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Abstract

Modelling interactions between humans and objects in
natural environments is central to many applications in-
cluding gaming, virtual and mixed reality, as well as human
behavior analysis and human-robot collaboration. This
challenging operation scenario requires generalization to
vast number of objects, scenes, and human actions. Un-
fortunately, there exist no such dataset. Moreover, this data
needs to be acquired in diverse natural environments, which
rules out 4D scanners and marker based capture systems.
We present BEHAVE dataset, the first full body human-
object interaction dataset with multi-view RGBD frames
and corresponding 3D SMPL and object fits along with the
annotated contacts between them. We record ∼15k frames
at 5 locations with 8 subjects performing a wide range of
interactions with 20 common objects. We use this data
to learn a model that can jointly track humans and ob-
jects in natural environments with an easy-to-use portable
multi-camera setup. Our key insight is to predict corre-
spondences from the human and the object to a statistical
body model to obtain human-object contacts during inter-
actions. Our approach can record and track not just the
humans and objects but also their interactions, modeled as
surface contacts, in 3D. Our code and data can be found at:
http://virtualhumans.mpi-inf.mpg.de/behave.

1. Introduction

The last decade has seen rapid progress in modelling the
appearance of humans ranging from body pose, shape [52,
58, 60, 61, 81], faces [74] and even detailed clothing [5, 7,
11, 57, 65]. With various practical use cases like virtual try-
on, personalised avatar creation, and several applications

Figure 1. Given a multi-view RGBD sequence, our method tracks
the human, the object and their contacts in 3D.

in augmented and mixed reality, or human-robot collabora-
tion, the focus on humans is justified. Beyond modelling ap-
pearance, few methods have focused on capturing and syn-
thesizing human interactions (human-object/scene interac-
tion). There exists work to capture humans in a static 3D
scene [33], even without using external cameras [30], and
work to synthesize static poses [34, 49], or full body move-
ment [32, 32, 50, 68] in a 3D scene.

These methods show growing interest in modelling hu-
man behavior, highlighting a need to capture real hu-
man interactions. Existing methods [32, 68] however are
learned from high quality curated data captured using opti-
cal marker based motion capture systems or wearable sen-
sors. Unfortunately, such commercial systems are expen-
sive, drastically limit the interactions that can be captured,
and often fail when tracking humans and objects under oc-
clusion. In addition, the recording volume is spatially con-
fined and difficult to re-locate, thus limiting the activities,
scenes, and objects that can be captured. Wearable sen-
sors [30] are not restricted in volume, but close range in-
teraction can not be accurately captured. Altogether, the

1

ar
X

iv
:2

20
4.

06
95

0v
1 

 [
cs

.C
V

] 
 1

4 
A

pr
 2

02
2

http://virtualhumans.mpi-inf.mpg.de/behave


lack of diverse 3D interaction data, and the lack of accu-
rate and flexible capture methods both constitute barriers in
modelling human behavior.

With the goal of simplifying the data capture process
and hence allowing faster progress in the field, we propose
BEHAVE, a method to capture diverse 3D human interac-
tions in natural environments, using a setup comprising of
portable, cheap, and easy to use RGBD cameras. Track-
ing human interactions from sparse consumer grade cam-
eras is however extremely challenging. Depth data is inher-
ently noisy and incomplete. Moreover, the person and ob-
ject occlude each other frequently during interactions. Fur-
thermore, capturing interactions requires estimating human-
object contacts accurately, which is difficult because con-
tacts represent small regions in the image, close to the ob-
servable (resolution) limit. This requires innovation that
goes significantly beyond the current state of the art track-
ers. We propose to track the human using a parametric hu-
man model (such as SMPL [52]) and track objects using
template meshes. Naively fitting the human model and an
object 3D template to the point-cloud completely fails due
to the aforementioned challenges. Our key idea is to train a
neural model which jointly completes the human and object
shape, represented with implicit surfaces, while predicting
a correspondence field to the human, as well as an object
orientation field. These rich outputs allow us to formulate a
powerful human-object fitting objective which is robust to
missing data, noise and occlusion.

To train and evaluate BEHAVE, we capture the largest
dataset of human-object interactions in natural environ-
ments. The BEHAVE dataset contains 20 3D objects, 8
subjects (5 male, 3 female), 5 different locations and totals
around 15.2k frames of recording. We provide ground truth
SMPL and 3D object meshes as well as contacts.
Our contributions can be summarized as follows:

• We propose the first approach that can accurately 3D
track humans, objects and contacts in natural environ-
ments using multi-view RGBD images.

