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Evolutionary dynamics in an infinite population

In total, there are eight different strategies. The strategies can be enumerated by the

generic profile (a!1, a
!
2, u

!) where a!i is the hunting strategy of the focal individual (!)

when in group consensus i and u! is the preferred narrative of the focal individual (in

the following the two narratives are called simply 1 and 2). The individuals in the tribe

form a group of size G, and they need to reach a consensus on the group belief.

Group decision For the group to decide between, 1 or 2, we use a frequency-

dependent process (for other methods of consensus narrative resolution, see below).

The group thus choose to believe in 1 with probability,

f(k, u!) =
k + δu!

G
. (SI.1)

and in 2 with probability 1−f(k, u!). The number of individuals, besides the focal, who

believe in 1 is denoted by k. The Kronecker delta δu! returns 1 if the focal individual

prefers 1 (i.e. if u! = 1) and 0 otherwise.

Individual action. After the group consensus is reached, each individual in the group

chooses the appropriate action. In 1, the focal individual is a hare hunter if δa!
1

return

1 and a stag hunter otherwise. A similar reasoning works for 2 (δa!
2
).

Values of Hares and Stags. The value of hunting a Hare is denoted by PH . The total

probability that an individual gets a hare payoff is then denoted by

ΠH = PH

G−1!

k=0

"
G− 1

k

#
xk
1(1− x1)

G−1−k(f(k, u!)δa!
1
+ (1− f(k, u!))δa!

2
) (SI.2)

where x1 = xHH1 + xHS1 + xSH1 + xSS1 the sum of the frequencies of individuals

believe in 1 and thus 1 − x1 = xHH2 + xHS2 + xSH2 + xSS2, the 2 believers. The

value of a stag is given by PS . The focal individual is a stag hunter according to the

Individual action section. The group composition is a key determinant of the stag

payoff since there is a minimum number of stag hunters necessary (M ) for successful

stag hunt. Besides the the focal individual, k individuals believe in 1 and G − 1 − k

in 2. However we need to sort how many of these individuals are stag hunters. The
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composition of the group is then denoted by,

Pcomp =

k!

l=0
m=0
n=0
o=0

G−1−k!

p=0
q=0
r=0
s=0

"
k

l,m, n, o

#"
G− 1− k

p, q, r, s

#
xl
HH1x

m
HS1x

n
SH1x

o
SS1

×xp
HH2x

q
HS2x

r
SH2x

s
SS2χ(u

!)[Q(l,m, n, o, p, q, r, s)] (SI.3)

where the Iverson bracket (Knuth, 1992) is used to test the statement Q = (l +m +

n+ o = k) ∧ (p+ q + r + s = G− 1− k) with,

[Q(l,m, n, o, p, q, r, s)] =

$
%

&
1, if Q is true

0, otherwise.
(SI.4)

The function χ(u!) is a step function which (when χ(u! = 1)) ascertains if the focal

individual prefers 1 and returns the function θ(1 + n + o + r + s − M) (checking if

the number of stag hunters meet the required threshold M ). If u! = 2 then the focal

individual believes in 2 and χ(u!) returns θ(1 +m+ o+ q + s−M) (again checking if

the number of stag hunters meets the required threshold M ). Putting Pcomp together

with the rest of the probabilities we get the probability of successfully hunting a stag

as,

ΠS = PS

G−1!

k=0

"
G− 1

k

#
Pcomp[f(k, u

!)(1− δa!
1
) + (1− f(k, u!))(1− δa!

2
)] (SI.5)

The average payoff of an individual with strategy (a!1, a
!
2, u

!) is then given simply by,

π(a!
1 ,a

!
2 ,u

!) = ΠH +ΠS (SI.6)

The population dynamics can then be represented by the set of replicator equations

(Hofbauer and Sigmund, 1998),

ẋi = xi(πi − π̄) (SI.7)

for each strategy i. There are eight possible strategies and hence the dynamics

resides in a seven-dimensional simplex.

