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PentaSim — A Numerical Simulation of a Penning Trap
Numerical simulations have proven to be an effective approach for studying ion trajecto-
ries for different types of mass spectrometers. PentaSim, developed in this work, is a
modular tool for numerical simulation of a single ion in ideal and cylindrical Penning-trap
experiments.
The tool uses a polynomial expansion of the electric potentials and magnetic field to allow
the calculation of trajectories for different settings that are not constrained by cylindrical
symmetry. In particular, realistic maps of the electric potential, e.g. from Finite Element

Method calculations can be imported. Therefore, PentaSim is a promising framework for
the investigation of systematic effects induced by machining imperfections and higher
order terms of the electric potential and magnetic field with the goal of enhancing the
sensitivity of state-of-the-art mass spectrometry experiments such as Pentatrap. In
addition, the option to incorporate high-frequency excitation and conversion pulses of
any form in the simulation could be leveraged to probe new measurement techniques.
The accuracy of the simulation predictions were benchmarked against established the-
ory. Relative residuals below 10−8 and 10−13 were obtained using a simulation time
step of 10−12 s for the fast modified cyclotron frequency and slow magnetron frequency,
respectively.

PentaSim — Eine Numerische Simulation einer Penningfalle
Numerische Simulationen haben sich als effektiver Ansatz zur Untersuchung von Ionen-
trajektorien für verschiedene Arten von Massenspektrometern erwiesen. PentaSim, das
in dieser Arbeit entwickelt wurde, ist ein modulares Werkzeug für die numerische Simu-
lation eines einzelnen Ions in idealen und zylindrischen Penning-Fallen-Experimenten.
Das Tool verwendet eine polynomische Expansion der elektrischen Potentiale und des
Magnetfelds, um die Berechnung von Trajektorien für verschiedene Einstellungen zu
ermöglichen, die nicht durch zylindrische Symmetrie eingeschränkt sind. Insbesonde-
re können realistische Abbildungen des elektrischen Potentials, z.B. aus Finite Element

Method-Berechnungen, importiert werden. Daher ist PentaSim eine vielversprechende
Plattform für die Untersuchung von systematischen Effekten, die durch Fertigungsintole-
ranzen und Terme höherer Ordnung des elektrischen Potenzials und des Magnetfelds
verursacht werden, mit dem Ziel, die Empfindlichkeit modernster massenspektroskopi-
scher Experimente wie Pentatrap zu verbessern. Darüber hinaus könnte die Möglichkeit,
Hochfrequenzanregungs- und -umwandlungspulse in beliebiger Form in die Simulation
einzubeziehen, genutzt werden, um neue Messtechniken zu erproben.
Die Genauigkeit der Simulationsergebnisse wurde mit den theoretischen Vorhersagen
abgeglichen. Relative Abweichungen unter 10−8 und 10−13 wurden mit einem Simu-
lationszeitschritt von 10−12 s für die schnelle modifizierte Zyklotronfrequenz bzw. die
langsame Magnetronfrequenz erzielt.
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Chapter 1

Introduction

The mass of an atom serves as a unique fingerprint for identification, providing insight
into the atom’s state and into the binding energies of its constituents [1]. Over decades
of scientific discovery, mass spectrometry has been proven as indispensable for a wide
range of research fields not only in physics, but also in chemistry, biology and other
basic and applied sciences, where appropriate instruments and methods are successfully
being developed [2]. As the frequency is the most precisely measurable quantity to
date, reaching relative uncertainties on the order of 10−18 [3], it is of no surprise that
modern high-precision mass spectrometry is conducted by measurement of the oscillation
frequency with which an ion revolves in a magnetic field [1]. The state-of-the-art
apparatus for this mass measurement is the Penning trap, which enables the confinement
of an ion of interest and offers relative mass uncertainties below 10−11 for stable ion
species [4].

To study ion trajectories and optimize geometries of various types of mass spectrom-
eters, numerical simulations have been shown to be an effective approach [5]. These
include quadrupole ion traps [6], toroidal ion traps [7], Penning ion traps [8–11], sector
instruments [12], time-of-flight mass spectrometers [13], Paul ion traps [14], and ion
cyclotron resonance instruments [15, 16]. These simulations range from initial calcula-
tions for ideal quadrupole fields without resonance and collisions [17] to the inclusion of
nonlinear fields [18], collisions with a buffer gas [19], space charge effects [20], image
charge shifts [21,22], sympathetic cooling schemes [23], electrostatic interactions [24,25],
and resonant excitations [26, 27].

The simulation package PentaSim, which was developed during this work, joins this
list by enabling the prediction of ion trajectories in electric potentials deviating from
cylindrical symmetry in Penning traps. This provides access to the study of arbitrary
shape excitation and conversion pulses, and to systematic effects such as the influence
on the charged particle’s motion and eigenfrequencies of machining imperfections and
higher order terms in the electric potential and magnetic field representations.
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Chapter 2

Theoretical Background

This chapter introduces the fundamental concepts required for the remainder of this
thesis.

In Sec. 2.1, physical processes of a charged particle inside an ideal and real Penning
trap, manipulations to its motion using time-varying electric dipolar and quadrupolar
excitation pulses, and a simplified analytical model of a cylindrical trap are described.

In Sec. 2.2, underlying concepts for the simulation studies are layed out which involve
the finite element method used for simulating electric potentials, trilinear interpolation
and regression analysis for three-dimensional interpolation of an electric potential, as
well as numerical integration methods used for propagating a charged particle through
an electromagnetic field.

2.1 Penning-Trap Theory

Following Earnshaw’s theorem [28], the three-dimensional confinement of a charged
particle in a purely static electric potential or purely static magnetic field is impossible.
This fact can be explained in simple terms from Gauss’s law [29], which states that an
electric force F (r) derived from an electric potential ϕ(r) will always be divergence
free and satisfy the Laplace equation, resulting in a potential where no local minima nor
maxima and only saddle points exist [30].

One of the many solutions to this problem is the so-called Penning-trap solution,
where by using a superposition of a static, strong, and uniform magnetic field and a static
three-dimensional quadrupole electric potential, charged particles are confined to an
equilibrium both radially and axially, respectively [1].

In this section, the concepts of an ideal Penning trap are highlighted as well as the
systematic effects which arise in a real trap.

3



4 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Ideal Penning Trap

In an ideal Penning trap, a charged particle is confined by the superposition of a static,
strong, and homogeneous magnetic field aligned along the trap axis for radial confinement
and a weak electric quadrupole potential for axial confinement [31]. An illustration and
description of the electrodes of a hyperbolic and a cylindrical Penning trap is provided in
Fig. 2.1.

a b

Figure 2.1: Hyperbolic and cylindrical Penning trap setup. In both figures, the voltage V0

describes the electric potential difference between ring electrode (RE) and end caps (ECs).
(a) Hyperbolic setup using a hyperbolically shaped RE defined by the radius ρ0 from the
center to the nearest point of the RE, as well as two parabolically shaped ECs defined by
the length z0 from the center to the nearest point of the EC. (b) Cylindrical setup using
cylindrically shaped electrodes defined by the radius ρ0 from the center axis of the trap
to the nearest point of the respecting electrode in the radial plane. In addition to the
potential difference V0 between the RE and the ECs, a correction voltage Vc is applied
between the correction electrodes (CEs) and ECs. Taken and modified from Ref. [32].

The axial magnetic field in z-directionB = B0êz exerts a Lorentz forceF = q (v ×B)

on the ion with charge q, mass m and velocity v. The resulting angular frequency de-
scribing this motion is called the free cyclotron frequency ωc given by

ωc =
q

m
B. (2.1)

In order to harmonically confine the charged particle in axial direction along the magnetic
field lines, an electrostatic quadrupole potential ϕ of the form

ϕ(ρ, z) = U0C2

(
z2 − ρ2

2

)
(2.2)

is imposed, resulting in the electric field E

E(x) = −∇ϕ(x) = U0C2

(
xêx + yêy − 2zêz

)
, (2.3)
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given in cartesian coordinates x ≡ (x, y, z)⊤. Hereby, the voltage difference U0 between
ring electrode (RE) and end caps (EC) (cf. Fig. 2.1), as well as the geometry dependent
harmonic electric potential coefficientC2 are introduced. In the combined electromagnetic
field, the charged particle will experience a total Lorentz force F = q (E + v ×B),
resulting in the Newtonian equations of motion

F = q (E + ẋ×B) = mẍ. (2.4)

This set of coupled differential equations has been solved in multiple publications (cf. [31,
33–36]), yielding the set of solutions of the charged particle’s motion

x(t) = ρ+ sin (ω+t+ φ+) + ρ− sin (ω−t+ φ−) (2.5)

y(t) = ρ+ cos (ω+t+ φ+) + ρ− cos (ω−t+ φ−) (2.6)

z(t) = ρz cos (ωzt+ φz) (2.7)

with its characteristic eigenfrequencies ω± and ωz

ω± =
1

2

(
ωc ±

√
ω2
c − 2ω2

z

)
(2.8)

ωz =

√
2qU0C2

m
. (2.9)

Here, ρ−, ρ+, φ−, φ+ describe the radii and the phases of the respective motions in
the radial plane, and ρz , φz in the axial plane, all of which are defined by the initial
conditions [33]. The eigenfrequencies ω−, ω+, and ωz are called the magnetron frequency,
the modified cyclotron frequency, and the axial frequency, respectively. An illustration
of the three independent motions (in order: green, red, blue) and the combined motion
(black) of a charged particle in an ideal Penning trap is visualized in Fig. 2.2. From
Eqs. (2.5) and (2.6), and the fact that observable frequencies must not have an imaginary
part, it follows that

ωc√
2
> ωz (2.10)

as a stability condition for trapping [37]. Furthermore, the free space cyclotron frequency

ωc is related to the discussed frequencies as

ωc = ω+ + ω− (2.11)

or analogously
ω2
c = ω2

+ + ω2
− + ω2

z , (2.12)

with the latter of the equations being referred to as Brown-Gabrielse’s invariance the-
orem [31]. Therefore, by measuring the characteristic eigenfrequencies of a charged
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particle in a Penning trap, its mass m can be determined through usage of Eq. (2.1). The
hierarchy of the frequencies in terms of their magnitude [21] is expressed by

ω− ≪ ωz ≪ ω+. (2.13)

2.1. The ideal Penning trap

ρ̂−

ρ̂+

ẑ

x y

z

b

Figure 2.2.: Eigenmotions of a charged particle in a Penning trap. The three individual

eigenmotionsÐmagnetron, cyclotron, and axialÐare shown in green, red, and blue,

respectively. The corresponding amplitudes are ρ̂
−
, ρ̂+, and ẑ. The black line shows a

superposition of all the three eigenmotions. The brown line is a projection of the mo-

tion into the xy-plane (slightly offset for clarity), with the dotted green circle indicat-

ing the magnetron orbit. The frequency-ratio is chosen as ω+ : ωz : ω
−
= 50 : 10 : 1,

satisfying Equation (2.26). The frequencies being integer multiples of one another

leads to closed orbits. Such a commensurability condition will have to be ruled

out later on when dealing with imperfections of the trap because such a relation

between the eigenfrequencies may cause instabilities. This figure has been used

multiple times. The original version is from my diploma thesis [81].

