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Abstract

We consider proposals for the cost of holographic path integrals. Gravitational path in-
tegrals within finite radial cutoff surfaces have a precise map to path integrals in T T
deformed holographic CFTs. In Nielsen’s geometric formulation cost is the length of a
not-necessarily-geodesic path in a metric space of operators. Our cost proposals differ
from holographic state complexity proposals in that (1) the boundary dual is cost, a
quantity that can be ‘optimised’ to state complexity, (2) the set of proposals is large: all
functions on all bulk subregions of any co-dimension which satisfy the physical proper-
ties of cost, and (3) the proposals are by construction UV-finite. The optimal path integral
that prepares a given state is that with minimal cost, and cost proposals which reduce to
the CV and CV2.0 complexity conjectures when the path integral is optimised are found,
while bounded cost proposals based on gravitational action are not found. Related to
our analysis of gravitational action-based proposals, we study bulk hypersurfaces with
a constant intrinsic curvature of a specific value and give a Lorentzian version of the
Gauss-Bonnet theorem valid in the presence of conical singularities.
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1 Introduction

A central question within AdS/CFT [1–3] is how the bulk geometry is encoded in the boundary.
Developments over the last fifteen years have shown that entanglement in the boundary state
plays a central role [4], and the Ryu-Takayanagi formula that calculates entanglement entropy
holographically from areas of bulk surfaces has been a particularly useful tool in elucidating
this connection [5]. However, entanglement entropy is not enough [6], with one justification
for this claim being the existence of bulk geometries with subregions that Ryu-Takayanagi
surfaces cannot probe [7,8].
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The complexity of state preparation has been proposed as a new entry in the holographic
dictionary, in a search for the boundary dual of the growth of black hole interior volume that
persists well beyond the thermalisation time scale of conventional holographic probes such as
the aforementioned entanglement entropy and simple correlation functions [6, 9]. This com-
plexity can been heuristically thought of, along the lines of Multiscale Entanglement Renor-
malization Ansatz (MERA) [10], as the size of a tensor network preparing a desired state in
an underlying discretized conformal field theory starting from a disentangled initial state and
using a minimal number of tensors. See [11] for a recent review of these developments.

The microscopic definition of state complexity is ambiguous because it requires a number
of arbitrary choices: a set of elementary gates, a reference state, penalty factors and a margin
of error. Furthermore, defining complexity in continuum QFTs is difficult; see [12, 13] and
[14–17] for progress in free field theories and 1+ 1-dimensional CFTs respectively. Nielsen’s
geometric approach to state complexity as the shortest path in a metric space of unitary oper-
ators is a promising approach [18], yet it faces challenges such as the identification of simple
reference states in the continuum, the incorporation of mixed states and the regularization of
UV divergences.

There are numerous proposed bulk duals to state complexity. The original complex-
ity=volume (CV) proposal [19] relates complexity to the volume of a codimension-one max-
imal bulk slice anchored on the boundary at the relevant time. Other well-studied prescrip-
tions for holographic complexity consider alternative characterizations of the black hole size:
the complexity=action (CA) [20] and complexity=volume 2.0 (CV2.0) [21] proposals respec-
tively relate state complexity to the on-shell gravitational action and volume evaluated on the
Wheeler-DeWitt (WDW) patch, which is a codimension-zero bulk region with null boundaries.
Recently it has been shown that there are actually infinitely many bulk quantities that exhibit
the late-time linear growth and switchback effect which are characteristic of black holes [22].
The holographic complexity proposals have various arguments and justifications for why their
bulk dual is the correct quantity for counting gates. For example, one can motivate the CV
proposal by the observation that the MERA tensor network resembles a discretized version of
the hyperbolic disk [23]. The Ryu-Takayanagi formula has a fairly rigorous derivation [24]; in
contrast there is no compelling derivation of any holographic state complexity proposal.

The path-integral optimisation program, initiated in [25–27], is an interesting approach
to complexity in field theory, and is part of the inspiration for the present paper. For recent
developments see [28–31]. In this approach the preparation of a state by a Euclidean path
integral is ‘optimised’ by, in a sense, coarse-graining the background metric. The physical
idea is that while coarse-graining the background metric does change the UV structure of
the prepared state, these UV differences are exponentially suppressed by the Euclidean time
evolution. The least complex or optimum Euclidean path integral is that which coarse-grains
the background metric as much as possible without affecting the prepared state below the UV
cutoff. To coarse-grain the metric one performs a Weyl rescaling, which in 2d CFTs leaves
the ground state wavefunctional invariant up to a Liouville action prefactor arising from the
conformal anomaly. The Liouville action also appears in the next-to-leading order expansion in
the UV cutoff of a proper, fine-tuned cost function for a particular quantum circuit constructed
out of the energy-momentum tensor components of a two-dimensional CFT in Minkowski
space [32–34]. This gives a Nielsen geometric interpretation to the Liouville action appearing
in path integral optimisation of 2d CFTs, but this has not been generalised beyond 2d CFTs.

In a previous article we attempted to combine the ideas of path integral optimisation and
holographic T T , and to propose the cost of a bulk spacetime circuit which can be minimised to
match state complexity [35].1 More precisely, we suggested a quantum circuit interpretation

1Earlier work combining the idea of path-integral optimization and state complexity with T T -deformations
includes [36,37].
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of Euclidean path integrals on codimension-0 bulk subregions bounded by two time slices
and a radial cutoff surface, and proposed the cost to be given by the on-shell gravitational
action of the subregion. The radial cutoff surface is related to an effective finite cutoff in
the dual field theory in a way made precise by holographic T T [38]. By allowing that radial
cutoff to vary we can coarse-grain the path integral in just the same way as in path integral
optimisation. We showed that the radial cutoff surface that minimises the gravitational action
when the initial state is trivial lands on the time slice on which the final state lives, and that the
minimal cost equals the volume of that slice, which is in accordance with the CV holographic
state complexity proposal. Despite this success several aspects of the ideas put forward in
[35] remained unclear or unsatisfactory. Of all functions on bulk subregions it was not clear
whether or why the gravitational action itself should play a distinguished role. Furthermore,
the extension of the proposal to Lorentzian signature appeared to be problematic.

In this paper we initiate a more general and thorough analysis of possible notions of cost
associated to holographic path integrals. The cost proposals we consider are of the general
form

C = f (XM ) . (1)

C is cost and f (XM ) a function on bulk subregion XM . M is the boundary submanifold on
which the path integral is performed, and to be meticulous we will give the precise map be-
tween bulk and boundary path integrals, including possible T T deformations if the bulk path
integral is within a finite cutoff surface. The two parts of a given cost proposal that need to
be specified are the bulk subregion XM that M maps to, and the function f on that subregion.
XM may be a codimension-one bulk radial cutoff surface, it may be a codimension-0 region
bounded by that radial cutoff surface and two covariantly defined Cauchy slices, or something
more general.

Cost obeys a set of physical requirements that we use to substantially reduce the set of
allowed cost proposals (1). For example, since cost is heuristically the number of gates in a
quantum circuit it should be non-negative as well as additive under concatenation of quan-
tum circuits. We find important differences in what are physically reasonable cost proposals
between Lorentzian and the Euclidean path integrals.

It is arguably more natural to associate cost rather than complexity to functions on bulk
subregions. One argument is that functions such as volume and gravitational action are inte-
grals of local densities and so are additive on unions of disjoint bulk subregions. Complexity,
as geodesic length in a metric space of operators, is not additive but subadditive. Another ar-
gument, for subregions with two boundaries that are partial Cauchy slices of Lorentzian bulks,
is that the natural operator to associate to such bulk subregions is the path integral on that
subregion, which builds up the operator in a series of infinitesimal Hamiltonian time evolu-
tions. Physically there is no reason to suppose that this is the least complex way to build up
the operator.

We can also argue for why functions on codimension-0 bulk subregions should be associ-
ated with operator cost rather than state cost. The time evolution operator acting on a CFT
vacuum state does nothing. It traces a trivial empty path in the space of states, even though
the operator is nontrivial, so we expect zero state cost but non-zero operator cost associated
to this evolution. The time evolution of the CFT vacuum state is dual to the time evolution
between two constant time slices of a pure AdS bulk, a codimension-0 subregion. A generic
function such as volume or gravitational action evaluated on such a region will be non-zero,
which rules it out as state cost, i.e. the length of a path between initial and final state.

We connect our path integral cost proposals to holographic state complexity proposals
using ideas from path integral optimisation. We fix a bulk state and optimise over all possible
holographic path integral preparations of that state. To do this we choose a cost proposal (1)
and minimise cost over path integrals that prepare the same state. Path integrals on manifolds
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with two boundaries define operators, and path integrals generate paths through the space
of operators which are not generally geodesic, and so path integral cost upper bounds the
operator complexity because that is the length of the shortest path to the operator. Operator
complexity itself upper bounds state complexity, because state complexity can be defined as
operator complexity minimised over those unitary operators that map a fixed reference state
to the target state:

C(| f 〉) := min
{U: U |i〉=| f 〉}

C(U) . (2)

This optimisation procedure produces candidate notions of state complexity. It should be
pointed out that the optimisation is restricted to holographic path integral preparations, so
the relevant notions of complexity roughly correspond to gate sets which admit a semiclassi-
cal dual gravitational representation. The requirement that a state complexity proposal should
be obtainable by optimising a suitable cost functional over gravitational path integral repre-
sentations substantially restricts possible state complexity proposals. The complexity=volume
and complexity=volume 2.0 proposals seem connected to the optimisation of suitable cost
functionals, but we have not been able to find such a connection for the complexity=action
proposal.

For state complexity proposals one often imposes linear late time growth in black hole
backgrounds and the so-called switchback effect. While we make some preliminary remarks
about these issues in section 4, we have not systematically analyzed which cost proposals
agree with these requirements after optimisation and it would be interesting to study this in
more detail. It is worth pointing out that in [22] a detailed study of possible codimension
one covariant notions of state complexity was given and it was found that many of these are
compatible with late time linear growth and the switchback effect, so perhaps imposing these
extra criteria is not too restrictive. While [22] also considers general covariant functionals just
as we do, it only considers state complexity and does not look at the more general holographic
cost proposals, nor does it address this issue which of the former are the result of optimizing
the latter, which is one of the key issues we address.

Outline

In section 2 we introduce the set of bulk path integrals we would like to think of as quantum
circuits and associate a cost to. We review holographic T T and give the precise map from our
bulk path integrals to boundary path integrals in T T deformed theories. We describe how to
coarse-grain both the bulk and boundary theories to EFTs in which we expect UV-finite path
integral cost. We explain in what sense we can ‘optimise’ the path integral between bulk states,
and how to prepare a given bulk state in the least complex way.

In section 3 we map out the set of holographic proposals for path integral cost. Defin-
ing a holographic cost proposal requires specifying a bulk subregion and a function on that
subregion. We give a set of physical requirements that any such cost proposal must satisfy:
non-negativity, additivity, covariant definition, invariance under time reversal, and that the
cost of the trivial path integral vanishes. We then describe how these requirements reduce the
original space of holographic path integral cost proposals. The non-negativity requirement is
particularly important; we point out that cost proposals using the Einstein-Hilbert gravitational
action are generically unbounded from below.

In section 4 we connect our holographic path integral cost proposals to existing state com-
plexity proposals. Specifically, we construct a set of path integrals that prepare a fixed bulk
state and give two cost proposals that when minimised over this set of path integrals reduce
to the CV state complexity proposal, and one which reduces to CV2.0. We are not able to find
a cost proposal that reduces to the CA complexity proposal, and we discuss the difficulties in
doing so. Finally we introduce a new candidate holographic complexity proposal constructed
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Table 1: Summary of the subset of path integral cost proposals that are considered in
detail in this paper. Includes the metric signature of the bulk to which the proposal
applies to, which of the physical properties of cost that are satisfied, and, when all
properties are satisfied, which holographic state complexity proposal the cost pro-
posal reduces to.

Cost equals...
Bulk

signature

Satisfies physical properties of cost? Reduces
to which

state
complexity
proposal?

Zero cost
⇔ trivial

path
integral

Additivity Symmetry Covariance Non-
negativity

Codim-1
boundary
volume

Euclidean ✓ ✓ ✓ ✓ ✓ CV0

Codim-1
boundary
volume

Lorentzian ✗ ✓ ✓ ✓ ✓ N/A

Codim-0
bulk volume

Euclidean ✓1 ✓ ✓ ✓ ✓ CV0

Codim-0
bulk volume

Lorentzian ✓1 ✓ ✓ ✓ ✓ CV2.03

Codim-0
gravitational

action

Euclidean ✓1 ✓ ✓ ✓ ✓2 CV0,4

Codim-0
gravitational

action

Lorentzian ✓1 ✓ ✓ ✓ ✗ N/A

0 For time reflection-symmetric surfaces; see section 4.1.
1 If initial and final bulk slices suitably defined; see section 4.
2 Except for a few fringe cases; see section 3.4.
3 Actually reduces to the volume of half a WdW patch; see section 4.2.
4 Only explicitly shown for pure AdS; see [35] and section 4.3.

from constant scalar curvature surfaces, inspired by [35], and explore its time-dependent prop-
erties in the BTZ black hole setup. See table 1 for a summary of path integral cost proposals
we found that satisfy the physical requirements and reduce to state complexity proposals.

In section 5 we reconsider the flow equation derived in [35] that describes the motion of
a cutoff surface in a fixed Euclidean AdS background. We provide a particularly simple ansatz
that in the three dimensional case captures generically the solutions of the flow equation. The
solutions, which are interpreted as bounding regions of the bulk where the action does not
change under infinitesimal displacements, turn out to be foliated by geodesics in the ambient
AdS3 manifold, and we provide examples thereof. We also show that in the Lorentzian case
these solutions, which we then dub “lemons”, provide an interesting and, to the best of our
knowledge, novel foliation of the WDW patch.

We end the paper with a discussion of the challenges that the cost function approach to
holographic complexity poses and point out possible lines of future work. Some technical
discussions are relegated to appendices.
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2 Path integrals between geometric states

How complex are states in semiclassical gravity? What is the least complex way of evolving
from one state to another via a path integral? To address these questions we will first dis-
cuss how a given semiclassical bulk state in AdS gravity can be the solution to not one but a
continuous family of mixed boundary conditions at the asymptotic boundary, and so have rep-
resentations in many deformed holographic CFTs. Next, since this is a fine-grained description
and the costs and complexities of these states are UV divergent, we will describe how precisely
to coarse-grain the holographic theories to get UV-finite results. Lastly we explain in what
sense we can ‘optimise’ the path integral between bulk states.

We will momentarily give a more precise description for the case of pure AdS3 gravity, but
first give a more heuristic picture of the general situation. Given a semiclassical bulk config-
uration which is asympotically AdS, it is a priori not yet clear in what theory this configura-
tion describes a state, as we have not yet specified the boundary conditions. In other words,
we have not yet defined which degrees of freedom fluctuate and which ones are kept fixed
(i.e. what are the sources and what are the expectation values of operators), or equivalently,
we have only provided one bulk configuration rather than the full phase space of solutions.

The standard choice would be to impose standard asymptotic AdS boundary conditions
where the bulk configuration would correspond to a state in the dual CFT. We can however also
make other interesting choices. For the purpose of the paper, we will be interested in imposing
Dirichlet boundary conditions on a timelike hypersurface in the bulk (for Lorentzian space-
times). Linearized on-shell fluctuations around this background which preserve the Dirichlet
boundary conditions will have a mix of non-normalizable and normalizable modes turned on
near the AdS boundary, which should therefore be interpreted as belonging to a deformed
CFT with sources for multi-trace operators turned on. At the linearized level, one only finds
double-trace deformations, and if the backreaction of the matter fields on the geometry can be
neglected one only finds a double-trace deformation for the stress-tensor which looks like a T T
deformation with a space-time dependent source. Including the backreaction of matter will
generate other double-trace deformations which involve other operators in the CFT. Going be-
yond the linearized approximation, one will generically encounter higher-trace deformations
as well. A more precise analysis would consider the full non-linear phase space of solutions
with the relevant Dirichlet boundary conditions, but we do not expect this phase space to have
simple asymptotics at infinity, as at the non-linear level the irrelevant higher-trace deforma-
tions will generally lead to solutions which are not asymptotically AdS. This full non-linear
analysis is in general intractable, but luckily the situation in pure AdS3 is more favorable and
we can make some of these statements more precise as we will do next. The reader should
keep in mind though that ultimately we are interested in the more general situation sketched
here.

2.1 Review: holographic T T

We consider path integrals bulk theories which are holographically dual to T T deformed CFTs.
We start with a review of holographic T T in order to understand the precise holographic map
between bulk and boundary path integrals. First we follow the perspective and presentation
of [39], that T T -deformed holographic CFTs are UV-complete but non-local field theories,
and that they are dual to gravity in asymptotically AdS spacetime, i.e. whose bulk slices have
infinite volume, with mixed boundary conditions at infinity. In the next subsection we discuss
the coarse-grained descriptions of both sides: gravity with Dirichlet boundary conditions inside
a finite cutoff surface, and the T T low energy effective theory.
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2.1.1 Fine-grained description

For concreteness and simplicity we consider pure three dimensional semiclassical Einstein
gravity in AdS with all bulk matter background fields in their vacuum configurations. In this
case the holographic T T deformation, i.e. the deformation which brings in the bulk Dirichlet
boundary conditions to finite cutoff, is the original T T deformation as studied by Zamolod-
chikov [38,40]. As alluded to above, our discussion generalises to other dimensions and with
non-trivial bulk background fields turned on with only a modification to the boundary field
theory deformation [41–44]. The most general asymptotically AdS3 metric solving Einstein’s
equations can be written in Fefferman-Graham gauge as

ds2 = Gµνd xµd xν =
L2

4ρ2
dρ2 + Gi j(ρ, x)d x id x j , Gi j(ρ, x) =

G(0)i j (x)

ρ
+ G(2)i j (x) +ρG(4)i j (x) . (3)

Here, ρ is a radial coordinate with the asymptotic boundary at ρ = 0.2 For AdS3, the
Fefferman-Graham expansion ends at G(4), and on-shell G(4) is fully determined by G(2) and
G(0):

G(4)i j =
1
4

G(2)ik G(0)kl G(2)l j . (4)

In the standard AdS/CFT dictionary, Dirichlet boundary conditions are imposed by holding G(0)

fixed on a UV cutoff surface such as ρ = ε. The subleading metric falloff G(2) maps to the stress
tensor one-point function in the dual field theory and, up to conservation and tracelessness,
is unconstrained. Now consider a particular fixed asymptotically AdS3 spacetime, with metric
denoted by G. This fixed metric G is the solution to Einstein’s equations for a set of not one
but many different boundary conditions at the asymptotic boundary. A special set of such
boundary conditions parametrised by a variable λ holds fixed at ρ = ε the combination

G(0)i j −
λ

4πGN L
G(2)i j +
�

λ

4πGN L

�2

G(4)i j . (5)

The boundary conditions (5) are mixed; they hold a combination of the metric and its deriva-
tives fixed. As an example of how a given metric can be the solution to many different bound-
ary conditions take G equal to be pure AdS3, for which G(2) = G(4) = 0 and G(0)i j = ηi j . This
metric G satisfies the mixed boundary conditions (5) for all λ, if the combination is fixed to ηi j .

