 42–44, 47].

In this Letter, we directly address this issue by devis-
ing an experimentally feasible scheme to prepare essen-
tially background-free attosecond electron pulse trains,
drastically enhancing the coherence in electron-light in-
teractions. Introducing a single-color, multi-plane phase
shaping approach, we predict tailored electron states rep-
resenting excellent approximations to point-like classical
currents within the optical cycle. These states are ca-
pable of producing CL with a near-unity degree of co-
herence, a maximized microscopic polarization of few-
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FIG. 1. Temporal electron pulse shaping and its prospective
applications in attosecond physics, including streaking and
the interaction with nanostructures and quantum systems.

level systems, and the enhanced coherent build-up of
mode and transition amplitudes using multiple indepen-
dent electrons.

The wavefunction shaping scheme is depicted in Fig. 1.
It is based on sequential temporal phase plates using
IELS to modulate the electron momentum, each followed
by a drift stage to transfer this momentum modulation
into a train of attosecond density pulses [34–36]. As
shown below, tailored precompression removes most of
the electron density background and greatly enhances the
coherence properties of a variety of excitations and scat-
tering processes in the sample plane [Fig. 1, bottom].

The Letter is organized as follows. First, we briefly
present a quantum mechanical approach to temporal
phase plates and its classical limit. Second, the genera-
tion of nearly background-free attosecond electron pulses
using sequential interactions is described. Finally, we dis-
cuss the consequences and features of using such electron
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states in selected applications, including streaking, CL
and the excitation of two-level systems.

Multislice method for electron propagation.—There are
various approaches to theoretically describe inelastic
electron-light scattering and propagation [21–24]. Here,
we employ a multislice approach [57], in which forward
propagation of electrons along the z axis is described by
the effective Schrödinger equation derived in the Supple-
mental Material [58]:

i}v
∂

∂z
Ψ(r, t) = [HI(r, t) +D − E ] Ψ(r, t), (1)

where v is the mean electron velocity, E = i}∂t the trans-
lation operator, and HI(r, t) ≈ −evAz(r, t) the time-
dependent scattering potential describing the interaction
with light [58]. The dispersion operator D is given by

D =
E2

2γ3mv2
− }2

2γm
∇2
⊥, (2)

where γ = 1/
√

1− v2/c2 is the Lorentz factor, m the
electron’s rest mass, and ∇2

⊥ the Laplacian operator
of the transverse coordinates. The Fresnel operator
U(h) = exp(−iDh/}v) describes the propagation of the
electron state from z to z + h without interaction. In
the presence of an electromagnetic field, the solution of
Eq. (1) can be obtained with the split-operator tech-
nique [59], using the Fresnel operator, the propagator
for D = 0 [23, 30], and one of the higher-order decom-
position schemes [60, 61]. Since we are mainly interested
in temporal or longitudinal focusing, for simplicity, we
assume that the interaction is independent of x, y, sep-
arating the wavefunction into its temporal ψ(z, t − z/v)
and transverse parts, where the latter is known analyt-
ically for cylindrical beams [10, 62]. The advancement
of the temporal part from z to z + h is obtained by the
second-order expression:

ψ(z + h, t) = U(h/2)eiΦ(z,t)U(h/2)ψ(z, t), (3)

where the phase function is given by

Φ(z, t) = − 1

}v

∫ z+h

z

HI(z, t+ z/v)dz. (4)

This procedure is efficiently implemented with a fast
Fourier transform algorithm. It is unitary and hence pre-
serves the probability current j = v|ψ(z, t)|2 integrated
over time [63]. It follows from Eq. (3) that a scatter-
ing potential confined to an interval (z, z + h) can be re-
garded as a thin inelastic or temporal phase plate located
at z + h/2, by analogy with elastic phase plates [20, 64].
Thus, the forward propagation and temporal aberrations
can be reduced to a phase function Φ(t) describing the
temporal phase plate.

