


states in selected applications, including streaking, CL
and the excitation of two-level systems.

Multislice method for electron propagation.—There are
various approaches to theoretically describe inelastic
electron-light scattering and propagation [21-24]. Here,
we employ a multislice approach [57], in which forward
propagation of electrons along the z axis is described by
the effective Schrodinger equation derived in the Supple-
mental Material [58]:

0
iﬁva—\ll(nt) = [H(r,t)+ D — &) ¥(r,t), (1)
z
where v is the mean electron velocity, £ = ihd; the trans-
lation operator, and Hj(r,t) ~ —evA,(r,t) the time-
dependent scattering potential describing the interaction
with light [58]. The dispersion operator D is given by

£2 R,

D Vi, (2)
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where v = 1/4/1 —v2/c? is the Lorentz factor, m the
electron’s rest mass, and V2 the Laplacian operator
of the transverse coordinates. The Fresnel operator
U(h) = exp(—iDh/hw) describes the propagation of the
electron state from z to z + h without interaction. In
the presence of an electromagnetic field, the solution of
Eq. (1) can be obtained with the split-operator tech-
nique [59], using the Fresnel operator, the propagator
for D = 0 [23, 30], and one of the higher-order decom-
position schemes [60, 61]. Since we are mainly interested
in temporal or longitudinal focusing, for simplicity, we
assume that the interaction is independent of x,y, sep-
arating the wavefunction into its temporal ¥ (z,t — z/v)
and transverse parts, where the latter is known analyt-
ically for cylindrical beams [10, 62]. The advancement
of the temporal part from z to z 4+ h is obtained by the
second-order expression:

Y(z 4 h,t) = U(h/2)e®EOU(h/2)i(2,t),  (3)

where the phase function is given by

z+h
D(z,t) = —%/ Hi(z,t+ z/v)dz. (4)

This procedure is efficiently implemented with a fast
Fourier transform algorithm. It is unitary and hence pre-
serves the probability current j = v[(z,t)|? integrated
over time [63]. It follows from Eq. (3) that a scatter-
ing potential confined to an interval (z,z + h) can be re-
garded as a thin inelastic or temporal phase plate located
at z+ h/2, by analogy with elastic phase plates [20, 64].
Thus, the forward propagation and temporal aberrations
can be reduced to a phase function ®(¢) describing the
temporal phase plate.

Classical limit.—We first outline the classical picture
of temporal aberrations (A — 0), where A®(t) has the

meaning of a classical action. Its time derivative defines
the change of the electron’s energy and velocity:

he(t)
v3mu

Av(t) =

()

Suppose that electrons uniformly distributed in time
traverse a temporal phase plate at z = 0 and gain a ve-
locity change (5). The change of the probability density
with increasing z is determined by the trajectories:

t(z) =t — Av(t)z/v?. (6)

The attracting fixed points in this map, i.e., the zeros
of Av(tp) with the time derivative Av'(¢y) > 0, cor-
respond to paraxial temporal foci. Paths concentrate
and form a caustic near such points, resulting in narrow
peaks in the density [49]. For a time-harmonic phase
®(t) = 2gcos(wt) characterized by an effective interac-
tion strength g (see an expression in [58]) and a frequency
w, the attracting points are given by to = nT', n € Z with
T = 27 /w being the optical period. The paraxial focus
lies at the distance Iy from the phase plate, with

’1)2 lT

ls — A _ 4rmy3v3
F= Av'(ty)  8mg’

T — Tv (7)

where I is the Talbot distance [65], which amounts to
200 mm for 120-keV electrons and 800-nm light.

Temporal focusing by monochromatic light is imper-
fect since paraxial trajectories do not converge into one
point in the space-time diagram in Fig. 2(a), affecting
the electron pulse duration. Another type of temporal
aberration stems from repelling fixed points, at which
half of the electrons are steered to a nearly homogeneous
background in density [Fig. 2(a)]. The latter does not
improve with increasing g because it depends only on
the product gz (see Eq. (6)), and also phase-squeezed
light does not reduce the background [65]. In princi-
ple, both types of temporal aberrations could be elimi-
nated using multiple harmonics to approach a parabolic
phase modulation of the form ®(t) = —gw?s?(t), where
s(t)=(t+T/2mod T) —T/2 is the periodic saw-like
function with zeros nT, n € Z. Generalized electron
beam shaping using multiple harmonics has recently been
theoretically considered [46], and two-color phase modu-
lation experiments have been performed in the context
of attosecond focusing and quantum state reconstruc-
tion [34]. However, superimposing an even larger number
of harmonics with controlled amplitude and phase may
render this approach rather impractical for attosecond
focusing. Instead, as we show in the following, sequen-
tial monochromatic interactions in separate planes repre-
sent an even more powerful and experimentally tractable
scheme to address temporal aberrations.

Eliminating  focusing aberrations by  sequential
scattering.—As described above, the aberrations in









streak field. Of course, the rather limited moments (b™)
resulting from single-field focusing [see Fig. 3(c)] strongly
affect the performance of the streaking technique. Fur-
thermore, as shown in Figs. 4(a) and 4(c), the presence
of a background in electron pulses produced with the
conventional scheme leads to pronounced spectral distor-
tions. In contrast, the background-free electron pulses
produced with our sequential focusing scheme lead to an
almost perfect temporal representation of the streak field
[see Figs. 4(b) and 4(d)].