The mixed boundary conditions (5) for the bulk metric at the asymptotic boundary are
special [39]. In the bulk this is because they are equivalent to Dirichlet boundary conditions
at finite radial cutoff, i.e. holding fixed the induced metric Gi j(ρc , x) on a finite radial cutoff
surface

ρc = −
λ

4πGN L
. (6)

This can be easily checked from the Fefferman-Graham expansion (3). Dirichlet boundary
conditions at finite cutoff are interesting because then the physics in the interior of the cutoff
surface is an effective description of semiclassical gravity in a spatial volume that is finite,
unlike AdS [38]. The bulk gravitational action evaluated in the whole bulk does not depend
on λ, but the set of on-shell metric configurations does. Since the mixed metric boundary
conditions at the asymptotic boundary are equivalent to Dirichlet boundary conditions with
metric equal to that which G induces on a finite radial cutoff surface, the gravitational theories
with these different boundary conditions all by construction include G amongst their on-shell
metric configurations, but in general have little other overlap in on-shell metric configurations.

In the dual holographic field theory, it is an old story that replacing Dirichlet with mixed
boundary conditions for the bulk metric at infinity maps to deforming the original undeformed

2The coordinate ρ is related to the Poincaré coordinate z by ρ = z2.
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field theory with a double trace deformation [45]. The particular double-trace deformation
that the mixed boundary conditions (5) corresponds to is the T T deformation. Specifying a
bulk metric G and mixed boundary condition parameter λ is sufficient to fix the dual T T -
deformed holographic CFT living on a manifold M . The field theory background metric on M
is most simply expressed in terms of the metric induced by G on the ρ = ρc surface denoted M̃ :

γi j(x) = ρc Gi j(ρc , x) = ρcG|M̃ . (7)

The metric on M is γ, and the metric on M̃ is g. Note that, from this map between metrics,
a subregion of M is empty iff the corresponding subregion of M̃ is also empty. In general γ
has a non-trivial λ dependence. The action of the deformed theory is the solution to the flow
equation

d
dλ

S(λ) =

∫

d2 x
p
γO(λ)

T T
with O(λ)

T T
:= −

1
2
(γikγ jl − γi jγkl)T

i j T kl . (8)

The seed action is that of the undeformed CFT, S(0) = SC F T , which is dual to the gravitational
theory with asymptotic Dirichlet boundary conditions. The deforming operator O(λ)

T T
has a λ

dependence because the stress tensor changes as the action flows. From the bulk gravitational
perspective, what is special about the T T deformation in the dual holographic CFT is that the
corresponding mixed boundary conditions are equivalent to Dirichlet boundary conditions on
a finite radial surface.

2.1.2 Coarse-grained description

Here we introduce the coarse-grained version of holographic T T : the effective description
of gravity within a finite box, and the EFT of a T T deformed CFT. Consider a gravitational
partition function with Dirichlet boundary conditions Zgrav[g], which depends on the value
of the induced metric g on its boundary. As a consequence of diffeomorphism invariance, this
dependence is constrained by (a radial version of) the Wheeler-DeWitt (WDW) equation [46]

HW DW Zgrav[g] = 0 , (9)

where HW DW is the WDW Hamiltonian3

HW DW = gi j
δ

δgi j
+

1
p

g
(gik g jl −

1
2

gi j gkl)
δ

δgi j

δ

δgkl
+
p

gR . (10)

Formally this equation can be solved to relate gravitational partition functions with different
metric boundary conditions:

Zgrav[g] =

∫

Dg̃ K[g, g̃]Zgrav[ g̃] . (11)

The kernel can be calculated for any bulk field content, including with matter [48, 49], but
we won’t need the precise form for our discussion. The initial data we want to use when solv-
ing (11) is the gravitational partition function with AdS Dirichlet boundary conditions, i.e. the
undeformed CFT generating functional. Suppose we take an asymptotically AdS metric G and
set g equal to the metric induced on a radial cutoff surface M̃(λ)|G parametrised by λ. With

3The quantised WDW Hamiltonian has contact terms that can be removed by normal ordering but which leave
operator ordering ambiguities in its definition [47]. These are similar to the operator ordering ambiguities arising
from the point-splitting regularisation of the T T operator. Since the primary focus of this paper is on cost proposals
rather than T T we will not address these subtleties here.
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(11) we have an effective description Zgrav[g = G|M̃(λ)] of gravity with Dirichlet boundary
conditions that fix the induced metric equal to the metric induced on M̃(λ) by G. The effec-
tive description ‘throws away’ everything outside the cutoff surface. Zgrav[g = G|M̃(λ)] has the
geometry of Int(M̃)∩ G as one allowed on-shell metric configuration among many. Other on-
shell metric configurations differ at the boundary in their normal derivatives, corresponding
to different one-point functions in the dual cut-off theory.

Gravity with a Dirichlet metric boundary condition g = G|M̃(λ) has a dual non-gravitational
description as the effective theory of a T T -deformed CFT on a manifold M with degrees of
freedom above the scale set by λ integrated out [38, 42]. The map between EFT generating
functional and gravitational partition function is

Z (λ)EF T (γ) = Zgrav[g = G|M̃(λ)] . (12)

This is a continuous family of EFT’s parameterised by λ with non-dynamical background met-
rics γ.

What is the map from the bulk metric boundary condition g to quantities in the dual
non-gravitational EFT? The metric g fixes the conformal class of the field theory background
metric:

γi j(x) = λ
2/d(x)gi j(x) , (13)

with the deformation parameter related to the radial coordinate in Fefferman-Graham gauge
by λ(x)∝−ρc(x)d/2 [48]. In general we can have a non-constant deformation, correspond-
ing to a non-constant radial cutoff. The holographic T T deformation in dimensions other than
two and with sources turned on is defined by the property that it is dual to a bulk gravitational
theory with Dirichlet conditions at finite cutoff. The T T deformed non-gravitational effective
action is formally the solution to the flow equation

δ

δλ(x , t)
log Z (λ)EF T (γ) =

∫

M
dd x 〈X (λ,γ)〉 . (14)

This flow equation, including the precise form for X , is derived by mapping the gravitational
WDW equation (9) to an exact RG equation in the field theory [38, 42, 48]. Schematically,
first we take the semiclassical limit where the gravitational partitional function is given by the
on-shell gravitational action. Then, functional variations δg Zgrav[g]with respect to g become
functions of the Brown-York stress tensor of the on-shell action, and in the boundary effective
action this maps to deformations by the field theory stress tensor. In the special case of 2d,
with a constant deformation parameter λ, and with no sources except a flat background metric
turned on, the deformation is the standard T T operator, X =OT T defined in (8).

2.2 Bulk path integrals

We have a one-to-many map from a Cauchy slice of fixed bulk spacetime G to a geometric state
in the Hilbert spaces of not one but a continuous family of T T -deformed holographic CFTs.
Each mixed boundary condition for which G is an on-shell solution maps to a different T T
deformed theory. The whole of G maps to the causal development of these geometric states.
We thus have many field theoretic descriptions for the causal evolution of a spatial slice of G.
This leads to the key question that largely motivates our paper: which of the deformed CFTs
describes the evolution of the bulk state in the least ‘complex’ way?

To be concrete, let us focus on transition amplitudes between geometric states with metric
and conjugate momentum induced by a given fixed G on two arbitrary Cauchy slices Π1 and
Π2, see figure 1. By construction G is the dominant spacetime saddlepoint contribution in the

10

https://scipost.org
https://scipost.org/SciPostPhys.14.4.061


SciPost Phys. 14, 061 (2023)

Figure 1: Coarse-grained vs fine-grained bulk path integrals. Left: A path integral
representation of the transition amplitude between two compact manifolds Σ1 and
Σ2 with specified metrics. The gravitational path integral has Dirichlet boundary
conditions g. Right: Embedding in a larger UV complete theory of gravity in AdS.
Fix a bulk metric G, which is a solution to a family of mixed boundary conditions at
the asymptotic boundary parameterised by λ. The mixed boundary conditions are
on-shell equivalent to Dirichlet boundary conditons on surface M̃(λ). The light blue
surfaces are Cauchy slices Π1 and Π2, which Σ1 and Σ2 are compact subregions of.

semiclassical approximation to the transition amplitude between those two geometric states.
This transition amplitude has a formal path integral representation

〈ψ2|ψ1〉=
∫

DG̃ eiSgrav[G̃]δ
�

G̃|Π1
− G|Π1

�

δ
�

G̃|Π2
− G|Π2

�

. (15)

The δ-functions are the wavefunctions of the initial and final states in the basis of geometric
states, and they in effect impose spacelike boundary conditions on the path integral. We also
implicitly impose the timelike boundary condition (5). Finding the classical gravitational solu-
tion for these boundary conditions is not an inconsistent overdetermined problem because G is
by construction a solution. Sgrav is the Einstein-Hilbert action including, if necessary, bound-
ary, corner, and holographic counterterms [50,51].

We would like to interpret the bulk path integral (15) and its dominant saddlepoint G
as originating from the continuum limit of a tensor network representation of the transition
amplitude, and associate a cost, i.e. a properly understood regularised number of gates, to
that tensor network. Keeping G fixed and changing the asymptotic boundary conditions does
not affect the gravitational transition amplitude (15) in the saddle-point limit,4 but are the
costs of the associated path integrals the same? We propose that the ‘fundamental gates’ the
gravitational theories use are in fact different, and so the cost of their path integrals – even
those that prepare the same final state from a given initial state – may be different. This is
backed up by the fact that each mixed boundary condition maps to a field theory with different
T T -deformation parameter, which at least naively have different operators and gates available
to them [39,52,53]. This introduces a λ dependence to the ‘cost’ of G, which we can minimise
over in our pursuit of finding the least complex way of evolving between two geometries.

Both T T -deformed CFTs and gravitational duals are thought to be UV complete [38, 39,
52,54], so we expect UV divergences in state complexity and the cost of preparing or evolving
between states. This is associated to the infinite volume of all spatial slices of all asymptotically
AdS spacetimes. To regulate we need to coarse-grain and consider effective theories with a
cutoff. In principle we could choose any UV cutoff as our regulator, but T T -deformed theories
and their generalizations come with a natural effective UV scale, which is the scale above

4There are subleading in 1/N corrections to this statement from the metric and matter field fluctuations which
we neglect. Our proposals for path integral cost are only accurate to leading order in 1/N .
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which the theory becomes approximately non-local. It is therefore very natural to integrate
out all degrees of freedom above this scale, but keep the degrees of freedom below this scale,
as the same scale is also expected to set the effective size of the smallest possible tensor in a
tensor network description. In the T T example discussed above the relevant scale is set by
the deformation parameter λ. In the bulk, there is a natural dual description of this UV cutoff,
namely the existence of the Dirichlet surface M̃(λ). In effect M̃(λ) splits the bulk spacetime G
into an exterior UV region, and an interior IR region, and we ‘integrate out’ the exterior. This
is an important point so let us emphasize this once more: The bulk Dirichlet surface defines
both the boundary conditions for the dual field theory, as well as the UV cutoff in that theory.

We will make this more precise: The path integral depicted by figure 1 is the transition
amplitude between two spatial geometries on Σ1 and Σ2 in an effective gravitational theory
Zgrav[g] which holds the boundary metric fixed to g. This can be embedded in a UV com-
plete theory of gravity in AdS if there exists a G and a set of asymptotic boundary conditions
parametrised by λ such that g = G|M̃(λ), and Σ1 and Σ2 can be embedded in Cauchy slices of
G, i.e. the metrics on Σ1 and Σ2 equal the metrics G induces on Σ1 ⊂ Π1 and Σ2 ⊂ Π2. Then
by construction the dominant saddlepoint geometry in the effective theory coincides with G
restricted to the interior of M̃(λ). To ‘optimise’ the path integral we keep G and the compact
submanifolds Σ1 and Σ2 fixed, and vary λ. Pictorially, this amounts to varying the shape of
the red surface in the left half of figure 1 while keeping on-shell interior geometry equal to
the geometry inside M̃(λ) in the right half of the figure. This gives us a continuous family of
gravitational path integrals that prepare the same final bulk state |Σ2〉 from a given reference
state |Σ1〉.5 Note that to keep Σ1 and Σ2 fixed and λ-independent we need the intersection
of M̃(λ) with Π1 and Π2 to be λ-independent, which in general requires M̃(λ) to have non-
constant radius, which in turn requires a non-constant λ parameter [48].

We have given the explicit map between the bulk metric g on M̃ and the background field
theory metric γ on M in (13). If we wish we can use the same coordinates x i on both manifolds.
By extension, given a bulk path integral between Cauchy slices as depicted in figure 1 we know
how to map between intersections of those bulk Cauchy slices with M̃ and boundary Cauchy
slices of M . From this we have a complete and precise holographic duality between a given
path integral in an effective gravitational theory and a path integral in a T T -deformed CFT.
In a slight abuse of notation, when discussing path integrals on the subregions of M and M̃
between Cauchy slices, we will also call these subregions M and M̃ . While in the remaining
part of the paper we will not make an explicit use of the above discussion about holographic
T T , we believe it can be taken as a starting point in building a bridge between gravitational
notions of cost functions and operatorial expressions for circuits living on M̃(λ).

We consider bulk path integrals in both Lorentzian or Euclidean signature. In some ways
they are similar: for both signatures the path integrals on manifolds with one boundary prepare
states, and when there are two boundaries the path integrals calculate transition amplitudes.
Lorentzian and Euclidean bulks differ however in the possible metric signatures of their em-
bedded surfaces. For Euclidean bulks all surfaces M̃ are spacelike. Path integrals on M̃ with
two boundaries correspond to unnormalised density matrices,

ρ = Pe−
∫

dτH(τ) , (16)

with infinite Euclidean time evolution preparing the projection operator onto the vacuum state
ρ = |0〉 〈0|. For Lorentzian bulks the embedded surface M̃ can be spacelike, timelike, or even
non-constant signature. Since the signature of M̃ is the same as M , as follows from (13), in the
T T deformed boundary theory a timelike M̃ corresponds to a Lorentzian path integral while
spacelike gives Euclidean ones. States on time-reflection symmetric slices in Lorentzian AdS

5Herein, we assume both of these states to live effectively in the IR-sector of the Hilbert space of the UV-complete
theory that is created by coarse graining.
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spacetimes can be prepared by a Euclidean path integral, while other states cannot and need
some Lorentzian time evolution.

We consider path integral cost proposals for both Euclidean and Lorentzian bulks. A cost
proposal that is physically reasonable, e.g. non-negative, in one signature need not be in the
other, so part of specifying a cost proposal is saying whether it is applicable to Lorentzian or
Euclidean bulks, or both. When we come to giving specific cost proposals we will always specify
which metric signature it is applicable to. The question as far as path integral optimisation of
state preparation goes is which set of M̃ one is minimising cost over. For Lorentzian bulks if
one wishes to find the shortest path in a space of unitary operators, then one should restrict
to only timelike M̃ . Spacelike components of M̃ in Lorentzian bulks that are achronal with
respect to each other and Σ1 and Σ2 can be thought of as extensions of the partial Cauchy
slices on which the initial and final states are defined. Whether they are part of the past or
future slice depends on the time-orientation of their normals. The states onΣ1 andΣ2 are then
reduced state with respect to the larger slices. In this paper we will only consider timelike M̃
in Lorentzian bulks.

One last closing comment is in order. In the present work we start with an asymptotically
AdS geometry and identify in it the cut-off surface M̃(λ) and its interior, as in figure 1 (right).
Starting with the situation depicted in figure 1 (left), it is a priori not clear if it can be embedded
in an asymptotically (perhaps locally) AdS geometry. There are several reasons for it. One is a
possible issue of singularities arising as one tries to extend the geometry towards infinity and
another are matter fields that may enforce non-AdS asymptotics. A special case is pure gravity
with negative cosmological constant in three bulk dimensions, in which case the geometry is
guaranteed to be a portion of the AdS3 manifold.

2.3 Path integral optimisation and holographic state complexity

Suppose we have a prescription for associating a cost to the gravitational path integral depicted
in the left half of figure 1. Heuristically, this cost denoted C (M̃(λ)) ‘counts’ the number of
gates in different spacetime tensor networks parametrised by λ(x , t). Each λ(x , t) defines a
different path integral that maps the same fixed initial state |Σ1〉 to final state |Σ2〉, and a given
one of these bulk path integrals will not correspond to the least complex circuit between those
states, which is why we are discussing cost rather than complexity.

