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Abstract

Let r ≥ 1 be an integer and U := {Un}n≥0 be the Lucas sequence given by U0 = 0, U1 = 1,
nd Un+2 = rUn+1 + Un for n ≥ 0. In this paper, we explain how to find all the solutions of the
iophantine equation, AUn + BUm = CUn1 + DUm1 , in integers r ≥ 1, 0 ≤ m < n, 0 ≤ m1 < n1,

AUn ̸= CUn1 , where A, B, C, D are given integers with A ̸= 0, B ̸= 0, m, n, m1, n1 are nonnegative
nteger unknowns and r is also unknown.
c 2021 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Let r ≥ 1 be an integer and U := (Un)n≥0 be the Lucas sequence given by U0 = 0, U1 = 1,
nd

Un+2 = rUn+1 + Un (1)
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for all n ≥ 0. When r = 1, U coincides with the Fibonacci sequence while when r = 2, U
coincides with the Pell sequence.

Let

(α, β) :=

(
r +

√
r2 + 4
2

,
r −

√
r2 + 4
2

)
,

be the roots of the characteristic equation X2
−r X −1 = 0 of the Lucas sequence U = (Un)n≥0.

t is easy to see that β = −α−1. The Binet formula for the general term of U is given by

Un :=
αn

− βn

α − β
for all n ≥ 0. (2)

he divisibility property

gcd(Un, Um) = Ugcd(n,m) for positive integers n, m (3)

s well-known. It is heavily used in solving Diophantine equations involving members of Lucas
equences and it is an important ingredient in the proof of the Primitive Divisor Theorem for
ucas sequences (see [1] for such properties. In particular, the above property (3) appears as
roposition 2.1 (iii) in [1]). Furthermore, one can prove by induction that the inequality

αn−2
≤ Un ≤ αn−1 (4)

olds for all positive integers n.
Shorey and Tijdeman [2] gave lower bounds for the absolute value and the greatest prime

actor of the expression Axm
+ Bym where A, B, x, y, m ≥ 0 are integers. As an application,

hey proved, under suitable conditions, that the equation Axm
+ Bym

= Cxn
+ Dyn implies

that max{n, m} is bounded by a computable constant depending only on A, B, C, D. More
recisely, they proved the following result.

heorem 1. Let A ̸= 0, B ̸= 0, C, and D be integers. Suppose that x, y, m, n with
x | ̸= |y| and 0 ≤ n < m are integers. There exists a computable constant E depending
nly on A, B, C, D such that the Diophantine equation

Axm
+ Bym

= Cxn
+ Dyn (5)

ith

Axm
̸= Cxn (6)

mplies that m ≤ E.

In this paper, we study a variation of the above result with the terms of the Lucas sequence
:= (Un)n≥0. That is, we study the Diophantine equation

AUn +BUm = CUn1 +DUm1 with n > m ≥ 0 and n1 > m1 ≥ 0, AUn ̸= CUn1 .

(7)

ur first result is the following.

heorem 2. Assume that A, B, C, D are given integers, AB ̸= 0 and Eq. (7) holds. Then
< 14X, where X := max{|A|, |B|, |C |, |D|}.
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Proof. Assume first that C = D = 0. Then we take m1 = 0, n1 = 1. Then AUn = −BUm .
If m = 0, then n = 0 which is not allowed. Thus, m ̸= 0, so Un/Ud divides B, where
d := gcd(n, m). Write n =: kd , where k ≥ 2. If d = 1, then Un/Ud = Uk/U1 = Uk ≥ U2 = r ,
so r ≤ X . If d ≥ 2, then

Un

Ud
=

αkd
− βkd

αd − βd
.

We show that this last expression is > α. This is equivalent to

αkd > αd+1
− αβd

+ βkd .

ince d ≥ 2, |αβd
| = |β|

d−1 < 1. Thus, it suffices that

α2d
− αd+1 > 2.

he left-hand side is αd+1(αd−1
−1) ≥ αd+1(α−1). The smallest possible α is φ := (1+

√
5)/2

(for r = 1) and φd+1(φ − 1) ≥ φ3(φ − 1) = φ2 > 2. Thus, indeed α < Ukd/Ud ≤ X , which
gives r = α + β < α < X . Further, Un ≥ αn−2 and Ud ≤ αd−1 (by (4)), so

Un

Ud
≥ αn−d−3

≥ αn−n/2−3
≥ αn/2−3.