23

Figure 2.2: Trajectory of the three independent, harmonic eigenmotions of a charged
particle in an ideal Penning trap. The blue trajectory describes the axial motion with
amplitude ẑ, the red trajectory the modified cyclotron motion with amplitude ρ̂+, the
green trajectory the magnetron motion with amplitude ρ̂−, and the black trajectory the
superposition of all three eigenmotions to a combined motion. The projection onto the
xy-plane is shown in brown and dashed green. Taken from Ref. [38].

2.1.2 Systematics of the Real Penning Trap

Unfortunately, the two introduced types of Penning traps described in Sec. 2.1 and Fig. 2.1
cannot be translated into real experimental setups without the introduction of systematic
errors along the way for various reasons, such as machining imperfections, the finite
lengths of real trap electrodes, and holes in the electrodes for the injection and ejection
of charged particles [36].

On the one hand, the mere geometry of a cylindrical trap adds higher order terms
to the electric potential compared to a hyperbolic trap. Nevertheless, a nearly perfect
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quadrupole electric potential around the center in a confined volume of space can be
achieved with cylindrical traps [39]. On the other hand, compared to hyperbolic traps,
cylindrical traps provide inherent axial access to the center of the trap, which facilitates
ion loading and mixing.

The motivation of calculating systematic errors lies in the charged particle’s high
sensitivity to a vast number of experimental parameters [40]. In this section, leading
systematic effects concerning the electric potential and the magnetic field are discussed
for a cylindrical trap geometry, cf. Fig. 2.3.

5 Trap Tower
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(a) (b)

aEC

CE

RE

CE

EC

Figure 5.2: (a) Schematic of a cylindrical five-electrode trap inside a trap tower. The inner
radius of the electrodes is given by a. The lengths of the trap electrodes are lr = 2z1 for the
central ring electrode (RE), lc = z3 − z2 for the correction electrodes (CE), and le = z5 − z4

for the endcaps (EC). All electrodes are separated by the same distance lgap = z2 − z1. The
electric potential at the inner surface of the electrodes is defined by the voltages Ui applied
to the electrodes. (b) Example of the potential given by the electrode structure shown in (a)
along the trap axis z.

are grounded by U2 ≡ Ue = 0 V and a potential minimum1 is generated by a negative

ring voltage U0 ≡ Ur < 0. The voltage of the correction electrode is chosen as 0 ≤ U1 ≡

Uc ≤ U0, depending on the geometry of the trap.

In order to provide identical conditions in the three inner traps of the Pentatrap

tower, we aim for a stack of five identical traps. The geometry of an individual trap

is defined according to Fig. 5.2a. The inner radius of all electrodes is given by a, while

the length of the REs is lr = 2z1, the length of the CEs is lc = z3 − z2 and the length

of the ECs is le = z5 − z4. All electrodes are separated by an equal distance, given by

lgap = z2 − z1.

Solution of the Laplace Equation

The potential in a Penning trap with arbitrary geometry can be obtained by solving

the Laplace equation, using a general Green’s function approach [161]. For cylindri-

cal traps, an analytical expression is presented for a fixed number of five electrodes

in [166]. If the ratio of the length lr of the grounded endcaps to the inner radius a is

sufficiently large, the influence of additional electrodes neighboring the five-electrode

trap gets negligible. In this case, the result from [166] can be used to design a trap

1For the trapping of positively charged particles, a minimum in the electrostatic potential is needed,
while negatively charged particles require a maximum, see Eq. (3.5a).

54

Figure 2.3: Cut through a 5-pole cylindrical Penning trap setup consisting of five elec-
trodes, namely ring electrode (RE), correction electrodes (CEs), as well as the end caps
(ECs). The inner radius a from the trap center to the nearest electrode in the radial plane,
the electrode voltages Ui, as well as the lengths of the electrodes and the gap lengths
between the electrodes zj − zk define the trap. Taken from Ref. [36].

Electric Anharmonicities

In the following, all necessary equations for this work were derived in Refs. [36, 41, 42].
The electric potential in a cylindrical Penning trap can be expressed through a Taylor
expansion around the center point of the trap. The electric potential ϕ solving Laplace’s

equation ∆ϕ = 0, where ∆ ≡ ∇2 is the Laplace operator, can be expressed as

ϕ(ρ, z) = U0

∞∑
j=0

j∑
i=0

Ci,j−i · ρizj−i, (2.14)



8 CHAPTER 2. THEORETICAL BACKGROUND

with the Taylor coefficients

Ci,j−i = (−1)
i/2 · j!

(j − i)!
(
i
2
!
)2

2i
· Cj, (2.15)

and the purely axial coefficients

Cj ≡ C0,j =
1

U0

· 1
j!

· ∂
jϕ(ρ, z)

∂zj

∣∣∣∣
(ρ=0, z=0)

. (2.16)

Note that the electric potential is independent of the variable φ due to the inherent
rotational symmetry in a cylindrical trap. Hereby, U0 is the potential difference between
the RE and the ECs. Expanding Eq. (2.14) and inserting Eq. (2.15) and Eq. (2.16), the
electric potential normalized onto the trapping voltage U0 can be written as

ϕ(ρ, z)

U0

= C0

+ C2

(
z2 − 1

2
ρ2
)

+ C4

(
z4 − 3z2ρ2 +

3

8
ρ4
)

+ C6

(
z6 − 15

2
z4ρ2 +

45

8
z2ρ4 − 5

16
ρ6
)

+ . . . .

(2.17)

Note, that the odd coefficients are absent since they are suppressed due to the axial
symmetry of the electrodes along the z-axis. All relevant frequency-shifts for this thesis,
calculated by Ref. [43] and modified to match the definitions in this thesis, i.e. by setting
2d2

def.
= 1, are given by

∆ωz

ωz

= +
3

4

C4

C2

(
ẑ2 − 2ρ̂2+ − 2ρ̂2−

)
(2.18)

∆ω± = ∓3

2

C4

C2

ω+ω−

ω+ − ω−

(
2ẑ2 − ρ̂2± − 2ρ̂2∓

)
. (2.19)

Magnetic Inhomogeneities

Analog to the discussion of the electric potential, the magnetic field can also be expanded
into a Taylor Series satisfyingMaxwell’s equations. The second order term [36] is given by

B(ρ, z) = B0 êz +B1 (−2z êz + ρ êρ) +B2

[(
z2 − ρ2

2

)
êz − zρ êρ

]
, (2.20)

with the unit vectors êρ and êz in radial and axial direction, respectively. The resulting
frequency shifts compared to the calculation of a perfect homogeneous magnetic field
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are calculated [43] to be

∆ωz

ωz

= +
B2

4B0

ω+ + ω−

ω+ω−

(
ρ̂2−ω− + ρ̂2+ω+

)
(2.21)

∆ω+

ω+

= +
B2

2B0

ω+ + ω−

ω+ − ω−

[
ẑ2 − ρ̂2+ − ρ̂2−

(
1 +

ω−

ω+

)]
(2.22)

∆ω−

ω−
= − B2

2B0

ω+ + ω−

ω+ − ω−

[
ẑ2 − ρ̂2+

(
1 +

ω+

ω−

)
− ρ̂2−

]
. (2.23)

Further systematic effects such as voltage fluctuations of the power source supplying the
electrodes, relativistic shifts due to the charged particle’s relative motion to the laboratory
coordinate system and its therefore increased inertia, as well as image-charge effects
resulting from the charged particle’s polarization of the electrodes are discussed in detail
e.g. in Ref. [36].

2.1.3 Manipulation of the Charged Particle’s Motion

During operation, a charged particle’s motion in a Penning trap can be manipulated by
superimposing additional electric potentials, frequently exploited using dipolar radio
frequency (RF) as well as quadrupolar RF pulses [44]. Concerning the motional modes, a
dipolar time-varying excitation with a frequency near the magnetron, modified cyclotron,
and axial frequency is used to increase the charged particle’s magnetron, modified
cyclotron radius or axial amplitude, respectively [45]. Using quadrupolar and octupolar
RF fields, a coupling between different modes can be achieved, converting e.g. magnetron
motion into cyclotron motion and vice versa [46, 47]. In the following, dipolar and
quadrupolar excitations typical to Penning-trap experiments [44] are described following
the derivations and reasoning of Ref. [36]. An illustration of example configurations for
dipole and quadrupole pulses can be found in Fig. 2.4.

Dipolar Excitation

With a dipolar excitation it is possible to control individual modes of a charged particle
inside the trap [45]. By applying time-varying voltages on suitable electrodes of the trap,
the superimposed dipole potential ϕ(d)

i can be expressed as

ϕ
(d)
i (t) = ϕ

(d)
i,0 cos (ωrf t+ φd) · xi, (2.24)

with i ∈ {1, 2, 3} for all three cartesian coordinates and ϕ
(d)
i,0 ≡ ϕ

(d)
i (t = 0), resulting in

the componentwise electric field E
(d)
i

E
(d)
i (t) = −∇ϕ

(d)
i (t) = −E

(d)
i,0 cos (ωrf t+ φd) · êi. (2.25)
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EC

CE

RE

CE

EC

a b

6

z

Figure 2.4: Sketch of exemplary electrode configurations used for applying dipole and
quadrupole excitation pulses in a cylindrical Penning trap setup consisting of five elec-
trodes named ring electrode (RE), correction electrodes (CEs), and end caps (ECs). All half
electrodes operating at a constant potential are depicted in red, whereas all half electrodes
superimposed with a time-varying RF potential in addition to their respective constant
potentials are depicted in blue. (a) Example configuration of a dipole pulse using half of
the upper-right CE for applying the time-varying potential. (b) Example configuration of
a quadrupole pulse using half of the upper-right CE and half of the lower-right CE for
applying the time-varying potential. Taken and modified from Ref. [40].

