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The Koopman operator has become an essential tool for data-driven approxima-
tion of dynamical (control) systems, e.g., via extended dynamic mode decom-
position. Despite its popularity, convergence results and, in particular, error
bounds are still scarce. In this paper, we derive probabilistic bounds for the
approximation error and the prediction error depending on the number of train-
ing data points; for both ordinary and stochastic differential equations while
using either ergodic trajectories or i.i.d. samples. We illustrate these bounds
by means of an example with the Ornstein-Uhlenbeck process. Moreover, we
extend our analysis to (stochastic) nonlinear control-affine systems. We prove
error estimates for a previously proposed approach that exploits the linearity of
the Koopman generator to obtain a bilinear surrogate control system and, thus,
circumvents the curse of dimensionality since the system is not autonomized by
augmenting the state by the control inputs. To the best of our knowledge, this
is the first finite-data error analysis in the stochastic and/or control setting. Fi-
nally, we demonstrate the effectiveness of the bilinear approach by comparing
it with state-of-the-art techniques showing its superiority whenever state and
control are coupled.
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1. Introduction

The Koopman framework [14] is the operator-theoretic basis for a wide range of data-
driven methodologies to predict the evolution of nonlinear dynamical systems using linear
techniques, see, e.g., [23, 33] or the recent survey [5] and the references therein. The un-
derlying concept is that observables, which may also be understood as outputs from the
systems-and-control perspective, can be propagated forward in time using the linear yet
infinite-dimensional Koopman operator or its generator, instead of simulating the nonlinear
system and evaluating the observable functions. Its recent success is closely linked to nu-
merically tractable approximation techniques like extended Dynamic Mode Decomposition
(eDMD), see, e.g., [10, 11,16,35] for numerical techniques and convergence results.

While the Koopman framework is well established, approximation results are typically
only established in the infinite-data limit, i.e., if sufficient data is available. Recently, Lu
and Tartakovsky [19] discussed error bounds w.r.t. DMD invoking the seminal work [16]
by Korda and Mezić. While the authors numerically demonstrate the effectiveness of their
approach even for nonlinear parabolic Partial Differential Equations (PDEs), see also their
extension [20], there remains a significant gap from a more theoretical point of view since the
approximation error is assumed to be zero for finite data, see [19, Remark 3.1]. Mamakoukas
and coworkers [22] mimick a Taylor-series expansion based on a particular set of observables
to approximate the system dynamics of an Ordinary Differential Equation (ODE). This
work may be understood as a promising approach to incorporate (local) knowledge on the
system dynamics in the Koopman framework. However, a bound on the prediction error
in terms of data is not deduced. Error bounds for Koopman eigenvalues in terms of the
finite-data estimation error were derived in [34], but the estimation error itself was not
quantified. In [24], concentration inequalities were applied to bound the estimation error
for the co-variance and cross-covariance operators involved in Koopman estimation. In the
exhaustive preprint [17], the authors treat the projection error for different approximation
spaces such as, e.g., reproducing kernel Hilbert spaces and wavelets. The estimation error is
also discussed briefly in Section 8.5. In [36], besides providing a finite-data error bound on
the approximation of the Koopman operator in the context of ODEs, the authors estimate
the projection error by means of finite-element analysis. In conclusion, to the best of our
knowledge1, [17,36] are the only works providing rigorous error bounds for Koopman-based
approximations of a dynamical system governed by a nonlinear ODE.

In this paper, we rigorously derive probabilistic bounds on the approximation error (or
finite-data estimation error) and the (multi-step) prediction error for nonlinear Stochastic
Differential Equations (SDEs). This, of course, also includes nonlinear ODEs. The deduced
bounds on the approximation error and prediction accuracy explicitly depend on the number
of data points used in eDMD. To this end, besides using mass concentration inequalities and
a numerical error analysis to deal with the error propagation in time, we employ substantially
different techniques in comparison to [36] to provide an additional alternative assumption
based on ergodic sampling tailored to stationary SDEs. Further, we illustrate the error
bounds for the Ornstein-Uhlenbeck process.

W.r.t. the application of Koopman theory in control, a lot of research has been invested

1We are already referring to two authoritative references on preprint servers supporting our claim that finite-
data error bounds are still missing; thanks to one of the unknown referees for drawing our attention to
the still unpublished work [17].
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over the past years, beginning with the popular DMD with control [30], which was later used
in Model Predictive Control (MPC) [15]. Another popular method is to use a coordinate
transformation into Koopman eigenfunctions [9] or the already mentioned component-wise
Taylor series expansion [22]. In [21], the prediction error of the method proposed in [30] was
estimated using the convergence result of [16]. However, the result is of purely asymptotic
nature, i.e., it does not state a convergence rate in terms of data points. All approaches
mentioned until now yield linear surrogate models of the form Ax + Bu, i.e. the control
enters linearly. For general control-affine systems, numerical simulation studies indicate
that bilinear surrogate models are better suited, see [4, 8, 26, 29]. The technique proposed
in [27, 29] constructs its surrogate model from nc + 1 autonomous Koopman operators,
where nc is the control dimension. The key feature is that the state-space dimension is not
augmented by the number of control inputs, which counteracts the curse of dimensionality
in comparison to the more widespread approach introduced in [15]. Compared to [29], we
present a detailed analysis of the accuracy regarding both the dictionary size as well as the
amount of training data. Even though the bound is rather coarse on the operator level, we
demonstrate that it correctly captures the qualitative behavior. In this context, we provide
a probabilistic bound on the approximation error of the projected Koopman generator, the
projected Koopman semigroup and the respective trajectories. To this end, we extend our
results towards nonlinear control systems. Besides a rigorous bound on the approximation
error, we present estimates on the (auto-regressive) prediction accuracy, i.e. in an open-loop
prediction (without feedback). This allows for a direct application of our results in MPC.

The paper is structured as follows. Firstly, in Section 2, we deduce a rigorous bound on
the approximation error for nonlinear SDEs. Then, we extend our analysis to nonlinear
control-affine systems in Section 3. In Section 4, two numerical simulation studies for the
Ornstein-Uhlenbeck system (SDE) and the controlled Duffing equation (nonlinear control-
affine system) are presented before conclusions are drawn in Section 5.

2. Finite-data bounds on the approximation error: nonlinear SDEs

In this section, we analyze the approximation quality of extended Dynamic Mode Decom-
position (eDMD) with finitely-many data points for the finite-dimensional stochastic differ-
ential equation

dXt = F (Xt) dt+ σ(Xt) dWt, (SDE)

where Xt ∈ X ⊂ Rd is the state, F : X → Rd is the drift vector field, σ : X → Rd×d is the
diffusion matrix field, and Wt is a d-dimensional Brownian motion. We assume that F, σ
satisfy standard Lipschitz properties to ensure global existence of solutions to (SDE), see the
textbook [25] for an introduction to this class of systems. We stress that the deterministic
case is included by simply setting σ ≡ 0, leading to the ordinary differential equation

d
dtx(t) = F (x(t)).

The state space is assumed to be a measure space (X,ΣX, µ) with Borel σ-algebra ΣX and
probability measure µ. In case of an ODE, the set X is often assumed to be compact and
forward-invariant and the probability measure is the standard Lebesgue measure, cf. [36].
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Definition 1 (Koopman operator). Let Xt satisfy (SDE) for t ≥ 0. The Koopman operator
semigroup associated with (SDE) is defined by

Ktf(x0) = Ex0 [f(Xt)] = E[f(Xt)|X0 = x0]

for all bounded measurable functions f .

In case of ergodic sampling, that is, obtaining data points from a single long trajectory, we
will assume invariance of the measure µ w.r.t. the stochastic process Xt.

Definition 2 (Invariant measure with positive density). A probability measure µ is called
invariant if it satisfies ∫

X
Ktf dµ =

∫
X
f dµ

for all bounded measurable functions f and all t ≥ 0. Further, µ has an everywhere positive
density ρ : X→ R if µ(A) =

∫
A ρ(x) dx holds for all A ∈ ΣX.

