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Free-electron beams serve as uniquely versatile probes of microscopic structure and 

composition1,2, and have repeatedly revolutionized atomic-scale imaging, from solid-state 

physics to structural biology3–5. Over the past decade, the manipulation and interaction of 

electrons with optical fields has seen significant progress, enabling novel imaging methods6, 

schemes of near-field electron acceleration7,8, and culminating in 4D microscopy techniques 

with both high temporal and spatial resolution9,10. However, weak coupling strengths of 

electron beams to optical excitations11,12 are a standing issue for existing and emerging 

applications of optical free-electron control.  

Here, we demonstrate phase matched near-field coupling of a free-electron beam to optical 

whispering gallery modes of dielectric microresonators. The cavity-enhanced interaction 

with these optically excited modes imprints a strong phase modulation on co-propagating 

electrons, which leads to electron-energy sidebands up to hundreds of photon orders and a 

spectral broadening of 700 eV. Mapping the near-field interaction with ultrashort electron 

pulses in space and time, we trace the temporal ring-down of the microresonator following a 

femtosecond excitation and observe the cavity’s resonant spectral response. Resonantly 

enhancing the coupling of electrons and light via optical cavities, with efficient injection and 

extraction, can open up novel applications such as continuous-wave acceleration, attosecond 

structuring, and real-time all-optical electron detection. 

 

The interaction of free electrons with optical excitations forms the basis of microscopy techniques 

yielding fundamental insights into optical properties at the nanoscale. One of the most widespread 

methods, electron-energy loss spectroscopy (EELS), is extensively used to analyze resonant 

nanostructures13,14, and allows for the measurement of the local photonic density of states15–18 with 

nanometer precision. The acquisition of laser-driven electron-energy gain spectra (EEGS) allows 

for extremely accurate spatial and spectral information for nanoplasmonics19–22, and as recently 

shown, for resolving the band structure mode profiles in a photonic crystal23,24.  

 

Inelastic scattering of electrons with optical excitations of nanostructures naturally cause changes 

to the free-electron state. In the case of stimulated interactions, spatial and temporal phase 
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information of a light field is imprinted onto the electronic wavefunction passing through the 

optical field. A control over the wavefunction of free-electron beams was recently demonstrated 

in spatial25, temporal26 and spatiotemporal27,28 forms. A particular example, the generation of 

electron pulses of attosecond-scale duration29–31, could combine sub-optical cycle temporal 

resolution with the high spatial resolution of transmission electron microscopes (TEMs). The 

above endeavors harness the enhancement of PINEM6 (photon-induced near field electron 

microscopy) from the large polarizability of plasmons. Nonetheless, a limiting factor on the 

strength of such couplings is typically the sub-optical cycle interaction time of swift electrons 

across spatially localized fields11,13. In analogy to other nonlinear processes, the coupling can be 

enhanced by coherently accumulating transition amplitude in more extended structures32,33. That 

requires phase matching, i.e., equating the electron group velocity with the optical phase velocity. 

Nearly relativistic electrons with energies around 100-200 keV are naturally phase-matched to 

traveling waves at visible frequencies in ordinary dielectrics, such as fused silica, which was 

previously exploited in a prism geometry for electron acceleration34 and for stimulated Cherenkov-

type interaction35. However, approaching a stronger coupling between photons and free electrons, 

ultimately leading to significant entanglement36,37, necessitates the combination of traveling-wave 

phase-matching with a high density of photonic states.  

 

Here, we address this challenge and harness whispering gallery mode (WGM) microcavities to 

enhance the interaction between light and free electrons. Whispering gallery modes, akin to their 

acoustic analogue, are traveling wave optical resonances confined in dielectric resonators by total 

internal reflection, achieving the highest finesse of any optical resonator to date. Leading to 

multiple applications, the strong field enhancements in WGM resonators allow for the radiation-

pressure manipulation of mechanical modes in cavity optomechanics38, the generation of soliton 

frequency combs39 via the material’s third-order nonlinearity, or near-field sensing40 via measuring 

dispersive frequency shifts41. The WGM near field extending into free-space, which is 

instrumental for atomic and molecular sensing42–44, also motivates the use of these structures for 

coupling to free electrons.  