Assuming the electric field E to be directed in positive x-direction and introducing the
acceleration a0 ≡ qE

(d)
0 /m, the time-dependent modified cyclotron and magnetron radii

ρ+(t) , ρ−(t) are given by

ρ±(t) =

√
ρ2±(0) +

a20
4(ω+ − ω−)2

· t2 ∓ ρ±a0 sin [φd − φ±(0)]

ω+ − ω−
· t. (2.26)

Quadrupolar Excitation

Using a quadrupolar excitation pulse, two eigenmotions can be converted into one
another [36]. The coupling of the two radial modes has been considered in Ref. [47],
whereas the coupling of the axial to both radial modes has been covered in Ref. [48]. A
quadrupolar electric coupling field is of the form

E
(q)
i,j (t) = E

(q)
0 cos (ωrf t+ φq) (xjêi + xiêj) . (2.27)

Complying with the resonance condition ωrf = ω−+ω+ for converting two radial modes
into one another, the time evolution can be written as

ρ±(t) = ρ±(0) cos

(
Ω0

2
· t
)
∓ ρ∓(0) sin

(
Ω0

2
· t
)
cos (φq − φ+ − φ−) , (2.28)
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with the Rabi frequency Ω0 given by

Ω0 =
q

m
· E

(q)
0

2 (ω+ − ω−)
, (2.29)

defining the beating frequency Ω0/2 between the two radial modes and the conversion
time Tc = π/Ω0.

In addition, the Rabi frequency for the coupling of the axial mode to one of the radial
modes Ωax

0 is given by [48]

Ωax
0 =

q

m
· E

(q)
0

2
√

ωz(ω+ − ω−)
. (2.30)

2.1.4 Analytical Model of a Cylindrical Penning Trap

Analytically modeling a cylindrical Penning trap can be achieved by defining a set of
prerequisites and by exploiting the cylindrical and mirror symmetry in the system. In
Fig. 2.5 the configuration of a stack of three adjacent traps is shown on the top as well
as the negative potential through the center axis z of the trap, expanding to half of the
total trap length L in negative as well as in positive z-axis. It is important to note that
the number of traps in the configuration was arbitrarily chosen to be three, whereas the
following derivation is valid for any odd number of traps.

RECE CE ECEC

z

UEC

UCE

URE

gap

−U

0
−
𝐿

2

𝑧1𝑧2 𝑧3𝑧4 𝑧5 …

+
𝐿

2

Figure 2.5: Configuration (top) and resulting inverted electric potential (bottom) of a stack
of three adjacent Penning traps as a section along the center axis z. The electrodes are
grouped by color according to their type, where the ring electrodes (REs) are depicted in
red, the correction electrodes (CEs) in green, and the end caps (ECs) in blue. Fictional gap
potentials (dashed purple) between the electrodes are introduced, linearly interpolating
the potential between two adjacent electrodes, defining a complete set of boundary condi-
tions necessary for calculating the inner potential using Laplace’s equation. Furthermore,
the points zj with j ∈ {0, 1, . . . ,m}, with the total number of electrodes m, are defined
as the start (end) points of the electrodes in only the positive half space, assuming mirror
symmetry at z = 0.
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The following derivation follows along the textbook solution found in Ref. [49], where
radial symmetry perpendicular to the z-axis as well as mirror symmetry on the plane
with z = 0 is assumed.

Laplace’s equation in cylindrical coordinates is given by

∆ϕ ≡ ∇2ϕ =
1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ
+

∂2ϕ

∂z2

)
= 0. (2.31)

Here, the separation ansatz ϕ(ρ, z) = R(ρ)Z(z) can be used to split radial and axial part,
yielding the general solution

∆ϕ(ρ, z) =

∫ +∞

−∞
dkR(kρ)Z(kz), (2.32)

with

R(kρ) = C(k) I0(kρ) (2.33)

Z(kz) = A(k) cos(kz), (2.34)

thereby leaving the electric potential to be calculated by the integral

ϕ(ρ, z) =

∫ +∞

−∞
dkA(k)C(k) I0(kρ) cos(kz). (2.35)

Here, the coefficients A(k) are defined by the Dirichlet boundaries, namely the geometry
of the electrode as well as its corresponding electric potential. The solution of the electric
potential for a stack of adjacent traps can then be written as

ϕ(ρ, z) = lim
nmax→∞

4

L

nmax∑
n=1
n odd

(m−1)/2∑
i=1

Ui − Ui−1

lgapk2
nI0(kna)

(
cos(knz2i)−cos(knz2i−1)

)
I0(knρ) cos(knz),

(2.36)
using the total length L of the trap, the lengths of the gaps between the electrodes lgap,
the total number of electrodes m, the electrode potentials Uj , the inner trap radius a, the
factor kn = nπ/L, themodified Bessel function of 0th order I0, and the enumerated electrode
start (end) positions zj with j ∈ {0, 1, . . . ,m}, are defined as the start (end) points of the
electrodes. It is important to note that these electrode positions enter Eq. (2.36) only in
the positive (negative) half space of z, implicitly assuming mirror symmetry at z = 0.
Furthermore, as also radial symmetry perpendicular to the z-axis located at x = y = 0

is also assumed, effects of half electrode voltages (concerning only an angle of π of the
respective electrode surface expressed in radians) are not covered. Due to the assumed
mirror symmetries it is not possible to mathematically apply the potential of a single
electrode Uj on one half electrode without forcibly changing the potential Uj on the
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other half electrode. Therefore, the analytical solution provided in Eq. (2.36) cannot be
leveraged for studying the application of pulses, except axially, on a charged particle
described in Sec. 2.1.3, as this would require a mirror-symmetry breaking consideration
of the electric potential.

2.2 Simulation Theory

This section describes the theoretical tools used in the simulation, namely the finite
element method for numerically calculating the electric potentials, trilinear interpola-
tion and regression analysis for interpolation between grid points, and the numerical
integration methods used to displace a charged particle through an electromagnetic field.

2.2.1 Finite Element Method

The Finite Element Method (FEM) is a frequently proposed method to solve static and
(or) dynamic behavior of physical systems in linear or non-linear regions in one-, two-
or three-dimensional domains in the form of partial differential equations (PDEs). An
FEM calculation requires intensive use of computational resources by using a simple
approximation of unknown variables for transforming PDEs into algebraic equations [50].

PDE

Basis
Formulation

Weak
Formulation

Galerkin‘s
Method

Discretization Calculation

Solution

Figure 2.6: Flow chart of the Finite Element Method (FEM). Taken and modified from
Ref. [22].

The mathematical derivation of the FEM along with its applications has been exten-
sively studied in articles and textbooks [50–53]. Here, only a comprehensive overlook is
provided. A coarse sketch of the procedure of the FEM as layed out by Ref. [22] is provided
in Fig. 2.6. First, all partial differential equations (PDEs) including all boundary conditions
must be established from the task at hand. Second, a basis needs to be defined, serving as
an approximation to the true solution. Third, all non-differentiable boundary conditions
in the model (e.g. leaps in a parameter) will be smoothed to allow for differentiation.
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Fourth, Galerkin’s method allows updating of the basis using the residuals such that it
approaches the true solution. Fifth, the problem is discretized to mesh units, allowing for
the set of linear equations to be solved. Finally, we yield the basis representation of the
system with updated parameters, which can be used to approximate the true solution.

2.2.2 Trilinear Interpolation

Trilinear interpolation is a method of multivariate interpolation on a three-dimensional
regular lattice, i.e. the three-dimensional extension of the two-dimensional bilinear
interpolation and the one-dimensional linear interpolation. Using this method, the value
of an intermediate point inside a cubic lattice is approximated by finding the smallest
cuboid still containing the point. One way to visualize the algorithm is that contributions
from all eight corners are used to calculate a linear weighted sum, where the weight is
given by the ratio of volume of the cuboid whose diagonal axis is formed by the given
point and the diagonally opposite corner to the volume of the cuboid formed by the
cell [54].

One algorithm for trilinearly interpolating a given point with in a cubic lattice is
stated in the following using the notation introduced in Fig. 2.7.
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b

Figure 2.7: Sketch of the trilinear interpolation algorithm: Eight corner points of a
cuboid (black) taken from a cubic lattice with arbitrary side lengths in all three cartesian
coordinates enclose a point Cxyz (red), to which the trilinear interpolation is applied.

Given a point Cxyz with coordinates (x̃, ỹ, z̃) in an arbitrary periodic cubic lattice, one
can find eight surrounding points of this lattice to which the function f(x, y, z) is known.
These points are enumerated according to Cijk indicated in Fig. 2.7a, where i, j, k ∈ N
are the grid positions in the respective directions and values cijk. Now, we can define
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and calculate the differences xd, yd, zd using the coordinates xi, yj, zk of the mentioned
surrounding grid points as

xd ≡
x̃− xi

xi+1 − xi

(2.37)

=
x̂− x0

x1 − x0

, (2.38)

and analogue for yd and zd. Finally, we can calculate the function f(x̃, ỹ, z̃) at point Cxyz

by performing a composition of three linear interpolations along each axis (cf. Fig. 2.7b),
where the order of execution is irrelevant because of their intrinsic linearity. Here, the
linear interpolations L are executed in order of L = Lx ◦ Ly ◦ Lz . First, interpolating
along the x-axis

cx00 = c000 (1− xd) + c100 xd (2.39)

cx01 = c001 (1− xd) + c101 xd (2.40)

cx10 = c010 (1− xd) + c110 xd (2.41)

cx11 = c011 (1− xd) + c111 xd, (2.42)

then interpolating along the y-axis

cxy0 = cx00 (1− yd) + cx10 yd (2.43)

cxy1 = cx01 (1− yd) + cx11 yd, (2.44)

and finally interpolating along the z-axis

cxyz = cxy0 (1− zd) + cxy1 zd. (2.45)

Hence, the linearly approximated value in three dimensions at the point Cxyz is given by
the result f(x̃, ỹ, z̃) ≈ cxyz .

2.2.3 Regression Analysis

Regression analysis seeks to solve problems where the goal is to build a system taking a
feature vector xi ∈ Rm of independent variables as input and predicting the value of an
output scalar yi ∈ R as the dependent variables with the help of unknown parameters
β ∈ Rm and error terms εi ∈ R for every data point with index i ∈ {1, 2, . . . , n} [55].
The error terms are assumed to follow a normal distribution εi ∼ N (0, σ2), centered
around zero with mean µ = 0 and variance σ2, and are not directly observable.
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In their most general form, regression models are therefore described by

yi = f(xi,β) + εi, (2.46)

where the function f(xi,β) is estimated to closely resemble the data yi [56]. Once a
statistical model has been chosen, the model is fit to the data by minimizing an error
function such as e.g. ordinary least squares (cf. Ref. [57]), finding estimates β̂ for the
unknown true parameters β.