• We collect the largest dataset of multi-view RGBD se-
quences and corresponding human models, object and
contact annotations. See Sec. 3 for details regarding
its usefulness to the community.

• Since there exists no publicly available code and
datasets to accurately track human-object interactions
in natural environments, we will release our code and
data for further research in this direction.

2. Related Work
In this section, we first briefly review work focused on

object and human reconstruction, in isolation from their en-
vironmental context. Such methods focus on modelling ap-

pearance and do not consider interactions. Next, we cover
methods focused on humans in static scenes and finally dis-
cuss closer-related work to ours, for modelling dynamic
human-object interactions.

2.1. Appearance modelling: Humans and objects
without scene context

Human reconstruction and performance capture Per-
ceiving humans from monocular RGB data [12, 29, 31, 41,
43, 44, 58, 59, 64, 87] and under multiple views [37–40, 62]
settings has been widely explored. Recent work tends to
focus on reconstructing fine details like hand gestures and
facial expressions [20, 25, 85, 91], self-contacts [27, 54], in-
teractions between humans [26], and even clothing [6, 11].
These methods benefit from representing human with para-
metric body models [52, 58, 81], thus motivating our use of
recent implicit diffused representations [8, 10] as backbone
for our tracker.
Following the success of pixel-aligned implicit function
learning [64, 65], recent methods can capture human per-
formance from sparse [38, 80] or even a single RGB cam-
era [47,48]. However, capturing 3D humans from RGB data
involves a fundamental ambiguity between depth and scale.
Therefore, recent methods use RGBD [56, 69, 73, 76, 84] or
volumetric data [9,10,19] for reliable human capture. These
insights motivate us to build novel trackers based on multi-
view RGBD data.

Object reconstruction Most existing work on recon-
structing 3D objects from RGB [21, 46, 53, 75, 78] and
RGBD [45, 55, 82] data does so in isolation, without the
human involvement or the interaction. While challenging,
it is arguably more interesting to reconstruct objects in a
dynamic setting under severe occlusions from the human.

2.2. Interaction modelling: Humans and objects
with scene context

Humans in static scenes Modelling how humans act in a
scene is both important and challenging. Tasks like place-
ment of humans into static scenes [34, 49, 90], motion pre-
diction [15,32] or human pose reconstruction [16,33,77,86,
89] under scene constrains, or learning priors for human-
object interactions [66], have been investigated extensively
in recent years. These methods are relevant but restricted
to modelling humans interacting with static objects. We
address a more challenging problem of jointly tracking
human-object interactions in dynamic environments where
objects are manipulated.

Dynamic human object interactions Recently, there has
been a strong push on modeling hand-object interactions
based on 3D [42,72], 2.5D [13,14] and 2D [22,24,28,35,83]
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Dataset RGBD Hum. Ob.Cont. Qual. Scal.

NTU [51] X Jts. X NA ***
PiGr [66] X Jts. X NA **
GRAB [72] X X X *** *
PROX [33] X X Stat. * **

Ours X X X ** ***

Table 1. We compare the proposed BEHAVE dataset with exist-
ing ones containing human-object interactions. Our criteria are
based on availability of RGB input, 3D human, 3D contact with
the object, quality (more stars, better), and scalability to capture
at diverse locations (more stars, better). NTU-RGBD [51] and
PiGraphs [66] do not provide full 3D human and object contacts
and are hence unsuitable for modelling dynamic 3D interactions.
GRAB [72] uses a marker based capture system and hence con-
tains the highest quality data but this also makes it difficult to
scale. PROX [33] is easier to scale as it uses a single Kinect based
capture setup (although, scene needs to be pre-scanned) but this
reduces the overall quality. More importantly it does not contain
dynamic interactions. Ours is the first dataset that captures dy-
namic human-object interactions in diverse environments.