 

In the experiments presented here, we focus on two scenarios, using microspheres with diameters 

of 2 µm and 5 µm. The WGM in the smaller spheres allow us to reach an extremely strong and 

coherent modulation of the electron wavefunction, manifested in the emergence of electron-energy 

sidebands over 220 eV and 700 eV for chirped picosecond and unchirped femtosecond optical 

pulses, respectively. For the larger spheres, the smaller free-spectral range allows us to analyze the 

coupling of multiple WGMs to electrons, and to trace the optical cavity ringdown time. These 

results establish WGM as a key element in future approaches to coherently manipulate free 

electrons. Moreover, we believe in a high potential of WGM-enhanced electron spectroscopy, 

ultimately facilitating the controlled coupling to individual quantum systems.  
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The experiments are conducted in an ultrafast transmission electron microscope featuring electron 

pulses down to 200 fs in duration45 (see illustration in Fig. 1a). These electron pulses are passed 

near the surface of optically illuminated silica microspheres. The WGMs are excited by optical 

pump pulses with a center wavelength of 800 nm. The similar velocities of the electron and the 

WGM’s phase allow them to efficiently exchange energy through the evanescent light field that 

permeates vacuum (inset).  

 

 
 

Figure 1 | The experimental scheme. a A laser-driven whispering gallery mode (WGM) circulating 

a microsphere drives stimulated gain and loss in a traversing electron, resulting in an exceptionally 

broad energy spectrum spanning hundreds of sidebands. Inset: The efficient transfer of energy and 

momentum is enabled by matching the velocities of the electron and the wave in the optical cavity, 

within the evanescent modal field. b A spatial map of interaction strength for two neighboring 

spheres, with linearly polarized excitation, quantified in terms of electron spectral bandwidth. c 

Scanning electron micrograph of the two spheres on the support structure. 

 

Fig. 1b displays a spatial map of the electron-WGM interaction strength, with the color code 

representing the width of the electron energy spectrum. The spectrum substantially broadens near 

the surface of the sphere and to a lesser extent near metallic edges of the support structure (see 

methods). The interaction strength is evident along wide sections of the sphere circumference, 

suppressed only in regions approximately perpendicular to the incident horizontal polarization of 

the light. This distribution is wider than the expected width from a single WGM (which would be 

close to one wavelength), suggesting that a wide range of azimuthal propagation angles is excited 

by the illumination.  

 

We have observed very similar halo-shaped interaction maps on multiple individual spheres and 

assemblies, with overall magnitudes depending on the specific geometrical arrangement and in-

coupling conditions. An azimuthally selective excitation of a WGM is achieved in structures with 
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a substantial geometrical anisotropy, such as the doublet displayed in Fig. 2a. Here, a pair of 2-

µm-diameter spheres was partially merged along an axis perpendicular to the edge of the 

supporting copper grid (see Fig. 2a). For this structure, the interaction strength is maximized when 

the pump excites a WGM with transverse magnetic polarization (TM), that is, for polarization 

along the doublet axis. The electron-energy gain and loss via the PINEM are driven by the 

polarization component parallel to the electron path. The spatial dependence of the resulting 

electron bandwidth in Fig. 2b shows very good agreement with the expected PINEM interaction 

for a single TM-polarized WGM, as simulated in Fig. 2c. Specifically, both the azimuthal extent 

of about one wavelength and the exponential radial decay with a characteristic scale of ������
���

=

 ������
���� = 0.1 µ� are reproduced. The experimental evaluation of the decay length is based on a 

line scan, for which the spectral bandwidth was estimated for each point as a function of its distance 

from the surface (orange circles in Fig. 2d). The individual curves in Fig. 2d are spectra recorded 

for a set of fixed distances, which visualizes the broadening of the spectrum near the sphere. Close 

to the sphere’s surface, the spectral bandwidth extends to a remarkable 220 eV, while keeping the 

double-lobed shape characteristic to a PINEM spectrum for a single, homogeneous interaction 

strength, corresponding to a high-purity electron-energy comb26. In this experiment, by temporally 

stretching the optical pulse to 3.5 ps FWHM (full-width-at-half-maximum), the driving field 

amplitude is essentially constant during the interaction with the electron pulse, and thus the phase 

modulation imprinted on the electron wave function is uniform and deterministic26. Pumping the 

system with shorter pulses of 400 fs duration enables an increase of the optical field strength, albeit 

at the cost of some variation of the coupling strength across the electron pulse duration. The top-

left inset shows an electron spectrum with a significantly wider bandwidth of 700 eV, far beyond 

what is typically observed in PINEM26,29,46.  