Assuming a total of n data points and employing the ordinary least squares criterion
onto Eq. (2.46) yields

ri(β
′) = yi − ŷi = yi −

[
f(xi,β

′) + εi
]
, (2.47)

for the residuals ri, and therefore the final sum of the squared residuals to be minimized
as

β̂ = min
β′

n∑
i=1

r2i (β
′). (2.48)

The general solution [56] to this equation in matrix notation for all n data points is given
by

β̂ =
(
X⊤X

)−1
X⊤y, (2.49)

where X ∈ Rn×m is the so-called design matrix with its transpose X⊤ ∈ Rm×n, the
dependent variables vector y ∈ Rn, and the estimator of the unknown parameter vector
β̂ ∈ Rm.

2.2.4 Numerical Integration Methods

Numerical methods for first-order ordinary differential equations seek to solve initial
value problems of the form [58]

dy

dt
= f

(
t,y

)
with y(t0) = y0, (2.50)

where the function f is defined as f : [t0,∞)×Rd → Rd, with the initial time t0 and the
dimension d, and y0 ∈ Rd defining the initial state vector. For solving these problems,
numerous numerical methods exist, which can be coarsely classified into linear multistep

and Runge-Kutta approaches, being either of implicit or explicit type [59].

In this thesis, one particular initial value problem is of great importance, namely
the integration of a charged particle in an arbitrary, time-dependent, electromagnetic
field. According to the equation of motion of a charged particle in such a field, given by
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Eq. (2.4), the derived first-order initial value problem of the form of Eq. (2.50) yields

dx

dt
= v (2.51)

dv

dt
=

q

m
(E + v ×B) with v(t0) = v0, (2.52)

with the position vector x, the velocity vector v, the charge q and massm of the particle,
the electric field vector E, the magnetic field vectorB, as well as the initial velocity v0

at time t0.

Boris Algorithm

The advancing of a charged particle in an electromagnetic field can e.g. be numerically
integrated using Boris’ algorithm [60–63]. The derivation of the algorithm in the following
is strongly based on Refs. [64, 65].

For a given phase space coordinate (xk,vk) at the kth time step tk = k ·∆t, the Boris
algorithm solves for the advanced phase space coordinate of the particle (xk+1,vk+1)

at the (k + 1)th time step tk = (k + 1) · ∆t, by discretizing the equations of motion
Eqs. (2.51) and (2.52)

xk+1 − xk

∆t
= vk+1 (2.53)

vk+1 − vk

∆t
=

q

m

(
Ek +

(vk+1 + vk)×Bk

2

)
. (2.54)

Here, ∆t denotes the time step, and the quantities xk ≡ x(k), vk ≡ v(tk − ∆t/2),
tk ≡ k ·∆t, Ek ≡ E(xk), and Bk ≡ B(xk) are defined. There exist many equivalent
ways of solving Eqs. (2.53) and (2.54) explicitly for the next time step [66]. One of them
is to separate the electric and magnetic forces like

v− = vk +
q

m
Ek

∆t

2
(2.55)

v+ − v−

∆t
=

q

2m
(v+ + v−)×Bk (2.56)

v+ = vk+1 −
q

m
Ek

∆t

2
, (2.57)

and perform the rotations

v′ = v− + v− × t (2.58)

v+ = v− + v′ × s (2.59)



18 CHAPTER 2. THEORETICAL BACKGROUND

with the help of

t ≡ q

m
Bk

∆t

2
(2.60)

s =
2t

1 + |t|2
. (2.61)

Now, Boris’ algorithm is given by the one-step map

ΨB : zk ≡ (xk,vk) 7→ zk+1 ≡ (xk+1,vk+1), (2.62)

consecutively following the subsequent procedure:

1. Calculate the rotation vectors t and s, cf. Eqs. (2.60) and (2.61).

2. Calculate v− by adding half of the electric impulse, cf. Eq. (2.55).

3. Calculate the bisector velocity v′, cf. Eq. (2.58).

4. Calculate v+ by a rotation of v−, cf. Eq. (2.59).

5. Calculate vk+1 by adding half of the electric impulse to v+, cf. Eq. (2.57).



Chapter 3

Materials, Methods, and Results

The goal of this thesis has been to create a simulation package for studying the motion of a
charged particle in a Penning trap with arbitrary, cylindrical symmetry breaking electrode
geometry. In addition, the package should enable the study of systematic effects as well
as of excitation and conversion procedures, i.e. the conversion of the different motional
modes into each other. To achieve this goal, several challenges had to be addressed:

1. Developing a procedure for calculating static or dynamic, non-symmetric, electric
trap potentials and their superposition for a given electrode geometry.

2. Finding a suitable software base (programming languages, tools, etc.) and an
integration algorithm that meets the set requirements.

3. Sufficiently optimizing the simulation to the problem (vectorization, in-place oper-
ations, static arrays, etc.) in order to be temporally feasible for scientific usage.

4. Support of parameter studies by built-in access to parallelized computing architec-
ture to minimize overall runtime.

5. Programming an easy-to-use and intuitive interface operated by only a few lines
of code.

6. Support of custom, user-defined scripts for simulation that can be written in any
programming language.

7. Testing and comparing the simulation results to already published theoretical
calculations to benchmark its capabilities and limits.

8. Wrapping everything up into a customizable, maintainable, and extendable software
package efficiently running with contemporary, off-the-shelf office computers.

19
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3.1 Finite Element Method Calculations

Numerical simulations such as the Finite Element Method (FEM, cf. Sec. 2.2.1) provide
the opportunity to calculate solutions to problems not yet analytically determined or
feasible by solving the problem’s underlying partial differential equations (PDEs) with
given boundary conditions, yielding an approximation to the true solution.

For this thesis, special emphasis was put on the calculation of static or dynamic electric
potentials breaking the cylindrical symmetry for studying machining errors (e.g. offset,
tilt of electrodes) and radio frequency (RF) excitation and conversion pulses (cf. Sec. 2.1.3).
Fortunately, well-tested commercial programs such as Comsol1 and Simion2 can be
resorted to, both providing an abundance of FEM solvers. For this work, Comsol has
been chosen over Simion since the latter program has no capability of adaptive meshing,
which concentrates grid elements towards regions in space with large gradients [67],
thus increasing computational efficiency without sacrificing accuracy [68].

To analyze the effect of the density of the mesh grid in the Comsol simulations, the
numerical and analytical potentials were compared to one another by calculating relative
residuals at numerous points for varying degrees of freedom (DOF). This study resulted
in an increase of accuracy of the simulation for increasing DOF, as expected. Therefore,
all calculations in this thesis were carried out using the highest number of DOF possible
with the available computing infrastructure, summing up to a total of ~109 million.

3.1.1 Numerical Model

The numerical model used for the calculation of all half electrode potentials in the trap
tower was replicated in Comsol from the analytical model described in Sec. 2.1.4, serving
as a minimal working example and proof-of-principle model. It is important to note
that despite having the same setup, the numerical model is able to break the cylindrical
symmetry of the electric potential, which is not the case for the analytical model discussed.
Therefore, the resulting electric potentials of both models can only be compared for cases
when the cylindrical symmetry and the mirror symmetry at z = 0 of the boundary
conditions is respected.

The number of adjacent traps in the stack was chosen to be three as a trade-off
between the computation time of the electric potential and its accuracy. To resemble the
experimental setup Pentatrap at the Max Planck Institute for Nuclear Physics (MPIK) in
the scope of this model as closely as possible, the parameters for an orthogonal and com-
pensated Penning trap tower calculated in Ref. [36] were used. Errors in electrode lengths
due to thermal shrinkage from room temperature to cryogenic operating temperature are
expected to be less than 1 µm [40] and are therefore neglected. Important Comsol-specific

1https://www.comsol.com/, accessed 2022/02/02
2https://simion.com/, accessed 2022/02/02

https://www.comsol.com/
https://simion.com/
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parameters, which were used for the simulation, are listed in Tab. 3.1. Furthermore, a
cylindrical volume was defined in the center of the trap with radius rcyl = 100 µm and
height hcyl = 200 µm, setting the grid size to the lowest extent amin, forcing Comsol to
mesh finely in and close around this self-defined region of interest (ROI). The default
minimum and maximum grid element sizes recommended by Comsol were used and
refined empirically to maximize the number of grid points used and therefore increase
the accuracy of the simulation to a point where it runs stable on the MPIK cluster without
running out of random access memory (RAM). The relative tolerance τ refers to the
convergence criterion of the FEM algorithm in Comsol, i.e.

δi =

∣∣∣∣Ui − Ui−1

Ui

∣∣∣∣ !
< τ (3.1)

with the element-wise relative residuals δi with electric potential voltage Ui at iteration
step i. The relative tolerance threshold of τ = 10−15 was chosen to be equivalent to the
resolution of a 64-bit double-precision floating-point representation in Python’s NumPy
package [69], being approximately an order of magnitude coarser than one machine
epsilon ε = 2−52 ≈ 2 × 10−16 of this representation [70]. All other parameters were
left to their default values. A depiction of a solution to the described model with the
discussed set of boundary conditions (cf. 2.1.4) is visualized in Fig. 3.1.

Table 3.1: Parameter settings used in the Comsol simulation. The values were calculated
in Ref. [36] for an orthogonal and compensated trap tower. The Comsol-specific grid
element sizes amin, amax and the relative tolerance τ were chosen independently of these
calculations. The electrode voltages were set to values that would allow them to be easily
scaled by a factor at a later stage.

Description Symbol Value Unit
Tuning Ratio TR 0.881 a.u.
Gap Length Lgap 0.15 mm
RE Length LRE 1.457 mm
CE Length LCE 3.932 mm
EC Length LEC 7.040 mm
Inner Trap Radius R 5 mm
Single Trap Length Ltrap 24.15 mm
RE Voltage VRE 1 V
CE Voltage VCE 0.881 V
EC Voltage VEC 0 V
Min. Grid Element Size amin 1.45 µm
Max. Grid Element Size amax 145 µm
Relative Tolerance τ 10−15 a.u.

From the electrode lengths LRE, LCE, LEC and the gap length Lgap given in Tab. 3.1
the electrode positions zj introduced in Sec. 2.1.4 and visualized in Figs. 2.3 and 2.5 can
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UEC URE
- z

Figure 3.1: Depiction of the numerically calculated, color-coded static electric potential
in a slice along the center axis of the Penning-trap tower from the FEM simulation in
Comsol. The colorbar ranges linearly from the end cap voltage UEC in blue to the ring
electrode voltage URE in red, whose values are taken from Tab. 3.1.

be calculated recursively by

z0 ≡ 0 (3.2)

zj = zj−1 + Lj−1, (3.3)

with j ∈ {1, . . . ,m} and total electrode numberm, and the lengths

L0 =
LRE

2
(3.4)

Lj =

Lelectrode if j even

Lgap if j odd,
(3.5)

counting through the electrodes from inside to outside in their order of appearance in
the trap tower.