We can now formulate our assumption on the underlying dynamics.

Assumption 3. Let either of the following hold:

(a) The set X is compact and forward invariant (∀x0 ∈ X : Px0(Xt ∈ X) = 1 for all t ≥ 0)
and µ is the normalized Lebesgue measure. Moreover, the Koopman operator can be
extended to a strongly continuous semigroup on the Hilbert space L2

µ(X).

(b) The probability measure is an invariant measure in the sense of Definition 2.

We briefly comment on this assumption and first note that forward invariance of X can be
weakened, if one is only interested in estimates for states contained in X, see also [36, Section
3.2]. Moreover, if the dynamics obey an ODE, it was shown that the Koopman operator
can indeed be extended to a strongly continuous semigroup on L2

µ(X), see also [36]. Second,
the assumption of invariance of the underlying probability measure is satisfied for a broad
class of SDEs, see e.g. [32]. It can be checked that µ is then invariant for Xt, that is,
P(Xt ∈ A) = µ(A) holds for all A ∈ ΣX and t ≥ 0, provided X0 is distributed according
to µ. Under Assumption 3 (b), Definition 1 can be extended to the Lebesgue spaces Lpµ(X),
1 ≤ p < ∞, i.e. the Banach spaces of all (equivalence classes of) measurable functions
f : X → R with

∫
X |f |p dµ < ∞. Then, the Koopman operators Kt form a strongly

continuous semigroup of contractions on all spaces Lpµ(X), see [1]. The functions in any of
these spaces are often referred to as observables.

Next, we recall the definition of the generator associated to the semigroup Kt:

Definition 4 (Koopman generator). The infinitesimal generator L is defined via

Lf := lim
t→0

(Kt − Id)f

t
(1)

for all f ∈ D(L), where D(L) is the set of functions for which the limit (1) exists in the
appropriate topology.
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For sufficiently smooth functions f , Ito’s Lemma [25] shows that the generator acts as a
second order differential operator, defined in terms of the coefficients of (SDE), i.e.

L = F · ∇+ 1
2σσ

> : ∇2 (2)

with A : B :=
∑

i,j ai,jbi,j being the standard Frobenius inner product for matrices. In what

follows, we will focus exclusively on the Koopman semigroup on the Hilbert space L2
µ(X)

with inner product 〈f, g〉µ =
∫
X fg dµ. As the semigroup is strongly continuous on L2

µ(X) by
our assumptions, by standard semigroup theory, the domain D(L) together with the graph
norm forms a dense Banach space in L2

µ(X).

2.1. Extended Dynamic Mode Decomposition

In this part we introduce the data-driven finite-dimensional approximation by eDMD of the
Koopman generator defined in (1), see, e.g., [10,12,35]. To this end, for a fixed set of linearly
independent observables ψ1, . . . , ψN ∈ D(L), we consider the finite-dimensional subspace

V := span{{ψj}Nj=1} ⊂ D(L).

Let PV denote the orthogonal projection onto V. We define the Galerkin projection of the
Koopman generator by LV := PVL|V. Note that this is not the restriction of L onto V, as
the image is also projected back onto V. If V is an invariant set under the action of the
generator, then LV = L|V holds. As dimV = N , the linear operator LV : V → V may be
represented by a matrix. In what follows, we denote the matrix representation of LV in
terms of the basis functions ψ1, . . . , ψN by the same symbol LV as the operator itself in a
slight abuse of notation. Thus, using [13], we get

LV = C−1A

with C,A ∈ RN×N defined by Ci,j = 〈ψi, ψj〉L2
µ(X) and Ai,j = 〈ψi,Lψj〉L2

µ(X). The norm of

the isomorphism from V to RN depends on the smallest resp. largest eigenvalues of C, cf.
Proposition 20 in Appendix A.1.

Consider data points x0, . . . , xm−1 ∈ X. In the following, these data is either drawn from
a trajectory of an ergodic system or sampled independent and identically distributed (i.i.d.).
We state this as the following assumption, using the notation:

L2
µ,0(X) := {f ∈ L2

µ(X) : 〈f, 1〉µ = 0}.

Assumption 5. Let Assumption 3 hold and assume either of the following.

(iid) The data is drawn i.i.d. from the measure specified via Assumption 3.

(erg) Assumption 3.(b) holds and the data is obtained as snapshots from a single ergodic
trajectoy, that is, from a single long trajectory of the dynamics (SDE) with x0 drawn
from the unique invariant measure µ. Further assume the Koopman semigroup is
exponentially stable on L2

µ,0(X), i.e. ‖Kt‖L2
µ,0(X) ≤Me−ωt for some M ≥ 1, ω > 0.
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Let us form the transformed data matrices

Ψ(X) :=

((
ψ1(x0)

:
ψN (x0)

)∣∣∣∣ . . . ∣∣∣∣( ψ1(xm−1)
:

ψN (xm−1)

))
LΨ(X) :=

((
(Lψ1)(x0)

:
(LψN )(x0)

)∣∣∣∣ . . . ∣∣∣∣( (Lψ1)(xm−1)
:

(LψN )(xm−1)

))
.

The evaluation of L can be realized via the representation (2). The empirical estimator for
the Galerkin projection LV is then given by

L̃m = C̃−1
m Ãm

with C̃m = 1
mΨ(X)Ψ(X)>, Ãm = 1

mΨ(X)LΨ(X)> ∈ RN×N . In all scenarios of of Assump-
tion 5, we have with probability one that

(1) L̃m is well-defined for large enough m, that is, C̃m is invertible, and

(2) L̃m converges to LV for m→∞, see, e.g., [12, 13].

For the case of a long trajectory, this result follows from ergodic theory, which is concerned
with the convergence of time averages to spatial averages as the data size grows to infinity [2].
Ergodic theory particularly applies to systems with a unique invariant measure.

2.2. Error bounds on approximations of projected Koopman generator and
operator

Next, we quantify the approximation quality of the data-driven finite-dimensional approx-
imation of the Koopman generator, i.e., for a given linear space V of observables and data
x0, . . . , xm−1 ∈ X, we aim to estimate

‖LV − L̃m‖F = ‖C−1A− C̃−1
m Ãm‖F .

2.2.1. Concentration bounds for random matrices

We start by deriving entry-wise error bounds for the data-driven mass and stiffness matrix,
respectively. Since most of the arguments are significantly simpler for i.i.d. sampling, cf.
Remark 11 at the end of this subsection, we first consider the more involved situation, i.e.
ergodic sampling. This is of particular interest as simulation data of the dynamics (SDE)
can, then, be directly used.

For x ∈ X, consider a centered scalar random variable

φ : X 7→ R,
∫
X
φ(x) dµ(x) = 0.

We denote its variance with respect to the invariant measure by

σ2
φ = Eµ[φ2] = ‖φ‖2L2

µ
.

6



Moreover, we set φk = φ(xk) for given data points xk, k ∈ {0, 1, . . . ,m− 1}, and define the
averaged random variable

φ̄m :=
1

m

m−1∑
k=0

φk.

In Lemma 6 below, we quantify the variance of the averaged random variable φ̄m. The
key point is the decomposition of the variance into an asymptotic contribution, indepen-
dent of m, and a second contribution, which decays with an explicitly given (polynomial)
dependence on the amount of data m.

Lemma 6. Let Assumption 5.(erg) hold. Then we have

σ2
φ̄m

=
1

m

[
σ2
φ,∞ −Rmφ

]
. (3)

The asymptotic variance σ2
φ,∞ and the remainder term Rmφ are given by

σ2
φ,∞ = σ2

φ + 2

∞∑
l=1

〈φ, Kl∆tφ〉µ, Rmφ = 2

∞∑
l=m

〈φ, Kl∆tφ〉µ +
2

m

m−1∑
l=1

l〈φ, Kl∆tφ〉µ.