In the above we used that d < n is a proper divisor of n, so d ≤ n/2. Since Un/Ud divides
B, we get that αn/2−3

≤ |B| ≤ X . Since α ≥ φ, we get

0 < m < n ≤ 6 + 2
log X
log φ

. (8)

his is when C = D = 0.
So, we may assume that not both C, D are 0. If one of C, D is nonzero and the other is

ero, we assume that C ̸= 0 and n1 ̸= 0. Thus, if either D = 0 or m1 = 0, then the right-hand
ide is CUn1 , otherwise it is CUn1 + DUm1 with D ̸= 0 and n1 > m1 > 0. If n = n1, then

(A − C)Un + BUm = DUm1 .

he case A−C = 0 is not allowed since then AUn = AUn1 . Thus, A−C ̸= 0 and also D ̸= 0.
e also assume that m ̸= 0 since if m = 0, we are in the preceding case. So, if n = n1, then
e replace (A, B, C, D) by (A − C, B, D, 0). The only effect is that X is replaced by 2X .
hus, we may assume that n ̸= n1, and switching A with C , if needed, we may assume that
= max{n, n1}, therefore n > n1. We relabel our indices (n, m, n1, m1) as (n1, n2, n3, n4)

here n1 > n2 ≥ n3 ≥ n4, and the coefficients A, B, C, D as A1, A2, A3, A4 and change signs
o at most a couple of them so that our equation is now

A1Un1 + A2Un2 + A3Un3 + A4Un4 = 0. (9)

urthermore, A1, A2, A3 are all nonzero but A4 (or n4) might be 0. This leads to

|A1|α
n1 = | − A2(αn2 − βn2 ) − A3(αn3 − βn3 ) − A4(αn4 − βn4 ) + A1β

n1 | < 7Xαn2 ,

o

αn1−n2 < 7X. (10)

hus, since n1 > n2, we get that r < α ≤ αn1−n2 < 7X . Recalling that we might have to
eplace X by 2X , we get the desired conclusion. □
316
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2. Finding all solutions

So far, we know that r is bounded. It is possible for small r that the equation has infinitely
many solutions. By the preceding analysis, we saw that this is not the case if C = D = 0,
ince then 0 < n < 6 + 2 log X/ log φ. So, we assume that not both C and D are zero. Using
he substitution (A, B, C, D) ↦→ (A − C, B, D, 0), and relabelling some of the variables, we

ay assume that n1 > n1 ≥ n3 ≥ n4 and that Eq. (9) holds. Then estimate (10) holds, so

n1 − n2 <
log(7X )

log φ
.

We return to (9) and rewrite it as⏐⏐⏐⏐αn2 (A1α
n1−n2 + A2) −

(
A1

(−α)n1
+

A2

(−α)n2

)⏐⏐⏐⏐ = | − A3(αn3 − βn3 ) − A4(αn4 − βn4 )|.

(11)

he right-hand side is ≤ 4Xαn3 . In the left-hand side we have n1−n2 > 0, so A1α
n1−n2 + A2 ̸=

. Thus,

|A1α
n1−n2 + A2||A1β

n1−n2 + A2| ≥ 1.

he second factor in the left above is ≤ 2X . Thus, |A1α
n1−n2 + A2| ≥ 1/2X . Further,⏐⏐⏐⏐ A1

(−α)n1
+

A2

(−α)n2

⏐⏐⏐⏐ ≤
2X
αn2

.

ence,⏐⏐⏐⏐αn2 (A1α
n1−n2 + A2) −

(
A1

(−α)n1
+

A2

(−α)n2

)⏐⏐⏐⏐ ≥
αn2

2X
−

2X
αn2

.

ssume first that
αn2

2X
−

2X
αn2

≤
αn2

4X
. (12)

hen α2n2 < 8X2, so αn2 < 3X . Hence,

n2 <
log(3X )

log φ
, (13)

hich together with (10) gives

n4 ≤ n3 ≤ n2 ≤
log(3X )

log φ
and n1 <

log(21X2)
log φ

. (14)

his was assuming (12) holds. Otherwise,

αn2

4X
≤

αn2

2X
−

2X
αn2

≤ 4Xαn3 ,

o

αn2−n3 ≤ 16X2.

ence, we get

n2 − n3 ≤ 2
log(4X )

. (15)

log φ
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We rewrite Eq. (9) as⏐⏐⏐⏐αn3 (A1α
n1−n3 + A2α

n2−n3 + A3) −

(
A1

(−α)n1
+

A2

(−α)n2
+

A3

(−α)n3

)⏐⏐⏐⏐
= | − A4(αn4 − βn4 )|.