3.1.2 Integrity of the Electric Potential Calculations

To clarify the integrity of the analytical and numerical simulations, a series of calculations
were performed. The two goals of these calculations were to ensure the convergence of
the analytical implementation, and to compare the interpolated numerical calculations
through trilinear interpolation and polynomial regression to the known analytical solution
of the electric potential.

Convergence of the Analytical Electric Potential Calculations

The analytical electric potential solution for a stack of ideal cylindrical Penning traps is
introduced in Sec. 2.1.4. For proving the convergence of the analytical solution implemen-
tation, a number of N = 100 000 points were drawn from a uniform distribution using a
fixed highest order nmax, up to which the terms of the sum from Eq. (2.36) were calculated.
The cube-like region of interest (ROI) was chosen to be in the interval [−1,+1] mm for
all three cartesian coordinates with the cube’s center being the center of the trap. The
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iteration counter i is defined to number consecutively through all orders nmax for a
simplified formulation in the following discussion. Then, the relative residuals δi from
Eq. (3.1) were calculated for each point between each order i and preceding order i− 1,
from which mean δ̄i and standard deviation σ were calculated. The result is visualized
in Fig. 3.2. The relative tolerance threshold τ (cf. Tab. 3.1) employed in the Comsol
simulation and discussed in Sec. 3.1.1 is chosen as the minimal accuracy needed for
comparing the analytical and numerical potential at a later step.

0 25 50 75 100 125 150 175 200
Order nmax

10 18

10 15

10 12

10 9

10 6

10 3

100

M
ea

n 
of

 R
es

id
ua

ls 
i

Figure 3.2: Results of the convergence study of the analytically calculated electric po-
tential showing the mean of the residuals δ̄i for each iteration i and preceding iteration
i− 1, enumerating all orders nmax, calculated from the relative residuals δi according to
Eq. (3.1). All data points are shown with their corresponding 1σ error bars. Although all
uncertainties are symmetric, only the upper error bars are plotted for illustrative purposes
due to the logarithmic representation. The relative tolerance threshold of τ = 10−15

employed in the Comsol calculations (cf. Sec. 3.1.1) is depicted in red. The occurrence of
outliers is discussed in Ch. 4.

Accuracy of the FEM Numerical Electric Potential Calculations

The raw numerical potential calculated from Comsol using the model described in
Sec. 3.1.1 is benchmarked against the analytical potential (cf. Sec. 2.1.4).

For the subsequent numerical calculations, all points in a cube-like region in the
interval [−1,+1] mm for all three cartesian coordinates around the trap center were
compared to the analytical solution using a fixed highest order nmax = 200, empirically
chosen to limit calculation time, but such that the remaining error between orders is well
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below O(10−15) (cf. Fig. 3.2), which is equal to the chosen relative tolerance threshold τ

used in the Comsol calculations. The residuals δ were then calculated at each grid point
from the numerical simulation in analogy to Eq. (3.1) according to

δ =

∣∣∣∣Uanalytical − Unumerical

Uanalytical

∣∣∣∣ . (3.6)

The residuals δ were then binned per volume element onto a cubic lattice with lattice
constant a and averaged along a collapsing axis, resulting in the grid of averaged residuals
seen in Fig. 3.3. The cubic lattice constant a was empirically chosen as the finest under
the condition that every grid point in the resulting grid is filled with at least one value.
These residuals were on the order of 10−9 on both xy- and xz-plane, being lower around
the cylinder-like ROI forced with having a high density of grid points.
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Figure 3.3: Heat maps of the relative residuals δ from Eq. (3.6) between the analytical
electric potential and the numerical electric potential from the FEM simulation. All
residuals were calculated at the grid points of the numerical potential and then projected
and binned (i.e. averaged per volume element along the collapsing axis) onto the (a) xy-
and (b) xz-plane.

Integrity of the Interpolation Methods

For comparing both interpolation methods used in this thesis, namely trilinear interpola-
tion (cf. Sec. 2.2.2) and polynomial regression (cf. Sec. 2.2.3), a number of N = 100 000

interpolation potentials were calculated from points drawn from a uniform distribution
in a cube-like space interval with an edge length of 2mm, located at the center of the
trap stack. The resulting interpolated potentials were compared to the analytical poten-
tials (cf. Sec. 2.1.4) at these points with a fixed highest order nmax = 200, empirically
determined from the calculations presented in Fig. 3.2 up to which the terms of the sum
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from Eq. (2.36) were calculated. The residuals δ were then calculated at each point in
analogy to Eq. (3.1) according to

δ =
Uanalytical − Unumerical

Uanalytical

. (3.7)
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Figure 3.4: Histograms of the residuals δ from Eq. (3.7) of the interpolation methods
compared to the analytical potential for a cubic grid. (a) Trilinear interpolation and (b)
polynomial regression used as the interpolation method, and binned to a number of
⌊
√
N⌋ bins for a total ofN values. The same cubic grid was used in both underlying FEM

simulations to allow direct comparison. To exclude outliers, all values in both histograms
were filtered by the Median Absolute Deviation criterion (MAD), explained in detail in
Refs. [71, 72], using the threshold condition |MAD| < 10. The ranges of the residuals in
both histograms were chosen to encompass all values that met the threshold condition.
Please note the different scales of the residuals on the abscissas.

Concerning trilinear interpolation, a cubic grid needed to be employed in the in-
terpolation region. It was empirically chosen to be as tightly packed as possible with
lattice constant a = 2 µm in a cube with a corner length of 2mm, without the computing
architecture running out of random access memory (RAM). For comparison, the trilinear
interpolation and polynomial regression methods were used on the same potential data
set, yielding the histograms of the residuals depicted in Fig. 3.4. From the histograms it
can be seen that the residuals using the different interpolation methods are comparable in
terms of their scale they appear on; both residuals are on the order of 10−4. Interestingly,
the dispersion of the distributions are on different orders of magnitude. If only interested
in the electric field rather than the electric potential, it is valid to add an arbitrary con-
stant value c ∈ R to the potential (cf. Gauge fixing [73, 74]), making use of the narrow
dispersion of the residuals of the polynomial regression, elevating the accuracy of the
residuals to the order of 10−5.
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Figure 3.5: Histograms of the residuals δ from Eq. (3.7) using the polynomial regression
method with a free tetrahedral grid compared to the analytical potential, binned to a
number of ⌊

√
N⌋ bins for a total of N values.

For using polynomial regression, a lattice of arbitrary shape as described in Sec. 3.1.1
was used, resulting in the residuals depicted in Fig. 3.5. It can be inferred that the residuals
are on the order of 10−9 and therefore roughly five orders of magnitude more precise
when compared to the analytical potential. Therefore, polynomial regression along with
the free tetrahedral mesh are used exclusively for the remainder of this thesis.

3.2 PentaSim

In this section, the simulation package PentaSim is described in terms of its programming
framework with the help of an abstracted flow chart and minimal working examples
(MWE) of the individual components. This simulation package was implemented for
being able to run cylindrical symmetry breaking numerical calculations differing from the
analytical solutions, opening the door for the identification of impacts from arbitrarily-
shaped radio frequency (RF) excitation and conversion pulses, and electro-magnetic
frequency shifts induced by higher orders of the electric potential and magnetic field
onto the trapped charged particle.

The simulation package PentaSim is completely controllable using the interpreted
programming language Python, where core functions such as user inputs and input
checks, data handling, pre-processing, and simulation management are implemented.
By default, the simulation with its time-critical computation steps is outsourced to the
compiled programming language Julia using Boris’ algorithm, but also allows custom
integration algorithms implemented in any other programming language.
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3.2.1 Structure

The coarse structure of the simulation can be visualized using the flow chart depicted in
Fig. 3.6. It must be noted that all pencil icons represent inputs from the user. If inputs
of physical quantities are required, the units are expected to be provided in SI-units
(cf. Ref. [75]). All boxes in the flow chart represent classes implemented in Python.

FEM
DATA

Data
Handler

Simulation
Manager

LOCAL

CLUSTER

STUDY

Φ

B

Config
Generator

JSON
CONFIG

SCRIPT

Figure 3.6: Flow chart of the PentaSim simulation package. User input is represented
by pencil icons, whereas implemented classes in Python are depicted as boxes. Starting
on the left hand-side, data is fed to the simulation preparation classes Φ and B, which
prepare the electric potentials (trap, optionally RF pulses) and the magnetic field for the
simulation manager class, requiring further user inputs. If all necessary data is collected
by the manager, the simulation is run locally or on the MPIK cluster, saving simulation
files for a single simulation or a simulation study to disk.

Electric and Magnetic Preparation Classes Φ and B

Starting from the left hand-side of the flow chart, the preparation classesΦ andB (yellow),
representing the electric potential and magnetic field respectively, can be fed from the
user by providing the Taylor expansion term coefficients Ci [1/mi] and Bi [T/mi] from
Eqs. (2.17) and (2.20), respectively.

Alternatively, the electric potential class Φ can also be fed by FEM data using the data
handler class, whereupon the coefficients Ci are determined by polynomial regression
(cf. Sec. 2.2.3) in a user-defined space volume and degree. In addition, when providing
multiple FEM data sets, a superposition potential ΦSP

ΦSP(x) =
n∑

i=1

Φi(x), (3.8)
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is calculated, useful e.g. for combining two quarter-electrode data sets to one single half
electrode data set. The fit variables up to a degree d are generated by calculating every
single combination of xiyjzk without replacement, such that i+j+k ≤ dwith i, j, k ∈ N0.
Assuming d = 2, this amounts to the fit variables [1, x, y, z, x2, xy, xz, y2, yz, z2]. In
contrast to the magnetic field class B, the electric potential class Φ can be instantiated
once for defining the trap potential, and an arbitrary amount of times for each intended
RF pulse.