Proof. We repeat the proof given in [18, Section 3.1.2] for the sake of illustration:

σ2
φ̄m

=
1

m2

m−1∑
k,l=0

Eµ [φk φl] =
1

m
σ2
φ +

2

m2

m−1∑
k=0

m−1∑
l=k+1

Eµ [φk φl]

=
1

m

[
σ2
φ +

2

m

m−1∑
k=0

m−1∑
l=k+1

Eµ [φ0 φl−k]

]
=

1

m

[
σ2
φ +

2

m

m−1∑
k=0

m−k−1∑
l=1

Eµ [φ0 φl]

]

=
1

m

[
σ2
φ +

2

m

m−1∑
l=1

(m− l)Eµ [φ0 φl]

]
=

1

m

[
σ2
φ + 2

m−1∑
l=1

(1− l
m)〈φ, Kl∆tφ〉µ

]
.

The result follows by adding and subtracting the term 2
∑∞

l=m〈φ, Kl∆tφ〉µ.

Remark 7. The assumption of exponential stability is satisfied, for example, if the generator
L is self-adjoint (also known as detailed balance or reversibility) and additionally satisfies
a Poincaré or spectral gap inequality [18]. The requirement 〈f, 1〉µ = 0 is necessary, as the
constant function is invariant for Kt.

Remark 8. The proof of Lemma 6 shows that σ2
φ,∞ = limm→∞ σ

2
φ̄m
≥ 0, hence it can indeed

by interpreted as a variance.
For reversible systems, we have 〈φ, Kl∆tφ〉µ ≥ 0 by symmetry of the Koopman operator.

Therefore, σ2
φ,∞ ≥ σ2

φ > 0 is guaranteed in this case, and the variance σ2
φ̄m

approaches
1
mσ

2
φ,∞ from below.

Next, we derive an estimate for the remainder term in terms of the number m of data points.
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Lemma 9. Let Assumption 5.(erg) hold, and set q = e−ω∆t < 1. Then

|Rmφ | ≤
2σ2

φ

m

q

(1− q)2
.

Proof. We first observe that by the Cauchy Schwarz inequality

|〈φ,Kl∆tφ〉µ| ≤ ‖Kl∆t‖L(L2
µ,0(X),L2

µ(X))‖φ‖2L2
µ(X) ≤ e−ω∆tlσ2

φ,

and therefore:

|Rmφ | ≤ 2σ2
φ

[ ∞∑
l=m

e−ω∆tl +
1

m

m−1∑
l=1

le−ω∆tl

]

= 2σ2
φ

[
qm

1− q +
1

m

(m− 1)qm+1 −mqm + q

(1− q)2

]
=

2σ2
φ

m

q(1− qm)

(1− q)2
≤

2σ2
φ

m

q

(1− q)2
.

In the second line, we have used the geometric series for the first term, and a similar identity
for the sum

∑∞
l=1 lq

l, q < 1. The third line is obtained by direct simplification.

We can now combine the results of Lemmas 6 and 9 in order to obtain a concentration
bound for a centered, matrix-valued random variable. To this end, we consider an N ×N
random matrix Φ with all entries φij ∈ L2

µ,0 centered. We define Φk and Φm as for the

scalar case, i.e., Φk = Φ(xk) and Φm = 1
m

∑m−1
k=0 Φk.

Proposition 10. Let Assumption 5.(erg) hold,, set q = e−ω∆t, and assume σ2
φij ,∞ > 0 for

all (i, j). Let Φ ∈ RN×N be a centered, matrix-valued random variable in L2
µ. Denote the

matrices of all entry-wise variances and asymptotic variances by

ΣΦ =
(
σφij

)N
i,j=1

, ΣΦ,∞ =
(
σφij ,∞

)N
i,j=1

Then, for any given δ > 0, and m ∈ N, we have with probability at least 1− δ that

‖Φm‖F ≤
N√
mδ

[
‖ΣΦ,∞‖2F +

2q

m(1− q)2
‖ΣΦ‖2F

]1/2

. (4)

For reversible systems, we obtain the simplified bound

‖Φm‖F ≤
N√
mδ
‖ΣΦ,∞‖F . (5)

Proof. Noting that [Φm]ij = [φij ]m, the scalar Chebyshev inequality and the result of
Lemma 6, yield for all (i, j) :

P
(
[Φm]2ij ≤ ε2

)
≥ 1−

σ2
[φij ]m

ε2
= 1−

1
m [σ2

φij ,∞ −R
m
φij

]

ε2

≥ 1− 1

mε2

[
σ2
φij ,∞ +

2σ2
φij
q

m(1− q)2

]
.
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The second term on the right hand side does not exceed δ
N2 if

ε2 ≥ N2

mδ

[
σ2
φij ,∞ +

2σ2
φij
q

m(1− q)2

]
,

in other words, there is a set of trajectories of probability at least 1− δ
N2 such that

[Φm]2ij ≤
N2

mδ

[
σ2
φij ,∞ +

2σ2
φij
q

m(1− q)2

]
.

On the intersection of these sets, we have that

‖Φm‖F ≤
N√
mδ

[
‖ΣΦ,∞‖2F +

2q

m(1− q)2
‖ΣΦ‖2F

]1/2

,

and the probability of the intersection is at least 1− δ by Lemma 21. In the reversible case,
we know that Rmφij ≥ 0 for all (i, j), and therefore

P
(
[Φm]2ij ≤ ε2

)
≥ 1− 1

mε2
σ2
φij ,∞. (6)

The simplified bound (5) follows by repeating the above argument starting from this in-
equality.

Remark 11 (I.i.d. sampling). If the data are sampled i.i.d., that is, Assumption 5.(iid)
hold instead of Assumption 5.(erg), then by standard results, one has σ2

φ̄m
= 1

mσ
2
φ. The

bounds from Proposition 10 simplify significantly in this case. By the Chebyshev inequality:

P
(
[Φm]2ij ≤ ε2

)
≥ 1−

1
mσ

2
φij

ε2
,

which leads to the following error estimate for fixed m ∈ N and δ > 0:

‖Φm‖F ≤
N√
mδ
‖ΣΦ‖F . (7)

The setting of sampling via the Lebesgue measure on a compact set X was thoroughly con-
sidered in [36].

2.2.2. Error bound for the projected generator

Next, we deduce our first main result by applying the probabilistic bounds obtained in
Proposition 10 to estimate the error for the data-driven Galerkin projection L̃m.

Theorem 12 (Approximation error: probabilistic bound). Let Assumption 5 hold. Then,
for any error bound ε̃ > 0 and probabilistic tolerance δ̃ ∈ (0, 1), we have

P
(
‖LV − L̃m‖F ≤ ε̃

)
≥ 1− δ̃ (8)

for any amount m ∈ N of data points such that the following hold with

ε = min

{
1,

1

‖A‖‖C−1‖

}
· ‖A‖ε̃

2‖A‖‖C−1‖+ ε̃
and δ =

δ̃

3
.
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• In case of ergodic sampling, i.e., Assumption 5.(erg),

m ≥ N2

δε2

[
‖ΣΦ,∞‖2F +

2q

m(1− q)2
‖ΣΦ‖2F

]
• In case of ergodic sampling, i.e., Assumption 5.(erg), of a reversible system

m ≥ N2

δε2
‖ΣΦ,∞‖2F .

• In case of i.i.d. sampling, i.e., Assumption 5.(iid),

m ≥ N2

δε2
‖ΣΦ‖2F .