(16)

ssume first that

A1α
n1−n3 + A2α

n2−n3 + A3 = 0. (17)

et i = n2 − n3, j = n1 − n3. Then

j = (n1 − n2) + (n2 − n3) ≤
log(112X3)

log φ
and i ≤ 2

log(4X )
log φ

re bounded. Thus, one computes all polynomials A1 X j
+ A2 X i

+ A3 and checks which of
hem has a root α which is a quadratic unit of norm −1. For these Lucas sequences, it is the
ase that also β is a root of the same polynomial so that the left-hand side of (16) is zero for

any n3. This shows that also n4 = 0. Thus, we have that

(n1, n2, n3, n4) = (n3 + i, n3 + j, n3, 0)

is a parametric family of solutions. From now on we assume that the expression shown at (17)
is nonzero. Then

|A1α
n1−n3 + A2α

n2−n3 + A3||A1β
n1−n2 + A2β

n2−n3 + A3| ≥ 1.

he second factor in the left-hand side is ≤ 3X , therefore we conclude that

A1α
n1−n3 + A2α

n2−n3 + A3| ≥
1

3X
.

urther,⏐⏐⏐⏐ A1

(−α)n1
+

A2

(−α)n2
+

A3

(−α)n3

⏐⏐⏐⏐ ≤
3X
αn3

.

Hence, assuming (17) does not hold, the left-hand side of (16) is at least as large as
αn3

3X
−

3X
αn3

.

e distinguish two cases. If
αn3

3X
−

3X
αn3

≤
αn3

6X
, (18)

e then get α2n3 < 18X2, so αn3 ≤ 5X . Hence,

n3 ≤
log(5X )

log φ
. (19)

ogether with (10) and (15), we get

n4 ≤ n3 ≤
log(5X )

log φ
,

n2 ≤ (n2 − n3) + n3 ≤
log(80X3)

log φ
,

n1 ≤ (n1 − n2) + n2 ≤
log(560X4)

.

(20)
log φ
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Note that (20) contains (14). Finally assume that (18) does not hold. Then the left-hand side
f (16) is at least

αn3

6X
.

Comparing with the right-hand side of (16) we get

αn3

6X
≤ 2Xαn4 ≤ 2Xαn4 ,

so αn3−n4 ≤ 12X2. Thus,

n3 − n4 ≤
log(12X2)

log φ
. (21)

inally, we rewrite our equation as

αn4 (A1α
n1−n4 +A2α

n2−n4 +A3α
n3−n4 +A4) = βn4 (A1β

n1−n4 +A2β
n2−n4 +A3β

n3−n4 +A4).

(22)

he exponents i = n3 − n4, j = n2 − n4, k = n1 − n4 have only finitely many values. In fact,

i ≤
log(12X2)

log φ
,

j = i + (n2 − n3) ≤
(log(12X2) + log(16X2))

log φ
≤

log(200X3)
log φ

,

k = j + (n1 − n2) ≤
(log(200X3) + log(7X ))

log φ
=

log(1400X4)
log φ

.

o, we take all such polynomials AX k
+ A2 X j

+ A3 X i
+ A4 and search which ones of them

ave a root α which is a quadratic unit of norm −1. For such, (22) holds for all n4. Hence,
e got the parametric family

(n1, n2, n3, n4) = (n4 + k, n4 + j, n4 + i, n4).

ssume next the left-hand side of (22) is nonzero. Then

|A1α
n1−n4 + A2α

n2−n4 + A3α
n3−n4 + A4||A1β

n1−n4 + A2β
n2−n4 + A3β

n3−n4 + A4| ≥ 1.

he second factor on the left-hand side above is ≤ 4X . Hence,

|A1α
n1−n4 + A2α

n2−n4 + A3α
n3−n4 + A4| ≥

1
4X

.

ence, in (22), we get

αn4

4X
≤ 4X |β|

n4 =
4X
αn4

,

which gives

n4 ≤
log(4X )

. (23)

log φ
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This together with (10), (15) and (21) gives

n4 ≤
log(4X )

log φ
,

n3 ≤ (n3 − n4) + n4 ≤
log(50X3)

log φ
,

n2 ≤ (n2 − n3) + n3 ≤
log(1000X5)

log φ
,

n1 ≤ (n1 − n2) + n2 <
log(10000X6)

log φ
.