data. Although powerful, these methods are currently re-
stricted to modelling only hand-object interactions. In con-
trast, we are interested in full body capture. Methods for
dynamic full body human object interaction approach the
problem via 2D action recognition [36, 51] or reconstruct
3D object trajectories during interactions [23]. Despite be-
ing impressive, such methods either lack full 3D reason-
ing [36, 51] or are limited to specific objects [23].
More recent work reconstructs and tracks human-object in-
teractions from RGB [71] or RGBD streams [70], but does
not consider contact prediction, thus missing a component
necessary for accurate interaction estimates.
Very relevant to our work, PHOSA [88] reconstructs hu-
mans and objects from a single image. PHOSA uses hand
crafted heuristics, instance specific optimization for fitting,
and pre-defined contact regions, which limits generaliza-
tion to diverse human-object interactions. Our method on
the other hand learns to predict the necessary information
from data, making our models more scale-able. As shown
in the experiments, the accuracy of our method is signifi-
cantly higher to PHOSA.

3. BEHAVE Dataset

We present BEHAVE dataset, the largest dataset of
human-object interactions in natural environments, with 3D
human, object and contact annotation, to date. See Tab. 1
for comparison with other datasets. Our dataset contains
multi-view RGBD frames, with accurate pseudo-ground
truth SMPL [52], object fits, human and object segmenta-
tion masks, and contact annotations.

Recording multi-view RGBD data We setup and cali-
brate 4 Kinects at 4 corners of our square recording volume
where all interactions are performed by 8 subjects (5 male,
3 female). Interactions are captured at 5 disparate indoor
locations with 20 commonly used, yet diverse objects: 5
different boxes, 2 chairs, 2 tables, crate, backpack, trash-
can, monitor, keyboard, suitcase, basketball, exercise ball,
yoga mat, stool and a toolbox. We include common interac-
tions such as lifting, carrying, sitting, pushing and pulling
with hands and feet, as well as free interactions. See our
supplementary video for sample sequences. In total, our
dataset contains 10.7k frames for training and 4.5k frames
for testing respectively.

Human segmentation and SMPL fitting We segment
the human in our images by running DetectronV2 [79] fol-
lowed by manual correction with [67] on the segmentation
masks. These masks are then used to segment multi-view
depth maps and lift human point clouds from 2D to 3D. We
use FrankMocap [63] to initialize SMPL’s pose from the
images and then use instance specific optimization [6] to
fit the SMPL model to the segmented human point cloud.
For more accurate fitting, we additionally obtain the SMPL
shape parameters of each subject from 3D scans using [9].
We report a chamfer error of 1.80cm between the segmented
kinect point cloud and our SMPL fits.

Object segmentation and fitting To obtain object seg-
mentation, we pre-scan objects using a 3D scanner [1, 3].
We then use multi-view object keypoints, marked manually
by AMT [2] annotators in images, to optimize the 6D pose
of the pre-scanned object mesh to the given frame. We ob-
tain the chamfer error of 2.42cm between the segmented
Kinect point cloud and object fit. The segmentation masks
are then obtained by projecting fitted object meshes to the
images.

Contact annotation Based on the pseudo-GT SMPL and
object fits as described above, we automatically detect con-
tacts if a point on the human surface (registered SMPL) is
closer than 2cm to the object surface. For every object point,
we store a binary contact label (whether there is a contact
or not) and correspondence to the human (contact location
on the surface).
See supplementary for more details on data acquisition.

How will this dataset be useful to the community? We
devote significant effort in recording the largest, so far,
dataset of natural, full body, day-to-day human interactions
with common objects in different natural environments. We
propose following challenges with BEHAVE dataset:
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Figure 2. We present BEHAVE dataset, the largest dataset of human-object interactions in natural environments. BEHAVE contains
multi-view RGBD sequences and corresponding 3D object and SMPL fits along with 3D contacts.

• Tracking human-object interactions. Track humans
and objects using multi-view RGBD data. This can
further be extended to track with just multi-view RGB,
no-depth, and eventually just a single camera.

• Reconstruction from a single image. Joint 3D recon-
struction of 3D humans and objects from a single RGB
image. Currently, there is no dataset that can be used
for benchmarking let alone to learn such a model.

• Pose and shape estimation. Benchmarking pose and
shape estimation methods in challenging natural envi-
ronments where the person is heavily occluded by the
interacting object.

Apart from these tasks, the research community is free to
explore other applications of the BEHAVE dataset.