Proof. In this proof, we will omit the subscript for the norm and set ‖ · ‖ = ‖ · ‖F . Let us
introduce the centered matrix-valued random variables

ΦC(x) := Ψ(x)Ψ(x)> − C and ΦA(x) := Ψ(x)LΨ(x)> −A,

where Ψ = [ψ1, . . . , ψN ]>. Then C̃m − C = [ΦC ]m and Ãm − A = [ΦA]m. Hence, we may
apply Proposition 10 to these matrix-valued random variables. First, by the choice of m
above we have

P
(
‖C − C̃m‖ ≤

R

‖A‖‖C−1‖

)
≥ 1− δ̃

3 and P
(
‖Ãm −A‖ ≤ R

)
≥ 1− δ̃

3 ,

where

R :=
‖A‖ε̃

2‖A‖‖C−1‖+ ε̃
=

ε̃

2
(
‖C−1‖+ ε̃

2‖A‖

) .
Moreover, we compute

‖C̃−1
m − C−1‖ = ‖C̃−1

m (C − C̃m)C−1‖ ≤ ‖C−1‖‖C − C̃m‖
(
‖C̃−1

m − C−1‖+ ‖C−1‖
)

which implies

‖C̃−1
m − C−1‖ ≤ ‖C−1‖2‖C − C̃m‖

1− ‖C−1‖‖C − C̃m‖
.

Hence, by straightforward computations we obtain

P
(
‖C̃−1

m − C−1‖ ≤ ε̃
2‖A‖

)
≥ P

(
‖C−1‖2‖C − C̃m‖

1− ‖C−1‖‖C − C̃m‖
≤ ε̃

2‖A‖

)

= P
(
‖C − C̃m‖ ≤

R

‖A‖‖C−1‖

)
≥ 1− δ̃

3 .
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and

P
(
‖Ãm −A‖ ≤ ε̃

2‖C̃−1
m ‖

)
≥ P

(
‖Ãm −A‖ ≤ ε̃

2(‖C−1‖+‖C̃−1
m −C−1‖)

)
≥ P

(
‖Ãm −A‖ ≤ ε̃

2
(
‖C−1‖+ ε̃

2‖A‖
) ∧ ‖C̃−1

m − C−1‖ ≤ ε̃
2‖A‖

)
≥
(

1− δ̃
3

)
+
(

1− δ̃
3

)
− 1 = 1− 2δ̃

3 .

Thus, we conclude

P(‖C−1A− C̃−1
m Ãm‖ ≤ ε̃) = P

(
‖C̃−1

m (A− Ãm) +
(
C−1 − C̃−1

m

)
A‖ ≤ ε̃

)
≥ P

(
‖C̃−1

m ‖‖A− Ãm‖+ ‖C−1 − C̃−1
m ‖‖A‖ ≤ ε̃

)
≥ P

(
‖A− Ãm‖ ≤ ε̃

2‖C̃−1
m ‖
∧ ‖C−1 − C̃−1

m ‖ ≤ ε̃
2‖A‖

)
≥ (1− 2δ̃

3 ) + (1− δ̃
3)− 1 = 1− δ̃,

which is (8).

A similar result as Theorem 12 was obtained for ODE systems in [36] under the assumption
that the data is drawn i.i.d.

An immediate consequence of the estimate on the generator approximation error is a
bound on the error of the trajectories. To this end, consider the systems

ż = LVz z(0) = z0 (9)

˙̃z = L̃mz̃ z̃(0) = z0. (10)

where z0 ∈ Rn, which represents an ODE in terms of the coefficients in the basis represen-
tation of elements of V. We will leverage the error bound obtained in Theorem 12 to derive
an estimate on the resulting prediction error in the observables, i.e., ‖z(t) − z̃(t)‖2. Note
that in view of the isomorphism V ' RN this also directly translates to an error estimate
for trajectories in V.

Corollary 13. Let Assumption 5 hold. Then for any T > 0 and δ, ε > 0 there is m0 ∈ N
such that for m ≥ m0 data points we have

min
t∈[0,T ]

P
(
‖z(t)− z̃(t)‖2 ≤ ε

)
≥ 1− δ.

Proof. See Appendix A.3.

A sufficient amount of data m0 can be easily specified by combining the calculations
displayed in the proof of Corollary 13, i.e. Gronwall’s inequality and Condition (4). Under
additional assumptions on the Koopman semigroup generated by LV, e.g., stability, one can
refine this estimate or render it uniform in T , cf. Corollary 23 in Appendix A.3.
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2.3. Error bound for the projected Koopman operator

Similar to the derivation of the probabilistic bound on the projected generator, a bound on
the Koopman operator is possible. We briefly sketch the main steps of the argumentation.
Let t = l∆t for some l ∈ N and again choose a subspace V = span{{ψj}Nj=1} ⊂ L2

µ(X)
(which, in contrast to the generator-based setting, is not required to be contained in the
domain). The restricted Koopman operator on this subspace is defined via

KtV := PVKt|V = C−1A,

where
Ci,j = 〈ψi, ψj〉L2

µ(X) and Ai,j = 〈ψi,Ktψj〉L2
µ(X).

Define the data matrices

Ψ(X) :=

((
ψ1(x0)

:
ψN (x0)

)∣∣∣∣ . . . ∣∣∣∣( ψ1(xm−l−1)
:

ψN (xm−l−1)

))
Ψ(Y ) :=

((
ψ1(xl)

:
ψN (xl)

)∣∣∣∣ . . . ∣∣∣∣( ψ1(xm−1)
:

ψN (xm−1)

))
.

The empirical estimator is then defined similarly to the generator setting via

K̃tm = C̃−1
m Ãm

with
C̃m = 1

mΨ(X)Ψ(X)> and Ãm = 1
mΨ(X)Ψ(Y )>.

We now present the analogue to Theorem 12 for the Koopman operator which follows by
straightforward adaptations of the results of Section 2.2.

Theorem 14. Let Assumption 5 hold. Then, for t ≥ 0, any error bound ε > 0 and
probabilistic tolerance δ ∈ (0, 1) there is m0 ∈ N such that for any m ≥ m0,

P
(
‖KtV − K̃tm‖F ≤ ε

)
≥ 1− δ.

A sufficient amount of data m0 can be specified analogously to Theorem 12.

3. Extension to control systems

In this section, we derive probabilistic bounds on the approximation error of nonliner control-
affine SDE systems of the form

dXt =

(
F (Xt) +

nc∑
i=1

Gi(Xt)ui

)
dt+ σ(Xt) dWt, (11)

with input u ∈ Rnc and state Xt ∈ X, where F : X → Rn and Gi : X → Rn, i = 1, . . . , nc,
are locally Lipschitz-continuous vector fields. In the deterministic case σ ≡ 0 the controlled
SDE reduces to the control-affine ODE system

ẋ = F (x) +

nc∑
i=1

Gi(x)ui. (12)
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We will describe how one can apply the bounds on the generators of autonomous (SDE)
systems obtained in Section 2 in order to obtain bounds for prediction of control systems,
either for i.i.d. or ergodic sampling.

Central in this part is the fact that the Koopman generators for control-affine systems
are control-affine. More precisely, if Lū denotes the Koopman generator for a control-affine
system with constant control ū ∈ Rnc and ū =

∑r
i=1 αiūi is a linear combination of constant

controls ūi ∈ Rnc , we have

Lū = L0 +

nc∑
i=1

αi
(
Lūi − L0

)
. (13)

This easily follows from the representation (2) of the Koopman generator, see also [29,
Theorem 3.2] for the special (deterministic) case σ ≡ 0.

We will utilize this property to invoke our results from Section 2 to approximate the
Koopman generator corresponding to basis elements of the control space, that is, Lei , i =
1, . . . , nc, and L0 corresponding to the drift term to form a bilinear control system in the
observables.

Analogously to Assumption 5 we have the following two cases for the collected data and
the underlying measure.

Assumption 15. Let either of the following hold:

(iid) The data for each autonomous system with control u = ei, i = 0, . . . , nc, is sampled
i.i.d. from either the normalized Lebesgue measure and contained in a compact set X
or from an invariant measure µi in the sense of Definition 2.

(erg) The data for each autonomous system with control u = ei, i = 0, . . . , nc, satisfies
Assumption 5.(erg), i.e., is drawn from a single ergodic trajectory, the probability
measure µi of the resulting autonomous SDE is invariant in the sense of Definition 2
and the Koopman semigroup is exponentially stable on L2

µi,0
(X).