There is however a sense in which the bulk path integrals can be optimised, by minimising
path integral cost C (M̃(λ)) over λ. Recall that we keep G, Σ1 and Σ2 fixed, so the set of λ to
minimise over are those for which

∂ M̃(λ) = ∂Σ1 ∪ ∂Σ2 . (17)

In some cases the minimal path integral cost can be interpreted as state complexity, and this al-
lows us to connect holographic path integral cost to holographic state complexity. The subtlety
is in which set of path integrals it is meaningful to compare.

Stepping back for a moment, when does it make sense to optimise path integrals? Path
integrals in a fixed seed field theory but allowing for different background geometries, field
theory sources and field theory deformations define different operators, and it is not mean-
ingful to compare the costs of the path integrals. Minimising cost over all such path integrals
cannot meaningfully be interpreted as ‘optimisation’ of state preparation, if indeed they even
act on the same Hilbert spaces. The key idea is that there are a set of bulk path integrals it is
meaningful to optimise: those that take a given initial state to the same final state.

To connect path integral cost to state complexity, we also need to choose a suitable initial
state, such that the final state is prepared from ‘nothing’. In the complexity literature this is
often taken to be a spatially unentangled product state, but this does not have an approximate
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Figure 2: A fine-grained description of the preparation of a bulk state from ‘nothing’.
The initial state lives on a surface Σ1 embedded deep in the IR of an asymptotically
AdS spacetime. This corresponds to a state in a T T -deformed CFT with very large
deformation parameter. We take this to be the reference state when defining the state
complexity of the final state on Σ2.

semiclassical description, so we cannot use it. Our initial state takes Σ1 to be a bulk point.
It is helpful to think of this as limit of a small spatial region placed deep in the IR of the
asymptotically AdS spacetime, which we shrink to zero volume, see figure 2. As M̃(λ) moves
outwards from the deep IR towards ∂Σ2, the Hilbert space of the effective gravitational theory
grows to non-trivial size. In the dual boundary theory this initial state lives in a theory where
we have taken the T T deformation parameter λ → ∞. This sets the effective RG scale to
zero, and the effective theory integrates out everything above that scale which leaves a trivial
theory.

The bridge from path integral cost to state complexity is still not complete. Even the op-
timum path integral may not correspond to the shortest path in the space of states, because
not all unitary operators are generated by the set of path integrals we have considered. This
means that we only expect the cost of the optimum path integral to still only upper bound the
complexity of state |Σ2〉:

min
λ

C (M̃(λ))≥ C(|Σ2〉) . (18)

It is not clear when if ever this inequality is saturated, i.e. when if ever the least complex
unitary operator taking |Σ1〉 to |Σ2〉 has a path integral representation.

The semiclassical bulk path integrals and their associated costs are defined on a specified
and fixed bulk geometry, but the set of path integrals we want to optimise over do not neces-
sarily have the same background geometry. We can choose to keep the bulk fixed and optimise
over the set of path integrals on subregions of that single fixed bulk defined by their boundary
Σ1 ∪ M̃(λ) ∪Σ2. A larger and more natural superset allows for different bulk geometries G,
as well as different M̃(λ), that also keep the initial and final states |Σ1〉 and |Σ2〉 fixed. When
we come to connecting to holographic state complexity proposals we will choose, for the sake
of simplicity, path integral cost proposals for which we can show that the minimal cost is the
same for either set.

This concludes our discussion of transition amplitudes between bulk states. We have dis-
cussed what Hilbert spaces the bulk states live in, what the exact map is from bulk theory and
state to T T -deformed CFT and state, constructed a set of path integrals we can ‘optimise’ over
that prepare the same state from an initial state, how to coarse-grain the description on both
sides, and how to prepare a state from nothing. Next we will consider proposals for the cost
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Figure 3: Left: M is a Euclidean or Lorentzian manifold with two boundaries from
which operators can be defined. Right: The space of all such operators, which are
unitary when M is Lorentzian. UM is the operator whose matrix elements are calcu-
lated by the path integral on M .

C (M̃(λ)) of the coarse-grained bulk path integrals, which gives us a quantity to minimise and
so optimise.

3 Holographic path integral cost proposals

In AdS/CFT the boundary path integral defines a (Lorentzian/Euclidean) time-evolution op-
erator. The goal of this section is to consider holographic proposals for the cost of the path
integral, i.e. the length of the path through the space of operators.

3.1 Path integral cost

Let us start by defining what we mean by path integral cost. This subsection is mostly field
theoretic and logically separate from gravity and holography. We may associate an operator
UM to the path integral on any manifold M with two boundaries and unspecified boundary
conditions, see figure 3. Matrix elements of the operator are defined by the path integral with
specified boundary conditions for the fields of interest φ = φ1,2 on the two boundaries, which
computes a transition amplitude:

〈φ2|UM |φ1〉 :=
∫ φ=φ2

φ=φ1

Dφ e−S[φ] . (19)

We are interested in both Euclidean and Lorentzian path integrals. For the latter there is
an insertion of i in the path integral representation of the transition amplitude. We denote
the operator defined in (19) by UM whether or not the operator is unitary, i.e. even if the path
integral is Euclidean. UM depends not only on the geometry of M , but on the field theory itself.
We take the field theory to be holographic and consider not only changes to the background
geometry but also allow the addition of sources and deformations to the theory. When we
come to embedding M in a bulk spacetime, these sources and deformations will correspond to
adding bulk excitations and bringing in the boundary to finite cutoff with T T deformations.
From the context we hope it is clear whether M refers only to the manifold, or to all the data
required to define the path integral including the manifold, seed theory, sources, and theory
deformations.
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We define path integral cost C as the length of the path generated by time evolution from
the identity operator to UM in a metric space of operators. For the path integral cost to be
well-defined the metric space must be specified: both which set of operators to include and
which metric to impose on it. Expressed in the terminology of Nielsen’s geometric formula-
tion [18], cost functions determine the metric on the set of operators, and control functions
specify paths in that metric space. The path integral generates a path from 1 to UM which is
not generally geodesic, and so the path integral cost upper bounds the operator complexity of
UM , because that is defined as the length of the shortest path between 1 and UM . An exam-
ple illustrating the difference between path integral cost and operator complexity is given in
figure 4. The operator complexity of UM itself upper bounds the state complexity of the state
| f 〉 = UM |i〉, because state complexity can be defined as operator complexity minimised over
those unitary operators that map a fixed reference state |i〉 to the target state | f 〉. The path
integral operator UM does not in general correspond to the shortest path between |i〉 and | f 〉,
which is why its complexity is only an upper bound to the state complexity. These statements
can be summarised as

C (M)≥ C(UM )≥ C(| f 〉) , (20)

where C (M) is the path integral cost of M , C(UM ) the operator complexity of UM and C(| f 〉)
the state complexity of | f 〉= UM |i〉. Note the calligraphic font that distinguishes cost C from
complexity C .

Figure 4: An example illustrating the difference between path integral cost and op-
erator complexity. Suppose we have a manifold M such that Hamiltonian evolution
from the initial to final boundary traces out a closed path through the space of uni-
tary operators, i.e. a Poincaré recurrence with eiH t f ≈ 1. The path integral cost is
the length of the closed path, which is non-zero, while the complexity of the time
evolution operator is trivially zero. This is an example where C (M) ̸= C(UM ).

Note that the same operator UM can be represented in an infinite number of ways as a
circuit in physical time upon picking a time foliation, see figure 5. From the circuit perspec-
tive, constant time slices can be thought of as layers of the circuit, and these different time
foliations as different ways of assigning gates amongst the layers. The circuit as a whole is
independent of its time foliation, and this is a physical reason for why the cost should be fo-
liation independent. This we impose on the bulk side of the holographic proposal through a
covariance requirement. On the boundary side one implication is that the lengths of the red,
blue and other paths in figure 5 from 1 to UM are the same. Hence, while in general two
randomly selected paths connecting 1 and UM will have different lengths (due to describing
physically different circuits), each such path will come with an equivalence class of paths of
the same length that can be generated by changes in time-foliation. This is a symmetry of the
metric space that is a consequence of the physical equivalence of different time foliations.
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Figure 5: Left: M is taken to be a Lorentzian cylinder, and the blue and red ellipses
represent constant time slices of two different time foliations of the cylinder. Right:
UM is the unitary operator whose matrix elements are calculated by the path integral
on M . Different time foliations define different paths to UM .

3.2 Physical properties of path integral cost

Necessary conditions that holographic proposals must satisfy in order to be reasonably inter-
preted as path integral cost, i.e. the length of a path in a metric space of operators, are the
following:

1. The trivial path integral has zero cost.

When M =∅ the path integral is trivial with no time evolution, the operator associated
to it is the identity, and holographic proposals should evaluate to zero cost: C = 0.
We can, and will, even strengthen this requirement by demanding that the trivial path
integral is the only one that has zero cost.

2. Additivity.

Concatenating path integrals joins paths in the space of operators, and cost is the total
length of the path, so cost is additive. This means that if we have M and M ′ which share
a boundary, then C (M ∪M ′) = C (M)+C (M ′). This distinguishes cost from complexity
which is subadditive: C(UM · UM ′)≤ C(UM ) + C(UM ′).

3. Symmetry.

The length of a path traced through a metric space of operators from A to B is the same as
from B to A. This means that holographic proposals for path integral cost cannot depend
on which way around the two connected components of ∂M are labeled the ‘initial’ and
‘final’ boundaries.

4. Covariance.

The cost of a path integral on a manifold should be independent of the coordinates used
to describe the manifold.

5. Non-negativity.

A discretised path integral is a circuit, and path integral cost is a measure of the number
of gates in that circuit. This number cannot be negative so path integral cost must be
non-negative.

The above are essential points in order to sensibly associate path integral cost to spacetime
regions in holography. In relation with the properties of the existing holographic complexity
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proposals, one may also want to impose that for TFD states and their gravitational represen-
tation in terms of eternal black holes, optimal paths in our proposals give rise to late-time
linear growth and switchback effect [9]. These effects are only conditions in Lorentzian se-
tups and on TFD states, not on every state like the other requirements, so for us they are not
as fundamental as items 1-5 above.

3.3 The space of all proposals: from boundary path integrals to functions on
bulk subregions

We are looking for proposals for the gravitational dual of the cost of a holographic field theory
path integral. Naturally it is equally valid to think of the path integral in the gravitational
or non-gravitational description, and we have given the explicit map between the two, but
quantities such as cost need not manifest the same way on the two sides. The set of cost
proposals we consider take inspiration from existing holographic state complexity proposals
and have two aspects in common: (1) a geometric map from the subregion of M or M̃ on
which the path integral is defined to bulk subregion XM , and (2) a function f (XM ) on that
bulk subregion. These two shared aspects take inspiration from existing holographic state
complexity proposals, which are also functions on bulk subregions.

We want to consider all such pairs of maps which together define a tentative holographic
cost proposal:

C (M) = f (XM ) . (21)

The set of cost proposals we start from contains an infinite number of ways of specifying XM
given M , and an infinite number of functions f . Cost, the length of path in a metric space,
obeys certain mathematical and physical properties, and we will see the extent to which the
space of possible gravitational duals can be reduced by imposing these properties.

3.3.1 Specifying the bulk subregion: M → XM

We want to work within a single fixed bulk spacetime. As discussed in section 2, fixing which
mixed boundary conditions to use in the bulk theory fixes the deformation parameter λ in the
boundary theory, and fixing the bulk geometry G fixes the actual deformation, the background
field theory sources including the metric, and the boundary state including its causal evolution.
Functions on bulk subregions of a fixed G can only be dual to the cost of the boundary path
integral that corresponds to Hamiltonian evolution of the boundary state dual to that bulk
geometric state, rather than an arbitrary path integral in the boundary theory.

The two boundaries of M̃ have to be attached to the hypersurfacesΣ1 andΣ2 as in figure 1,
which should be parts of bulk Cauchy slices and hence achronal. In section 2 these hypersur-
faces were specified and fixed, but in this section where we start from the boundary theory
with a specified fixed M they are not unambiguously defined. For the bulk path integral the
choice of Σ1 and Σ2 is as fundamental as the choice of M̃ , but we may still wonder whether in
a given prescription these can be defined according to some unambiguous and covariant rule.
Some examples of ways to define hypersurfaces Σ1 and Σ2 that we attach to the boundaries
of M̃ are, in increasing degree of generality,

1. Future/past directed null surfaces, as in the CA and CV2.0 proposals.

2. The extrema of some functional defined on the hypersurface, as in the CV proposal.

3. The solution to ξ = 0, where ξ is some function of the local intrinsic and extrinsic
geometry. This need not be the extremum of any given functional.

4. The same as 3., except now allowing for non-local and global data in the definition. An
example would be to define the hypersurfaces as the solution to KΣ = Vol(M̃).
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This list includes the codimension-one surfaces appearing in holographic complexity proposals,
and a large family of generalisations, though the list is not exhaustive.

Consider the bulk spacetime subregions XM that can be covariantly defined with respect
to a codimension-1 surface M̃ . There are of course an infinite number of such prescriptions;
let us first consider those that are similar in nature to the holographic complexity proposals.
One natural candidate is the interior of Σ1 ∪ M̃ ∪ Σ2 which is codimension-0 and which we
label N , see figure 6. Codimension-0 bulk regions are used in the CA and CV2.0 state com-
plexity proposals. We can also take XM to be codimension-1 with respect to the bulk. Natural
candidates include M̃ , Σ1 or Σ2, or any union of these. We will show later how taking XM = M̃
and evaluating its volume gives a cost proposal that when ‘optimised’ reduces to the CV state
complexity proposal.

These candidates for XM only scratch the surface of possibilities. At this stage there is noth-
ing to favour one candidate over another; it is only when we impose the physical properties
of cost that we can rule out possibilities.

Figure 6: We are looking for holographic proposals for the cost of the path integral
on M . M̃ , Σ1, Σ2 and N are representive of bulk subregions of various codimension
that can be covariantly defined and on which functions can be evaluated as part of a
holographic proposal.

3.3.2 Functions on bulk subregions

With a specified bulk region XM , we may propose the cost C (M) of the path integral on M to
be a function evaluated on that region: f (XM ). To complete the cost proposal the function f
needs to be specified. Some examples in order of decreasing simplicity include the region’s:

1. Volume,

2. Gravitational action, including the Einstein-Hilbert term on codimension-zero regions,
the Gibbons-Hawking-York (GHY) boundary term on non-null codimension-one regions,
Hayward-type corner terms on codimension-two regions, or appropriate terms on null-
boundaries, see e.g. [55],

3. Local functionals of curvature invariants: f =
∫ p

|g|ξ(Rµνρσ, Kmn) ,

4. More general local functionals: f =
∫ p

|g|ξ(R, R2, RµνR
µν, ..., K , K2, ...,φ, ...) , where,

for example, φ(x) could be some non-physical auxiliary scalar field that appears in the
complexity proposal but not in the bulk Lagrangian,
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5. Non-local functionals, e.g. f =
∫

dd xdd yR(x)R(y) .

Again, these candidates for functions on bulk subregions only scratch the surface of possibili-
ties, and except for appeals to simplicity there is nothing to favour one candidate over another
until we impose the physical requirements of computational cost.

3.4 Reducing the space of cost proposals

We are considering the set of holographic proposals for the cost of a boundary path integral,
which consists of a map from the surface on which the path integral is defined to a bulk subre-
gion, and a function on that subregion. Let us apply the physical requirements of section 3.2
to identify which functions on bulk subregions can be interpreted as cost.

1. Only the trivial path integral has zero cost.

This requires f (XM ) = 0 when M = M̃ = ∅. This rules out for example Vol(M̃) for
Lorentzian bulks, because we can have an M̃ that is non-empty but has zero volume
because it is a null surface. The same cost proposal applied to Euclidean bulks is allowed.

This requirement fixes additive constants. It does not rule out any proposal of the form
(22) if XM = N as long as the integrand is non-singular and N → 0 in that limit. This
rules out some XM , such as Σ1 being past-directed null and Σ2 future-directed null.

2. Additivity.

Additivity does not rule out any proposal that is the integral of a local density, such as
volume or gravitational action, as long as the contribution from XM1

∩ XM2
vanishes.

A non-trivial example of how this can occur is when f includes GHY boundary terms,
because if XM1

and XM2
share a boundary then the outward normal on one is the inward

normal on the other, so the GHY terms cancel.

The gravitational action including GHY and corner terms is additive, if the joints are
spacelike though generally not generally for timelike joints [56]. A codimension-2 joint
is spacelike if its metric is Euclidean, and timelike if it is Lorentzian; it is not determined
by the metric signatures of the codimension-1 segments, i.e. M̃ and the Σ’s, whose
shared boundary is the joint. Since additivity is only an issue for timelike joints, we
only have to worry about Lorentzian bulks. There are joints between M̃ and the partial
Cauchy slices Σ1 and Σ2, but since the boundaries of partial Cauchy slices are spacelike
the gravitational action is additive.

The requirement does rule out all choices of XM bulk subregions for which
XM1∪M2

̸= XM1
∪ XM2

, such as XM = Σ1, if f is extensive. It also rules out some func-
tions f , such as non-local ones like

∫

d xd y R(x)R(y), which will not generally give
additive cost proposals.

3. Symmetry.

f (XM ) should be invariant under relabelling Σ1 and Σ2. An example which satisfies this
requirement would be if both Σ’s are defined the same way, such as minimum volume
surfaces in a Euclidean bulk. An example which does not satisfy symmetry would be
if Σ1 satisfies K = a while Σ2 satisfies K = b with a and b different constant trace
extrinsic curvatures, as then the embedding of the partial Cauchy slices will change
under relabelling. It is sufficient that XM is invariant under the relabelling, though not
necessary as in the trivial example f (XM ) = 0.
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4. Covariance.

Requiring the proposal to be covariantly defined leaves a large space of proposals. All the
bulk subregions XM defined in section 3.3.1 as well as the proposals f (XM ) for assigning
numbers to those regions given in 3.3.2 are defined in a coordinate-independent way.