Dynamics between pure states The eight vertices of the simplex represent the pure

strategies, homogeneous states where all individuals play the same strategy. We
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Figure SI.1: Dynamics on the edge between the pure strategies (H,H, 1) and

(S,H, 1). If only a small fraction of the population plays the (H,H,1) strategy in a popu-

lation predominantly composed of (S,H,1) individuals then the group form will consists

mostly of stag hunters. While (S,H,1) individuals hunt stag it will be a stable strat-

egy. If the number of (H,H,1) individuals is above the unstable threshold then stag

hunting is not viable since the minimum number of stag hunters required for a suc-

cessful hunt will not be present but the (H,H,1) individuals thrive. Parameters are:

G = 5,M = 4, PS = 4;PH = 1.

study the dynamics between all the pairwise combinations of these pure states. As-

sume a population which can have only (H,H, 1) and (S,H, 1) individuals. For a

group size G = 5 with a threshold number of stag hunters required for a successful

hunt set at M = 4 a stag provide a payoff of 4 while a hare is worth 1. Using these

values the average payoff of a (H,H, 1) strategist is simply πHH1 = (xHH1 + xSH1)
4.

The average payoff for a (S,H, 1) player on the other hand is,

πSH1 = 4
'
4xHH1x

3
SH1 + x4

SH1
(

(SI.8)

Plotting the replicator equation for a population of just these two types gives us

Figure SI.1. In this manner we can describe the dynamics between all the eight

vertices, as shown in the main text.
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Evolutionary dynamics in finite populations

We assume a finite population of size N . From this population we choose individuals

to form a group of size G. If the number of individuals with strategy j is given by ij

encapsulated in the vector i, then the average payoff of a strategy (a!1, a
!
2, u

!) is given

by,

π(a!
1 ,a

!
2 ,u

!) =

G−1!

k=0

"
PH

'
i1i3i5i7

k

('
i2i4i6i8
G−1−k

(
'
N−1
G−1

( (f(k, u!)δa!
1
+ (1− f(k, u!))δa!

2
) (SI.9)

+PSPcomp(k, u
!, i)(f(k, u!)(1− δa!

1
) + (1− f(k, u!))(1− δa!

2
))

#
.

The composition of the group Pcomp is reevaluated for finite populations as,

Pcomp =

k!

l=0
m=0
n=0
o=0

G−1−k!

p=0
q=0
r=0
s=0

'
i1
l

('
i2
p

('
i3
m

('
i4
q

('
i5
n

('
i6
r

('
i7
o

('
i8
s

(
'
N−1
G−1

( χ(u!)[Q(l,m, n, o, p, q, r, s)]

(SI.10)

again with Q as defined in Eq. (SI.4). With this approach we can calculate the av-

erage payoff of each strategy when playing with another strategy. However for finite

populations, we convert the payoff πi of a strategy i to its fitness ψi via a mapping of

the form ψi = 1 + ωπi where i encompasses the strategies encoded by (a!1, a
!
2, u

!).

Such a combination with ω allows us to tune the impact of the game on the fitness

(Traulsen and Hauert, 2009). If ω the selection intensity is very low ω → 0 then the

strategies are neutral with respect to each other. Evolutionary dynamics would then

be a random walk between the eight strategies. On the other hand for ω → 1 the

game completely determines the difference between the strategy fitness. All of this

definitely assumes that the strategies do not go extinct, i.e. the mutation probability is

non-zero µ > 0.

Assuming small mutation rates µ → 0, the dynamics typically takes place between

two strategies only. Hence a pairwise comparison of the fitnesses of the strategies

proves to be instructive. The fitness of a strategy i playing against strategy j is given

by ψi,j This allows us to calculate the fixation probability of a single strategy i player
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in a population of N − 1 strategy j players as,

ρi,j =
1

)N−1
k=1

*k
m=1

ψj,i

ψi,j

(SI.11)

Collating the fixation probabilities between all pairwise combinations provides us with

the following transition matrix A,

A =

+

,,,,,,,,-

1−
)

column ρ1,2 ρ1,3 ρ1,4 ρ1,5 ρ1,6 ρ1,7 ρ1,8

ρ2,1 1−
)

column ρ2,3 ρ2,4 ρ2,5 ρ2,6 ρ2,7 ρ2,8

ρ3,1 ρ3,2 1−
)

column ρ3,4 ρ3,5 ρ3,6 ρ3,7 ρ3,8

ρ4,1 ρ4,2 ρ4,3 1−
)

column ρ4,5 ρ4,6 ρ4,7 ρ4,8

ρ5,1 ρ5,2 ρ5,3 ρ5,4 1−
)

column ρ5,6 ρ5,7 ρ5,8

ρ6,1 ρ6,2 ρ6,3 ρ6,4 ρ6,5 1−
)

column ρ6,7 ρ6,8

ρ7,1 ρ7,2 ρ7,3 ρ7,4 ρ7,5 ρ7,6 1−
)

column ρ7,8

ρ8,1 ρ8,2 ρ8,3 ρ8,4 ρ8,5 ρ8,6 ρ8,7 1−
)

column

.