It is important to note that in the first case of (iid), we did not make any assumption of
invariance of the set X for all autonomous systems corresponding to the constant controls
ei, i = 0, . . . , nc, as this would be very restrictive. Hence, we have to ensure that the
state trajectories remain (with probability one in the stochastic setting (11)) in the set X.
Sufficient conditions are, e.g., controlled forward invariance of the set X or knowing that
the initial condition is contained in a suitable sub-level set of the optimal value function of
a respective optimal control problem, see, e.g., [3] or [7] for an illustrative application of
such a technique in showing recursive stability of Model Predictive Control (MPC) without
stabilizing terminal constraints for discrete- and continuous-time systems, respectively.

In the following, we set Oi = L2
µi(X), i = 1, . . . , nc, and consider the generators Lei in

these spaces, respectively. Further, let ψ1, . . . , ψN : X → R be N linearly independent
observables whose span V = span{ψ1, . . . , ψN} satisfies

V ⊂ D(Le0) ∩D(Le1) ∩ . . . ∩D(Lenc ), (14)

where ei, i = 1, . . . , nc, denote the standard basis vectors of Rnc and e0 := 0. We now
discuss two cases of sampling, one corresponding to the approach of Section 2 and one to
the standard case of i.i.d. sampling as in [36].
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As the original system and the Koopman generator are control affine, the remainder of
this section is split up into two parts. First, we derive error estimates corresponding to
autonomous systems driven by nc+1 constant controls. Second, we use these estimates and
control affinity to deduce a result for general controls.
In accordance with the notation in Section 2 we define LeiV := PVLei |V and also use
this symbol to denote the matrix representation of this linear operator w.r.t. to the basis
{ψ1, . . . , ψN} of V. Its approximation based on the data x0, . . . , xm−1 ∈ X will be denoted
by L̃eim.

Proposition 16. Let i ∈ {0, . . . , nc} be given and Assumption 15 hold. Then, for any pair
consisting of a desired error bound ε > 0 and a probabilistic tolerance δ ∈ (0, 1), there is a
number of data points mi such that for any m ≥ mi, we have the estimate

P
(
‖LeiV − L̃eim‖F ≤ ε

)
≥ 1− δ.

The minimal amount of data mi is given by the formulas of Theorem 12.

Proof. The claim follows immediately from applying Theorem 12.

Having obtained an estimate for the autonomous systems corresponding to the constant con-
trols ei, i = 0, . . . nc, we can leverage the control affinity of the system to formulate the cor-
responding results for arbitrary controls. To this end, for any control u(t) =

∑nc
i=1 αi(t)ei ∈

L∞(0, T ;Rnc), we define the projected Koopman generator and its approximation corre-
sponding to the non-autonomous system with control u by

LuV(t) := L0
V +

nc∑
i=1

αi(t)
(
LeiV − L0

V
)
,

L̃um(t) := L̃0
m +

nc∑
i=1

αi(t)
(
L̃eim − L̃0

m

)
.

Theorem 17. Let Assumption 15 hold. Then, for any pair consisting of a desired error
bound ε̃ > 0 and probabilistic tolerance δ̃ ∈ (0, 1), prediction horizon T > 0, and control
function u ∈ L∞(0, T ;Rnc) we have

ess inft∈[0,T ] P
(
‖LuV(t)− L̃um(t)‖F ≤ ε̃

)
≥ 1− δ̃,

provided that the number m of data points exceeds maxi=0,...,ncmi with mi defined as in
Proposition 16 with

ε = ε̃
(nc+1)(1+

∑nc
i=1 ‖αi‖L∞(0,T ))

and δ = 1− δ̃
nc+1 .

Proof. Again, we omit the subscript of the norm and set ‖ · ‖ = ‖ · ‖F . Using the result of
Proposition 16 and our choice of m0, we have

P
(
‖L̃0

m − L0
V‖ ≤ ε̃

(nc+1)(1+
∑nc
i=1 ‖αi‖L∞(0,T ))

)
≥ 1− δ̃

nc+1 ,

and for all i ∈ 1, . . . nc

P
(
‖LeiV − L̃eim‖ ≤ ε̃

(nc+1)‖αi‖L∞(0,T )

)
≥ 1− δ̃

nc+1 .
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Then we compute for a.e. t ∈ [0, T ]

P
(
‖LuV(t)− L̃um(t)‖ ≤ ε̃

)
≥ P

(∥∥∥∥∥
(

1−
nc∑
i=1

αi(t)

)(
L0
V − L̃0

m

)∥∥∥∥∥+

nc∑
i=1

∥∥∥αi(t)(L̃eim − LeiV)∥∥∥ ≤ ε̃
)

≥ P

(∥∥∥∥∥
(

1−
nc∑
i=1

αi(t)

)(
L0
V − L̃0

m

)∥∥∥∥∥ ≤ ε̃
nc+1 ∧

nc∀
i=1

:
∥∥∥αi(t)(L̃eim − LeiV)∥∥∥ ≤ ε̃

nc+1

)
.

Next, we use Lemma 21 from Appendix A.2 with d = nc + 1,

A0 =

{∥∥∥∥∥
(

1−
nc∑
i=1

αi(t)

)(
L0
V − L̃0

m

)∥∥∥∥∥ ≤ ε̃
nc+1

}
and Ai =

{∥∥∥αi(t)(L̃eim − LeiV)∥∥∥ ≤ ε̃
nc+1

}
for i = 1, . . . , nc. This yields

P
(
‖LuV(t)− L̃um(t)‖ ≤ ε̃

)
≥ P

(∥∥∥∥∥
(

1−
nc∑
i=1

αi(t)

)(
L0
V − L̃0

m

)∥∥∥∥∥ ≤ ε̃
nc+1

)
+

nc∑
i=1

P
(
‖αi(t)

(
L̃eim − LeiV

)
‖ ≤ ε̃

nc+1

)
− nc

≥ P
(
‖L̃0

m − L0
V‖ ≤ ε̃

(1+
∑nc
i=1 ‖αi‖L∞(0,T ))(nc+1)

)
+

nc∑
i=1

P
(
‖L̃eim − LeiV ‖ ≤ ε̃

(nc+1)‖αi‖L∞(0,T )

)
− nc

≥ 1− δ̃
nc+1 +

nc∑
i=1

(
1− δ̃

nc+1

)
− nc = 1− δ̃.

Taking the essential infimum yields the result.

Again, similar as in the previous section, we obtain a bound on trajectories via Gronwall,
if the state response is contained in X.

Corollary 18. Let Assumption 15 hold. Let T, ε > 0 and δ ∈ (0, 1), z0 ∈ RN and u ∈
L∞(0, T ;Rnc) such that the solution of (SDE) is contained in X with probability one. Then
there is m0 ∈ N such that for m ≥ m0 the solutions z, z̃ of

ż(t) = LuV(t)z z(0) = z0

˙̃z(t) = L̃um(t)z̃ z̃(0) = z0

satisfy

min
t∈[0,T ]

P
(
‖z(t)− z̃(t)‖2 ≤ ε

)
≥ 1− δ.

Proof. See Appendix A.3.

As in Corollary 13, m0 can explicitly be computed by combining Theorem 17 with the
constants in Gronwalls inequality.
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We conclude this section with a final corollary regarding the optimality of the solution
obtained using an error-certified Koopman model. To this end, we consider the optimal
control problem with x0 ∈ X and a stage cost ` : Rn × Rnc → R:

min
u∈L∞(0,T ;Rnc )

∫ T

0
`(x(t), u(t)) dt

s.t. ẋ =F (x) +

nc∑
i=1

Gi(x)ui, x(0) = x0.