5. Non-negativity.

We need f (XM ) ≥ 0 for all bulks and subregions thereof to which the proposal is appli-
cable. On the one hand it is trivial to define manifestly non-negative functions f . With
a non-negative scalar density F , the following is manifestly non-negative:

f (XM ) =

∫

XM

F . (22)

Volume-type cost proposals use a constant F . Taking the absolute value or an even
power of any real-valued function makes it non-negative, so the space of non-negative f
is not small.

On the other hand it can be difficult to know whether a given proposal is non-negative
for its whole domain. Suppose one has a proposal for which XM is a codimension-zero
region of the bulk, and f is the Einstein-Hilbert action of that region, with or without
boundary and corner terms. The problem is that there are on-shell asymptotically AdS
spacetimes with arbitrarily negative Einstein-Hilbert action, which gives an unphysical
negative cost. The action is unbounded from below and not merely negative, so non-
negativity cannot be restored simply by adding a constant. Examples that demonstrate
this unboundedness of the Einstein-Hilbert term can be constructed in two ways: either
by making the action arbitrarily negative over a finite spacetime volume, or by making
it negative (but finite) over an arbitrarily large spacetime volume. For the first kind of
example, we consider a Weyl transformation of the bulk metric Gµν → e2ωGµν with ω
supported strictly inside XM , so that the spacetime is still asymptotically AdS and so
boundary and corner terms of the gravitational action are unaffected. For Lorentzian or
Euclidean gravity the contribution to the gravitational action from the Einstein-Hilbert
term does change under the Weyl transformation:

p
GR→ e(d−2)ωpG

�

R− 2(d − 1)∇2ω− (d − 2)(d − 1)(∂ω)2
�

. (23)

The Einstein-Hilbert action can thus be made arbitrarily negative with a rapidly os-
cillating Weyl factor. To be an on-shell solution to Einstein’s equation requires6

−
� d

2 − 1
�

R ≈ Tµµ . This means that the matter-fields involved would have to arbitrarily
strongly violate the trace energy condition (TEC) Tµµ ≤ 0. While the TEC is satisfied
for simple matter models such as pressure-less dust it does not hold in all physical sit-
uations [57, 58]. An example are neutron stars which are believed to be accurately
described as perfect fluids with equation of state p = ρ, which violates the TEC [59].
However, our construction would require Tµµ to become unbounded, and it is unclear to
us whether this can be accomplished by any form of reasonable matter. See also [60] for
a discussion of stability issues of spacetimes in which the TEC is violated. The second
kind of example, where a finite negative term is integrated over an arbitrarily large vol-
ume, was essentially already constructed in [61], where it was shown that the complexity
of an AdS3 black hole with generic topology behind the horizon can be made arbitrarily
negative by adding handles to the Einstein-Rosen bridge. This led the authors of that
paper to propose a bound on the genus of bulk spacetimes.

6We neglect the cosmological constant in this discussion because when considering unboundedness of the action
we are interested in the limit |R| ≫ |Λ|.
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From our point of view, these are arguments that seem to rule out holographic proposals
for cost (or complexity) that include only the Einstein-Hilbert action. This is on the
grounds that within the space of all asymptotically AdS spacetimes there are those on
which the proposal evaluates to a negative value, and so cannot be interpreted as cost
or complexity. As a corollary of this argument, the domain of validity of the CA proposal
cannot be all asymptotically AdS spacetimes; there are those on which the action of
the WDW patch will be negative. This is not to say that the CA proposal does not give
reasonable results for spacetimes such as the eternal black hole to which it was originally
applied, nor that simple modifications of the proposal say by adding the matter action
cannot remedy the unboundedness of the total action.

Since path integral cost upper bounds holographic state complexity, there will be additional
checks coming from late-time linear growth and the switchback effect. These are specific to
TFD states and hence are only secondary to the above primary requirements. In the case
of observables defined using codimension-one surfaces, [22] showed that there are infinite
classes of proposals which satisfy both linear growth and the switchback effect. This could
mean that these conditions on complexity are not too restrictive. However, there are valid
covariant proposals which violate linear growth and/or the switchback effect. In the case of
linear growth, consider when XM is a codimension-one constant curvature slice (with R= −2)
in a BTZ black hole background. The volume of these slices saturates quickly, and hence this
f (XM ) can be ruled out. Similar restrictions apply when XM is codimension-zero. In the next
section, we give an example of a new codimension-zero complexity proposal that exhibits late
time linear growth. Furthermore, since the complexity of a perturbed TFD state is expected
to exhibit switchback effect, this will constrain how we choose XM and f (XM ) in shockwave
geometries.

This concludes our preliminary discussion of the space of holographic cost proposals. We
found that non-negativity in particular is a subtle and difficult to verify requirement, and that
new proposals, unless manifestly non-negative, need to be carefully checked with a skeptical
eye. A natural direction to take from here is to consider proposals of increasing intricacy,
and check their non-negativity case by case. Proposals where f is the volume of XM are in
some sense the simplest, and their non-negativity is manifest at least in Euclidean setups.
In section 4.1.1 we give an argument for why the area of M̃ is a physically well-motivated
proposal for the complexity of UM , from the perspective of T T deformations. In the remainder
of this paper we will look in more detail at various gravitational action-type proposals, and in
particular if and when they run afoul of the non-negativity requirement.

4 Connecting to holographic state complexity proposals

In section 2.3 we discussed path integral optimisation and the connection to state complex-
ity. The path-integral cost C (M) in general only provides an upper bound for the operator
complexity C(UM ), which in turn bounds the state complexity of the final state | f 〉= UM |i〉,

C (M)≥ C(UM )≥ C(| f 〉) . (24)

In certain special cases we might expect that an optimal path integral cost gives a reasonable
state complexity.

In this section we will give some illustrative examples of path integral cost proposals that
reduce to existing holographic state complexity proposals. In each case we fix a proposal for
cost of the bulk path integral on a bulk subregion, minimise this cost over an appropriate set
of M̃ , and show that the resulting minimal cost matches a state complexity proposal. When
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optimising over path integral state preparation what we hold fixed is the final state, and we
should allow for different bulk geometries as well as different subregions of each geometry. We
will minimise cost with respect to M̃ within a fixed bulk geometry, and then argue that the cost
cannot be lowered by varying the geometry, but this should be considered a simplifying feature
of the particular cost proposals we are dealing with rather than a general feature. Note also
that more than one path integral cost proposal can reduce to a given state complexity proposal;
we give two that reduce to the CV conjecture.

4.1 Complexity equals volume from cost equals boundary volume

We now give a path integral cost proposal that when optimised reduces to the CV state com-
plexity proposal. Consider any asymptotically Euclidean AdS spacetime of any dimension. We
are looking to connect to state complexity, so as per the discussion from section 2.3 the appro-
priate set of codimension-1 surfaces M̃ over which we will minimise path integral cost all have
fixed boundaries in common, see figure 2. We take Σ1 to be a bulk point, so the path integrals
really are preparing the state from nothing. Each M̃ in the set we are ‘optimising’ over then
has one boundary, which is fixed. The cost proposal we will use is

C = Vol[M̃] . (25)

We just wish to show that the M̃ that minimises or ‘optimises’ this cost is the maximal volume
slice in the Lorentzian continuation of the space, so we suppress constants of proportionality.
The M̃ that miminises the path integral cost (25) is the minimal volume surface in the set with
fixed boundary. We label the minimal volume surface M̃∗.

Naively we could leave Σ2 unspecified because it does not play a role in the cost proposal.
Can we lower the volume of M̃∗ and so the path integral cost by allowing the background
geometry to vary? The answer is generally yes, but suppose Σ2 is a subregion of a minimal
volume slice of a given Euclidean geometry. Since Σ2 lies on a minimal volume slice, and by
definition ∂ M̃ = Σ2, we have that M̃∗ = Σ2. This means that we cannot lower the volume of
M̃∗ without changing the geometry on Σ2, which is forbidden by the requirement of keeping
the final state fixed in this optimisation procedure.

Gaussian normal coordinates adapted to M̃∗ are

ds2 = dτ2 + gi j(τ, x)d x id x j , (26)

with M̃∗ : τ(x i) = 0. Suppose this minimal volume surface lies on a time reflection symmetric
slice Σ of the Euclidean space, which implies that the extrinsic curvature K(τ)i j vanishes. This
won’t generally be the case since being a minimal volume surface only guarantees that the
trace K(τ) = 0 vanishes but let us assume it. We may then analytically continue to Lorentzian
signature τ→ i t, and second order shape variations in the direction normal to M̃ flip sign:

δ2

δτ(y)δτ(y ′)
Vol[M̃] = −

δ2

δt(y)δt(y ′)
Vol[M̃] , (27)

and so M̃∗, which is the global minimal volume in the Euclidean space, is a local maximum in
the analytic continuation to Lorentzian spacetime.

We have shown how to reduce to the CV state complexity proposal after finding the M̃
which minimises or ‘optimises’ the path integral cost (25). Our assumptions are that M̃∗ lies
on a time reflection slice, and that the surface is the global, not just a local, maximum in volume
in the Lorentzian spacetime. Note that we have only shown how to match CV conjecture at
the point of time reflection symmetry.

It would have been preferable to find a cost proposal that applies to the same Lorentzian
bulk as the CV conjecture, rather than the Euclidean continuation. The basic obstacle is that
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our optimisation procedure involves minimising a cost, while the CV conjecture maximises a
volume. We do not rule out the possibility of a Lorentzian cost proposal that reduces to the
CV conjecture, but we were not able to find one that satisfies all the physical requirements.

4.1.1 Heuristic justification for cost proposal from T T

We are taking a phenomenological approach to cost proposals, rather than try to justify them
from a bottom-up gate-counting physical picture. We do however have a heuristic justification
for this subsection’s cost equals boundary volume proposal which we find appealing and will
describe. Similar arguments have previously been made in [53,62].

Consider a Euclidean path integral of a T T -deformed theory defined on some two-dimen-
sional manifold M . The deformation parameter λ in a T T -deformed theory is related to the
scale of non-locality Lnl by

L2
nl ∼ λ . (28)

One way of arguing for this relation is from the fact that the T T deformation of the free boson
action is the Nambu-Goto string action, with string length l2

s ∼ λ [54].
We may discretize the path integral with a tensor network if we assume that each region

of proper area L2
nl represents one tensor. Then the total number of tensors is

C (M)∼
∫

M
d xdτ

p
γ

L2
nl

∼
∫

M
d xdτ

p
γ

λ(x ,τ)
. (29)

The state that the path integral prepares depends on the manifold, boundary conditions, and
field theory action, especially through the deformation parameter λ(x ,τ). Following sec-
tion 2.1, we can now take the CFT to be holographic, with metric inherited from the induced
metric on a finite cutoff surface z = ρ(τ) in Poincaré AdS3:

1
ρ2
γi j = gi j , (30)

with

p
g =

1
ρ2

Æ

1+ ρ̇(τ)2 , (31)

and the T T relation between cutoff and deformation parameter

λ∼ GNρ
2 . (32)

Substituting in (29) we get an heuristic estimate for the effective number of gates in the path
integral on M :

C (M)∼
1

GN

∫

M̃
d xdτ

p

1+ ρ̇2

ρ2
=

Vol(M̃)
GN

. (33)

This completes a heuristic derivation of the cost equals boundary volume proposal. Just like
in the complexity=volume proposal [19], the proportionality factor in this equation will have
to depend on the choice of an additional length scale, as C (M) has to be dimensionless. Also,
notice that although the state preparation we are considering is similar to the one in [35],
the holographic path integral cost derived from a T T gate counting procedure (33) is quite
different from the one based on the on-shell gravitational action that was provided there,

I[ρ]∼
1

GN

∫

d xdτ
1+ ρ̇ arctan ρ̇

ρ2
. (34)
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4.2 Complexity equals volume 2.0 from cost equals bulk volume

The CV2.0 proposal asserts that the spacetime volume of the boundary-anchored WDW patch
represents a holographic notion of complexity in dual quantum field theories. It seems obvious
to try to obtain this from the optimization of a cost functional which is simply given by the
volume of XM . There are however some subtleties when trying to make this precise and as
we will see the CV2.0 proposal does not quite follow. Instead, we obtain something which is
more like the volume of half the WDW patch.

The first issue we need to address is the choice of the initial and final slices Σ1 and Σ2. It is
tempting to choose these to be the future and past null cones emanating from the boundaries
of M̃ , but this would lead to a problem with the additivitiy criterion for the cost function: if
we combine M̃1 and M̃2, the future null cone attached to the future boundary of M̃1 obviously
does not agree with the past null cone attached to the past boundary of M̃2 (which equals the
future boundary of M̃1). Hence XM1

∩ XM2
̸= ; and because of this additivity will generically

fail. One can also choose both Σ1 and Σ2 to be simultaneously future or past directed null
cones, but this would manifestly lead to violations of the time-reversal criterion. Moreover, it
would lead to situations where XM could become the empty set in the limit where M̃ becomes
null. In what remains we will chooseΣ1 andΣ2 by the property that they have vanishing scalar
extrinsic curvature, but the conclusions will not be substantially different for other choices of
Σ1 and Σ2. Given this choice for Σ1 and Σ2, consider the candidate cost functional

C (M)∼
∫

N=Int(M̃∪Σ1∪Σ2)

Æ

|G|+α
∫

M̃

Æ

|g| , (35)

where α is a non-negative dimensionful constant. Such simple cost functions satisfy all the
properties listed in section 3.2 that we require from a good notion of a gravitational cost. A
precise expression for this cost functional also requires an overall dimensionful prefactor which
we did not include in (35) and which can be chosen arbitrarily.

Let us consider this cost function in the context of the situation depicted in figure 7 in
the Lorentzian context, where we want the path integral to remain defined on a timelike
surface. We restrict M̃ to be timelike in the set to be optimised over, in order to find the unitary
time evolution operator with the lowest cost. If one then performs optimization of (35) for
timelike separated initial and final state, the second term gets arbitrarily small for an almost
null boundary and the latter also leads to the minimal enclosed bulk spacetime volume. If
one optimizes also over time duration at fixed initial and final state, then one gets a portion
of the WDW patch. Shrinking one state to a bulk point gives rise to a ‘past half’ of the WDW
patch bounded by Σ2. The volume of this half of the WDW patch equals to the optimum of
the cost (35), which is as close as we can get to the CV2.0 proposal. We cannot change the
geometry in the past domain of dependence of Σ2 without changing the geometry on Σ2, so
having minimised the cost while working with a fixed bulk geometry to the volume of this ‘half’
WDW patch we cannot lower it further by varying the interior geometry without changing the
final state. Rather than creating the state from a single bulk point, we could also have asked
the question what the minimum cost is of the reverse process where we use a circuit to map an
initial state to a single bulk point. One could perhaps think of this as a circuit which maps the
state to a completely unentangled and therefore non-geometric state represented by a single
bulk point. The optimal cost for this state demolition process is then given by the volume of
the future half of the WDW patch where the WDW patch is cut in two pieces by Σ1. Overall,
the conclusion of this analysis could be that the CV2.0 proposal is not just computing the
cost of creating the state but rather the sum of the creation and demolition cost. It would be
interesting to explore this interpretation further.
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Figure 7: Optimisation of the Lorentzian cost functional given by a sum of bulk and
boundary volume. The minimal cost is obtained as M̃ approaches an almost null
surface. As Σ1 is shrunk to a point, one obtains the past half of the WDW patch
anchored to Σ2.

4.3 Complexity equals volume from cost equals Euclidean gravitational action

In section 3.4 we argued that the gravitational action of codimension-0 bulk subregions is not
a reasonable cost proposal because there are asymptotically AdS spacetimes, both Lorentzian
and Euclidean, for which the action is negative. These actions are negative due to the confor-
mal mode of the Ricci scalar, and are on-shell for matter configurations that violate the trace
energy condition. In this section we will nonetheless use gravitational action as a cost pro-
posal. What we have in mind is a corrected proposal that is non-negative: either one which
excludes problematic negative action fringe cases in an ad hoc fashion, or a modification such
as adding the matter action which makes the total action positive even for trace energy con-
dition violating configurations, though we have not proven that this works. In any case we
will only apply our proposal here to subregions of pure global AdS, with the matter in its vac-
uum configuration, so we are far from the problematic fringe cases where we would have to
specify precisely how we correct our proposal to ensure positivity. We only stipulate that the
presumptive correction is negligible when evaluated on pure AdS.

Cost proposals which use the gravitational action can also in some cases reduce to existing
complexity proposals when optimised. In previous work we considered Euclidean Poincaré
AdS3 and gave a gravitational action cost proposal that reduces to the volume of the constant
time slice when optimised [35]. Our cost proposal was the on-shell gravitational action of
the codimension-0 bulk region bounded by two constant Euclidean Poincaré time slices and a
finite cutoff radial boundary. This we claimed is dual to the cost of the Euclidean path integral
in the T T -deformed boundary CFT on that radial cutoff boundary. The basic idea is that we
have a set of path integrals on different radial cutoff surfaces that prepare the same state, and
when the gravitational action cost proposal is minimised over this set we found that it matches
the CV state complexity proposal. Minimising path integral cost with respect to background
geometry is inspired by the work of [26], and for Poincaré AdS3 our proposal reduces to the
Liouville action in agreement with their work, in the limit of a slowly varying cutoff surface.
The optimum path integral maps between ground states of theories with different UV cutoffs
by building up or coarse-graining away the UV structure with as little Euclidean time evolution
as possible.

In this subsection we will show that when our gravitational action proposal is applied
to global AdS we again match with the CV state complexity proposal. The purpose is two-
fold: (1) to show that there is more than one cost proposal, in this case cost equals boundary
volume and cost equals gravitational action, that can reduce to a given complexity proposal
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Figure 8: The subregion of Euclidean global AdS whose gravitational action we pro-
pose to be the cost of the path integral on the finite cutoff boundary.

when minimised over a suitable set of path integrals, and (2) to give further evidence that the
cost proposal based on gravitational action that we gave in [35] is a reasonable one. For our
gravitational action proposal we do not know whether (or necessarily expect that) it reduces
to the CV conjecture in other asymptotically AdS spacetimes than the Euclidean Poincaré and
global AdS examples that we have explicitly checked.