////////0

(SI.12)

The normalised right eigenvector of A corresponding to the largest eigenvalue (which

is 1) provides the stationary distribution of the system (Hauert et al., 2007). This

analytical result is plotted as full lines in Figure SI.2 for a given choice of parameters.

Costly beliefs

If generating and believing in a new narrative, 2, is cognitively costly, the individuals

who prefer 2 would pay a cognitive cost. As the cost increases indeed the new narra-

tive will be harder to fix in the population. However the belief in the new narrative still

acts as a catalyst Figure SI.5. It appears in a finite population by chance but spreads

as it is still better to hunt stags than hares. However when everyone is hunting stags,

the cognitive cost of maintaining the belief reduces the frequency of the believers. For

increasing costs clearly the belief declines however the population is left transformed

in a stag equilibrium.

Magnitude of payoffs

In finite populations the magnitude of the payoffs obtained from the interactions is cru-

cial in determining the long term outcome of the strategy proportions in a populations.
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Figure SI.2: Average abundance in the long run. In the long run the strategies in

the population stabilise at the proportions which can be calculated analytically (lines)

and the results supported by individual based simulations (symbols). For a population

of size 16, and a small mutation probability of µ = 10−3, the average abundance of

the eight different strategies is denoted above for a variety of selection intensities (after

2 × 109 time-steps). The fitness of each type i is given by ψi = 1 + ωπi, where ω is

the selection intensity. For ω = 0 selection is neutral and all strategies exist in equal

proportions (1/8th = 0.125). As selection increases, we see the prevalence of the stag

hunters in the population, irrespective of their belief. Parameters are N = 16, G = 5,

M = 4, PS = 4 and PH = 1.

Numerous papers in evolutionary game dynamics have focused on the differences be-

tween the infinite and finite population differences (Taylor et al., 2004; Nowak et al.,

2004). While a full analysis for our model is not considered here, it is available in

the GitHub folder where the codes are deposited. The difference in the eventual out-

come of the strategy distributions for different values of the stag and across selection

intensities is denoted in Figure SI.6. For selection intensity ω = 1 we show the cor-

responding matrix of pairwise fixation probabilities. For a population of size N = 16

the entries of the matrix represent the fixation probability of a single row strategy

player in 15 individuals of column strategy players (normalised by the neutral fixation

probability of ρN = 1/16).
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Figure SI.3: Equilibrium abundance across population sizes. For increasing popu-

lation size, the effect of drift gets diluted and the deterministic equilibrium of the system

emerges, which is composed of individuals hunting stags. Simulation parameters be-

sides the changing population size are ω = 0.4, G = 5, M = 4, PS = 4 and PH = 1

with µ = 10−3. The system status is reported after 5× 106 time-steps.
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Figure SI.4: Average abundance in the long run under voting. In the long run

the strategies in the population stabilise at the proportions which can be calculated

analytically (lines) and the results supported by individual based simulations (symbols).

For a population of size 16, and a small mutation probability of µ = 10−3, the average

abundance of the eight different strategies is denoted above for a variety of selection

intensities (after 2×109 time-steps). The fitness of each type i is given by ψi = 1+ωπi,

where ω is the selection intensity. For ω = 0 selection is neutral and all strategies exist

in equal proportions (1/8th = 0.125). As selection increases, we see the prevalence of

the stag hunters in the population, irrespective of their belief. Parameters are N = 16,

G = 5, M = 4, PS = 4 and PH = 1.
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Figure SI.5: Costly beliefs. Even if the preference for the alternative belief accrues

a cognitive cost, we show that it helps transform the population into a social group

where everyone prefers to hunt stags. The alternative belief acts as a stepping stone

(highlighted in the transients on the left by the circles), where the belief in 2 enables the

spread of stag hunter who believe in 1. Thus acting as a true catalyst, the belief helps

transform the population and then disappears. The dynamics of the eight strategies

for different levels of cognitive costs is shown for a finite population of size 16, and a

small mutation probability of µ = 10−3. The equilibrium average abundance of the eight

different strategies, (which can also be calculated analytically) is shown in the right

panel for a variety of cognitive costs (after 5 × 106 time-steps). As selection increases,

we see the prevalence of the stag hunters in the population, irrespective of their belief.