(15)

In what follows, we compare the optimal value of the Koopman representation of (15)
projected onto the subspace of observables V with initial datum z0 = Ψ(x0)

min
α∈L∞(0,T ;Rnc )

∫ T

0
`(P (z(t)), α(t)) dt

s.t. ż(t) =

[
L0
V +

nc∑
i=1

αi(t)
(
LeiV − L0

V
)]
z(t), z(0) = z0,

(16)

to the optimal value of the surrogate-based control problem:

min
α̃∈L∞(0,T ;Rnc )

∫ T

0
`(P (z̃(t)), α̃(t)) dt

s.t. ˙̃z(t) =

[
L̃0
m +

nc∑
i=1

α̃i(t)
(
L̃eim − L̃0

m

)]
z̃(t), z̃(0) = z0,

(17)

where P maps a trajectory of observables to a trajectory in the state space, which in practice
is frequently realized by including the coordinates of the identity function in the dictionary Ψ
of observables.

Corollary 19. Let T, ε > 0, δ ∈ (0, 1), z0 ∈ RN , let J be locally Lipschitz continuous and
let Assumption 15 hold. Furthermore, let (z∗, α∗) be an optimal solution of problem (16)
such that the state response of (15) emanating from the control α∗ is contained in X. Then
there is m0 ∈ N such that for m ≥ m0 data points contained in X, there exists a tuple (z̃, α̃)
which is feasible for (17) such that for the cost, we have the estimate

P
(∣∣∣∣∫ T

0
`(P (z̃(t)), α̃(t))− `(P (z∗(t)), α∗(t)) dt)

∣∣∣∣ ≤ ε) ≥ 1− δ.

4. Numerical examples

In this section, we first present numerical experiments on the derived error bound for the
Koopman generator, and then discuss the implications for optimal control. In particular, we
emphasize that the bilinear Koopman model from Section 3 appears to be the best approach
for a straightforward transfer of predictive error bounds to the control setting.

16



4.1. Generator Error Bounds: Ornstein-Uhlenbeck Process

We begin by investigating the validity and accuracy of the error bounds for the Galerkin
matrices of a single SDE system, as derived in Proposition 10. To this end, we consider the
one-dimensional reversible Ornstein-Uhlenbeck (OU) process

dXt = −Xtdt+ dWt. (18)

−2 −1 0 1 2x

0.00

0.25

0.50

0.75
µ

(x
)

A: Invariant Density
m/∆t =10

m/∆t =100

m/∆t =1000

Ref

101 102 103m/∆t

10−1

100
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ε

B: Error for C, 1− δ = 0.90
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Frob

101 102 103m/∆t

10−1

100

101
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ε

C: Error for A, 1− δ = 0.90

Figure 1: Numerical Results for one-dimensional OU Process (18). A: Exact invariant den-
sity µ in black, compared to histograms of the first m points of an exemplary
trajectory, for various data sizes m. B: Error bounds for C corresponding to
confidence level 1− δ = 0.9. We show both the theoretical estimates obtained in
Proposition 10 (blue), as well as the data-based estimates obtained as described in
the text (red). We show the maximal error over all entries Cij (dots), the average
error over all matrix entries (squares), and the Frobenius norm errors ‖C̃m−C‖F .
C: The same as B for the matrix A.

As the spectrum of the generator L of the OU process, as well as its invariant density, are
known in analytical form, we can exactly calculate the Galerkin matrices C, A, all variances
σ2

Φij
, and asymptotic variances σ2

Φij ,∞, if we consider a basis set comprised of monomials,
see Appendix A.4.

We consider monomials of maximal degree four (i.e. N = 4), and set the discrete in-
tegration time step to ∆t = 10−3. For a range of different data sizes m and confidence
levels δ, we estimate the minimal error ε that can be achieved with probability 1− δ for a
variety of quantities of interest. We calculate ε for all individual entries Cij and Aij using
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inequality (6). Moreover, we also calculate ε for the Frobenius norm errors in C and A by
means of (5).

In order to compare our bound to the real error, we conduct 500 identical experiments.
For each experiment, we generate an independent simulation of the OU process (18), with
initial condition drawn from the invariant distribution. For each trajectory and each of
the data sizes m considered, we estimate the matrices C̃m, Ãm. We then calculate the
absolute entry-wise errors to C and A, as well as the Frobenius norm errors ‖C̃m−C‖F and
‖Ãm−A‖F . Finally, we numerically compute the 1− δ-percentile of each of these errors for
all confidence levels δ considered above (i.e., the error ε below which 450 of the 500 repeated
experiments lie). These can be directly compared to the probabilistic bounds ε obtained
from our theoretical estimates.

The results are shown in Figure 1. We can see in panels B and C that our estimates for
individual entries of the Galerkin matrices C and A are quite accurate, as the data-based
error is over-estimated by only a factor of two to three. Our estimates for Frobenius norm
errors are less accurate, with approximately one order of magnitude difference between
theoretical and data-based errors. It can be concluded that the factor N in (5) is too coarse
in this example, as the actual Frobenius norm error only marginally exceeds the maximal
entry-wise error. Nevertheless, the qualitative behaviour of all theoretical error bounds is
confirmed by the data.

4.2. Extension to control systems

In this section, we illustrate our findings for deterministic as well as stochastic systems
regarding prediction and control. We compare the solution of the exact model to the
bilinear system

ẑ(t) = ψ(P (z(t)))

ż(t) =

[
L̃0
m +

nc∑
i=1

αi(t)
(
L̃eim − L̃0

m

)]
ẑ(t)

z(t0) = ψ(x(t0)),

(19)

where nc is the dimension of the control input u, and P is the projection of the lifted state z
onto the full state x ∈ X. Note that the first line, i.e., the project-and-lift step is not required
if the space V spanned by the {{ψk}Nk=1} is a Koopman-invariant subspace [31]. Moreover,
it becomes less and less important the more the dynamics of the L̃m are truly restricted
to V, or – alternatively – if we are not interested in long-term predictions, for instance in
the MPC setting. Besides the bilinear model (19), we also compare the true solution to
the linear model obtained via eDMD with control, see [15,30] for details. Optimality of the
computed trajectories from a theoretical standpoint will not be addressed here, as the error
bounds for L̃m are still too large. However, the principled approach is to choose an m such
that Corollary 19 holds.

For the numerical discretization, we use eDMD with a finite lag time to obtain a discrete-
time version of (19) in case of the Duffing system, which corresponds to an explicit Euler
discretization [29]. For the Ornstein-Uhlenbeck example, we calculate the generator using
gEDMD [13] and then obtain the resulting discrete-time version by taking the matrix expo-
nential. In the case of eDMD with control, we use the standard algorithm from [15], which
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also results in a forward Euler version of the linear system ż = Âz + B̂u, i.e.,

ẑi+1 = Azi +Bui,

zi+1 = ψ(P (ẑi+1)),

z0 = ψ(x(t0)),

(20)

where we have again added the project-and-lift step necessary for high prediction accuracy
over long time horizons.

4.2.1. Duffing equation (ODE)

The first system we study is the Duffing oscillator:

dx
dt =

(
x2

−δx2 − αx1 − 2βx3
1u

)
, x(t0) = x0. (21)

with α = −1, β = 1 and δ = 0. Note that the control does not enter linearly, which is a
well-known challenge for DMDc [29].

As the dictionary ψ, we choose monomials with varying maximal degrees, and we also
include square and cubic roots for comparison. For the data collection process, we simulate
the system with constant control inputs u = 0 and u = 1 using the standard Runge-Kutta
scheme of fourth order with time step h = 0.005. As the final time, we choose T = nlagh
seconds, where nlag is the integer number of time steps we step forward by the discrete-time
Koopman operator model. We perform experiments for both nlag = 1 and nlag = 10. Each
trajectory yields one tuple (x, y) = (x(0), x(T )), and we sample various numbers m of data
points with uniformly distributed random initial conditions over the rectangle [−1.5, 1, 5]2.
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Figure 2: Comparison of ODE solution, the bilinear surrogate model and the linear model
obtained via eDMDc for the system (21) for a random control input with u(t) ∈
[−1, 1].