4.3.1 Gravitational action

Let us calculate the on-shell gravitational action between constant time slices in global AdS,
with a variable finite cutoff boundary, see figure 8. Consider Euclidean AdSd+1 with unit AdS
length in global coordinates:

ds2 = (1+ r2)dτ2 +
dr2

1+ r2
+ r2dΩ2

d−1 . (36)

We assume the cutoff surface M̃ has spherical symmetry, r = ρ(τ). We define Σ1 and Σ2
to be K = 0 surfaces, which in this case will be just constant time τ = τ1,2 slices. We will
be minimising the on-shell gravitational action over cutoff boundary surfaces r = ρ(τ) with
fixed initial and final cutoff r1 = ρ(τ1) and r2 = ρ(τ2). Different boundary surfaces define
different path integrals which evaluate the transition amplitude between the ground states of
a holographic CFT with Euclidean time dependent T T deformation. Fixing r1 and r2 fixes the
initial and final T T deformation.

Let us calculate the on-shell gravitational action of the region depicted by figure 8. We
assume the cutoff surface has spherical symmetry. Consider Euclidean AdS3 with unit AdS
length in global coordinates:

ds2 =
1

cos2 θ

�

dτ2 + dθ2 + sin2 θdφ2
�

. (37)

The asymptotic boundary is at θ = π/2. We want the on-shell gravitational action of the
region N , which is bounded by τ1 = 0, τ2 = T , and the radial cutoff surface θ = θ (τ). The
full gravitational action including corner terms is

I =
1
κ

∫

N
d3 x
p

G (R+ 2) +
2
κ

∫

M̃
d2 x
p

gK + Ic . (38)
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The extrinsic curvature of the surface θ = θ (τ) is

K =
−θ̈ tanθ + (1+ 2 tanθ2)(1+ θ̇2)

secθ tanθ (1+ θ̇2)
3
2

. (39)

Using this, the action takes the simple form

I =
2
κ

∫

dφ dτ

�

1
cos2 θ

−
θ̈ tanθ

(1+ θ̇2)

�

+ Ic . (40)

This can further be simplified by partially integrating over τ as

I =
2
κ

∫

dφ dτ

�

1
cos2 θ

+
θ̇ arctan θ̇

cos2 θ

�

−
2
κ

∫

dφ tanθ arctan θ̇ + Ic . (41)

If the boundary is not smooth at a corner situated at τ = τc , then the action receives an
additional contribution given by the Hayward term

Ic =
2
κ

∫

dφ tanθ (τc)(arctan θ̇ (τc) +π/2) . (42)

Including this term from a single corner, the total action now is

I =
2
κ

∫

dφ dτ

�

1+ θ̇ arctan θ̇
cos2 θ

�

+
2π2 tanθ (τc)

κ
. (43)

This result is closely related to our previous result for Euclidean Poincaré AdS3 [35]. Varying
this action allows us to find surfaces that extremise the gravitational action. The equations of
motion are

θ̈ − tanθ (1+ θ̇2)

cos2 θ (1+ θ̇2)2
= 0 . (44)

Before solving the above equation, we see that there will always be a solution when |θ̇ | →∞.
In this limit the surface turns in to a equal-time slice. The most general solution for θ (τ) is
given by

θ (τ) = arcsin (α sinh (τ) + β cosh(τ)) . (45)

As expected from the discussion in [35], these θ (τ) describe surfaces of constant scalar cur-
vature R= −2. The circuits whose boundary surface is given by the above θ (τ) or in terms of
r(τ) = tanθ (τ) extremise the action (43) and hence the cost of the circuit. More specifically,
consider the circuit preparing the ground state |0〉θ f

at some cut-off θ f starting from a trivial
initial state. Such a circuit θ (τ), running from τ = 0 to τ = T > 0 is given by (45) with
θ (0) = 0 and θ (T ) = θ f . The cost can now be calculated from the value of the on-shell action,
and is given by

I =
4π
κ

�

T + arctan

�

tanθ f

tanh T

�

tanθ f

�

+
2π2 tanθ f

κ
. (46)

Minimum value of this optimised cost for preparing |0〉θ f
is achieved for T = 0, when the

surface is a constant time slice. The minimum value is

Imin =
4π2 tanθ f

κ
. (47)
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The volume of the constant time slice with a radial cut-off at θ f , Vol(θ f ) is equal to

2π tanθ f tan
θ f
2 . Using this, and 1

κ =
c

24π we can rewrite the above value as

Imin =
c

12

Vol(θ f )

tan
θ f
2

. (48)

The minimum cost is indeed proportional to the volume of the constant time-slice. As the radial
cut-off is taken to infinity, θ f → π/2, we see that the proportionality constant is exactly c

12 .
We should again ask whether the bulk path integral cost can be lowered by allowing the

background geometry to vary. In a similar resolution to the previous subsection we simply
specify Σ2 to lie on the constant time slice. Then the cost-minimising M̃ and Σ2 coincide and
it is not possible to lower the cost without changing the final state.

4.3.2 Kinematic space analysis

The on-shell gravitational action for global AdS3 with a time-dependent boundary surface θ (τ),
given in (40), can be rewritten as

I =
2
κ

∫

dφ dτ

�

1
cos2 θ

−
θ̈ tanθ

(1+ θ̇2)

�

+ Ic

=
2
κ

∫

dφ dτ

�

tanθ

�

tanθ (1+ θ̇2)− θ̈
(1+ θ̇2)

�

+ 1

�

+ Ic .

(49)

Ignoring an overall additive factor and the corner term, the remaining action reads

I =
2
κ

∫

dφ dτ tanθ

�

tanθ (1+ θ̇2)− θ̈
(1+ θ̇2)

�

. (50)

This action can in fact be reproduced by considering the kinematic space of bulk curves. The
data of time-dependent bulk surfaces θ (τ) can be encoded in the boundary. This is done by
giving a pair of boundary points (τ1(τ),τ2(τ)) such that the bulk geodesic starting at τ1(τ)
and ending at τ2(τ) is tangent to the bulk surface at the point (τ,θ (τ), 0). Such pairs of points
form the kinematic space, with a metric fixed by conformal invariance

ds2
ks = −

4dτ1dτ2

sinh2 (τ1 −τ2)
. (51)

The explicit dependence of the boundary points τ1,2(τ) on the bulk time τ is

τ1,2(τ) = τ+ log

�

1± cosθ
p

1+ θ̇2

sinθ + θ̇ cosθ

�

. (52)

Now consider an action built using kinematic space, as

Sks =
2
κ

∫

(tanθ dφ) dsks . (53)

Using (52) and the distance in kinematic space dskin the above action equals

Sks =
2
κ

∫

(tanθ dφ) dsks =
2
κ

∫

dφ dτ tanθ

�

tanθ (1+ θ̇2)− θ̈
(1+ θ̇2)

�

. (54)

This matches exactly to the on-shell gravitational action obtained above after ignoring an
overall additive factor and the corner term, and is the global AdS equivalent to the result
for Poincaré AdS that we had obtained in section 4.2 of [35].
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Figure 9: A subregion of Lorentzian Poincaré AdS between two constant time slices
with a time dependent boundary. The path integral of the T T -deformed theory on the
z = ρ(t) boundary defines a path through the space of unitaries, and the gravitational
action of the shaded region, including boundary and corner terms, is the natural
Lorentzian extension of our previous proposal [35] for the length or cost of that
path.

4.4 Obstacles to obtain the complexity equals action proposal from a cost

Here we will see that the naive extension of our Euclidean cost proposal from [35] to
Lorentzian Poincaré AdS3 gives unphysical results. The proposal is to extremise the action
of the subregion of Lorentzian Poincaré AdS3,

ds2 =
−d t2 + dz2 + d x2

z2
, (55)

shown in figure 9 to see whether these extrema can be sensibly interpreted as circuit cost
or complexity of Lorentzian time evolution between the initial and final time slice. In close
analogy to the Euclidean result given in equation (2.10) of [35], the gravitational action of
this subregion is (see appendix A for details of the calculation)

I =
1

8πGN

∫

d x

∫ t f

t i

d t
�

1− ρ̇ arctanh ρ̇
ρ2

�

. (56)

This action is unbounded from below; it can be seen that I → −∞ in the limit of the cut-
off surface becoming null, |ρ̇| → 1. Whether the action is bounded from above depends on
the boundary conditions. The solution to the Euler-Lagrange equations for general boundary
conditions ρ(t i) = ρi , ρ(t f ) = ρ f is

ρ(t) =
p

t2 + At + B , (57)

where

A= −
t2

f − t2
i +ρ

2
i −ρ

2
f

t f − t i
, B =

(t f − t i)t i t f + t f ρ
2
i − t iρ

2
f

t f − t i
. (58)

This solution is a local maximum of (56). In contrast to what we observed in the Euclidean
case in [35], this timelike cutoff surface bends outwards from ρi/ f towards the asymptotic
boundary, as it tries to maximise the ρ−2 factor. The solution fails to be real when the time
interval becomes too large,

t f − t i > ρi +ρ f . (59)
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Roughly speaking this is because when the time interval is large compared to the spatial initial
and final cutoffs, the cutoff surface can get to the asymptotic boundary and back without ρ̇
becoming large enough to flip the sign of numerator in (56). Once at the asymptotic boundary,
the denominator diverges, leading to an action that is unbounded from above, which is why we
find no (real) solution that extremises the action. In fact, the action can be arbitrarily negative
for other cutoff surfaces as well. For a more generic cutoff surface ρ(t, x) =

p

r(x)2 + t2 (this
is derived as a solution to equation (71) which we discuss in section 5), the action is given by

I =
2
κ

∫

d td x
r(x)r ′′(x)

(t2 + r(x)2)(1+ r ′(x)2)
. (60)

We see that the above integral can turn out to be negative depending on the choice of r(x).
For example, with r(x) = sin(ωx) the action computed in the region t, x ∈ [0, 1] is negative
and proportional toω2. Thus, by making the cutoff surface more wavy the action can be made
arbitrarily negative.

4.5 Linear growth at late times for BTZ black hole

The notion of holographic complexity was initially used for describing the growth of black hole
interiors for long times. Any measure of complexity must exhibit a late time linear growth in
black hole backgrounds. We saw that the cost function given by Euclidean gravitational action
in the region bounded by two K = 0 slices Σ1,2 and M̃ was well-defined and gave sensible
results in global AdS. Moreover, choosing a trivial Σ1 and optimising over M̃ lead to the
action between a constant scalar curvature slice and Σ2. In this subsection, we will assume
we can evaluate the Lorentzian action between these surfaces in the BTZ black hole and verify
that this exhibits linear growth at late times. Therefore, it is a candidate new holographic
complexity proposal.

Consider a BTZ black hole with horizon radius rh = 1 and AdS radius L = 1. Then using
Kruskal coordinates, the metric takes the simple form [63]

ds2 = −
4 dU dV
(1+ UV )2

+
(1− UV )2

(1+ UV )2
dφ2 . (61)

The mass of the black hole is M =
r2
h

8GL2 =
1

8G . We have the asymptotic AdS boundaries located
at UV = −1 and the horizons at UV = 0. Maximal volume slices have vanishing trace of
extrinsic curvature

K =
(U2V 2 − 1)U ′′ + 2(UV − 3)U ′(U − U ′V )

4(UV − 1)|U ′|3/2
= 0 . (62)

Here, ′ denotes a V derivative. In fact, the maximal surfaces are best described in Eddington-
Finkelstein coordinates

ds2 = − f (r)dv2 + 2dv dr + r2dφ2 , (63)

with f (r) = r2 − 1. Then, the shape v(r) of the maximal surfaces is given as [64,65]

dv
dr
=

p

f (r)r2 + c2 − c

f (r)
p

f (r)r2 + c2
. (64)

The constant c determines the boundary time at which the maximal surface is anchored. It
goes from c = 0 for the surface anchored at tL = tR = 0 to c = 1

2 for the final slice. The final
maximal slice for the BTZ black hole is at r = 1p

2
and at late times maximal surfaces pile up
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tL
tL +δt

tR
tR +δt

r = 0

A B
C D

E F
G H

Figure 10: Growth of action in the BTZ black hole between constant curvature sur-
faces (blue) and maximal volume surfaces (green).

very close to this surface. Constant scalar curvature slices satisfying R+2= 0 are much easier
to find, and are given by

UV +λU +µV − 1= 0 . (65)

Here λ and µ again determine where these surfaces are anchored at the boundary.
Now consider the gravitational action within the region bounded by the maximal surface

and a constant curvature surface both fixed at the same boundary time tL = tR = t. To
compute the growth rate, consider two such regions separated by a small boundary time δt.
Let us compute the difference in the actions of these nearby regions. The total action outside
the horizon is time-independent and can be ignored. This leaves us with two regions inside
the horizon: action in the blue region between constant curvature surfaces minus action in
the red region between maximal surfaces in figure 10. For the blue region inside the horizon,
the bulk action is given by

δIbulk = −
1

2GN

�

tanh t +
t

cosh2 t

�

δt . (66)

To this, we also need to add boundary and corner contributions. For the boundary terms, we
have the usual GHY surface terms along AB and C D (see figure 10), and also null boundaries
along the horizon segments AC and BD. We choose the normals to the null surface to be
affinely parameterised, hence the latter terms can be set to zero. As the expansion parameter
along these (Killing) horizon segments vanishes, we can likewise ignore the counter terms
proposed for null surfaces [55]. The boundary terms δIbd y from the segments AB and C D
exactly cancel the above bulk term, leaving us with four corner terms. Since these corners arise
from the intersection of a spacelike surface and the null horizon, the appropriate action [66]
is

Icorner =
1

8πGN

∫

∂Σ

dφ
p
σa , (67)

where σ is the metric on the corner ∂Σ and a = ± log(k · n), with k and n being the normals
to both the surfaces at the corner. Calculating this for corners on both sides gives

δIcorner =
1

2GN
tanh tδt . (68)

For the red region, we only have the bulk and corner terms, since K = 0 along the boundaries.
We shall argue that both these terms can be safely ignored in the late time limit. The bulk
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action can be computed numerically from the shape of surface in (64). At late boundary time,
since these surfaces pile up close to the final surface, this action is negligible. Computing the
corner term from (67) gives

δIcorner =
1

2GN c(t)
dc(t)

d t
δt , (69)

where c(t) is implicitly given by (64). Again, at late boundary times t ≫ 1, we have c ≈ 1
2 ,

hence this term doesn’t contribute as well. Now, adding up all the contributions we have

dItotal

d tbd y
=

tanh t
4GN

= 2M tanh
tbd y

2
, (70)

where tbd y = tL+tR = 2t is the total boundary time. Since at late boundary times tanh
tbd y

2 ≈ 1,
the action grows linearly.

5 General methods for gravitational action proposals

Let us quickly summarize some of the achievements of the preceeding section. Following
[35], we showed in section 4.3 how a cost-proposal based on the bulk gravitational action
can reproduce the complexity=volume proposal on a Euclidean global AdS background (see
also table 1), and we discussed how this result can be connected to the geometry of kinematic
space, i.e. the space of spacelike bulk geodesics, in section 4.3.2. While there are problems
with the generalisation of this ansatz to Lorentzian cases as discussed in section 4.4, it is
interesting to note the prominent role that surfaces of a constant intrinsic curvature (such
as (45) and (57)) play in all these attempts as solutions to the equations of motion derived by
extremising the action. This motivated us in section 4.5 to propose a new complexity proposal
based partially on constant intrinsic curvature surfaces that was shown to pass at least one
important plausibility check, namely late time linear growth in a black hole background.

For this reason, in this section we will now give a more general analysis of the general
equations derived in [35] (of which sections 4.3 and 4.4 only provide special examples). As
we are about to explain, a quite generic solution method can be formulated based on foliating
surfaces by geodesic curves, which in turn might suggest a deeper and more general connec-
tion to the physics and geometry of the kinematic space than what we discussed in [35] and
section 4.3.2. However, a more detailed study of such a possible deeper connection will be left
for future research.

5.1 Equations of motion

In [35] we essentially analysed a problem where co-dimension one hypersurfaces M̃ were
embedded into AdS3 according to the equation7

Kn
mKm

n − K2 = 0 . (71)

Herein Kmn is the extrinsic curvature tensor of the surface and K = Kn
n is its trace. Latin indices

are raised and lowered with the induced metric gmn. The potential physical interpretations of

7We follow here the notation of section 3 of [67], where latin indices refer to the induced geometry of the
hypersurface M̃ with coordinates ya, greek indices refer to the ambient (bulk) spacetime N with coordinates xα,
and we can define the projector eαa = ∂ xα/∂ ya. To avoid confusion concerning e.g. the Ricci scalar, we use R for
curvature tensors of the bulk, and R for curvature tensors of the induced metric. The bulk metric as throughout
the paper is Gµν while the induced metric is gmn.
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this equation are manifold. Our main interpretation in [35] was that when deriving a notion
of state complexity by extremising the action of a bulk region bounded by initial and final time
slices as well as a variable boundary surface, (71) arises as the equation of motion of that
surface. Additionally, in section 3 of [35] we pointed out how surfaces satisfying (71) arise
from flow equations which describe movement of the cutoff surface in a fixed background,
while in section 4 of [35] we pointed out a connection with kinematic space. In the following,
we will continue to explore these possible interpretations in more generality than what was
possible in [35].