Classical limit.—We first outline the classical picture
of temporal aberrations (}→ 0), where }Φ(t) has the

meaning of a classical action. Its time derivative defines
the change of the electron’s energy and velocity:

∆v(t) = −}Φ′(t)
γ3mv

. (5)

Suppose that electrons uniformly distributed in time
traverse a temporal phase plate at z = 0 and gain a ve-
locity change (5). The change of the probability density
with increasing z is determined by the trajectories:

t(z) = t−∆v(t)z/v2. (6)

The attracting fixed points in this map, i.e., the zeros
of ∆v(t0) with the time derivative ∆v′(t0) > 0, cor-
respond to paraxial temporal foci. Paths concentrate
and form a caustic near such points, resulting in narrow
peaks in the density [49]. For a time-harmonic phase
Φ(t) = 2g cos(ωt) characterized by an effective interac-
tion strength g (see an expression in [58]) and a frequency
ω, the attracting points are given by t0 = nT , n ∈ Z with
T = 2π/ω being the optical period. The paraxial focus
lies at the distance lf from the phase plate, with

lf =
v2

∆v′(t0)
=

lT
8πg

, lT =
4πmγ3v3

}ω2
, (7)

where lT is the Talbot distance [65], which amounts to
200 mm for 120-keV electrons and 800-nm light.

Temporal focusing by monochromatic light is imper-
fect since paraxial trajectories do not converge into one
point in the space-time diagram in Fig. 2(a), affecting
the electron pulse duration. Another type of temporal
aberration stems from repelling fixed points, at which
half of the electrons are steered to a nearly homogeneous
background in density [Fig. 2(a)]. The latter does not
improve with increasing g because it depends only on
the product gz (see Eq. (6)), and also phase-squeezed
light does not reduce the background [65]. In princi-
ple, both types of temporal aberrations could be elimi-
nated using multiple harmonics to approach a parabolic
phase modulation of the form Φ(t) = −gω2s2(t), where
s(t) = (t+ T/2 mod T )− T/2 is the periodic saw-like
function with zeros nT , n ∈ Z. Generalized electron
beam shaping using multiple harmonics has recently been
theoretically considered [46], and two-color phase modu-
lation experiments have been performed in the context
of attosecond focusing and quantum state reconstruc-
tion [34]. However, superimposing an even larger number
of harmonics with controlled amplitude and phase may
render this approach rather impractical for attosecond
focusing. Instead, as we show in the following, sequen-
tial monochromatic interactions in separate planes repre-
sent an even more powerful and experimentally tractable
scheme to address temporal aberrations.
Eliminating focusing aberrations by sequential

scattering.—As described above, the aberrations in
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FIG. 2. (a),(b) Evolution of the magnitude of ψ(z, t) within
one optical period after single and triple interactions with
800-nm light. Calculation for 120-keV electrons and inter-
action strengths g1 = 0.39, g2 = 0.52, g = 4. Solid and dot-
ted black: Trajectories contributing in the central peak and
background. (c) Optimized rms duration for single, dual and
triple monochromatic interactions as a function of the main
compression strength g (and free variation of the precom-
pression strengths). Dashed: Respective durations when the
main compression is a parabolic phase modulation. (d) Semi-
logarithmic plot of the density in the rms focus, illustrating
a great reduction in the background density using sequential
focusing.

temporal focusing are most severe for those parts of the
probability density furthest from the center of the cycle.
We show here that weak precompression stages of inter-
action strength less than unity can reshape the density
for much more efficient focusing [cf. Fig. 2(b)]. Specif-
ically, the fractional Talbot effect [66] offers a powerful
way to suppress the density near the repelling points,
without adding further phase aberrations. At one fourth
of the Talbot distance, the wavefunction around the at-
tractive points is a superposition of the phase-modulated
initial state ψ(0, t) ≈ ψ0(t0) exp[2ig1 cos(ωt)] and its
replica shifted by half of the optical period [67, 68]:

ψ(lT /4, t) =
exp(−iπ/4)√

2
[ψ(0, t) + iψ(0, t+ T/2)] . (8)

Importantly, due to destructive interference, the proba-
bility density

ρ(lT /4, t) ≈ |ψ0(t0)|2{1 + sin [4g1 cos(ωt)]} (9)

vanishes at the repelling points t = t0 ± T/2 when g1 =
π/8. While such a modulation itself does not provide
much temporal compression, a second stronger temporal
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FIG. 3. (a),(b) Evolution of 〈bn〉 (solid lines) after dual
(g1 = 0.44) and triple (g1 = 0.39, g2 = 0.52) interactions with
the compression strength g = 4. Dashed: The evolution after
the first interaction only. (c) Values of 〈bn〉 obtained at the
distance where 〈b〉 reaches a maximum. (d),(e) Wigner dis-
tributions in the focus, showing a localization of electrons in
phase space.

phase plate completes the focusing, but now with greatly
reduced background density.