Fig. 2 shows the prediction accuracy form = 100 and nlag = 10, where excellent agreement
is observed for the bilinear surrogate model. In particular the relative error

∆x(t) =
‖x(t)− x̃(t)‖2
‖x(t)‖2

,

19



where x̃(t) = P (z(t)) is the solution obtained via the surrogate model, is below 0.1 percent
for almost 3 seconds, whereas the eDMDc approach has a large error of ≈ 10% from the
start and becomes unstable within the first second.

To study the influence of the size of the training data set, Fig. 3 shows boxplots of
the one-step prediction accuracy for various m. Each boxplot was obtained by performing
20 trainings of a bilinear system according to the procedure described above. After each
training, a single time step was made with 1000 uniformly drawn random initial conditions
x0 ∈ [−1.5, 1, 5]2 control inputs u ∈ [0, 1], both. Consequently, each boxplot consists of
2 · 104 data points. We see that, as expected, the training error decreases for larger m.
However, what is really surprising is that a saturation can be observed already at m = 30
for an ODE system. Beyond that, no further improvement can be seen, which demonstrates
the advantage of (i) the linearity of the Koopman approach and (ii) the usage of autonomous
systems for the model reduction process.

Figure 3: Left: Boxplot of the relative one-step prediction error over 20 training runs and
1000 different samples (x0, u) in each run for a dictionary of monomials up to
degree at most five and nlag = 1. Right: The influence of the lag time as well
as the control input on the mean accuracy (the dashed line with triangle symbols
corresponds to the left plot). We see that the lag time plays an important role in
the control setting.

Interestingly, the lag time between two consecutive data points has a critical impact on
the maximal accuracy in the control case. This is due to the fact that the bilinear surrogate
model is only exact for the Koopman generator [29]. For a finite lag time, the bilinear model
is a first order approximation such that smaller lag times are advantageous. Nevertheless,
the accuracy still significantly supersedes the eDMDc approach.

Another interesting observation can be made with respect to the choice of the dictionary
ψ. Fig. 4 shows a comparison of the mean errors (analogous to the red bars in Fig. 3 for
various dictionaries. We observe excellent performance for monomials with degree three
or larger. The addition of roots of x is not beneficial at all, and in particular, smaller
dictionaries are favorable in terms of the data requirements, which is in agreement with our
error analysis and which was also reported in [28].
Next, we study the stabilization of the system (21) for the final time T = 5. Using the
time discretization as above and a straight-forward single-shooting method, this yields a
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Figure 4: Mean relative one-step prediction errors for various dictionaries and data set sizes
m.

100-dimensional optimization problem similar to Problem (17) from Corollary 19:

min
u

∫ 5

0
‖P (z(t))− xref(t)‖2

s.t. (19)

(22)

where xref is the reference trajectory to be tracked. Fig. 5 demonstrates the performance
for xref = 0 with models that were obtained using only m = 25 training samples for each of
the Koopman approximations, where almost perfect agreement with the solution using the
full system is achieved. In contrast, the eDMDc approximation fails for System (21), even
when initializing with the optimal solution from the full system.

Figure 5: Control performance using the true ODE model (black) and the bilinear surrogate
model (orange). The results are almost indistinguishable, whereas eDMDc fails.

4.2.2. Ornstein-Uhlenbeck process (SDE)

For the stochastic setting, we consider an Ornstein-Uhlenbeck process with a control input:

dXt = −α(uXt)dt+
√

2β−1dWt. (23)
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Figure 6: Prediction accuracy for the expected value of the Ornstein-Uhlenbeck process (ap-
proximated by averaging over 100 simulations) of the bilinear system and eDMDc,
respectively.

with α = 1, β = 2 and u(t) ∈ [0, 1]. The system is simulated numerically using an Euler-
Maruyama integration scheme with a time step of 10−3 as in Section 4.1. For both systems,
we calculate the Koopman operator corresponding to u = 0 and u = 1, respectively, using
the gEDMD procedure presented in [13] with monomials up to degree five. We then cal-
culate the corresponding Koopman operators for the time step h = 0.05 using the matrix
exponential.

To study the prediction performance (cf. Fig. 6), we proceed in the same way as for
the Duffing system, except that we now compare the expected values, approximated by
averaging over 100 SDE simulations. The results are very similar to the deterministic
case, where the performance of both surrogate modeling techniques is comparable when the
control enters linearly, and very poor for eDMDc otherwise. Even though the Ornstein-
Uhlenbeck process is stochastic, the linearity is highly favorable for the data requirements.
We do not observe any considerable deterioration even in the very low data limit.

Finally, in the control setting, we aim at tracking the expected value E[Xt], which is
precisely the quantity that is predicted by the Koopman operator. Thus, Problem (22) can
directly be applied to SDEs as well. In order to compare the results to the full system, we
average over 20 simulations in the evaluation of the objective function value when using the
SDE. However, this appears to be insufficient, as the performance is inadequate, cf. Fig. 7.
The bilinear surrogate model, on the other hand, shows very good performance with a small
amount of m = 100 training data points.
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Figure 7: Control of the expected value of the Ornstein-Uhlenbeck process (approximated
by averaging over 100 simulations using the optimal control input shown in the
bottom plots). In the SDE-based control, we have used 20 simulations in each
objective function evaluation.

5. Conclusions

We presented the first rigorously derived probabilistic bounds on the finite-data approxima-
tion error for the Koopman generator of SDEs and nonlinear control systems. Furthermore,
by using slightly more advanced techniques from probability theory, we also relaxed the
assumption of i.i.d. data invoked in [36] in the ODE setting. Moreover, we also provided an
analysis for the error propagation to estimate the prediction accuracy in terms of the data
size. A novelty for SDEs and in the control setting is that our bounds explicitly depend
on the number of data points (and not only in the infinite-data limit). Further, the pro-
posed techniques provide the theoretical foundation for the Koopman-based approach [29]
to control-affine systems, which seems to be superior for control and particularly well-suited
for MPC, since it avoids the curse of dimensionality w.r.t. the control dimension.
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[24] M. Mollenhauer, S. Klus, C. Schütte, and P. Koltai. Kernel autocovariance operators
of stationary processes: Estimation and convergence. arXiv preprint arXiv:2004.00891,
2020.

[25] B. Oksendal. Stochastic differential equations: an introduction with applications.
Springer Science & Business Media, 2013.

[26] S. Peitz and K. Bieker. On the Universal Transformation of Data-Driven Models to
Control Systems. arXiv:2021.04722, 2021.

[27] S. Peitz and S. Klus. Koopman operator-based model reduction for switched-system
control of PDEs. Automatica, 106:184 – 191, 2019.

[28] S. Peitz and S. Klus. Feedback Control of Nonlinear PDEs Using Data-Efficient
Reduced Order Models Based on the Koopman Operator. In A. Mauroy, I. Mezić,
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A. Appendix

A.1. Norm of the isomorphism V ' Rn

Proposition 20. Let V = span{{ψj}Nj=1} ⊂ L2
µ(X), B ∈ L(V,V) and B ∈ Rn×n be its

corresponding matrix representation. Then√
λmin(C)
λmax(C)‖B‖2 ≤ ‖B‖L(V,V) ≤

√
λmax(C)
λmin(C)

‖B‖2

where Ci,j = 〈ψi, ψj〉L2
µ(X).

Proof. This follows from the identity∥∥∥∥∥
n∑
i=1

αiψi

∥∥∥∥∥
2

L2
µ(X)

=

N∑
i,j=1

αiαj〈ψi, ψj〉L2
µ(X) = α>Cα,

which shows the equivalence of the vector norms. This induces the desired equivalence of
the operator norms.

A.2. A technical lemma

Lemma 21. Let Ai, i = 1, . . . , d, be measurable sets. Then

P

(
d⋂
i=1

Ai

)
=

d∑
i=1

P(Ai)−
d−1∑
i=1

P

Ai ∪ d⋂
j=i+1

Aj

 .