 

To quantify the temporal uniformity of the interaction, we fit the experimental data to the expected 

PINEM spectrum26,32 with normally distributed values of the interaction parameter, with a mean 

value of � and a standard deviation ��. This accounts for both spatial and temporal averaging of 

the PINEM signal. The relative uncertainty of �, that is, 
��

�
, can be regarded as reducing the purity 

of the final phase-modulated electron state. In the limit of |�| ≫ 1, the electron-energy width (or 

bandwidth) scales as 4|�| times the optical photon energy (1.55 eV for � = 800 nm light). An 

ideal PINEM spectrum, with ��/� = 0 is composed of discrete orders separated by the photon 

energy, with relative probabilities given by the Bessel function of the first kind, �� = |��(2|�|)|�, 

where k is the gain/loss sideband order. We evaluated the relative uncertainty of the interaction 

strength for the 220-eV-wide and the 700-eV-wide spectra as 
��

�
= 0.09, and 

��

�
= 0.33, 

respectively. The temporal uniformity of the driving field across the electron pulse is a crucial 

parameter for the quality of the final state prepared by the interaction. For example, � defines the 

propagation length scale at which electron phase modulation evolve to probability modulations. 
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Thus, 
��

�
≪ 1 is required to maintain a well-defined evolution of the wavefunction, and to maintain 

the coherence of the phase modulations imprinted onto the electron.  

 

   
Figure 2 | Electron spectral broadening induced by whispering-gallery modes. a An annular 

dark-field (ADF) image of a microsphere doublet comprising a pair of 2 µm spheres, optically 

pumped from the top (into the page plane). b Measured electron bandwidth as a function of position. 

c Simulated electron bandwidth from the coherent interaction with a single WGM. d Electron 

spectra measured at a varying distance from the sphere’s surface, reaching a bandwidth of 220 eV 

with a state purity of 91% (bottom curve, see text). The use of a shorter 400-fs-long pulse extends 

the electron bandwidth to a value of 700 eV (left inset), albeit at a reduced purity (67%). The 

measured interaction strength (red circles) exhibits a very good agreement to an exponential (solid 

line) with a 100 nm decay length. 

 

In order to characterize the resonance properties in the interaction with the WGMs, we utilize 

larger spheres with a diameter of 5 µm (see Fig. 3a), for which the optical bandwidth is larger than 

the free-spectral range, and thus covers several discrete cavity modes. We first study the temporal 

decay of the cavity field by measuring the electron spectrum as a function of time delay between 

the electron pulses and 50-fs optical pump pulses (see Fig. 3b). The electron spectrum rapidly 

broadens around the temporal overlap (t=0) and narrows down to its original width with an 

exponential decay time of about 260 fs (cf. Fig. 3b, right panel), as expected for a Lorentzian 

resonance with a quality factor of � = 97. The fact that this value is substantially below the 

calculated radiative quality factor (Q = 1230) is likely caused by scattering from structural 

imperfections and the support, suggesting the possibility for improvements in optimized 
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geometries. The significant uncertainty of the coupling, �� ≈ �, points to the presence of more 

than one whispering gallery mode and corresponding modal beatings which are faster than the 

electron pulse duration.  

 

For a spectral mode analysis, we pump the microsphere with a strongly chirped pulse, mapping 

optical frequencies to arrival times. The delay-dependent electron spectrogram (Fig. 3c) now 

shows three broadened regions, corresponding to distinct WGM indices. By comparison with the 

computed time-dependent cavity response for the chirped pulse (dash line, arbitrary units), we find 

that the strong features represent two transverse magnetic (TM) modes with vacuum wavelength 

� ℓ��� = 804 �� and � ℓ��� = 773 ��. The weaker is attributed to a transverse electric (TE) 

mode at � ℓ��� = 790 ��, following from a lower field along the electron trajectory (see color-

coded mode profiles of the relevant out-of-plane field component, ��). Aside from the agreement 

on the general features, the calculation also predicts temporal oscillations in the response, as the 

frequency sweep is not completely adiabatic with respect to the cavity decay rate. Similar 

oscillations are indeed discernible in some areas of the experimental spectrogram between t=0 and 

t=1 ps. 