Configuration Generator and Simulation Manager Class

After electric and magnetic preparation, the configuration generator receives inputs
needed for generating the JSON3 configuration file, which includes all information neces-
sary for conducting the simulation. These parameters include the charge and mass state,
the initial position and velocity of the charged particle, the DC voltage of the trap, the
simulation time steps, and a folder path for storing the results. Optionally a file path to a
custom integration algorithm file (and executable command, e.g. "g++") respecting the
simulation’s JSON file output structure can be stated. After reviewing the completeness
and data types of the provided parameters, the class communicates with the simulation
manager, where optionally parametric sweep values of one or multiple parameters and
information on if the simulation shall be run on the local CPU or on the MPIK cluster is
provided. Both local and cluster method are able to run parametric studies parallely using
multithreading. Before calculation, the project structure is determined and all JSON files
are created and placed in the respective output folders. The calculation of the simulation
is then handed over to the default or provided script, solving the differential equation
for advancing the charged particle according to the set parameters. The results of the
simulation or study are saved to disk in bunches during the calculation.

Julia Simulation File

The default simulation file written in the programming language Julia parses the JSON
file string as a command line argument and reads out all necessary parameters for
calculating the simulation. After parsing, a static gradient function is calculated from
the aforementioned fit variables up to and including the highest occupied (non-zero)
coefficient of degree d, being able to calculate the electric fieldE(x) at any given position
vector x inside the trap. Then, the integration of the charged particle is performed using
Boris’ algorithm (cf. Sec. 2.2.4). If an RF pulse is specified, its contribution to the electric
field is calculated for the current time step and position by a superposition of the trap
and RF electric field. When dealing with temporally non-matching values concerning the

3JavaScript Object Notation
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simulation time steps and the RF amplitude time steps, a linear interpolation is employed
between the RF amplitudes.

3.2.2 Runtime

The simulation runtime was significantly accelerated during the course of this work,
which can be attributed in large part to the usage of a compiled language such as Julia and
the exploitation of its capabilities through vectorization, in-place operations, and static
arrays that allow the compiler to channel resources more efficiently. In the latest version
of PentaSim, a simulation with a time range of T = 1 s and time steps of∆t = 1ns takes
about 14min on an office laptop and about 18min on the MPIK cluster including the
simulation preparation in Python and the computation and storage of the solutions in
Julia, resulting in approximately 32GB of data for one temporal and three spatial 64 bit
quantities. The hardware used was a commercial Dell Latitude 5410 laptop equipped with
an Intel Core i5-10310U quad-core processor running at a clock rate of 1.7GHz, with
16GB random access memory (RAM), and a solid-state drive (SSD).

3.2.3 Minimal Working Examples

In the Appendix, minimal working examples (MWEs) leading through example usages
of PentaSim are shown to demonstrate key features of the simulation and to serve as
orientation and quick help. All variables written in capital letters refer to variables that
must be filled in by the user. Furthermore, all parameter values used are to be understood
as exemplary.

3.3 Benchmarking

In this section, several benchmarks between simulation and theory are carried out for
evaluating the integrity and accuracy of the simulated predictions. These benchmarks
comprise the temporal and spatial inspection of the motion of the charged particle, the
retrieval and comparison of the three independent eigenfrequencies to the analytically
expected values, the investigation of frequency shifts induced by electric and magnetic
higher order terms, and an examination of the effects of conversion and excitation pulses
on the ion’s motion.

All simulations shown in this section were conducted using a virtual 163
67Ho38+ ion,

which is a commonly used ion at Pentatrap and a promising candidate for studies of
the neutrino mass by probing the ion’s electron capture [76]. The initial values for the
simulation were set to a position x0 = (10, 0, 0)⊤µm, a velocity v0 = (5, 5, 10)⊤ms−1 at
time step t0 ≡ 0, an electric trap voltage U0 = −30V, a magnetic field strengthB0 = 7T,
and a simulation time step ∆t = 10−11 s, unless otherwise specified.
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3.3.1 Ion Motion

To visually examine the motion of the charged particle in the simulation, several plots
were created showing the time evolution of all three position variables as well as a top
view of the motion projected onto the xy-plane. The combined representation of these
plots can be seen in Fig. 3.7, where the temporal range was chosen to correspond to the
duration of one magnetron period. In the two plots in the upper half of the figure, it can
be seen that the fast modified cyclotron motion modulates the slow magnetron motion.
In the diagram on the lower left side of the figure, the axial motion is visible, while the
projection on the xy axis in the lower right figure shows the superposition of the radial
modes.

3.3.2 Eigenfrequencies

The more accurate a simulation resembles the theoretical solution for given conditions,
the higher the value of its predictions and the higher its potential to reveal subtleties
which might lead to a better understanding of the processes under investigation. To
confirm the integrity and accuracy of its predictions, numerous simulations have been
evaluated retrieving the inherent three eigenfrequencies of the system, which are of
special interest. For this purpose, numerical integrations of a charged particle were
performed to obtain its temporal motion, from which magnetron, axial, and modified
cyclotron frequency were extracted by fitting the equations of motion (cf. Eqs. (2.5)-(2.7))
onto the temporal evolution of the x- and z-positions using the Least Squares Error (LSE)
criterion [77]. For retrieving the global minimum of the LSE function, a concatenation of
methods was used. First, the eigenfrequencies were extracted coarsely by determining
the maxima in frequency space using the Fast Fourier Transform (FFT) [78]. Second, these
maxima were used to define boundary regions that delimit the parameter space for the
application of Differential Evolution (DE) [79, 80] using the LSE criterion for optimization.
Third, the results of the DE were refined by a second optimization using the LSE criterion
in a narrower parameter space. It was found that the described method is more stable
compared to a simple LSE fit, but still susceptible to the choice of the size of the boundary
regions, which can lead to instabilities in the fitting.

In a second step, the retrieved eigenfrequencies were compared to the theoretical
eigenfrequencies by calculating the residuals δ as

δ =

∣∣∣∣νanalytical − νfit
νanalytical

∣∣∣∣ (3.9)

for each eigenfrequency. Since the uncertainties of the determined eigenfrequencies
resulting from the square root of the diagonal of the covariance matrix of the fit were
several orders of magnitude smaller than the calculated residuals, they were neglected
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Figure 3.7: Temporally recorded spatial data of ion motion in the simulation under ideal
trap conditions, i.e. harmonic electric potential and homogenous magnetic field, for visual
verification of the integrity of the predictions. To match the magnitudes of the three
eigenfrequencies so that they can be distinguished, the magnetic field strength B0 was
reduced to 1T for this figure. In the two plots in the upper half of the figure the consist
of a superposition of the fast modified cyclotron motion modulating the slow magnetron
motion. The diagram on the lower left side of the figure shows the axial motion, while
the projection on the xy axis in the lower right figure shows the superposition of the
radial modes.

in all considerations. In Fig. 3.8, the residuals of the eigenfrequencies compared to the
theoretical solutions (cf. Eqs. (2.8) and (2.9)) are depicted against the simulation time
step ∆t. The expectations agree with the results, as a decrease of the time step ∆t is
anticipated to lead to an increase in accuracy of all eigenfrequencies. For simulation time
steps smaller than 5× 10−11 s, the retrieved magnetron frequency shows inconsistencies
in terms of its behavior compared to both other eigenfrequencies. This effect is discussed
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in Ch. 4. All relative residuals δ range from 10−2 to 10−15 indicating that the residuals
are strongly dependent on the simulation time step ∆t, which was examined in a range
from 10−9 s to 10−12 s.
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Figure 3.8: Residuals of the determined eigenfrequencies (magnetron, axial, and modified
cyclotron) compared to the expected theoretical eigenfrequencies obtained using Eq. (3.9)
as a function of the simulation time step ∆t.

3.3.3 Electro-Magnetic Frequency Shifts

To further investigate the integrity of the simulation, frequency shifts induced by electric
and magnetic higher order terms predicted by theory [43] were chosen for benchmark-
ing. For this purpose, studies were conducted varying the 4th order electric potential
coefficient C4 and the 2nd order magnetic field coefficient B2. The eigenfrequencies of
these simulations were extracted by LSE fitting of the equations of motion, analogue
to the description provided in Sec. 3.3.2. As aforementioned, the uncertainties yielded
from fitting were neglected since they were several orders of magnitude lower than the
retrieved frequency shifts.

In Fig. 3.9, the electrically induced relative frequency shifts are plotted and compared
to the analytical predictions from Eqs. (2.18) and (2.19). The frequency shifts are calculated
with respect to the eigenfrequencies and the amplitudes of the charged particle in absence
of the electric coefficient C4. The values of the C4 coefficients were chosen such that
the smallest relative frequency shift would occur on the order of 10−9, several orders of
magnitude above the estimation uncertainty of the fitting parameters. The experimentally
acquired data fits well to the expected theoretical values. In addition to the visual review,
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a linear fit of the experimental data confirmed the slopes of experimental data and theory
to be identical within their margins of error.
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Figure 3.9: Electrically induced relative frequency shifts compared to the theoretical
expectation (red) by changing the fourth-order electric coefficient C4. All three eigenfre-
quencies ω−, ωz , and ω+ (magnetron, axial, and modified cyclotron, respectively) were
obtained through LSE fitting of the equations of motion.

In Fig. 3.10, the magnetically induced frequency shifts are plotted and compared to
the analytical predictions from Eqs. (2.21)-(2.23). The values of the B2 coefficients were
chosen such that the smallest relative frequency shift would occur on the order of 10−9,
several orders of magnitude above the estimation uncertainty of the fitting parameters.
The visual conformity of the experimental data and the theoretical expectations was
further examined by comparing the slopes of experimental data retrieved by a linear
fit to theory. It was found that all slopes agree to theory within their margins of error,
matching the theoretical expectations.
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Figure 3.10: Magnetically induced relative frequency shifts compared to the theoretical
expectation (red) by changing the second-order magnetic coefficient B2. All three eigen-
frequencies ω−, ωz , and ω+ (magnetron, axial, and modified cyclotron, respectively) were
obtained through LSE fitting of the equations of motion.

3.3.4 Excitation and Conversion Pulses

Excitation and conversion pulses constitute a powerful tool for controlling the motion
of the charged particle inside the trap. A simulation allowing access to the application
of pulses with arbitrary shapes opens up possibilities to test new measurement and
controlling schemes. Therefore, the prediction of the behavior of the charged particle
during an RF pulse of arbitrary shape was subject to this simulation package.

In this section, an exemplary dipole pulse is applied, whose response is shown quali-
tatively in Fig. 3.11. For this simulation, a sinusoidal dipole pulse with an RF frequency
matching the axial frequency was applied in z-direction with a voltage of 5 kV according
to Eq. (2.25). Although such high voltages are not normally used in the experiment, the
magnitude was chosen to show amplitude reduction and magnification with a phase
offset of π, which serves as proof of principle for dipole excitation with an ideal electric
potential.