To do so, we should first point out that the derivation given in section 3.1 of [35] is in-
dependent of the number of dimensions and equally applicable to the Lorentzian case, hence
from now on we take equation (71) to be the equation of interest even in the general case.8

Also, due to the Hamiltonian constraint9

0≡ H = R− 2Λ−
�

Kn
mKm

n − K2
�

, (72)

equation (71) corresponds to demanding that the Ricci curvature R of the induced metric of the
surface is constant. Specifically, if we focus on three bulk dimensions and set the AdS-radius
to L = 1↔ Λ = −1, then R = −6 and R = −2. Of course, the problem of constant curvature
surfaces embedded into maximally symmetric ambient spaces is well studied in the mathemat-
ical literature, see e.g. [68–75] and references therein for interesting results. However due to
differences in notation and nomenclature in the mathematical literature, in the following sec-
tions we will spell out the most relevant facts for our case in our own language and try to
give them a physical interpretation from the perspective of holography. In fact, as pointed out
in [74], the French mathematician G. Darboux remarked more than 130 years ago that it can
be said that the total curvature has more importance in Geometry; as it depends only on the line
element, it comes into play in all questions concerning the deformation of surfaces. In mathemati-
cal physics, on the contrary, it is the mean curvature [i.e. extrinsic curvature] which seems to play
the dominant role [76]. While much has happened in the world of mathematical physics since
this statement was made, especially with the introduction of general relativity, at least in the
AdS/CFT correspondence it still seems to hold true to this day. Namely, it is extremal surfaces
(i.e. those with vanishing mean curvature) that play a role in the Ryu-Takayanagi formula [5],
the holographic description of Wilson loops [77], or the complexity=volume proposal [19].
In this sense, our previous paper [35] as well as this one stand out as they point towards a
physical role of constant Gauss curvature surfaces in the holographic dictionary.

The first observation we can make about (71) is that it can be written solely in terms of the
object Kn

m. This is reminiscent of the paper [78], where the authors studied (one-dimensional)
curves with more complicated equations of motion than merely geodesic equations. The au-
thors there found that in some cases, it was possible to phrase these equations in terms of
extrinsic curvature as a function of an affine parameter. Then, a solution can be obtained in a
two-step procedure: first by solving the equation for the extrinsic curvature, and then finding
an embedding for a curve that actually has this extrinsic curvature as a function of the affine
parameter. Similarly, we could try to solve (71) by firstly finding any tensor Kn

m (dependent
on generic induced coordinates ya) that satisfies this equation,10 and then solving for the em-
bedding of a hypersurface in the ambient spacetime that, for the correct choice of induced
coordinate system, has the extrinsic curvature found in the first step of the solution procedure.

8Specifically, in equation (3.7) of [35] (where d stands for the dimension of the entire bulk spacetime), plugging
in the relation πmn = −(Kmn − K gmn) shows that (71) arises as the flow eqation.

9Here and for the rest of the paper, we only consider vacuum spacetimes in the bulk.
10Because (71) does not contain derivatives, this reduces to a pointwise matrix equation. Any section dependent

on parameters ya in the space of matrices that satisfy the constraint (71) would then be a valid solution of the first
step of this procedure.
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Unfortunately we have not been able to carry out this procedure in general, hence in the next
subsection we will study a particular ansatz to solve (71).

5.2 Solution method, totally geodesic foliations

It is trivial to see that an ansatz of the form

Kmn = mmmnk , (73)

with some vector m and some function k will automatically satisfy (71). We can demand m
to be normalized, or alternatively we could allow m to be unnormalised and absorb k into
its norm up to an overall sign. Which convention is more useful depends on the problem at
hand. Firstly, let us discuss how general this ansatz is. For two dimensional surfaces, (71) is
equivalent to det Kmn = 0 and hence to (73), i.e. this ansatz is generic in this case. For higher
dimensions however, (73) only covers a small subset of the solutions of (71).

For a hypersurface embedded into an ambient spacetime, we can utilize the Codazzi equa-
tions. Besides (71), a consistent embedding into an ambient space with given Kmn needs to
satisfy the following equations [67]:

Rαβγδeαa eβb eγc eδd = Rabcd ± (Kad Kbc − KacKbd) , (74)

Rµβγδnµeβb eγc eδd = Kbc|d − Kbd|c , (75)
�

Rαβ −
1
2
RGαβ

�

nβ eαa = K b
a|b − K,a . (76)

Note that the bracket in (74) automatically vanishes with our ansatz, hence if the ambient
space has a Riemann-tensor of the form of a maximally symmetric spacetime

Rαβγδ =
R

d(d − 1)

�

GαγGβδ − GαδGβγ
�

, (77)

then due to the projections in (74) the Riemann tensor of the induced metric will have a
similar maximally symmetric form in terms of the induced metric and its Ricci scalar. Hence our
ansatz (73) necessarily describes a hypersurface whose induced metric is (locally11) maximally
symmetric, and because in an AdSd background (71) implies a negative induced curvature, the
induced metric has to be locally AdSd−1. Furthermore, under the assumption of embedding
into a locally AdS space, the left-hand sides of (75) and (76) will vanish because Gαβnβ eαa = 0,
giving us an interesting set of differential equations for m and k. Assuming we can set k = ±1
at least in certain regions of the hypersurface, (75) gives:

0= mc∇d mb +mb∇d mc −md∇cmb −mb∇cmd . (78)

So in general, we would have to find a vector field m in a locally AdS space that satisfies (78),
and then see whether there actually is a surface embedded into AdS that has the corresponding
extrinsic curvature and induced metric in the induced coordinate system of our choice.

Let us now focus on d = 3 dimensional ambient spaces, i.e. two dimensional hypersurfaces
for the moment. Clearly, ma is a vector in the tangent space to the hypersurface, so there is
one perpendicular direction in the tangent space, and we introduce the tangent vector field la,
such that lama = 0, la la = const. What can we learn about this vector field? Take equation
(78), and contract it with l c l b:

0= md l c l b∇cmb⇒ 0= l c l b∇cmb . (79)

11BTZ black holes [63] are examples for spaces which are locally AdS, but have interesting global properties.
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We hence know

l bmb = 0⇒ 0= l c∇c(l
bmb) = (l

c∇c l
b)mb + l c l b∇cmb
︸ ︷︷ ︸

=0

. (80)

That means the projection of the vector l c∇c l
b on the mb direction has to vanish. As we assume

the hypersurface worldvolume to be 2-dimensional, the only other direction is lb. We find:

(l c∇c l
b)lb∝ l c∇c l

b lb = 0 . (81)

It follows that (80) and (81) together imply the geodesic equation

l c∇c l
b = 0 , (82)

in the induced metric of the hypersurface. Thus our ansatz (73) implies that the integral
lines of the normalised vector-field perpendicular to the direction ma have to be geodesics
which foliate the hypersurface. So far, we are explicitly talking about the geodesic equation
with respect to the induced metric, but as (73) implies Kab la l b = 0 these curves also have
vanishing extrinsic curvature in the normal direction to the hypersurface. Hence these curves
foliating the hypersurface will also be geodesics with respect to the ambient metric. We can
show this explicitly. The relation between the covariant derivative in the ambient space X ;β
and the covariant derivative in the induced metric X |b gives [67]

lα;β eβb = la
|beαa ± laKabnα . (83)

Contracting (83) with l b, we find

lβ lα;β
︸︷︷︸

ambient space geodesic eq.

= l b la
|b
︸︷︷︸

induced metric geodesic eq.

eαa ± l b laKabnα . (84)

Herein, lβ is the ambient space form of the vector field l b in the hypersurface. Thus, if the
2d hypersurface is foliated by curves (with tangent vector l) that are both geodesics of the
ambient space and the induced metric (i.e. totally geodesic), then necessarily Kab la l b = 0.
On the other hand, if Kab la l b = 0 is given and as derived above the geodesic equation with
respect to the induced metric is satisfied, then so will be the geodesic equation with respec to
the ambient metric.

To summarise, we have shown that in AdS3, the constant curvature surfaces that we are
trying to find as solutions of (71) (which implies (73) in three bulk dimensions) are foliated
by curves that are geodesics both with respect to the ambient space and the induced metric.
This is just the AdS equivalent of the well known statement inR3 that all developable surfaces
(i.e. R= 0) are ruled surfaces (i.e. foliated by straight lines in R3) [75], however both in this
and in our case, the converse is not true. We can use this realisation to construct hypersur-
faces that will solve (71) subject to quite generic boundary conditions, as we demonstrate in
section 5.3. Interestingly, the result of this section hence implies a relation between solutions
of (71) in three bulk dimensions and the abstract space of geodesics of the bulk spacetime.
This space of geodesics generalises the well known kinematic space [79] which we use for
example in section 4.3.2 by including geodesics not restricted to an equal time slice as well as
timelike geodesics [80–82]. In three bulk dimensions, this space will be four dimensional, and
as we have shown in this section, a surface solving (71) will correspond to a curve in this space
of geodesics, each point along this curve corresponding to one geodesic which constitutes a
slice of the codimension-one surface M̃ in the bulk. While there is a considerable freedom of
how such curves in the space of geodesics can look like, corresponding in part to our freedom
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of choosing arbitrary boundary conditions for the surface M̃ in the bulk, not every such curve
generates a bulk surface that solves (71). It would hence be interesting to try and rephrase
equation (71) as a constraint on curves in the space of bulk geodesics, but we leave this for
future work. Furthermore, it was discussed in [82] that the space of timelike geodesics in
AdS3 can be mapped to the space of coherent states of the CFT. Under this identification, the
Lorentzian solutions which we will later construct in section 5.5 would receive the interpreta-
tion of corresponding to (closed) paths in this space of states, however we will also leave it to
future research to investigate the possible significance of this observation.

5.3 Examples

In [35], we derived solutions to (71) in Euclidean Poincaré AdS3 anchored to two constant time
slices at different times on the boundary. The solution was a translation invariant hypersurface
with semi-circular cross sections, and we remarked that these semicircular cross-sections are
geodesics of the ambient space. In light of the results discussed in the previous subsection, this
observation is now not surprising anymore. In fact, we can quite easily generalise our solution
to the case where translation invariance is broken, assuming only a mirror symmetry between
initial and final time slice. This is done by the ansatz

z(t, x) =
Æ

r(t)2 − x2 , (85)

where r(t) is an arbitrarily varying (half) width along the t-axis, and we have used the usual
coordinate system on (Euclidean) Poincaré AdS3 that gives us the line element

ds2 =
1
z2

�

d t2 + d x2 + dz2
�

, (86)

where from now on we set the AdS-scale to L = 1 for simplicity. The case in [35] was simply
r(t) = const. This embedding indeed satisfies (71). Likewise, in Lorentzian global AdS3 with
line element

ds2 =
1

cos(θ )2
�

−d t2 + dθ2 + sin(θ )2dφ2
�

, (87)

we can now easily construct the surface

t(φ,θ ) = tbd y

�

arctan
�
Æ

csc2(θ ) sec2(φ)− 1
��

, (88)

which can be verified to satisfy (71), and where tbd y[φ] is the boundary condition at the
asymptotic boundary θ = π/2 which we assume to be symmetric underφ→−φ. See figure 11
for examples.

The ease with which we can now construct solutions to (71) allows us to directly settle
certain interesting physical questions, such as those concerning uniqueness of solutions. Con-
sider again Euclidean Poincaré AdS3, and on the boundary we want our hypersurface to be
anchored on an ellipse in the t − x−plane with semi minor axis = 1 along the t-axis and semi
major axis= 2 along the x-axis. Interestingly, we can construct hypersurface embeddings sim-
ilar to (85) in two ways: with a foliation in terms of semi-circular arcs parallel to the t-axis, or
with a foliation in terms of semi-circular arcs parallel to the x-axis, see figure 12. Both these
embeddings satisfy (71), but one reaches farther into the bulk than the other. Hence for given
boundary conditions, solutions to (71) will generally not be unique.

We will make more use of this solution generating method in subsection 5.5, but before
that we will comment on the importance of the Gauss-Bonnet theorem in our context.
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Figure 11: Left: Example of (85) for r(t) = 3+1
2 sin(t)−cos(t2/5). This satisfies (71).

For this solution the sign of K switches in between points on the surface, hence k in
(73) can not be globally absorbed into the normalisation of m. Note we are working
in the Euclidean case, so the norm of m has to be positive. Right: Example of (88)
for tbd y[φ] =

1
8 cos(4φ)− cos(φ)

4 . The asymptotic boundary of global AdS is depicted
as a grey cylinder.

5.4 Implications of the Gauss-Bonnet theorem

As we are searching for surfaces of constant scalar curvature, in the case of two-dimensional
surfaces M̃ it is quite natural to consider the implications of the Gauss-Bonnet theorem

∫

M̃

R
2

dV +

∫

∂ M̃
kg ds+
∑

corners c

αc +
∑

conical sing. s

βs = 2πχ , (89)

see e.g. [83]. Herein, the first term is an integral of the Gaussian curvature over the volume
of the surface. The second term is an integral over the geodesic curvature along the boundary
lines of the manifold. The third term takes into account contributions from corners in these
boundaries. Here, αc is the external angle at every corner by which the boundary changes
direction, i.e. π minus the interiour angle at the corner. This angle has to be defined with
a positive sign at convex corners and a negative sign at concave corners. Lastly, the fourth
term (see [84]) takes into account contributions from conical singularities in the manifold M̃ ,
where βs is the conical deficit angle. These specific terms are rarely mentioned in descriptions
of the Gauss-Bonnet theorem, but they will be especially important in our context, and so we
will explain them in more detail in appendix B. On the right hand side of the equation, χ is the
Euler characteristic. Importantly, the theorem is valid both in the Euclidean and Lorentzian
case, however, in the latter angles have to be replaced by Lorentzian analogues and χ ≡ 0,
see [85–88] and the discussion in appendix B.

As we are concerned with constant curvature surfaces, the first term in (89) can be sim-
plified to the product RV/2 where V is the total volume of the surface. Let us for the moment
assume smooth surfaces, without corners or conical singularities. We can hence write:

RV
2
= 2πχ −
∫

∂ M̃
kg ds⇒ V =

2
∫

∂ M̃ kg ds− 4πχ

−R
. (90)

Hence, because we fix the value of R, there is (for fixed topology) a direct relation between
volume V and geodesic curvature of the edge of the surface

∫

∂ M̃ kg ds. The later in turn is
related to the boundary conditions that we impose on the surface, i.e. when prescribing a
curve at a cutoff-surface near the boundary where the surface M̃ is supposed to be anchored.
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Figure 12: Two hypersurfaces satisfying (71) with the same boundary condition at
z = 0. For the solution on the left, we find K < 0 everywhere, while for the one on
the right we find K > 0 everywhere.

Let us assume χ ≥ 0, which covers the cases of Lorentzian surfaces (χ ≡ 0), disk-shaped
Euclidean ones χ = 1 and spherical Euclidean ones χ = 2. As we also assume R < 0, that
yields a bound

V ≤
2
∫

∂ M̃ kg ds

−R
. (91)

As kg is the curvature of the edge within the surface M̃ , we cannot compute it before having
found the surface. However, if that surface is embedded into a larger space with non-vanishing
extrinsic curvature, we assume the curvature k of the geodesic within that ambient space to
obey |k| ≥ |kg | (a curve in a certain submanifold may be a geodesic with respect to the induced
metric (kg = 0) but not the ambient metric (k ̸= 0)). Equation (91) clearly implies that the
average over kg along the boundary is positive. Assuming now that both kg and k are positive
everywhere, we obtain12

V ≤
2
∫

∂ M̃ kds

−R
. (92)

This bound can be computed solely from the boundary conditions, i.e. the curve on a cutoff
slice near the asymptotic boundary where we demand the surface M̃ to be anchored. Thus,
even though the surfaces we are looking for are not extremal area surfaces, their total volume
is bounded from above. Hence, we expect them not to be too "wild" in the bulk, and especially
for χ ≥ 0 there can be no smooth constant negative curvature submanifolds embedded into
AdS that don’t reach out to the asymptotic boundary. However, in section 5.5 we will study
surfaces in AdS that include conical singularities, and they can be contained entirely within
the bulk.

We will now quickly discuss a potential application of these results, whose full exploitation
we however leave to future research. In holography, for example when dealing with the com-
plexity=volume proposal, we are often tasked with finding extremal volume slices in a bulk
spacetime. For simplicity, let us consider the case of a Euclidean bulk, where these extremal
area slices actually minimise the area. Then, clearly Vex t ≤ V . However, for generic non-
translation invariant boundary conditions, the extremal volume slices are not easy to find,

12This bound can be sharpened again by reinstating the term proportional to χ, assuming χ > 0. Of course,
we also have to keep in mind that such constant curvature surfaces may not exist for arbitrary choice of R, see
e.g. [69].
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as seen e.g. in [89] where it was possible to solve the relevant partial differential equation
only perturbatively. Hence, our results may be useful in occasions where only a bound on
the volume is needed.13 Not only could one then employ the bound (92) but, as shown in
sections 5.2 and 5.3, the constant curvature surfaces can be directly constructed given quite
generic boundary conditions (only subject to a symmetry condition) without the need to solve
additional differential equations. Some information might then already be gleaned from these
surfaces, or they might be used as well motivated initial guess in numerical relaxation schemes.

5.5 Lemons in Lorentzian AdS3

In this subsection, we will now put the methods explained in section 5.2 to use in order to
construct generic timelike hypersurfaces solving (71) in global Lorentzian AdS3. As we had
realised in section 5.4, timelike surfaces embedded into AdS with constant negative curvature
can only be fully contained inside the bulk (without boundary) if they have conical singulari-
ties, which will of course be the case here. See also appendix B.3 for further details.