4. Method: Tracking human, object and con-
tacts

We present BEHAVE, a method to jointly track humans,
objects and their interactions (represented as surface con-
tacts) based on multi-view RGBD input. We formulate our
method as an extended per-frame registration problem: we
register the human (using SMPL [52]) and the object (using
its pre-scanned object mesh), and predict contacts as corre-
spondences between SMPL and object meshes. See Fig. 3
for the overview of our method.
Our formulation must obey three properties, (i) the SMPL
model M(·) should fit the human in the multi-view input,
(ii) the object mesh Wo should fit the input object and, (iii)
SMPL model and object should satisfy contacts.
To facilitate joint reasoning of the human, object and con-
tacts directly in 3D, we lift the human Sh, and object So
point clouds to 3D using multi-view depth and semantic
segmentation. Our joint formulation fits SMPL M(·) and

the object Wo to multi-view RGB-D data at each time step,
using explicit contacts. This takes the following form

E(θ,β,Ro, to) =ESMPL(Sh,M(θ,β)) + Eobj(So,Wo)+

Econtact(1cWo,M(θ,β)).

(1)

The SMPL model is parameterized by pose θ, and shape
β. For notation brevity, we include the global SMPL trans-
lation into the pose parameters. We assume the template
object W be rigid and only estimate the rotation Ro, and
translation to, to fit the object mesh Wo = RoW + to, to
the object point cloud.
The indicator matrix, 1c, selects the vertices on the object
mesh Wo, that are in contact with the SMPL model. This
ensures that contact locations on the object and the human
mesh adequately align in 3D.
The term ESMPL(Sh,M(θ,β)) is designed to accurately
fit SMPL to the human point cloud Sh. The term
Eobj(So,Wo) is designed to fit the object mesh to the ob-
ject point cloud and Econtact(1cWo,M(θ,β)) ensures that
contacts between the human and object match (align). We
explain each term in detail next.

4.1. Fitting human model to the human point cloud

Fitting SMPL to the human point cloud Sh requires, (i)
that distance between the SMPL model and the human point
cloud should be minimized and (ii) the correct SMPL parts
fit the corresponding body parts of the point cloud. The
latter is important to avoid degenerate cases such as 180◦

flipped fitting, where the left hand is erroneously matched
to the right side of the body or vice-versa [9]. With these
considerations, we design our SMPL fitting objective as:

ESMPL = d(Sh,M(θ,β)) + Ecorr + Ereg, (2)

4



Input: Segmented human
and object multi-view PC 

Reference
SMPL model

Output: Registered SMPL,
object and contacts

NN pred.
Corr. & Dist

Fit SMPL, object
and contacts

Figure 3. Given a sequence of multi-view images, we track the human and the object using SMPL and a template object mesh. We
lift the segmented multi-view RGBD frames to 3D and obtain a human and object point cloud. As shown here, our network predicts
correspondences between the human point cloud and the body model, which allows us to fit SMPL. We also predict correspondences from
the object to the body model, thus allowing us to model contacts. Our network predictions (see Sec. 4) allow us to register SMPL and the
object mesh to a video, making an accurate joint tracking of the human and object possible.

where d(Sh,M(θ,β)) minimizes the point-to-mesh dis-
tance between the input human point cloud Sh and the
SMPL model. To avoid sub-optimal local minima during
fitting [9, 10], we train a neural network that predicts dense
correspondences from the input to the SMPL model. This
ensures that correct SMPL parts explain corresponding in-
put regions, using the term Ecorr.
Specifically, we train an encoder network similar to [17,18]
that takes the segmented and voxelized human Sh and ob-
ject So point cloud as inputs, and generates a voxel aligned
grid of features F = f enc

φ (Sh,So). We then sample N
3D query points, {p1, . . . ,pN},pi ∈ R3 and for each
point pi = (x, y, z) obtain the corresponding point fea-
ture Fi = F(x, y, z). We pass this point feature through
a decoder network f udf

φ , to predict the unsigned distance to
object and human surfaces, uoi , u

h
i = f udf

φ (Fi), u
o
i , u

h
i ∈ R,

respectively. We use a second decoder network f corr
φ , to pre-

dict the correspondence of point pi to the SMPL model,
ci = f corr

φ (Fi), ci ∈ R3.
Ecorr enforces that the distance between the input point pi
and the corresponding point ci after transforming it with
the SMPL model is same as the distance predicted by the
network uhi . Under a slight abuse of notation we use
M(ci,θ,β) to transform ci with the SMPL function.