 

 

Figure 3 | Spectral and temporal properties of free-electron interaction with whispering-

gallery modes. a Annular dark-field micrograph of free-standing spheres with 2 µm and 5 µm 

diameters. The yellow circle marks the measurement position. b (left) Colormap of the electron 

spectrum (log-scale) following a loading of WGMs by a 50-fs-long optical pulse at time = 0. At 

later times, the electron is driven by light stored in the cavity, with a storage time of 260 fs, 

corresponding to a quality factor Q = 97. The lifetime is evaluated from fitting � and Δ� with an 

exponential. c The WGM selectivity probed by the electron’s spectral response. Using a frequency 

sweep (chirped pulse), three modes are identified as an increased electron bandwidth at delay times 

that match the sweep to their resonance frequency. The simulated cavity response (dashed black) 

agrees with the experiment, which allows us to identify the mode polarizations and indices (see 

marks) for a sphere diameter of D = 4.765 µm. The colormap presents the PINEM-relevant 

azimuthal component, ��, of the identified modes. 
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In conclusion, our work demonstrates an efficient coupling of free-electron beams to whispering-

gallery mode microresonators, leading to an electron spectral broadening up to 700 eV. While the 

current study focuses on low-quality factors (Q) and free-space excitation, it can readily be 

extended to photonic-chip based microresonators (e.g. based on Si3N4) operating with Q factors in 

excess of 107 [47] and using phase-matched, high-ideality and fiber pigtailed nanophotonic 

waveguides for excitation. Importantly, such an approach not only allows for the excitation of 

WGM, but also close-to-unity collection efficiency of the light that has interacted with electrons. 

Moreover, attosecond optical modulation of the phase and density of continuous electron beams 

in standard electron microscopes appears in reach. Such high-current electron beams dressed by 

light could transfer optical polarizations down to nanometer-sized focal spots, possibly acquiring 

high resolution spectroscopic information from resonator-coupled atoms42,43,48, molecules40,44 and 

nanoparticles49. In a similar vein, continuous wave probing of the resonators’ phase response could 

enable all-optical real-time detection of electrons. The ability of microresonators to generate 

optical dissipative solitons may allow for the coupling of electrons to tightly localized fields only 

few optical cycles long39, relevant for time-gated interaction. More generally, cavity-enhanced and 

phase-matched near-field-electron interactions promise a merging of electron microscope and 

photonic chip-based microresonators, with far-reaching consequences in local quantum control 

and sensing.  

 
 

Methods 
 
Experimental details  
The experimental system is a transmission electron microscope (JEOL JEM 2100F) modified to 
allow for a pulsed photo-electron beam, with pulses as short as 200 fs. The technical details are 
elaborated in Ref. [45]. The pump laser is an amplified Ti:Sapphire system (Coherent RegA), 
providing pulses centered at a wavelength of 800 nm, full-width at half maximum (FWHM) 
bandwidth of 34 nm, a repetition rate of 600 kHz, and an average power of 150 mW entering the 
TEM. Additional glass bars (19-cm-long SF6, 10-cm-long N-BK7, or none) can be placed in the 
beam path to add temporal dispersion. The optical beam is nearly co-propagating with the electron 
beam (6° off axis) and focuses down to a characteristic mode size of 10 µm FWHM. The timing 
between the electron pulse and the laser is controlled by a delay stage.  
The experiment (see illustration in Fig. 1a) investigates the electron interaction with WGMs 
circling in silica microspheres with diameters of 2 µm and 5 µm (SSD5003 and SSD5000, 
respectively, Bangs Laboratories Inc.). For sample preparation, the spheres were immersed in 
ethanol and randomly distributed by drop-casting on a Lacey-carbon support (Ultrathin Carbon / 
Lacey Support on 400 mesh, Ted Pella, Inc.). The experiments utilize Scanning TEM (STEM) for 
a systematic acquisition of the electron spectrum and spectral bandwidth (Gatan “Enfinium” 
spectrometer) and an annular dark field (ADF) detector. 
 