Possible experimental implementations of our focus-
ing scheme can be realized over a wide range of energies
accessible in scanning and transmission electron micro-
scopes. The main design parameter to consider is the
Talbot distance [Eq. (7)], which scales with the cube of
the electron velocity. Specifically, the pre-compression
distance I7/4 at 800 nm optical wavelength reduces from
120 mm at 200 keV to 8.6 mm at 40 keV and 1 mm at
10 keV, dimensions for which technical solutions should
readily be found.

Conclusion.—In summary, we have theoretically
demonstrated how the concept of sequential scattering
by light and the fractional Talbot effect can be applied
to generate high-contrast attosecond electron pulses. We
achieve an efficient correction of temporal aberrations,
which leads to greatly enhanced coherence properties
in electron-light scattering as compared to conventional
temporal compression. Although the core of our gener-
ation scheme is a true quantum effect, harnessing de-
structive interference of the wavefunction, the result-
ing electron states exhibit an almost entirely positive
Wigner function and greatly improved localization in
phase space. Such states closely represent classical cur-
rents and produce practically fully coherent excitation
and radiation at the modulation frequency. Finally, we
believe that similar schemes may be applicable also for
free-electron lasers operating in the quantum regime [54—
56].
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DERIVATION OF EQ. (1)

The relativistically corrected Schrodinger equation has
been previously obtained in Refs. [S1, S2]. Here we
provide a derivation of another form of the relativistic
Schrédinger equation which, in contrast to the conven-
tional Schrodinger equation, is linear in the derivative 0,
and quadratic in 0;. The quadratic term describes dis-
persion of the electron wavefunction in time. This form is
particularly useful for numerical computations by means
of the multislice method [S3] and fast Fourier transform
algorithms.

As in Ref. [S1], our starting point is the Klein-Gordon
equation (in SI units):

E2T = [2(p — eA)? + m2ch U, (S1)

where e = —|e| is the electron’s charge, and A the vec-
tor potential in the Coulomb gauge (V- A = 0). We
omitted the scalar potential, since it is zero in the ab-
sence of external charges. Removing the central en-
ergy and momentum of electrons by the substitution
U — Wexpliym(v - r — ¢t)/h], we rewrite Eq. (S1) in
an alternative, but equivalent form:

& (p—eA)?
-(p—eA)¥(r,t) = |E — W(r,t
ve(p—eAN(e ) = €4 5o — P )
(52)
where v - p = —ifivd,, since v is chosen along the z axis.

We make the common assumption of multislice meth-
ods that the spread in kinetic momentum is small com-
pared to the central momentum of the electrons py =
ymuv. This is justified, as transmission electron micro-
scopes operate at 30-300 kV acceleration voltages, while
typical energy spreads in the experiments are of the or-
der of 1-300 eV. This ensures that the second and third
terms in the square brackets in Eq. (S2) are small com-
pared to £. The third term can be approximated by
(p—eA)?/2ym ~ (p—eA)? /2ym+E? /2ymv? and com-
bined with the second term to give —&2/2v*mv? — (p —
eA)? /2ym. This leads us to Egs. (1) and (2) in the main
text, and the following representation for the scattering
potential:

Hie,6) = —evA(r,t) + CALED o Arlrd)
2ym ym
(S3)

We note that the second (quadratic) term on the right-
hand side of this equation is important only at very

strong electromagnetic fields. The third term is also
small compared to the first term, especially for highly
collimated electron beams.

PHASE FUNCTION ®(¢)

Consider a derivation of the time-harmonic phase mod-
ulation which is the key element of our temporal focus-
ing scheme. It follows from Eq. (4) (in the main text)
that the phase function ®(t) depends on the temporal
form of the scattering potential (S3). We consider a
time-harmionic field characterized by the vector poten-
tial A,(r,t) = Re{Fo.(2)e” '} /w, where Ep.(z) is the
complex electric amplitude. Retaining only the first term
in Eq. (S3), we arrive at the following expression for the
phase function:

®(t) = 2Re{ge "} = 2|g| coslwt — arg(g)],  (S4)

where

e %) .
— —iwz/v
9= 555 /_Oo Eo.(2)e dz. (S5h)

SUPPLEMENT TO FIG. 2

Figures 2(a) and 2(b) in the main text illustrate tem-
poral focusing with light, showing the magnitude of the
wavefunction at selected planes. Here, in Figs. Sl(a)-
S1(c), we provide a more detailed comparison of the three
different focusing schemes for the same set of focusing pa-
rameters as in Fig. 2, showing the entire evolution of the
densities as a function of distance.
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FIG. S1. Evolution of the probability density with propagation distance after interaction with 800-nm light. (a) Single
interaction with a main compression strength g = 4. (b) Numerically optimized dual interaction with a weak precompression
strength g1 = 0.426, drift distance di = 0.242l7, and the same main compression strength g = 4. (c) Optimized triple
interaction with strengths g1 = 0.386, g = 0.519, g = 4, and drift distances di = 0.207l7, do = 0.077lr. Red: The positions of
the temporal phase plates and the respective interaction strengths.
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