(24)

ote that (24) contains (20) and (8). Recalling that we have to replace X by 2X , we got the
ollowing theorem which is our second result.

heorem 3. Let φ := (1 +
√

5)/2 be the smallest possible α. Relabelling the variables
(n, m, n1, m1) to (n1, n2, n3, n4), where n1 ≥ n2 ≥ n3 ≥ n4. If n1 = n2, we rewrite the

iophantine equation (7) as

(A − C)Un + BUm = DUm1 ,

nd change (A, B, C, D) to (A−C, B, D, 0). Thus, n1 > n2. Furthermore, we change the sign
f some of the coefficients (A, B, C, D) so that the Diophantine equation (7) becomes

A1Un1 + A2Un2 + A3Un3 + A4Un4 = 0. (25)

ssume r ≤ 14X. Then, the solutions of the Diophantine equation (25) are of two types:

(i) Sporadic ones. These are finitely many and they satisfy:

n4 ≤
log(8X )

log φ
, n3 ≤

log(400X3)
log φ

,

n2 ≤
log(32000X5)

log φ
, n1 ≤

log(640000X6)
log φ

.

(ii) Parametric ones. These are of one of the two forms:

(n1, n2, n3, n4) = (n3 + j, n3 + i, n3, 0),

where

i ≤ 2
log(8X )

log φ
and j ≤

log(500X3)
log φ

,

and α is a root of A1 X i
+ A2 X j

+ A3 = 0, or of the form

(n1, n2, n3, n4) = (n4 + k, n4 + j, n4 + i, n4),

where

i ≤
log(50X2)

log φ
, j ≤

log(1600X3)
log φ

, k ≤
log(25000X4)

log φ
,

and α is a root of

A1 X k
+ A2 X j

+ A3 X i
+ A4 = 0.
320
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3. Numerical examples

Just for fun, we took A1, A2, A3, A4 ∈ {0, ±1}. Hence, X = 1, therefore r ≤ 14. Thus,
heorem 3 says that the sporadic solutions are of the form

Un1 ± A2Un2 ± A3Un3 ± A4Un4 = 0, A2, A3, A4 ∈ {0, ±1}, n1 > n2 ≥ n3 ≥ n4 ≥ 0.

ere, n4 ≤ 4, n3 ≤ 12, n2 ≤ 21 and n1 > n2. To search for them, we searched for r ∈ [1, 14],
4 ∈ [0, 4], n3 ∈ [n4, 12], n2 ∈ [n3, 21], ε4 ∈ {0, 1}, ε3 ∈ {0, ±1}, ε2 ∈ {0, ±1} such that

Un1 = |ε2Un2 + ε3Un3 + ε4Un4 | holds for some n1 > n2.

Mathematica code running for a few seconds found 207 solutions. Of them 194 correspond
o the Fibonacci sequence (r = 1), 12 correspond to the Pell sequence (r = 2) and only one of
hem namely U1 + U1 + U1 = U2 corresponds to r = 3. For parametric ones, Theorem 3 says
hat we need to find positive integers i ≤ 8, j ≤ 15, k ≤ 21 such that X k

+ε1 X j
+ε2 X i

+ε3 is
multiple of X2

− r X −1 for some r ∈ [1, 14], where ε1 ∈ {0, ±1}, ε2 ∈ {0, ±1}, ε3 ∈ {±1}.
he only such instances found were r = 1 for which only X2

− X − 1 and X4
− X3

− X − 1
ere multiples of X2

− r X − 1 = X2
− X − 1. These two instances lead to the parametric

amilies

Fn+2 − Fn+1 − Fn − F0 = 0 and Fn+4 − Fn+3 − Fn+1 − Fn = 0,

hich hold for all n ≥ 0. Enlarging X (so, say allowing A1, A2, A3, A4 in [−X, X ], A1 ̸= 0
or a fixed integer X ≥ 2) would of course detect more sporadic solutions and more parametric
amilies involving the Pell sequence, etc. We leave pursuing such numerical investigations for
he interested reader.

. Comments

In this paper, we worked with the Lucas sequence (Un)n≥0 of characteristic equation
X2

− r X − 1 = 0, where r ≥ 1 is also a variable. Similar arguments can be used to deal
ith Eq. (7) when the characteristic equation of (Un)n≥0 is X2

− r X − s = 0, where s is a
xed nonzero integer. The conclusion should be the same, namely that for given A, B, C, D,
q. (7) implies that all its solutions come in two flavours; namely sporadic (maybe none)
olutions whose indices max{n, n1} are bounded by a computable function f (X, s), depending
n X and s; and possibly additional parametric solutions namely of the form (n, m, n1, m1) =

n, n−i, n− j, n−k), where i, j, k are bounded by some computable function g(X, s) depending
n X and s, and n is a free parameter. Again, we leave pursuing such endeavours to the
nterested reader.
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