Simulation details of the PINEM map, Fig. 2c 
The calculation uses electrons accelerated to 200 keV, locally interacting with a WGM in a 2 µm 
sphere, having a vacuum wavelength of � = 806 ��, which was found to be the mode closest to 
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the laser wavelength using the WGMode toolbox50. Furthermore, the WGMode toolbox was used 
to calculate the �� component of the electric field on the equatorial plane, from which the PINEM-

relevant field in space and time was calculated by adding the temporal and azimuthal phase 

 ��(���ℓ�). The contribution to the PINEM signal at each coordinate (�, �), was integrated over 

the electron trajectory, �(�), as ∫ ����, �, �, �(�)���
�

��
. The other field components do not 

contribute.  
 
Calculation of the expected spectral response of the WGM in Fig. 3c 
The only fitting parameter for the expected WGM-driven electron spectrum (dashed line on Fig. 
3c) is the sphere’s diameter, for which the best fit was found at D=4.765. This value is only 2% 
smaller than the measured diameter. To evaluate the resonator response, we used the tabulated 
index of refraction for fused silica, n=1.453351, and the experimentally measured lifetime 260 fs 
(see Fig. 3b). The wavelength of the resonances was calculated by the WGMode package50, and 
the relative strength of each of the resonances was based on the maximal field components, ��, of 

the different modes. The TM modes are maximal at the center, and the TE mode at a slightly 
shifted position compared with the plane of circumference (see red and blue colormaps on Fig. 
3c). The arrival time of the central pumping wavelength (� = 800 ��) is calibrated based on 
PINEM experiments on metallic surfaces and is determined as time zero. 
 
 
Data Availability  
The data that support the findings of this study are available from the corresponding author upon 
reasonable request. 
  



9 

References  
1. Oh, S. H., Kauffmann, Y., Scheu, C., Kaplan, W. D. & Rühle, M. Ordered Liquid Aluminum 

at the Interface with Sapphire. Science 310, 661–663 (2005). 
2. Kimoto, K. et al. Element-selective imaging of atomic columns in a crystal using STEM and 

EELS. Nature 450, 702–704 (2007). 
3. Lagos, M. J., Trügler, A., Hohenester, U. & Batson, P. E. Mapping vibrational surface and 

bulk modes in a single nanocube. Nature 543, 529–532 (2017). 
4. Glaeser, R. M. How good can cryo-EM become? Nat. Methods 13, 28–32 (2015). 
5. Liang, Y.-L. et al. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. 

Nature 546, 118–123 (2017). 
6. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron 

microscopy. Nature 462, 902–906 (2009). 
7. Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric 

microstructure. Nature 503, 91–94 (2013). 
8. Breuer, J. & Hommelhoff, P. Laser-Based Acceleration of Nonrelativistic Electrons at a 

Dielectric Structure. Phys. Rev. Lett. 111, 134803 (2013). 
9. Carbone, F., Kwon, O.-H. & Zewail, A. H. Dynamics of Chemical Bonding Mapped by 

Energy-Resolved 4D Electron Microscopy. Science 325, 181–184 (2009). 
10. Yurtsever, A., Veen, R. M. van der & Zewail, A. H. Subparticle Ultrafast Spectrum Imaging 

in 4D Electron Microscopy. Science 335, 59–64 (2012). 
11. Cai, W., Sainidou, R., Xu, J., Polman, A. & García de Abajo, F. J. Efficient Generation of 

Propagating Plasmons by Electron Beams. Nano Lett. 9, 1176–1181 (2009). 
12. Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. 

Nat. Phys. 14, 894 (2018). 
13. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–

275 (2010). 
14. Talebi, N. Interaction of electron beams with optical nanostructures and metamaterials: from 

coherent photon sources towards shaping the wave function. J. Opt. 19, 103001 (2017). 
15. García de Abajo, F. J. & Kociak, M. Probing the Photonic Local Density of States with 

Electron Energy Loss Spectroscopy. Phys. Rev. Lett. 100, 106804 (2008). 
16. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 

348–353 (2007). 
17. Hörl, A. et al. Tomographic imaging of the photonic environment of plasmonic 

nanoparticles. Nat. Commun. 8, 37 (2017). 
18. Bosman, M. et al. Surface Plasmon Damping Quantified with an Electron Nanoprobe. Sci. 

Rep. 3, 1312 (2013). 
19. García de Abajo, F. J. & Kociak, M. Electron energy-gain spectroscopy. New J. Phys. 10, 

073035 (2008). 
20. Asenjo-Garcia, A. & Abajo, F. J. G. de. Plasmon electron energy-gain spectroscopy. New J. 