Depending on the specific application, several proper-
ties can be considered for assessing the quality of attosec-
ond focusing. A good measure of background density is
given by the root-mean-squared (rms) duration ∆t(z),

∆t(z) =
√
〈s2〉, 〈s2〉 =

1

C

∫ ∞

−∞
s2(t)ρ(z, t)dt, (10)

where ρ(z, t) = |ψ(z, t)|2 is the probability density, C its
integral, and s(t) the saw-like function. Figure 2(c) illus-
trates the significant improvement of attosecond focusing
in terms of the rms duration upon adding one or two pre-
focusing stages. As a function of the main compression
strength g, ∆t(z) is evaluated at the respective minima
along z, for a single interaction, a parabolic phase pro-
file, and the optimized dual and triple (two weak and
one strong) interactions. It is evident that the single-
interaction case is rather limited in terms of its achiev-
able rms duration, being minimized near g ≈ 0.45 at
∆t ≈ 0.426 fs. By an effective suppression of background
density [see Fig. 2(d)], the dual interaction substantially
reduces ∆t. Although the most substantial absolute im-
provement is already obtained for the case of a single
precompression phase plate, adding additional interac-
tion planes leads to a further optimization, as evident
from the results for a total of three phase plates shown
in Figs. 2(b)-2(d) (see also Ref. [58]). It is worth noting
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FIG. 4. Field-driven streaking spectrograms simulated with
the electron pulses shown in Fig. 2(d). White lines: Temporal
profile of the streak field −}Φ′(τ), where Φ(τ) is given by
Eq. (4). Yellow: Calculated mean electron energy, E(τ).

that the idealized parabolic phase modulation applied af-
ter the precompression stages leads to only minor addi-
tional improvements [see Fig. 2(c)], illustrating that the
introduced prefocusing scheme indeed strongly reduces
aberrations and provides rms durations very close to the
theoretical minimum.

Applications of background-free pulses.—We note that
the background-free attosecond pulses produced by this
scheme will be exceedingly useful in a number of recently
proposed schemes for coherent interactions of free elec-
trons with nanostructures and individual quantum sys-
tems [69, 70]. This includes electron-mediated coherence
transfer and the coherent build-up of excitations for mul-
tiple subsequent electrons [39, 40, 42–48]. In each of
the underlying processes, the modulation amplitude of
the electron density at the fundamental modulation fre-
quency, or its harmonics, plays a major role. This is
quantified by the expectation values or moments 〈bn〉 of
the ladder operator b = exp(iωt) [44, 71]. Different ter-
minologies relating to these expectation values have been
used, including the degree of coherence [40], the coher-
ence factor [65], or the bunching factor [39, 52, 53, 72].

The moments arising from a single interaction, 〈bn〉 =
Jn[4g sin(2πnz/lT )] (see also Ref. [44]), are limited by the
maxima of the Bessel functions Jn. Our sequential inter-
action scheme results in a substantial and nearly simulta-
neous enhancement of 〈bn〉 above these values, as shown
in Figures 3(a)-3(c). Here, we numerically optimized the
first moment 〈b〉 by a variation of the precompression
strengths g1,2 and the respective distances d1,2 between
interaction planes, for a fixed value of g = 4. For a dual
interaction, the optimization yields a maximum value of
〈b〉max ≈ 0.97 for g1 ≈ 0.44 and d1 ≈ 0.24lT , well above

the theoretical maximum 〈b〉max = max[J1(z)] ≈ 0.58
for a single interaction, discussed in Ref. [42, 44]. Note
that the optimum distance d1 is indeed very close to the
quarter Talbot distance. An additional precompression
phase plate g2 leads to a further enhancement [Fig. 3(b)],
with values of 〈b〉max ≈ 0.99 and 0.998 for g = 4 and 20,
respectively. The enhancements of the higher moments
are equally striking, reaching a nearly Gaussian distri-
bution spanning multiple orders for a triple interaction
[Fig. 3(c)].