Corresponding studies were also carried out using sinusoidal quadrupole pulses,
converting energy from the modified cyclotron mode to the axial mode and vice versa.
In this section, an exemplary quadrupole pulse is applied, whose response is shown
qualitatively in Fig. 3.12. For this simulation, a sinusoidal quadrupole pulse with an
electric field amplitude of 105Vm−1 and an RF frequency matching the lower side band
frequency of the axial and modified cyclotron motion was applied, calculated with the
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Figure 3.11: Simulation of an in-phase (green) and an opposite-of-phase (purple) dipole
excitation pulse using an ideal electric potential, altering the axial motion of the charged
particle. The effect of amplitude reduction and increase with phase offset of π has been
investigated in Ref. [45].

extracted frequencies at the corresponding simulation time step from the results of the
fits in Sec. 3.3.2. Although such high electric field amplitudes are not normally used in the
experiment, the magnitude was chosen to allow for illustration of multiple Rabi cycles
during the chosen time interval, serving as proof of principle for quadrupole excitation
with an ideal electric potential. The Rabi frequency was compared to the expected value
from theory, extracted by manually counting the number of cycles in a given time period.
The Rabi frequency from the simulation was found to agree with the theoretical value,
calculated using Eq. (2.30), within the error limits.

In addition to the ability to apply RF pulses using an ideal electric potential, as de-
scribed in the previous paragraph, the simulation also provides the ability to read in
potentially cylindrical symmetry breaking electric potentials generated by FEM calcula-
tions. To illustrate the integrity of these predictions, an FEM-generated electric dipole
potential in x-direction was calculated by applying a phase difference of π between two
opposing segments of the RE using the model described in Sec. 3.1.1. For this simulation,
whose results are shown in Fig. 3.13, a sinusoidal dipole pulse in x-direction was applied
with a voltage of 1 kV using the retrieved electric potential coefficients by polynomial
regression. Although such high voltages are not normally used in the experiment, the
magnitude was chosen to show amplitude reduction and magnification with a phase offset
of π, which serves as proof of principle for dipole excitation using an FEM-generated
electric potential.
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Figure 3.12: Simulation of a quadrupole conversion pulse using an ideal electric potential,
exchanging energy between the axial mode (upper plot) and the modified cyclotron mode
(lower plot), where the radius refers to the motion in the xy-plane. The effect of amplitude
reduction and increase using quadrupole pulses has been investigated in Ref. [81].
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Figure 3.13: Simulation of an in-phase (golden) and an opposite-of-phase (blue) dipole
excitation pulse using an FEM-generated electric potential, altering the magnetronmotion
of the charged particle. The effect of amplitude reduction and increase with phase offset
of π has been investigated in Ref. [45].
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Discussion

The objective of this work was to create a simulation package capable of simulating the
motion of a charged particle confined in a Penning trap for studying systematic effects
and the influence of arbitrarily shaped excitation and conversion pulses. To achieve
this, the electric potential was used in a polynomial expansion representation that is
not constrained by cylindrical symmetry. The Finite Element Method (FEM), a state-of-
the-art method able to numerically approximate electric potentials in volumes between
arbitrarily shaped electrodes, was selected as a suitable method.

In order to investigate the accuracy of these numerical approximations, an FEMmodel
was implemented based on an already known model for which an analytical solution
exists, allowing for a direct comparison. First, the convergence of the analytical electric
potential calculations was quantitatively investigated. For this purpose, the electric
potential was evaluated on numerous randomly chosen points inside a region of interest
(ROI), taking into account increasingly higher orders of sum terms. Relative residuals of
the electric potentials were then calculated between each pair of points from adjacent
orders, confirming the convergence of the analytical potential calculations with higher
orders as expected. A regular pattern of outliers was observed not explainable by the
uncertainties of the values. The reason might be that the used analytical electric potential
is a representation of oscillating terms. If adjacent terms occur to be similar in terms of
their magnitude, they more or less cancel each other out, leaving the residuals to drop
occasionally. From the consideration of the analytical electric potential, for computational
time reasons, the highest computational order was set to a value of 200 for the remainder
of this work so that the calculations fall below the specified accuracy threshold from the
FEM simulations discussed below.

To spatially test the accuracy of the FEM-generated electric potential at the mesh
points provided by Comsol, relative residuals of the electric potential at all mesh points
inside a ROI were calculated using the aforementioned analytical electric potential solu-
tion. After grouping the mesh grid points into bins using their location on the xy- and
xz-plane, the absolute mean of the residuals was visualized. The result implies that all

37
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residuals are of the order of 10−9, being lower around the edges of the cylindrical space,
which was introduced to incorporate a high density of mesh grid points in the center.
The question arises as to why the residuals are closer to the expected solution around the
space interval with high mesh grid density, rather than inside this space. An explanation
for this might lie in the fact that, due to the rigid geometry of the employed cylinder,
additional boundary conditions were introduced on its surface. It is expected that the
curved areas of the cylinder barrel and the sharp edges around the edge of its cover are
difficult to model. In the future, additional studies should be carried out experimenting
with different forced mesh geometries. Also, an interesting approach would be to force
the mesh to get finer towards the center of the trap without the introduction of additional
geometries, taking curved or sharp boundary conditions out of the equation. Nevertheless,
all observed residuals remain within a reasonable range. A study with a completely free
tetrahedral mesh without the introduction of forced high density spaces resulted in less
grid points being placed towards the center of the trap, leading to a decreased prediction
accuracy of the FEM. The relative density of mesh grid points is determined automatically
by the used FEM algorithm, increasing the number of grid points in regions where the
gradient of the electric potential is highest. As the center of the trap is located far from
the electrodes compared to the rest of the volume, the least amount of mesh grid points
is placed in the region where a high accuracy is demanded. Therefore, a user-defined
high density zone in the center of the trap was found to be crucial in terms of the FEM’s
accuracy.

Opposed to the discrete approximated solution from the FEM calculations, a continu-
ous representation of the electric potential is necessary for integrating the equations of
motion. Therefore, a method interpolating between known values at mesh grid points
was required. The two methods of choice were trilinear interpolation and polynomial
regression, using two different approaches for interpolation; the former uses solely mesh
grid points around the unknown point, whereas the latter takes all points inside a chosen
space region into account. For determining their accuracy, both methods were bench-
marked against the known analytical solution of the electric potential. As the trilinear
interpolation needs to be applied to a cubic grid, both methods were compared directly
using the same regular grid. Numerous random points were drawn for which relative
residuals to the analytical solution were calculated. Investigation of the distribution of
the residuals revealed that the residuals of both methods are of order 10−4, but their
dispersions are on different orders of magnitude. Concentrating on the electric field
rather than the electric potential, it is valid to add an arbitrary constant value c ∈ R to the
potential, exploiting the ambiguity of the electric potential from Gauge fixing. Then, the
narrow dispersion of the residuals of the polynomial regression elevate the accuracy of
the residuals to the order of 10−5. Thus, polynomial regression still outperforms trilinear
interpolation by an order of magnitude. One reason for this could be that the ideal
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electric potential in a Penning trap is given by second order parabolic terms that cannot
be represented using trilinear interpolation, since this method only interpolates linearly
in every dimension. The free tetrahedral mesh, interpolated using polynomial regression,
revealed residuals on the order of 10−9, the same order of magnitude as found in direct
comparison of the FEM solution at its grid points to the analytical expression. Therefore,
it can be assumed, that polynomial regression is an adequate method for interpolation
between grid points of the FEM simulation. As polynomial regression can be expanded
to any order and space, it must be noted that it is necessary to constrain both parameters
such that under- and overfitting remain in a tolerable range. In addition, polynomial
regression is superior to trilinear interpolation in terms of calculation speed, since the
derivation of a functional expression of the electrical potential eliminates the need to
access the FEM simulation file continually. On the other hand, for each value calculated
by trilinear interpolation, eight surrounding corner points of the electric potential need
to be fetched from the FEM simulation file.

For putting the simulation through its paces, the integrity and accuracy of its predic-
tions was investigated by various steps. First, the ion’s motion was examined qualitatively
by generating diagrams of the motion of the charged particle for all three cartesian coor-
dinates and in the xy-plane for one magnetron cycle, where all eigenmotions could be
visually identified. Second, the eigenfrequencies from the simulation were investigated
quantitatively for measuring the accuracy of the eigenfrequencies by comparing them to
the theoretical values. This step required the development of a method for retrieving the
eigenfrequencies. By conducting empirical trials, a combination of Fast Fourier Transform
(FFT), Differential Evolution, and Least Squares Error (LSE) fitting of the equations of
motion for a charged particle inside a Penning trap was found to be most effective and
stable in retrieving the eigenfrequencies. Using this method, all eigenfrequencies were re-
trieved for simulations using ideal trapping conditions, making them directly comparable
to theoretical expectations. For investigating the simulation’s predictions for different
simulation time steps in the integration, all eigenfrequencies were extracted over roughly
three orders of magnitude and compared to theory by calculating relative residuals with
the theoretically expected frequencies. In line with the expectations, the study indicated
that the residuals of the eigenfrequencies decrease exponentially with decreasing simula-
tion time step. The most precise frequency was the magnetron frequency, followed by
the axial frequency and the modified cyclotron frequency, respectively. It must be noted
that the succession of precision corresponds to the magnitude of the frequencies, i.e. the
higher the frequency, the worse its accuracy in the simulation. In the case of circular
motion, the higher the frequency, the shorter the period of oscillation, and the fewer the
number of sampling points recorded by the integration per revolution. A circle can be
represented mathematically as an infinite number of infinitesimal adjacent lines. Due
to the finite simulation time step, only a finite number of adjacent lines can be used to
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represent the circle, leading to inconsistencies that increase in magnitude for a decrease in
the sample points per orbital revolution. Therefore, as expected, the higher the frequency,
the less accurate its value can be retrieved by an integration algorithm. To investigate
the integrity of the frequency determination method, motivated by the unexpected jump
in residuals in the magnetron frequency, reduced χ2 values were calculated for all fits.
However, since no sudden jump in the χ2 values was found, there was no indication that
the four values did not converge at the lower end of the observed simulation time step
range. Also, it was found that the relative retrieval error of the magnetron frequency
remained two orders of magnitude lower than the lowest retrieved residual. Due to these
reasons, it can be assumed that this unexpected behavior in the magnetron frequency
arises from the simulation itself. This behavior should be further investigated in future
studies, presented in detail in Ch. 5.