Ecorr =

N∑
i=1

||pi −M(ci,θ,β)|2 − uhi |. (3)

If the correspondences predicted by the network ci deviate
from the SMPL surface, these cannot be skinned using the
SMPL model as its function is only defined on the body
surface. To alleviate this issue, we use the LoopReg [10]
formulation that allows us to pose and shape off-the-surface
correspondences as well.
The final term Ereg = EJ2D + Eθ + Eβ, adds regularisa-

tion for SMPL joints,EJ2D =
∑K
k=1 |πkMJ(θ,β)−Jk2D|2,

where πk is the camera projection matrix of camera k,
MJ(·) are the 3D body joints and Jk2D are the 2D joints
detected in the kth Kinect image. Eθ and Eβ are regulari-
sation terms on SMPL pose and shape similar to [12].

4.2. Fitting the object mesh to the object point cloud

In order to fit the object mesh, we must ensure that dis-
tance from the input object point cloud to the object mesh is
minimized. Minimizing this one-sided distance is necessary
but not sufficient. Since severe occlusions are common in
our interaction setting, large parts of object might be miss-
ing from the object point cloud, making fitting difficult. To
alleviate this issue we must also ensure that all the vertices
of the object mesh are correctly placed w.r.t. the input, even
when the point cloud is incomplete. To do so, we take the
object mesh vertices voj ∈Wo, j ∈ {1, . . . , L} and obtain
the corresponding point feature Fj , same as Sec. 4.1, where
L is the number of object mesh vertices. We then obtain the
unsigned distances to the object and human surfaces using
the point feature uoj , u

h
j = f udf

φ (Fj). Since voj is a vertex on
the object mesh, its distance to the object surface uoj must
be zero for a correct fit. This allows us to accurately fit the
object vertices to the point data even when corresponding
parts are missing from the object point cloud.

Eobj = d(So,Wo) +

L∑
j=1

|uoj |, (4)

where, d(So,Wo) minimizes the point-to-mesh distance
between the object point cloud and the object mesh, and the
term

∑L
j=1 |uoj | uses implicit unsigned distance prediction

to reason about missing object parts.
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Input PC Our w/o ori. Ours

Figure 4. We show that our network predicted orientation is impor-
tant for accurate object fitting. Without our orientation prediction
the fitting gets stuck in a local minima.

Predicting object orientation. Although the terms
in Eq. (4) minimize the bi-directional distance between the
object point cloud and the object mesh, they do not guaran-
tee that parts of the object point cloud are explained by the
semantically corresponding parts on the object mesh, e.g.
in Fig. 4, the legs of the table are not aligned correctly. This
issue can be fixed if we obtain the global object orientation
during fitting. We represent the orientation of the object
with the principal components obtained by running PCA on
the object vertices.
We train a neural network faφ , that uses the point fea-
ture Fj (same as Sec. 4.1) corresponding to each query
point pj and predicts the global orientation of the object
aj = faφ(Fj),aj ∈ R9. We find that orientation pre-
diction is unreliable if the query point is far from the ob-
ject surface, hence we filter out points whose unsigned dis-
tance from the object surface uoj , is greater than a thresh-
old ε = 2cm. The global orientation of the object is ob-
tained by averaging the orientation predictions from the fil-
tered points, ao = 1

M

∑M
j=1 aj where M is the number

of filtered points. Next, we compute the relative rotation
between the current object orientation ā and the predicted
object orientation ao, and use this to initialise the object ro-
tation Ro = ao(āT ā)−1āT . We further run SVD on Ro

and only keep the rotation matrix.
Initialising Ro with the network predicted object orienta-
tion is crucial to avoid local minima during object fitting, as
can be seen in Fig. 4 and Tab. 3.

4.3. Refining human & object models using contacts

Our formulation above gives reasonably good human
and object fits but does not ensure that human and object
meshes satisfy the contacts predicted by the network. This
often leads to floating objects and hovering hands see Fig. 5,
as human and object models are not in contact. In this sec-
tion we explicitly optimize the human and object meshes to
fit the contacts predicted by the network. We model con-
tacts as vertices in the registered object mesh voj ∈ Wo,

Input PC Ours w/o contacts Ours

Figure 5. Without our network predicted contacts we observe arte-
facts like floating objects, leading to unrealistic tracking.

that are very close to the input human uhj < ε and object
uoj < ε surface. Similarly to Sec. 4.2, we use f udf

φ to ob-
tain the unsigned distances uoj , u

h
j and f corr

φ to obtain the
correspondences cj of these points to the SMPL model, re-
spectively. In order to filter query points close to human
and object surfaces we compute a binary indicator matrix
1
c ∈ RN such that 1cj = 1 iff uoj < ε, uhj < ε.