The background-free attosecond focusing has direct
implications for electron-driven radiative emission in the
form of CL [73–80]. Specifically, our results imply a
degree-of-coherence of CL near unity [39–42]. Similarly,
due to the pronounced localization in time [see Fig. 2(d)]
and the large moments of b, the background-free attosec-
ond electron pulses lead to an almost fully coherent ex-
citation of TLSs with a transition energy ∆E = }ω [43–
48]. The quantum state in this case can be readily
described using the Bloch model of the density ma-
trix [81]. For a TLS initially in the ground state, the
excitation can be seen as a “rotation” of the Bloch vec-
tor a = −ẑ around a unit vector n in the x-y plane,
a(θ) = a cos θ + 〈b〉(n × a) sin θ, where θ is the rota-
tion angle. This angle can be determined through the
transition probability P2 = sin2(θ/2) and Eq. (11) in
Ref. [43]. Unmodulated electrons, or electrons with small
〈b〉, lead to a loss of the partial information about the rel-
ative phase between the eigenstates of the TLS, because
of the large uncertainty in the transition time [82]. In
contrast, modulated electrons with 〈b〉 ≈ 1 retain this
information and lead to a purity of the final state of
Tr(ρ2) = 1 + 1

2 (〈b〉2 − 1) sin2 θ near unity. Incidentally,
the dipole moment of the final state is maximized. More-
over, due to minimized quantum entanglement between
the interacting systems, subsequent excitations driven by
independent electrons modulated by the same reference
wave can coherently build up either the cathodolumines-
cence in a particular mode or the transition amplitude
in a TLS [7, 43, 44], leading to transition probabilities
scaling with N2 for small θ, where N is the number of
electrons incident within the decoherence or dephasing
time.

We note that the electron pulses produced here can
be regarded as optimized approximations to point-like,
classical phase-space densities, as is clearly seen by their
Wigner function shown in Fig. 3(e). This makes them
ideally suited for temporal probing of periodic electro-
magnetic fields by means of free-electron energy or an-
gular streaking [25, 35–38]. In energy streaking, a time-
periodic electric field F (τ) =

∑
n cne

inωτ , or more pre-
cisely its spatial Fourier components in Eq. (4), are
mapped onto the energy domain via the expression:
E(τ) ∼ 〈F (t + τ)〉 =

∑
n〈bn〉cneinωτ , where E(τ) is

the displacement of the mean energy of electrons, and τ
the time delay between the electron pulse train and the
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streak field. Of course, the rather limited moments 〈bn〉
resulting from single-field focusing [see Fig. 3(c)] strongly
affect the performance of the streaking technique. Fur-
thermore, as shown in Figs. 4(a) and 4(c), the presence
of a background in electron pulses produced with the
conventional scheme leads to pronounced spectral distor-
tions. In contrast, the background-free electron pulses
produced with our sequential focusing scheme lead to an
almost perfect temporal representation of the streak field
[see Figs. 4(b) and 4(d)].

Possible experimental implementations of our focus-
ing scheme can be realized over a wide range of energies
accessible in scanning and transmission electron micro-
scopes. The main design parameter to consider is the
Talbot distance [Eq. (7)], which scales with the cube of
the electron velocity. Specifically, the pre-compression
distance lT /4 at 800 nm optical wavelength reduces from
120 mm at 200 keV to 8.6 mm at 40 keV and 1 mm at
10 keV, dimensions for which technical solutions should
readily be found.