Phys. 15, 103021 (2013). 
21. Pomarico, E. et al. meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron 

Microscopy. ACS Photonics 5, 759–764 (2018). 
22. Das, P. et al. Stimulated electron energy loss and gain in an electron microscope without a 

pulsed electron gun. Ultramicroscopy 203, 44–51 (2019). 
23. Wang, K. et al. Coherent interaction between free electrons and cavity photons. 

ArXiv190806206 Phys. Physicsquant-Ph (2019). 



10 

24. Wang, K., Dahan, R., Shentcis, M., Kauffmann, Y. & Kaminer, I. Transmission Nearfield 
Optical Microscopy (TNOM) of Photonic Crystal Bloch Modes. in Conference on Lasers 
and Electro-Optics (2019), paper JTh5B.9 JTh5B.9 (Optical Society of America, 2019). 
doi:10.1364/CLEO_AT.2019.JTh5B.9. 

25. Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 
1016–1020 (2019). 

26. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission 
electron microscope. Nature 521, 200–203 (2015). 

27. Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral 
plasmonic near fields. Nat. Mater. 18, 573–579 (2019). 

28. Madan, I. et al. Holographic imaging of electromagnetic fields via electron-light quantum 
interference. Sci. Adv. 5, eaav8358 (2019). 

29. Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in 
ultrafast transmission electron microscopy. Nat. Photonics 11, 793–797 (2017). 

30. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. 
Nat. Phys. 14, 252 (2018). 

31. Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive Generation and Detection 
of Attosecond Free-Electron Pulse Trains. Phys. Rev. Lett. 120, 103203 (2018). 

32. Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy 
(PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010). 

33. Constant, E. et al. Optimizing High Harmonic Generation in Absorbing Gases: Model and 
Experiment. Phys. Rev. Lett. 82, 1668–1671 (1999). 

34. Kozák, M. et al. Acceleration of sub-relativistic electrons with an evanescent optical wave at 
a planar interface. Opt. Express 25, 19195–19204 (2017). 

35. Dahan, R. et al. Observation of the Stimulated Quantum Cherenkov Effect. ArXiv190900757 
Phys. Physicsquant-Ph (2019). 

36. Di Giulio, V., Kociak, M. & de Abajo, F. J. G. Probing Quantum Optical Excitations with 
Fast Electrons. ArXiv190506887 Quant-Ph (2019). 

37. Kfir, O. Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime. 
Phys. Rev. Lett. 123, 103602 (2019). 

38. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 
86, 1391–1452 (2014). 

39. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov 
radiation. Science 351, 357–360 (2016). 

40. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to 
single molecules. Nat. Methods 5, 591–596 (2008). 

41. Arnold, S., Khoshsima, M., Teraoka, I., Holler, S. & Vollmer, F. Shift of whispering-gallery 
modes in microspheres by protein adsorption. Opt. Lett. 28, 272–274 (2003). 

42. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic 
microresonator. Nature 443, 671–674 (2006). 

43. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a 
single photon. Science 345, 903–906 (2014). 

44. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-Free, 
Single-Molecule Detection with Optical Microcavities. Science 317, 783–787 (2007). 



11 

45. Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: 
Femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 
(2017). 

46. Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using 
semi-infinite light fields. Nat. Commun. 9, 2694 (2018). 

47. Liu, J. et al. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 
5, 1347 (2018). 

48. Bechler, O. et al. A passive photon–atom qubit swap operation. Nat. Phys. 14, 996–1000 
(2018). 

49. He, L., Özdemir, Ş. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and 
nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428–432 (2011). 

50. Balac, S. WGMode : A Matlab toolbox for whispering gallery modes volume computation in 
spherical optical micro-resonators. Comput. Phys. Commun. 243, 121–134 (2019). 

51. Polyanskiy, Mikhail N. Refractive index database. Refractiveindex.info 
http://refractiveindex.info (2015). 

 
 
Acknowledgements 
O.K. gratefully acknowledges funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No.752533. This work 
was funded by the Deutsche Forschungsgemeinschaft (DFG) in the Collaborative Research Center 
“Atomic Scale Control of Energy Conversion” (DFG-SFB 1073, project A05) and in the Priority 
Program “Quantum Dynamics in Tailored Intense Fields” (DFG-SPP 1840).  
 
 