Econtact =

N∑
j=1

1
c
j |voj −M(cj ,θ,β)|2. (5)

Econtact allows us to jointly optimise the SMPL model and
the object parameters Ro, to to satisfy the contacts pre-
dicted by the network.

4.4. Network training

In this section we elaborate on training our networks.

Feature encoding. We use a 3D CNN similar to IF-
Net [17] to obtain a voxel aligned multi-scale grid of fea-
tures F = f enc

φ (Sh,So).

Unsigned distance prediction. To train the network f udf
φ ,

we sample N query points {p1, . . . ,pN} in 3D. For each
query point pj we obtain its point feature Fj (Sec. 4.1) and
use this to predict the unsigned distance [18] to human and
object surface uoj , u

h
j = f udf

φ (Fj).
We jointly train f enc

φ , f udf
φ with standard L2 loss. The GT for

uoj , u
h
j is easily available as our dataset contains GT SMPL

and object fits allowing us to obtain GT distance of point pj
from the SMPL and object mesh.

SMPL correspondence prediction. To train f corr
φ , we use

the point feature Fj of sampled query point pj to predict its
correspondence to the SMPL model cj = f corr

φ (Fj).
We jointly train f enc

φ , f corr
φ using a standard L2 loss. Since

we have the GT SMPL fit in our dataset we simply find the
closest SMPL surface point for the query point pj and use
this as the GT correspondence.

6



Method SMPL v2v (cm) obj. v2v (cm)

IP-Net [9] 6.61 NA
LoopReg [10] 9.12 NA
Fit to input 16.15 26.09
PHOSA [88] 13.73 34.73

Ours 4.99 21.20

Table 2. We compare our method to obtain SMPL and object fits
with IP-Net, LoopReg and PHOSA. We also show that directly
fitting SMPL and object meshes to the input leads to sub-optimal
performance. Our method not only obtains better fits, but unlike
LoopReg and IP-Net, we can also fit the object.

Object orientation prediction. To train the network faφ ,
we use the point feature Fj of a sampled query point pj to
predict the global object orientation aj = faφ(Fj).
We jointly train f enc

φ , faφ with standard L2 loss. We find
that points far away from the object surface are unreliable
in predicting the object orientation. Hence we only apply
this loss to points that are close to the object, i.e. the GT
uoj < ε. Since we have the GT object fit, we obtain the GT
orientation by running PCA on the object mesh vertices and
use the 3 principal axes in R9.

5. Experiments
In this section we compare our approach with existing

methods. Our experiments show that we clearly outperform
existing baselines. Next, we ablate our design choices and
highlight the importance of contact and object orientation
prediction in capturing human-object interactions.

5.1. Comparing with PHOSA

We find PHOSA [88], a method to reconstruct humans
and objects from a single image, quite relevant to our work.
Although PHOSA uses only a single image whereas we use
multi-view images, thus giving our method an advantage,
it is still the closest competing method. We run Procrustes
alignment on PHOSA results to remove depth ambiguity.
It should be noted that PHOSA depends on pre-defined
fixed contact regions whereas our approach can freely
predict full-body contacts and PHOSA uses hand crafted
heuristics to model contacts whereas our approach learns
contact modelling from data, making our method more scal-
able. We compare our method with PHOSA in Fig. 6 and
Tab. 2, and clearly outperform it.

5.2. Why not fit human and object models directly
to point clouds?

Since there are no existing methods that can jointly track
humans, objects and the contacts from a multi-view input,
we create an obvious baseline where we fit the SMPL and
object meshes directly to the input point cloud. We show
(Tab. 2) that direct fitting easily gets stuck in local minima.

Method SMPL v2v (cm) obj. v2v (cm)

A) Ours w/o ori. 4.98 24.02
B) Ours w/o cont. 4.96 21.28

C) Ours 4.99 21.20

Table 3. We analyse the importance of (A) object orientation pre-
diction and (B) contact prediction for our method. It can be seen
that object orientation prediction noticeably improves object local-
isation error. The effect of contact loss is not significant quantita-
tively but makes noticeable difference qualitatively see Fig. 5.