Conclusion.—In summary, we have theoretically
demonstrated how the concept of sequential scattering
by light and the fractional Talbot effect can be applied
to generate high-contrast attosecond electron pulses. We
achieve an efficient correction of temporal aberrations,
which leads to greatly enhanced coherence properties
in electron-light scattering as compared to conventional
temporal compression. Although the core of our gener-
ation scheme is a true quantum effect, harnessing de-
structive interference of the wavefunction, the result-
ing electron states exhibit an almost entirely positive
Wigner function and greatly improved localization in
phase space. Such states closely represent classical cur-
rents and produce practically fully coherent excitation
and radiation at the modulation frequency. Finally, we
believe that similar schemes may be applicable also for
free-electron lasers operating in the quantum regime [54–
56].
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DERIVATION OF EQ. (1)

The relativistically corrected Schrödinger equation has
been previously obtained in Refs. [S1, S2]. Here we
provide a derivation of another form of the relativistic
Schrödinger equation which, in contrast to the conven-
tional Schrödinger equation, is linear in the derivative ∂z
and quadratic in ∂t. The quadratic term describes dis-
persion of the electron wavefunction in time. This form is
particularly useful for numerical computations by means
of the multislice method [S3] and fast Fourier transform
algorithms.

As in Ref. [S1], our starting point is the Klein-Gordon
equation (in SI units):

E2Ψ = [c2(p− eA)2 +m2c4]Ψ, (S1)

where e = −|e| is the electron’s charge, and A the vec-
tor potential in the Coulomb gauge (∇ · A = 0). We
omitted the scalar potential, since it is zero in the ab-
sence of external charges. Removing the central en-
ergy and momentum of electrons by the substitution
Ψ → Ψ exp[iγm(v · r − c2t)/}], we rewrite Eq. (S1) in
an alternative, but equivalent form:

v · (p− eA)Ψ(r, t) =

[
E +

E2
2γmc2

− (p− eA)2

2γm

]
Ψ(r, t),

(S2)
where v ·p = −i}v∂z, since v is chosen along the z axis.

We make the common assumption of multislice meth-
ods that the spread in kinetic momentum is small com-
pared to the central momentum of the electrons p0 =
γmv. This is justified, as transmission electron micro-
scopes operate at 30-300 kV acceleration voltages, while
typical energy spreads in the experiments are of the or-
der of 1-300 eV. This ensures that the second and third
terms in the square brackets in Eq. (S2) are small com-
pared to E . The third term can be approximated by
(p−eA)2/2γm ≈ (p−eA)2⊥/2γm+E2/2γmv2 and com-
bined with the second term to give −E2/2γ3mv2 − (p−
eA)2⊥/2γm. This leads us to Eqs. (1) and (2) in the main
text, and the following representation for the scattering
potential:

HI(r, t) = −evAz(r, t) +
e2A2

⊥(r, t)

2γm
− ep⊥ ·A⊥(r, t)

γm
.

(S3)
We note that the second (quadratic) term on the right-
hand side of this equation is important only at very

strong electromagnetic fields. The third term is also
small compared to the first term, especially for highly
collimated electron beams.

PHASE FUNCTION Φ(t)

Consider a derivation of the time-harmonic phase mod-
ulation which is the key element of our temporal focus-
ing scheme. It follows from Eq. (4) (in the main text)
that the phase function Φ(t) depends on the temporal
form of the scattering potential (S3). We consider a
time-harmionic field characterized by the vector poten-
tial Az(r, t) = Re{E0z(z)e−iωt}/ω, where E0z(z) is the
complex electric amplitude. Retaining only the first term
in Eq. (S3), we arrive at the following expression for the
phase function:

Φ(t) = 2Re{ge−iωt} = 2|g| cos[ωt− arg(g)], (S4)

where

g =
e

2}ω

∫ ∞

−∞
E0z(z)e−iωz/vdz. (S5)

SUPPLEMENT TO FIG. 2

Figures 2(a) and 2(b) in the main text illustrate tem-
poral focusing with light, showing the magnitude of the
wavefunction at selected planes. Here, in Figs. S1(a)-
S1(c), we provide a more detailed comparison of the three
different focusing schemes for the same set of focusing pa-
rameters as in Fig. 2, showing the entire evolution of the
densities as a function of distance.
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FIG. S1. Evolution of the probability density with propagation distance after interaction with 800-nm light. (a) Single
interaction with a main compression strength g = 4. (b) Numerically optimized dual interaction with a weak precompression
strength g1 = 0.426, drift distance d1 = 0.242lT , and the same main compression strength g = 4. (c) Optimized triple
interaction with strengths g1 = 0.386, g2 = 0.519, g = 4, and drift distances d1 = 0.207lT , d2 = 0.077lT . Red: The positions of
the temporal phase plates and the respective interaction strengths.
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