It is well known that in Lorentzian global AdS3, there are timelike geodesics that oscillate,
i.e. pass through the center of AdS regularly, turning around at finite radial coordinate without
ever reaching the boundary. We can now construct co-dimension one hypersurfaces which
are foliated by such geodesics, obtaining structures such as the one shown in the top left of
figure 13. Specifically, using the global AdS metric (87) (with boundary at θ = π/2), the
embedding of (the branch valid for −π/2< t < π/2 of) a radial timelike geodesic is given by

t(θ ) = arctan

�

E sin(θ )
p

−1+ E2 cos(θ )2

�

, φ = const . (93)

where the "energy" E > 1 of the geodesic is related to its turning point θmax by
θmax = arccos 1/E. Following the methods of section 5.2, we can construct surfaces of the
form

t(θ ,φ) = arctan

�

E(φ) sin(θ )
p

−1+ E(φ)2 cos(θ )2

�

, (94)

where we have promoted E to a φ-dependent parameter. The relevant equations can become
a bit cumbersome, but in the special case where E(φ) = E = const., the induced metric (in
θ -φ coordinates) reads

gmn =

�

− sec2(θ )
−1+E2 cos2(θ ) 0

0 tan2(θ )

�

, (95)

while the extrinsic curvature takes the form

Kmn =

�

0 0
0 E tan(θ )

�

, K = E cot(θ ) . (96)

Curiously, K diverges at θ = 0 where the surfaces will have a conical singularity.
Due to the presence of these conical singularities at time coordinates t = 0 and t = π (a

consequence of the periodicity of the timelike geodesics), we have adopted the term "lemons"
for these shapes.14 See figure 13 for a number of examples. It is easy to verify that surfaces of
the form (94) will automatically satisfy (71), even if E(φ) is an arbitrary function. Note that
E > 1, and in the limit E →∞⇔ θmax = π/2, i.e. the surface touches the AdS boundary

13See [90] for a positivity bound on vacuum subtracted volumes with applications to holography.
14Even though similar geometric shapes with a different mathematical definition have been described by the

same name [75].
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Figure 13: Gallery of generalised lemons. In each plot, we use the coordinate system
of (87), where the AdS-boundary is mapped to the grey cylinder at θ = π/2. The
time axis is shown explicitly. Each yellow surface is an embedding described by (94),
with individual timelike geodesics shown as grey lines. In the t = 0 plane, the red
line indicates the shape of the cut through the surface at its equator. What all of
these surfaces have in common is the existence of tips with conical singularities, as
demanded by consistency with the Gauss-Bonnet theorem. Apart from this, these
surfaces can have not only many different shapes (top left and middle), they can also
have self intersections (top right), reach out to touch the boundary (bottom left and
middle), or even reach out to intersect the boundary (bottom right). The latter case
may actually seem somewhat confusing at first: As discussed earlier in section 5.2,
the induced metric has to be maximally symmetric, and hence homogeneous. But
evidently, the signature of the metric switches from timelike to spacelike as we travel
along the surface, and hence it can not be really homogeneous. This can happen
because along the transition line, the induced metric is sufficiently continuous, but
not analytic. From top-left to bottom-right, these surfaces are given by E(φ) =

p
2,

E(φ) = 2 sin(2φ) + cos(4φ) + 5, E(φ) = 5 sin2
�

φ
4

�

+
p

2, E(φ) = tan4
�

φ
2

�

+
p

2,

E → ∞, and E(φ) =
�

cos(φ)
sin(φ)

�2
+ 2 for 0 < φ < π, E(φ) = −i

�
�

cos(φ)
sin(φ)

�2
+ 2
�

for

π < φ < 2π, respectively. The bottom middle figure shows how the WDW patch
arises naturally in this construction.
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with its equator in this limit. In fact, in this limit t(θ ,φ) = θ , hence the surface becomes the
null boundary (the past part of it for this branch) of the WDW patch of the t = π/2 time slice
on the boundary. This is interesting because the WDW patch, which plays a central role in the
complexity=action proposal [20],15 thus emerges very naturally from our construction. We
would like to contrast this with the situation in [28] (see also [29–31] for more recent works in
this direction), where the authors introduce a tension term T to their equations as the simplest
possible term (however, this tension is then given an a posteriori interpretation as an emergent
holographic time). The null-boundaries of the WDW patch for the given boundary time slice
are obtained as solution only in the rather unphysical seeming limit T →−∞. So the fact that
the WDW patch arises naturally in our construction is rather encouraging, but as discussed in
section 4.4 the null limit for the surface M̃ is related to a divergence in the value of the action.
Also, as explained in [92,93], WDW patches in non-translation invariant settings can get quite
complicated. So it would be interesting to see whether our method can be adapted to this and
help analyse the features of such non-trivial WDW patches by first constructing a foliation of
the interiour of the WDW patch in terms of lemon surfaces, and then taking the appropriate
limit. Going further, we can even allow imaginary values of E(φ) in (94) which leads to
spacelike surfaces that reach out towards the asymptotic boundary, as also shown in figure 13.

In our calculations motivated by complexity so far, we have always assumed the presence
of an initial and final time slices like in figure 9, respectively section 4.4. But as the lemon
surfaces start and end on conical singularities, we can as well calculate the action of their
interior, without any additional boundary surfaces. There are no joints in this case, hence
this only requires the bulk term and the Gibbons-Hawking-York boundary term. We assume
the conical singularities to make no contribution to the action, which can be checked by a
limiting argument similar to appendix B of [94] where it was shown that caustic points do not
contribute to the action.

As (94) describes one half of a lemon, from the conical singularity at t = 0 to the equator
at t = π/2 (i.e. from θ = 0 to θ = θmax along one branch), the bulk and boundary terms read

IEH =

∫ θmax

0

dθ

∫ π/2

t(θ ,φ)
d t

∫ 2π

0

dφ
p
−G (R− 2Λ) , (97)

IGHY = 2× 2

∫ θmax

0

dθ

∫ 2π

0

dφ
p

−gK . (98)

where we ignore the common prefactor involving the Newton constant. Together, we find

IEH + IGHY

= 8π

∫ θmax

0

dθ
E sec(θ )
p

E2 cos2(θ )− 1
−

tan(θ )
cos2(θ )

�

π− 2arctan

�

E sin(θ )
p

E2 cos2(θ )− 1

��

= 4π2 . (99)

Hence, for all lemons that do not reach the asymptotic boundary, we obtain the same value
for the action. This is not surprising, because in our previous paper [35] we explicitly derived
equation (71) as a flow-equation from the bulk-action. The idea was that such a flow might
be triggered by turning on a T T deformation, moving the boundary into the bulk [38] (see
also [95–97]), and the surfaces that satisfy (71) would receive the physical interpretation of
being those surfaces on which such a flow can come to rest. As an alternative description,

15Even more, by causality arguments similar to [91] the WDW patch is actually the largest region in the bulk on
which any complexity proposal for one given boundary time slice can depend. For example, the extremal volume
slice defining complexity in the complexity=volume proposal is always contained inside of the WDW patch by
definition.
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these surfaces bound regions of the bulk whose action does not change under infinitesimal
deformations of their boundary.16 But as the interior of the WDW patch can be foliated by
such surfaces, and all are valid solutions to the equations of motion, it follows that the action
evaluated inside all of these lemons has to have the same value. To provide an analogy, sup-
pose you are looking for the extrema of a potential V (x), where a particle might potentially
be at rest, even if unstable. The equation of motion for this is V ′(x) = 0. If all points x ∈ I
inside an interval satisfy this equation, it follows that the potential is constant in that interval.
Concerning the action of the lemon surfaces, this argument is valid not only in the case of con-
stant E as assumed above. It can be checked tediously but explicitly that even for functions17

E(φ) the above action calculation yields the same result, as we should now expect.
The solutions of (71) hence have the physical interpretation of defining a foliation of a

part of the bulk spacetime in terms of timelike surfaces such that the action inside of each
such surface has the same constant value. This also implies that the action evaluated in the
region between any two lemons vanishes identically. As said above, based on [35] we hope to
interpret these surfaces as potential endpoints of a flow of the asymptotic boundary into the
bulk triggered by turning on a T T deformation in the boundary theory. Given the time-periodic
nature of the lemons, this would clearly have to be done in a time-dependent manner, and it
would be interesting to construct such a T T -deformation explicitly and analyse it from a field
theory point of view. Apparently the field theory in question, if it exists, naturally is described
by Dirichlet boundary conditions on a bulk submanifold resembling a cyclic universe, starting
from an initial (conical) singularity, expanding, contracting, and ending in a final (conical)
singularity with a period that has to be exactly ∆t = π before the cycle starts all over again.
We leave an investigation of this for future work.

One additional thing that we want to quickly comment on is the action for lemons which
do reach the asymptotic boundary of AdS. The WDW patch is obtained in our construction
by taking the limit E →∞ of the lemon surfaces, and as the action inside every lemon for
finite E is constant, we might be tempted to assign this value also to the action inside of
the entire WDW patch. However, the WDW patch is bounded by null-surfaces which have to
be treated in their own special way in action calculations as explained for example in [55],
and generally the correct value of the action can not be obtained by a continuous limit from
regions bounded by timelike or spacelike surfaces. Nonetheless, some of the terms proposed
in [55] for null-boundaries, the so-called counter terms, are not unique (see also [98]) and
it has been shown that, for example when translation invariance is slightly broken, they can
cause problematic results in the complexity=action proposal [93, 99]. Consequently, there is
some interest in alternative methods of treating null-boundaries in the calculation of the bulk
action, see e.g. [100]. It might thus be interesting to explore whether there is a well defined
alternative prescription for calculating the action inside of WDW patches that would yield
the same value that our limiting procedure suggests. Alternatively, one might propose to use
timelike lemon surfaces with θmax = π/2−ε, ε≪ 1, as a regularisation of the WDW patch and
the associated UV divergences that does not need null boundary surfaces, as opposed to using
a WDW patch intersected by a cutoff surface at θcuto f f = π/2−ε which is usually done. Such
prescriptions for a modified CA proposal would however yield finite values for complexity,
without any ε-dependent divergent terms, defying physical expectations for how complexity
should behave in a quantum field theory. Turning back to the analysis of the action associated
to general lemon surfaces, when E is given an imaginary value, we obtain spacelike surfaces

16This means that in this paper and [35], it is the Einstein-Hilbert action (including Gibbons-Hawking-York
boundary term) itself that acts as the analogue to the functional defined in [71] to describe surfaces of constant
curvature in R3. In fact, that functional was similar to the Einstein action in that it consists of a volume integral
(as if R− 2Λ was a constant) and an extrinsic curvature boundary term.

17We continue to assume, however, that E(φ) is real and bounded from above, and free from self-intersections,
i.e. E(φ) is a periodic function with period 2π, unlike the third example in figure 13.
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that intersect the asymptotic boundary. To calculate the action inside such a "peeled lemon"
(like the last example in figure 13) by standard methods, we would have to introduce a cutoff-
surface, and the resulting value of the action would be divergent in the limit of vanishing
UV regulator ε. However, when allowing imaginary values for E, we obtain values for the
turning radius of the form θmax = π/2 + iarccsch(Im(E)). Curiously, this could be taken to
suggest that at least on a formal level, the embeddings for the spacelike solutions of (71) can
be extended beyond the AdS boundary (θ = π/2) by using a complex θ -coordinate, and one
might speculate whether such embeddings have an interpretation in terms of "wrong sign"
T T -deformations. For example, by careful analytic continuation the integral (99) can thusly
be lifted to a contour integral from θ = 0 to θ = θmax in the complex plane, and be shown
to still yield the same result even for imaginary E. However, it should be pointed out that this
complexification approach fails when directly applied to earlier steps in the calculation such
as (97) and (98), especially because the volume elements

p
−G,
p
−g introduce branch-cuts

due to the square-roots.
Given the importance of geodesics in our solution method explained in sections 5.2 and 5.5,

there appears to be an interesting parallel to the recent work on Lorentzian bit-threads in
[101, 102], where likewise geodesic flows were employed. Especially, some of the figures
in [102] appear familiar from the construction of lemons in section 5.5. We leave an in depth
exploration of possible connections between our work and [101,102] for future research, how-
ever for now we want to caution the reader that the apparent connection explained above may
only be superficial, for the following reasons: In [102], Lorentzian flows are defined as time-
like, divergenceless, future directed vector fields v with a bound on the norm. Such flows
are not unique, and using congruences of timelike geodesics is just one convenient way to
construct such flows explored in [102], but not the only one. In contrast, in 2+1 bulk dimen-
sions, solutions of (71) have to be foliated by geodesics as we have shown. These geodesics,
however, can be both timelike or spacelike. Because of this, there is a difference between
how this work and [102] construct foliations of the bulk spacetime outside of the WDW patch,
even though the foliations given for the inside of the WDW patch might agree. Furthermore,
the similarities end when going to higher dimensions. While the construction of [102] using
timelike geodesics still works in higher bulk dimensions, we do not think that such geodesics
will have a particular role to play for obtaining solutions of (71) in more than 2+ 1 bulk di-
mensions. See also appendix C, where we will study spherically symmetric lemons in higher
dimensional global AdS, and quickly comment on their qualitative differences to their lower
dimensional counterparts. Of course, the explicit equations given in [101, 102] would still
have practical uses in our kind of investigations, e.g. when constructing lemons in the BTZ
black hole background.

6 Discussion and outlook

In this paper we explored proposals for the cost of path integrals that prepare and transition
between states in gravitational theories. We described these path integrals in gravitational the-
ories with Dirichlet boundary conditions on a finite radial surface, which are holographically
dual to T T deformed CFTs, and gave the precise map between path integrals in the bulk and
the boundary. We have given bulk proposals for the cost of such path integrals that satisfy a set
of physical requirements, and shown explicitly how such path integrals can be optimised: by
minimising their cost over a suitable set of bulk subregions to reduce to existing holographic
state complexity proposals. Lastly we developed general methods for gravitational action-type
proposals.

Our work was partly inspired by the idea that holographic complexity proposals and their
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possible generalizations originate from coarse-graining circuits represented by moving the
asymptotic boundary inwards [103]. See figure 1. Such an approach to holographic complex-
ity of bringing in the asymptotic AdS boundary to finite cutoff can be made precise through
the language of T T -deformed holographic CFTs [35, 38, 53, 62]. The aim of our work was to
generalise this approach to consider general bulk subregions within finite cutoffs, functions on
which we propose to be the cost of the path integral on the subregion.

Our approach is complementary to and generalises existing work on holographic state com-
plexity. Maximum volume slices and WdW patches from our perspective are bulk subregions
that minimise path integral cost for a suitably chosen proposal. Holographic complexity arises
from the optimisation of path integral preparation of states. Note that once the function on
bulk subregions is fixed, the ‘optimal’ subregion that minimises the path integral cost is dy-
namically determined; we do not independently specify the optimal bulk subregion and the
function on it. This is in contrast to the two-functional holographic complexity proposals pur-
sued in [22], and it would be worthwhile to combine their approach, complexity=anything,
with ours, cost=anything, and see what subset of their proposals arise from the minimisation
of carefully chosen path integral cost proposals over suitable bulk subregions.

In section 4 we were able to find path integral cost proposals that reduce to some of the
existing holographic state complexity proposals. Cost = boundary volume in a Euclidean bulk
reduces to complexity= volume at the time reflection symmetric slice. We gave an physical jus-
tification for this proposal in terms of a T T -motivated notion of discretisation of the boundary
path integral. Cost= bulk volume in Lorentzian signature reduced to complexity= volume 2.0.
We also showed that, in the special case of pure global Eucldiean AdS, the cost=gravitational
action proposal from our previous paper [35] reduces to complexity=volume, though again
only on a slice that is time reflection symmetric. Lastly, and much in the spirit of [22], we
applied our cost=anything philosophy to conjecture novel complexity proposals. Our new
codimension-0 candidate holographic complexity proposal satisfies at least persistent linear
growth in thermofield double states, though the proposal was not derived by minimising a
cost, but rather through providing new covariantly defined boundary anchored bulk regions.

We were not able to find a path integral cost proposal that reduces to the complexity=action
conjecture, or the complexity=volume conjecture except on time symmetric slice where we are
free to analytically continue between Euclidean and Lorentzian signature. The key issue is the
existence of Lorentzian bulk subregions for which the gravitational action is unbounded in both
directions, which prevents the use of Lorentzian gravitational action as a cost proposal that
reduces to complexity=action. Our analysis does not rule out the complexity=action proposal,
since failure to find a suitable cost proposal does not prove its non-existence. Furthermore, the
shortest path in the Hilbert space may involve non-geometric states, which would be outside
the scope of our work.

In section 5 we turned our attention to the equations of motion specifying boundary sur-
faces extremizing gravitational action in our cost= (Euclidean) action proposal [35], see equa-
tion (71). While in our previous paper we discussed easily-obtainable homogeneous solutions
of these equations, here we were able to solve these equations in generality in AdS3 geometries
using that such surfaces are generated (foliated) by bulk geodesics. Our observation applies
both to the Euclidean and the Lorentzian bulk spacetimes. We also showed that the boundaries
extremising gravitational action provide an interesting new way of foliating Wheeler-DeWitt
patches that we call ‘lemons’, see figure 13.

There a several avenues for future research. Our discussion of bulk cost functions has been
entirely phenomenological. In the enormous set of cost proposals that satisfy our physical
requirements, we have given no reason to favour one over another, besides perhaps simplicity.
Moreover, except for cost=boundary volume we have given no physical justification for any
of our proposals. That said, cost and complexity are inherently ambiguously defined, so even
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if one could find a gate set and metric on the space of operators that gives one of our cost
proposals, that would not favour that proposal over others as there is no reason to favour that
definition of cost over others. We view the size of our set of cost proposals as directly related
to the inherent ambiguity of definition. As further justification, note that the set of complexity
proposals that satisfy reasonable requirements is similarly enormous [22].

In our work we predominantly considered bulk subregions of single, fixed bulk on-shell ge-
ometries in the semiclassical limit. When considering semiclassical path integral preparations
of and transitions between bulk states one should in principle consider all on-shell geometries
that satisfy the boundary conditions. We did not do so for technical ease, and we were justified
in doing so by carefully choosing our cost proposals such that there was no benefit in alter-
ing the geometry in the interior of the cost-minimising bulk subregion, or it was not possible
without violating the boundary conditions. It would be interesting to allow for different bulk
geometries as well as different subregions thereof in our path integral optimisation. Similar
perspectives were pursued in [104], and having a good control of the bulk dual to a circuit
might allow to gain a microscopic understanding into the meaning of at least some bulk cost
proposals.