This is because the point clouds are very noisy and large
parts are missing due to heavy occlusion between the per-
son and the object during interactions. Our network, on the
other hand, can implicitly reason about missing parts, thus
generating more accurate results.

5.3. Why can’t existing human registration ap-
proaches be extended to our setting?

There are no direct baselines that can jointly track hu-
mans, objects, and contacts from multi-view input. There
are works [9,10] that pursue similar ideas of predicting cor-
respondences and fitting SMPL to the human point cloud.
In this subsection we explore their suitability in our setting.

Comparison to IPNet [9] IPNet takes as input a human
point cloud and predicts an implicit reconstruction of the
human and sparse correspondences to the SMPL model,
which enables its fitting to the implicit reconstruction.
This approach has three major disadvantages. First, query-
ing occupancies for a 1283 grid to obtain implicit recon-
struction is expensive. Second, it predicts occupancies
which requires water-tight surfaces. And third, running tra-
ditional Marching Cubes makes occupancy prediction non-
differentiable w.r.t. SMPL fitting.
Our formulation in Eqs. (2) and (3) alleviates these prob-
lem as we can fit SMPL by only querying N = 30k
points instead of 1283(∼ 2M) points. Since we use un-
signed distance prediction, our method can work with non-
water tight surfaces. We can also fit SMPL directly to un-
signed distance predictions, thus removing the requirement
for Marching Cubes. We compare our approach with IP-
Net [9] (trained on our dataset) in Tab. 2 and show that
we obtain better performance than IP-Net at much lower
cost (30k (ours) vs. ∼ 2M (IP-Net) query points and no
Marching Cubes). This shows that our formulation is su-
perior than IPNet even for human registration. We can ad-
ditionally handle objects and interactions. Qualitative com-
parisons are given in the supplementary material.

Comparison with LoopReg [10] LoopReg fits SMPL to
the input point cloud by explicitly predicting correspon-
dences. We find the idea interesting and use their diffused

7



Input PC PHOSA Ours PHOSA - side Ours - side

Figure 6. We compare our method to track human, object and contacts with PHOSA [88]. It can clearly be seen that our method can reason
about the human-objects contacts and produces more accurate results.

SMPL formulation in our method. LoopReg is, however,
not directly applicable in our setting as it assumes a noise
free and complete human point cloud. When the point cloud
is incomplete due to occlusions, no correspondences are
predicted for missing parts. Since LoopReg can only use
surface points for fitting, this makes registration inaccurate.
BEHAVE handles this case by using distances to the SMPL
surface( Eq. (3)) predicted for each of the sampled query
points to fit the body model, thus allowing the use of non-
surface points for fitting. This is important as the Kinect
point cloud is noisy. We outperform LoopReg [10] (trained
on our dataset) and show (Tab. 2) that our formulation is
robust to missing parts and noisy input.

5.4. Importance of contacts

In this experiment we show that our network predicted
contacts are key for physically plausible tracking. Even
though quantitative difference is not significant (Tab. 3), it
can be seen in Fig. 5 that without contact information, the
human and the object do not lock into the correct location.
Hence, we notice unnatural results like floating objects. Us-
ing our contact prediction alleviates such issues.
We encourage the readers to see our supplementary docu-
ment for detailed discussion regarding limitations and fu-
ture work with BEHAVE.

6. Conclusions

We have presented BEHAVE, the first methodology to
jointly track humans, objects and explicit contacts in nat-
ural environments. By introducing neural networks to pre-

dict correspondences to a 3D human body model along with
unsigned distance fields defined over human and object sur-
faces, we are able to accurately model human-object con-
tacts. We further integrate such neural predictions into a
proposed joint registration method resulting in the robust
3D tracking of human-object interactions.
Along with our proposed method we also provide BE-
HAVE, the largest dataset of RGBD sequences and an-
notated humans, objects, and contacts to date. BEHAVE
dataset is the first benchmark for the part of the research
community interested in modelling human-object interac-
tions. We propose real-world challenges like reconstruct-
ing humans and object from a single RGB image, tracking
human-object interactions from multiple and single-view
RGB(D) input, pose estimation etc. Our dataset together
with our code is released in order to stimulate future re-
search in this important emerging domain.
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