For experimentally confirming the predicted frequency shifts induced by higher order
electric and magnetic terms in the simulation, ion integrations for varying values of
C4 and B2 were run with the goal to compare the slopes to the theoretically predicted
value using the already described frequency extraction method. Then, linear fits using
the LSE criterion were calculated, and the slopes were compared to the theoretically
predicted values. For both studies and all eigenfrequencies, the experimentally retrieved
frequencies agreed within their margins of error with the predicted frequency shifts. For
investigating the effects of radio frequency (RF) excitation and conversion pulses on the
motion of the charged particle in both an ideal, and an FEM-generated electric potential,
dipole and quadrupole pulses were applied. For the dipole case, two simulations were
run using an in-phase and opposite-of-phase pulse. The experimental observations agree
with the theoretical expectations. The investigation of the quadrupole case confirmed
the Rabi frequency of the beating between the axial and the modified cyclotron mode to
be in line with the expected theoretical value within the margin of error.

Last but not least, the limitations of the simulation were found to arise from the
value of the simulation time step which is needed to be sufficiently low for retrieving key
characteristics of the experiment with high accuracy.



Chapter 5

Conclusion and Outlook

The goal of this thesis was to develop a simulation package for studying systematic effects
and excitation and conversion pulses of arbitrary shape. For this purpose, PentaSim was
implemented to calculate trajectories of charged ions in static or dynamic, non-symmetric,
electric potentials.

The objective of this thesis was to set a foundation for the study of the aforementioned
effects by creating a simulation tool capable of studying these effects, and to quantify
the accuracy of the simulation’s predictions. Therefore, multiple studies were carried
out to investigate the precision of the simulations by comparison with theory. These
studies comprised testing of convergence of the analytical electric potential solution,
testing of the accuracy of the FEM-generated electric potential calculations, testing of
the integrity of two implemented interpolation methods, testing of the examination of
the ion’s motion and eigenfrequencies compared to theory, quantitatively investigating
electro-magnetic frequency shifts predicted by theory, and qualitatively probing dipole
and quadrupole excitation pulses.

The examination of the FEM-generated electric potential indicated that further studies
should be carried out focusing on the effects of the spatial mesh distribution for optimizing
the accuracy of the approximation in the region where the ion traverses.

Finding a suitable order of fit for polynomial regression and a suitable spatial interval
is currently the task of the experimentalists. The provision of goodness measures like the
calculation of confidence intervals and hypothesis tests would result in a more informed
choice of these parameters.

By benchmarking the eigenfrequencies of the integrated motion it was indicated that
a reasonably high number of sample points per time frame is necessary for increasing
the accuracy of the simulation to a range usable for experimental studies. Also, the
simulation time step cannot be reduced arbitrarily, due to limits in calculation time.
Therefore, further studies should be directed towards investigating the behavior of the
accuracy of the eigenfrequencies using even smaller time steps, and to probe whether
the exponential decrease in the residuals of the eigenfrequencies is curbed at some point
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using the 2nd order Boris algorithm [60]. Initial studies indicated that the explicit 4th

order symplectic integrator called Explicit Symplectic Shadowed Runge–Kutta (ESSRK),
published and analyzed in Refs. [82, 83], is expected to provide a higher accuracy using a
lesser amount of sample points per time frame, potentially leading to a more precise and
efficient simulation.

In general, addition of time-varying electric potentials andmagnetic fields for studying
drift effects, patch potentials and noise on the electrodes, image charge effects, relativistic
effects, methods used in the experiment such as the phase shift method, and the interaction
of the ion with a resonator would be of additional value and further extend the simulation
tool kit PentaSim.



Appendix

Code Block A.1: Load an FEM-generated electric potential from a text file from Comsol,
or load and superimpose multiple normalized simulation files to a single electric potential.
Afterwards, the electric potential can be prepared for usage in the simulation by applying
polynomial regression, calculating the polynomial feature coefficients for a given degree

and f i t _ r a n g e . An RF pulse can be added by reading in additional FEM data or by
setting a dipole or quadrupole pulse potential by passing the indices of the participating
eigenvectors using p u l s e _ d i r e c t i o n .

1 from pentas im . p o t e n t i a l . e l e c t r i c _ p o t e n t i a l _ p r e p a r a t i o n \
2 impor t DataHandler , E l e c t r i c P o t e n t i a l P r e p a r a t i o n
3

4 s i n g l e _ p a t h = " / <YOUR_FILE_PATH>/ f em _ f i l e . t x t "
5 f em_data = DataHandler ( f i l e _ p a t h s = s i n g l e _ p a t h )
6

7 mu l t i p l e _ p a t h s = [ " / <YOUR_FILE_PATH>/ f em_ f i l e _ 1 . t x t " ,
8 " / <YOUR_FILE_PATH>/ f em_ f i l e _ 2 . t x t " ,
9 " < . . . > " ,
10 " / <YOUR_FILE_PATH>/ f em_ f i l e _ n . t x t " ]
11 super imposed_ fem_data = DataHandler ( f i l e _ p a t h s =mu l t i p l e _ p a t h s )
12

13 e l e c t r i c _ p o t e n t i a l = E l e c t r i c P o t e n t i a l P r e p a r a t i o n ( degree =4 ,
14 da t a = fem_data )
15 e l e c t r i c _ p o t e n t i a l . f i t ( f i t _ r a n g e =( −1 e −3 , +1e −3 ) )
16

17 e l _ d i p o l e _ p o t e n t i a l = E l e c t r i c P o t e n t i a l P r e p a r a t i o n ( degree =2 )
18 e l _ d i p o l e _ p o t e n t i a l . s e t _ p u l s e ( p u l s e _ d i r e c t i o n = " x " )
19

20 e l _ q u a d r u p o l e _ p o t e n t i a l = E l e c t r i c P o t e n t i a l P r e p a r a t i o n ( degree =2 )
21 e l _ q u a d r u p o l e _ p o t e n t i a l . s e t _ p u l s e ( p u l s e _ d i r e c t i o n = " xz " )

i



Code Block A.2: Typesetting arbitrary Ci and Bi coefficients to the simulation using
example values.

1 from pentas im . p o t e n t i a l . e l e c t r i c _ p o t e n t i a l _ p r e p a r a t i o n \
2 impor t E l e c t r i c P o t e n t i a l P r e p a r a t i o n
3 from pentas im . p o t e n t i a l . m a g n e t i c _ f i e l d _ p r e p a r a t i o n \
4 impor t Magn e t i c F i e l d P r e p a r a t i o n
5

6 e l e c t r i c _ p o t e n t i a l = E l e c t r i c P o t e n t i a l P r e p a r a t i o n ( )
7 magn e t i c _ f i e l d = Magn e t i c F i e l d P r e p a r a t i o n ( )
8

9 e l e c t r i c _ p o t e n t i a l . a d d _ c o e f f i c i e n t s ( { " C2 " : 1 e4 , # [ 1 /m^2]
10 " C4 " : 1e −8 , # [ 1 /m^4]
11 " C6 " : 1e −12 , # [ 1 /m^6]
12 } )
13

14 magn e t i c _ f i e l d . a d d _ c o e f f i c i e n t s ( { " B0 " : 7 . , # [T]
15 " B1 " : 1e −3 , # [T /m]
16 " B2 " : 1e −5 , # [T /m^2]
17 } )

ii



Code Block A.3: Example of typesetting all other necessary input parameters for the
simulation. Either Code Block A.1 or Code Block A.2 is assumed for this Code Block.
The parameters mas s _ s t a t e (u) and c h a r g e _ s t a t e (eAs) can be interchanged with the
parameters mass (kg) and charge (As). It must be noted that multiple RF-pulses with
different RF parameters as well as multiple parameter studies for every parameter of the
simulation may be added. The simulation in this example is run on the cluster, but can
also be run locally setting op t i on = " l o c a l " .

1 from pentas im . s imu l a t i o n . s imu l a t i o n _ p r e p a r a t i o n \
2 impor t S imu l a t i o n P r e p a r a t i o n
3 from pentas im . s imu l a t i o n . nume r i c a l _ s imu l a t i o n \
4 impor t S imula t ionManager
5

6 i on = {
7 " ma s s _ s t a t e " : 9 . ,
8 " c h a r g e _ s t a t e " : 1 . ,
9 " p o s _ i n i t " : [ 1 0 e −6 , 0 . , 0 . ] ,
10 " v e l _ i n i t " : [ 1 . , 1 . , 1 . ] ,
11 }
12

13 t r a p = {
14 " d c _ vo l t a g e " : −30 ,
15 " e l _ c o e f f i c i e n t s " : e l e c t r i c _ p o t e n t i a l . c o e f f i c i e n t s ,
16 " m a g _ c o e f f i c i e n t s " : m a g n e t i c _ f i e l d . c o e f f i c i e n t s ,
17 }
18

19 c on f i g = {
20 " s im_ t_ range " : ( 0 . , 1 . , 1e −10 ) ,
21 " p a t h _ou t pu t _ c on f i g " : " / <YOUR_SIM_OUTPUT_FOLDER_PATH>/ " ,
22 " s a v e _ ou t p u t _ f l a g " : True ,
23 }
24

25 r f = {
26 " r f _ t _ r a n g e " : ( 0 . 4 , 0 . 6 ) ,
27 " r f _ t im e s " : r f _ t ime s ,
28 " r f _ v o l t a g e s " : r f _ v o l t a g e s ,
29 " r f _ c o e f f i c i e n t s " : e l _ p o t e n t i a l _ r f . c o e f f i c i e n t s
30 }
31

32 c o n f i g _ g e n e r a t o r = Con f i gGene ra to r ( )
33

34 c o n f i g _ g e n e r a t o r . add ( mode= " Ion " , pa r ame te r s = ion )
35 c o n f i g _ g e n e r a t o r . add ( mode= " Trap " , pa r ame te r s = t r a p )
36 c o n f i g _ g e n e r a t o r . add ( mode= " Conf ig " , p a r ame te r s = c on f i g )
37

38 c o n f i g _ g e n e r a t o r . add ( mode= " RFPu l se " , p a r ame te r s = r f )

iii



39

40 s t udy_pa r ame t e r s = [ ( 0 . , 1 . , d t ) f o r d t in [1 e −9 , 1e −10 , 1e −11 ] ]
41 s imu l a t i o n . add_s tudy ( parameter_mode= " Conf ig " ,
42 parameter_name= " s im_ t_ range " ,
43 pa r ame t e r _va l u e s = s tudy_pa r ame t e r s )
44

45 s imu l a t i o n = S imula t ionManager ( c o n f i g _ g e n e r a t o r = c on f i g _ g en e r a t o r ,
46 e x e c u t a b l e = " j u l i a " )
47

48 s imu l a t i o n . run ( op t i on = " c l u s t e r " )

iv
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