We have considered cost proposals for Lorentzian and Euclidean bulks, but we could also
consider more general complex metrics. Such metrics are relevant, for example, in calculating
the temperature of Kerr black holes using path integral methods [105]. See also [106] for a
recent discussion of complex saddles in gravity. For a more complete story we should have cost
proposals for such path integrals. Cost should be real-valued, which limits the possibilities of
functions on subregions of complex manifolds. When the complex manifold is related to a real
one by Wick rotation of a stationary spacetime then the volume form remains real, so volume
may be a reasonable cost proposal in certain bulks with complex metrics.

We required our cost proposals to be covariantly defined, which includes independence
from choice of time foliation, see section 3.2 and figure 5. One could in principle relax this
and allow for cost proposals that depend on a time-foliating vector field as was done in [32].

Another question is related to a potential intrinsic difference between Lorentzian and Eu-
clidean circuits. In the Euclidean case due to exponential suppression certain contributions to
path integrals become very small and, in practice, negligible. As a result, part of the optimiza-
tion process might be related to eliminating such practically negligible contribution, see [107]
for a free QFT realisation. In the Lorentzian case, the problem of optimization becomes an
algebraic problem of exact decomposition of operators into a sequence of gates (circuits). It
would be very interesting to understand if one should view the Euclidean problem also as an
exact problem, and so lose all the benefits Euclidean time evolution brings for state prepara-
tion. This is the perspective pursued by [32], or to point out where in the gravity description
this difference between the Euclidean and Lorentzian case manifests itself.
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A Cost equals gravitational action in Lorentzian Poincaré AdS3

Let us calculate the gravitational action of the subregion of Lorentzian Poincaré AdS3 depicted
in figure 9. The gravitational action is

I = IEH + IGHY + IHa yward . (A.1)

The Einstein-Hilbert term is

IEH =
1

16πGN

∫

p
−G(R− 2Λ) , (A.2)

where R = −6 and Λ = −1 in AdS3 with L = 1. Then IEH is proportional to the spacetime
volume,

IEH = −
1

8πGN

∫

d x

∫ t f

t i

d t
1
ρ2

. (A.3)

Our region has two corners, both of which are spacelike surfaces meeting a timelike surface,
both of which contribute to the gravitational action18

IHa yward =
1

8πGN

∫

p
ση , (A.4)

where σ is the induced metric on the joint, and

sinhη= −t1 · n2 , (A.5)

where t1 is the (timelike) normal to the t = {t i , t f } slices, and n2 is the (spacelike) normal to
z = ρ(t). For our setup it’s easy to show that

η= ±arctanh ρ̇ , (A.6)

with +(−) at the t f (t i) joint. This gives

IHa yward =
1

8πGN

∫

d x

�

arctanh ρ̇(t f )

ρ(t f )
− (t f ↔ t i)

�

. (A.7)

Let us calculate the contribution of the finite cutoff time-like boundary to the gravitational
action through the Gibbons-Hawking-York (GHY) term. The boundary is the hypersurface

z = ρ(t) , (A.8)

in Poincaré AdS3 (55). We want to calculate the extrinsic curvature of this surface

K =∇µnµ = z3∂µ(z
−3nµ) , (A.9)

where the unit normal to the hypersurface is given by

nµ :=
Gµνζν
|ζ|

, (A.10)

with un-normalised normal

ζµ = ∂µ(ρ(t)− z); ζx = 0 , ζt = ρ̇ , ζz = −1 , (A.11)

18See appendix A of [66] for Hayward corner terms for every kind of corner.
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and
|ζ|= z
Æ

1− ρ̇2 . (A.12)

Plugging these in to the formula for K gives

K |z=ρ =
−ρρ̈ + 2(1− ρ̇2)
(1− ρ̇2)3/2

, (A.13)

which is exactly what you get if you Wick rotate the Euclidean answer, so that ρ̇2→−ρ̇2, and
ρ̈→−ρ̈. The GHY term is

IGHY =
1

8πGN

∫

p

−gK

=
1

8πGN

∫

d x

∫ t f

t i

d t
−ρρ̈ + 2(1− ρ̇2)
ρ2(1− ρ̇2)

.
(A.14)

Integrating the double derivative term by parts gives a boundary contribution that cancels the
Hayward terms in our case (however, this cancellation would not have happened with general
spacelike boundaries rather than the constant time slices we have considered). Combining
everything gives

I =
1

8πGN

∫

d x

∫ t f

t i

d t
�

1− ρ̇ arctanh ρ̇
ρ2

�

, (A.15)

which agrees with the Wick rotation of the Euclidean result of [35]. We note that while the
GHY term (A.14 ) by itself may remain finite when a null-limit of the surface ρ(t) is taken
(see [108]), the full action (A.15 ) diverges in this limit. This can be shown to be a con-
sequence of the Hayward-type corner terms (A.4 ). In general, the procedure of obtaining
gravitational action of a region with null boundaries as a null-limit of timelike or spacelike
regions is ambiguous, see [55].

B Conical singularities in the Gauss-Bonnet formula

B.1 Euclidean case

While most sources don’t state the Gauss-Bonnet theorem explicitly including terms necessary
for conical singularities, it is not hard to find the appropriate terms. While a formal proof was
given in [84], a less rigorous but quite simple approach would be the one of [109] where it
was simply postulated that the Gauss-Bonnet theorem should continue to hold in the presence
of conical singularities, and then the necessary correction term was derived by looking at one
simple example.19 In this section, we will give our own argument which easily generalises to
the Lorentzian case in the next subsection.

To do so, we consider a body with a conical singularity like the one sketched on the left
side of figure 14. Of course we know that a conical singularity can be resolved, in a sense,
by introducing a cut and spreading the cone on a flat plane as indicated in the figure. Hence,
let us now assume that, as indicated by the dashed red lines in the figure, we introduce a cut
that goes from the exact location of the conical singularity to a point elsewhere in the surface

19This can be justified by observing that at least for the symmetric conical singularities on surfaces of revolution,
all conical singularities are locally equivalent up to their deficit angle, and hence the correction term should only
depend on the deficit angle.
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Figure 14: Left: Illustration for the derivation of the Gauss-Bonnet-theorem in the
presence of conical singularities. We consider a two dimensional surface, either Eu-
clidean or Lorentzian, with a conical singularity, and introduce a cut (red dashed
lines) from the conical singularity to a point elsewhere in the surface, where it is lo-
cally smooth. The conical deficit of the singularity (or its Lorentzian analogue) is δ.
Right: Construction of the lemon’s induced metric by taking a region between two
timelike geodesics in AdS2 and identifying the boundary. At the intersection of the
two geodesics that form the boundary of the region, their two tangent vectors cross
with a relative boost factor δ, which is the Lorentzian analogue of the deficit angle
for the conical singularity that is formed at this location due to the identification.
The two vertical lines indicate the AdS2 boundaries at θ2 = ±

π
2 .

where it is locally smooth. Before introducing this cut, we assume the Gauss-Bonnet theorem
holds in a form

∫

M̃

R
2

dV +

∫

∂ M̃
kg ds+
∑

(old) corners c

αc + Xconical sing. = 2πχ . (B.1)

Herein, Xconical sing. is the as of now unkown contribution from the conical singularity which
we want to derive.

How does introducing the cut change both sides of this equation? The first term stays the
same because we don’t assume to spread the cut open by deforming the surface, both edges of
the cut remain at the same location. We have merely indicated a slight spread of the cut as a
visual aid in the figure. Due to the cut, new contributions to the second term could in principle
appear, however we argue this won’t matter for multiple reasons. Firstly, the contributions
from the two sides of the cut should cancel exactly. Secondly, we could choose the cut to be
geodesic, setting kg = 0. Thirdly, we can take a limit where the cut is infinitesimally short. The
fourth term will not be present anymore due to the resolution of the conical singularity, hence
on the left hand side all changes come down to the additional terms due to the two corners at
both ends of the cut. Of course, introducing the cut also causes a change of the topology like
removing a disk, and due to the behaviour of the Euler characteristic under connected sums
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this means χ is reduced by 1. Hence, we find
∫

M̃

R
2

dV +

∫

∂ M̃
kg ds+
∑

(old) corners c

αc +
∑

new corners c

αc = 2π(χ − 1) . (B.2)

Comparing (B.1 ) and (B.2 ), we find that the correct contribution for conical singularities is
hence determined by the contributions for corners along boundaries via

Xconical sing. =
∑

new corners c

αc + 2π . (B.3)

So what are now the contributions from the two corners at which the cut starts and ends?
Firstly, at the point in a locally smooth neighbourhood of the surface, essentially the new
boundary introduced by the cut makes a 180-degree turn there, i.e. αc1 = −π. Note the
negative sign because this corner is a concave one from the point of view of the surface. The
corner located at the position of the conical singularity is also concave from the point of view
of the surface, but there, with respect to the local geometry, the angle by which the boundary
changes its direction is reduced by the deficit angle δ of the conical singularity as evident from
the figure 14. Hence, the contribution is αc2 = −(π−δ), and we find

Xconical sing. = αc1 +αc2 + 2π= δ . (B.4)

This means that the contribution of a conical singularity in the Gauss-Bonnet theorem should
be simply its deficit angle δ, as also realised in [84,109]. Our derivation makes it obvious why
the terms coming from conical singularities and terms coming from corners of the boundary
are so similar (just sums over angles), and can readily be generalised to the Lorentzian case
as we show in the next subsection.

B.2 Lorentzian case

Generalisations of the Euclidean Gauss-Bonnet theorem to the Lorentzian case were worked
out in [85–88],20 and while none of these papers explicitly discusses conical singularities, the
generalisation of the concept of an angle to the Lorentzian case lies at the heart of all of these
works. As the appropriate terms for conical singularities are just sums over deficit-angles which
can be derived from the terms needed for boundaries with corners, as shown in the previous
subsection, it is hence easy to generalise this also to the Lorentzian case. The papers [85–88]
differ in some of the details of exactly how to define Lorentzian angles, e.g. some use complex
quantities, so for concreteness we follow [85] and define the (always real valued) oriented
Lorentzian angle or boost parameter δ between two future pointing normalised timelike vec-
tors X and Y to satisfy21

cosh(δ) = −X · Y. (B.5)

The Lorentzian Gauss-Bonnet-theorem then takes the form [85]
∫

M̃

R
2

dV +

∫

∂ M̃
kg ds+
∑

corners c

αc = 0 , (B.6)

where some care has to be taken concerning the signs of the generalised angles αc . In fact, the
difference to the Euclidean case is two-fold: Firstly, the right hand side automatically vanishes

20See also [110] for an analysis of the Gauss-Bonnet theorem for surfaces of varying signature.
21For our specific case of future pointing timelike vectors, this follows from the more general equations given

in [85] by using the relation cosh(log(x)) = 1+x2

2x , the normalisation of the vecors, and some algebra.
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(χ ≡ 0), secondly, traversing a closed timelike geodesic polygon in flat space yields the total
Lorentzian angle

α12 +α23 + ...+αn1 = 0 , (B.7)

whereas in the Euclidean case the exteriour angles of a polygon sum to 2π. This means that we
can quite easily generalise our derivation from the previous subsection to the Lorentzian case,
however while there on both the left- and the right-hand side an additional term 2π appeared,
this will not be the case in the Lorentzian setting, and we find that the appropriate contribution
to (B.6 ) to account for Lorentzian conical singularities will be a term Xconical sing. = δ where δ
is the Lorentzian analogue of the deficit angle at the conical singularity.

B.3 Application to Lemons

Let us now demonstrate how the Lorentzian version of the Gauss-Bonnet theorem (including
terms for conical singularities) can be applied to the example of a lemon surface from sec-
tion 5.5, where for simplicity we will assume a φ-independent parameter E. To do this, we
view the lemon as a boundary-less closed surface which however has two conical singularities,
as e.g. the example on the top-left of figure 13. Hence as χ ≡ 0 in the Lorentzian case, we
need to verify

RV
2
+δpast conical sing. +δfuture conical sing. = 0 . (B.8)

To correctly calculate the Lorentzian analogue of the deficit angle, the easiest way in this case
(but not necessarily the only or most general one) is to resolve the conical singularity by in-
troducing a cut. For this, consult the right side of figure 14. As we showed in section 5.2,
the induced metric on the surface should be locally AdS2. But of course, when thinking about
AdS space we usually envision a static spacetime with an asymptotic boundary as opposed to
something resembling a periodic cosmology that starts from an initial (conical) singularity, ex-
pands, contracts, and ends in a final (conical) singularity, like the surfaces shown in figure 13.
The resolution of this issue is of course that the induced metric of the lemons is only locally
AdS, and we know that global identifications can yield very non-trivial geometries, like for
example the BTZ black hole. The right side of figure 14 shows how an identification applied
to (global) AdS2 with line element

ds2 =
1

cos(θ2)2
�

−d t2
2 + dθ2

2

�

, (B.9)

can yield the induced geometry of a lemon surface. Note that we have introduced coordi-
nates t2,θ2 on AdS2 to distinguish them from the coordinates of global AdS3 (87), which in
this section we explicitly replace by t → t3, θ → θ3. Also note that (87) and (B.9 ) have the
same AdS-radius (which we set to one), hence the three dimensional Ricci scalar is R = −6
and the two dimensional one is R= −2, as required by our construction (e.g. (72)).

To create the lemon, we have to take the region between two intersecting timelike
geodesics in AdS2 and then identify these two geodesics. For concreteness, we assume both
boundary geodesics in figure 14 to turn around at a maximal radial coordinate
|θmax ,2| = arccos (1/E2) according to the coordinate system (B.9 ). Concerning the lemon
surface embedded into the AdS3 ambient space with coordinate system (87) as shown in fig-
ure 13, we introduce the turnaround radius θmax ,3 = arccos (1/E3). These two sets of param-
eters are related because the diameter of the AdS2 region (the shaded region in figure 14) has
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to be equal to the circumference of the surface when embedded into AdS3 (the surfaces in 13).
This yields the relation

4arctanh

�

tan

�

θmax ,2

2

��

= 2π tan(θmax ,3) . (B.10)

The first term in (B.8 ) is easy to compute from the induced metric (95), and we find

RV
2
= −4π
q

E2
3 − 1= −4π tan(θmax ,3) . (B.11)

For the evaluation of δfuture conical sing. (which equals δpast conical sing. by symmetry), we note
that at the point (θ2 = 0) where the two boundary geodesics intersect, their future pointing
normalised tangent vectors (drawn read in figure 14) read (this can be shown from (93))

X m
± =

�

X t2
±

X θ2
±

�

=

�

E2

±
q

E2
2 − 1

�

, (B.12)

and hence are boosted with respect to each other by a boost parameter/Lorentzian angle

δfuture conical sing. = arccosh (−X+ · X−) = arccosh
�

2E2
2 − 1
�

= 2π tan(θmax ,3) , (B.13)

even though by the identification of the two boundary geodesics also these two vectors are
formally identified. With (B.11 ) and (B.13 ), we verify that (B.8 ) is satisfied as required.

C Lemons in higher dimensions

Let us try to find analogues of the lemon surfaces studied in section 5.5 in global Lorentzian
AdS4,

ds2 =
1

cos(θ )2
�

−d t2 + dθ2 + sin(θ )2dψ2 + sin(θ )2 sin(ψ)2dφ2
�

, (C.1)

with boundary at θ = π/2. Assuming rotational symmetry, we just have to propose an em-
bedding parametrized as

t(θ ,ψ,φ) = f (θ ) . (C.2)

After some computations, equation (71) then yields the ODE

4cot(θ ) f ′(θ ) f ′′(θ )− 2
�

csc2(θ ) + 2
�

f ′(θ )2
�

f ′(θ )2 − 1
�

= 0 , (C.3)

which effectively is a first order ODE for f ′, as f does not show up in the equation. We find
the solution:

f ′(θ ) =

p

sin(2θ ) cot(θ )
p

C+ sin(2θ ) cot2(θ )
. (C.4)

Unfortunately this is hard to integrate to get an analytic expression for f . Nevertheless, we
can distinguish three cases, see also figure 15. For C > 0, f ′ ≤ 1 and the curve f (θ ) we obtain
is spacelike and reaches all the way to the boundary at θ = π/2. For C < 0, f ′ ≥ 1 and the
curve t = f (θ ) we obtain is timelike and f ′ diverges at some finite θmax ≤ π/2, the turning
point of the surface. For C = 0 we get f ′ = 1, i.e. we obtain the null boundary of the WDW
patch in this limit. This means that these spherically symmetric lemons in AdS4 (and also
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Figure 15: Equation (C.4 ) for C varying in equal steps between −1 (blue) and 1
(red). As before, the AdS4 boundary is at θ = π/2.

higher dimensions as we have verified) will share many qualitative features with their AdS3
counterparts, but there are also some interesting qualitative differences that make the AdS3
lemons special.

First of all, while ansatz (73) would of course also work in higher dimensions, it is not
generic in these cases, and in fact the extrinsic curvature tensor of the solutions discussed
here will not have this form. Consequently, the higher dimensional lemons are not foliated
by timelike geodesics of the ambient AdS space. Furthermore, note that f ′(0) = 1 for any C
in (C.4 ), so at the center the embeddings will always approach the local lightcone. We have
discussed the appearance of a conical singularity already in section 5.5, but there for finite
turning point radius the embedding at the conical singularity did not approach the lightcone.
What this means is that unlike the AdS3 case, for AdSd≥4 the metric will degenerate close to
the conical singularity and this is accompanied by the appearance of a curvature singularity
of the induced metric there. While R is of course constant by construction, this happens for
example for the Kretschmann scalar. Another qualitative difference between AdS3 lemons
and the higher dimensional case is that the former all neatly fit into a time interval of size
∆t = π as shown in figure 13. This is because the periodicity of the timelike AdS geodesics
is independent of the parameter E introduced in section 5.5. In contrast, integrating (C.4 )
numerically shows that the AdSd≥4 lemons will have different sizes, depending on how close
to the boundary they reach.
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