Parameters are N = 16, G = 5, M = 4, PS = 4 and PH = 1. The selection intensity is

set to ω = 0.5.
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PS = 2

<latexit sha1_base64="yzrEMalPlmuydruzwalPfDBAPNk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexqUC9C0IvHiOYByRJmJ51kyOzsMjMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWata6D+SanHeLJbfszkCWiZeREmSodYtfnV7EkhClYYJq3fbc2PgpVYYzgZNCJ9EYUzaiA2xbKmmI2k9n507IiVV6pB8pW9KQmfp7IqWh1uMwsJ0hNUO96E3F/7x2YvpXfsplnBiUbL6onwhiIjL9nfS4QmbE2BLKFLe3EjakijJjEyrYELzFl5dJ46zsXZQr95VS9SaLIw9HcAyn4MElVOEOalAHBiN4hld4c2LnxXl3PuatOSebOYQ/cD5/AKizjns=</latexit>

PS = 3

<latexit sha1_base64="Ai0mZ/DnQRcJEP69/kt878tfEkI=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9SIUvXisaD+gDWWznbRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8NOME/YgOJA85o8ZKrXrvgVyTaq9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx27oScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo76XOFzIixJZQpbm8lbEgVZcYmVLQheIsvL5PmecW7qFTvq+XaTR5HAY7hBM7Ag0uowR3UoQEMRvAMr/DmJM6L8+58zFtXnHzmCP7A+fwBqjeOfA==</latexit>

PS = 4

P
H

=
1

0.0 1.0

For selection intensity 
<latexit sha1_base64="20JDhi7Zq2OG+1P4yts+fUTty94=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0ikqBeh6MVjBfsBTSib7aRdupsNuxuhhP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL0o508bzvp3S2vrG5lZ5u7Kzu7d/UD08amuZKQotKrlU3Yho4CyBlmGGQzdVQETEoRON72Z+5wmUZjJ5NJMUQkGGCYsZJcZKQSAFDAm+wb7r9as1z/XmwKvEL0gNFWj2q1/BQNJMQGIoJ1r3fC81YU6UYZTDtBJkGlJCx2QIPUsTIkCH+fzmKT6zygDHUtlKDJ6rvydyIrSeiMh2CmJGetmbif95vczE12HOkjQzkNDFojjj2Eg8CwAPmAJq+MQSQhWzt2I6IopQY2Oq2BD85ZdXSfvC9S/d+kO91rgt4iijE3SKzpGPrlAD3aMmaiGKUvSMXtGbkzkvzrvzsWgtOcXMMfoD5/MHGBCQbA==</latexit>

! = 1.0

Figure SI.6: How much is a stag worth? Payoff magnitude in finite populations The

column on the left shows the analytical result of the average abundance of strategies

as a function of the selection intensity ω. When ω = 0 all the strategies are identical

and hence reach equal proportions in the long run. However as the selection intensity

increases, the impact of the game is observed in the final distribution of the strategies.

As we move down the rows, the stags get bigger. That is, the value of a stag increases

from 1 (which is equal to PH ) to 4 (as used in the rest of the manuscript). For smaller

values of PS the gains of forming a successful hunting group are not larger than the

hare payoffs but in fact also incur losses when forming groups with inadequate number

of hunters. The results for large selection intensities can be understood by looking at

the corresponding matrix of fixation probabilities as shown in the right column. From

the values of the fixation probabilities (normalised by the neutral fixation probability of

1/N ) we see that the probability of staying in the hare equilibrium is larger for low PS

and moves to the stag equilibrium with increasing PS . Parameters are N = 16, G = 5,

M = 4, and PH = 1.
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