Moreover, if P (Ai) ≥ 1− δ for all i = 1, . . . , d, then

P

(
d⋂
i=1

Ai

)
≥ 1− dδ.

Proof. Inductively applying the classical formula

P (A1 ∩A2) = P(A1) + P(A2)− P(A1 ∪A2)

yields

P

(
d⋂
i=1

Ai

)
= P

(
A1 ∩

d⋂
i=2

Ai

)
= P(A1) + P

(
d⋂
i=2

Ai

)
− P

(
A1 ∪

d⋂
i=2

Ai

)

=

d∑
i=1

P (Ai)−
d−1∑
i=2

P

Ai ∪ d⋂
j=i+1

Aj

− P

(
A1 ∪

d⋂
i=2

Ai

)

=

d∑
i=1

P (Ai)−
d−1∑
i=1

P

Ai ∪ d⋂
j=i+1

Aj

 ,

which proves the first claim. The second claim follows by estimating the first sum by d(1−δ)
from below, and the second sum by −(d− 1) from below.
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A.3. Proof of the error bound on the trajectories

Lemma 22. Let z and z̃ solve (9) and (10) respectively. Then for all t ≥ 0

‖z(t)− z̃(t)‖2 ≤ ‖L̃m − LV‖2‖z̃‖L1(0,t;RN )e
t‖LV‖2

Proof. Denoting e = z − z̃, subtracting (10) from (9) and integrating over a time interval
[0, t] with t ≥ 0 we obtain that

e(t) =

∫ t

0
LVz(s)− L̃mz̃(s) ds

=

∫ t

0
LVe(s)−

(
L̃m − LV

)
z̃(s) ds

This implies using Gronwalls inequality, cf. [6, Theorem 2.1], that

‖e(t)‖2 ≤
∫ t

0
‖LV‖2‖e(s)‖2 + ‖L̃m − LV‖2‖z̃(s)‖2 ds

≤ et‖LV‖2
∫ t

0
‖L̃m − LV‖2‖z̃(s)‖2 ds

= et‖LV‖2‖L̃m − LV‖2‖z̃‖L1(0,t;RN ).

Proof (Corollary 13). Using the bound of Lemma 22 we obtain

‖z(t)− z̃(t)‖2 ≤ ‖L̃m − LV‖2tet‖L̃m‖2et‖LV‖2

= t‖L̃m − LV‖2et(‖LV‖2+‖L̃m‖2).

We compute

P (‖z(t)− z̃(t)‖2 ≤ ε)
≥ P

(
t‖L̃m − LV‖2et‖LV‖2et‖L̃m‖2‖z0‖ ≤ ε

)
≥ P

(
t‖L̃m − LV‖2e2t‖LV‖2et‖L̃m−LV‖2‖z0‖ ≤ ε

)
≥ P

(
T‖L̃m − LV‖2e2T‖LV‖2eT‖L̃m−LV‖2‖z0‖ ≤ ε

)
By Theorem 12 and ‖·‖2 ≤ ‖·‖F , for any ε̃ we can choose m0 such that P

(
‖L̃m − LV‖2 ≤ ε̃

)
≥

1− δ. Hence, there is m0 only depending on T , z0, LV and ε such that for any t ≥ 0

P (‖z(t)− z̃(t)‖2 ≤ ε) ≥ 1− δ.

Taking the minimum over all t ∈ [0, T ] proves the claim.

Proof (Corollary 18). This proof follows with obvious modifications in the proof of Corol-
lary 22 using the bound on then error of the time dependent generators of Theorem 17.
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Corollary 23. If the Koopman semigroup generated by LV is bounded by M , then

‖z̃(t)− z(t)‖2 ≤M‖L̃m − LV‖2‖z̃‖L1(0,t;RN ).

If it is exponentially stable then

‖z̃(t)− z(t)‖2 ≤Mc‖L̃m − LV‖2‖z̃‖Lp(0,t;RN )

for any 1 ≤ p ≤ ∞ with M ≥ 1 and c = c(p) ≥ 0 independent of t. If additionally the
semigroup generated by L̃m is exponentially stable, ‖z̃(t)− z(t)‖2 can be bounded uniformly
in t ≥ 0.

Proof. Subtracting (10) from (9) and denoting e(t) = z̃(t)− z(t) yields the system

ė(t) = LVe(t) + (L̃m − LV)z̃(t).

Denoting by KtV the Koopman semigroup generated by LV yields, using the variation of
constants formula

e(t) =

∫ t

0
Kt−sV

(
L̃m − LV

)
z̃(s) ds

and hence

‖e(t)‖2 ≤
∫ t

0
‖Kt−sV ‖2‖L̃m − LV‖2‖z̃(s)‖2 ds.

If KtV is bounded by M , i.e., ‖KtV‖ ≤M , we have

‖e(t)‖2 ≤M‖L̃m − LV‖2‖z̃‖L1(0,t;RN ).

If KtV is exponentially stable, i.e., ‖KtV‖2 ≤Me−ωt, we obtain

‖e(t)‖2 ≤Mc‖L̃m − LV‖2‖z̃‖Lp(0,t;RN )

for any 1 ≤ p ≤ ∞ with c = c(p, ω). If additionally, the semigroup generated by L̃m is
exponentially stable implying that ‖z̃(t)‖2 ≤ M̃e−ω̃t‖z0‖2, this upper bound can be bounded
uniformly in t.

A.4. Analytical Expressions for the OU Process

For the one-dimensional SDE (18), the Koopman generator is given by:

Lφ = −xφ′(x) +
1

2
φ′′(x).

The eigenvalues of the generator are given by negative integers κl = −l, eigenvalues of
the Koopman operator are their exponentials, as usual, λl(t) = e−lt. The corresponding
eigenfunctions are given by scaled physicist’s Hermite polynomials. They are orthonormal
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with respect to the inner product with weight function µ, which is the density of a normal
distribution with variance one half, yielding the relations:

µ(x) =
1√
π

exp(−x2), ψl =
1√

2l(l − 1)!
Hl(x), 〈Hl, Hm〉µ = 2ll!δlm. (24)

The monomial basis can be recovered from eigenfunction basis ψi by the representation
formula:

xn =
n!

2n

bn2 c∑
k=0

1

k!(n− 2k)!
Hn−2k(x). (25)

For a basis set comprised of monomials up to maximal degree N , the Galerkin matrices C
and A can be obtained as the moments of the normal distribution with variance 0.5:

Cij =

{
(i+j)!

2i+j((i+j)/2)!
(i+ j) even,

0 (i+ j) odd,
Aij =

{
− ij

2
(i+j−2)!

2i+j−2((i+j−2)/2)!
(i+ j) even,

0 (i+ j) odd.

For their numerical estimation, we consider centered random variables:

φij(x) = xi xj − Cij for C, φij(x) = − ij
2
xi−1 xj−1 −Aij for A.

We calculate the asymptotic variance of the scalar random variable φij if it is defined by
either of the two expressions above. We also introduce the quantity n := i + j for C
or n := i + j − 2 for A. The analytical expressions for Cij , Aij above exactly equal the
terms corresponding to H0 in the general expansion for the monomial xn in (25). As the
random variables φij are centered, no contribution from H0 is left. Thereby, we obtain the
decomposition for φij (up to the factor − ij

2 for estimation of A):

φij = xn − Eµ[xn] =
n!

2n

dn2−1e∑
k=0

1

k!(n− 2k)!
Hn−2k(x). (26)

Next, we calculate matrix elements with the Koopman operator at lag time l∆t by combin-
ing (26) with the orthogonality relation (24):

〈φij , Kl∆tφij〉µ =
(n!)2

22n

dn2−1e∑
k=0

1

(k!(n− 2k)!)2
e−(n−2k)l∆t2n−2k(n− 2k)!

=
(n!)2

22n

dn2−1e∑
k=0

2n−2k

(k!)2(n− 2k)!
e−(n−2k)l∆t .

Finally, by setting qk = e−(n−2k)∆t , we calculate the asymptotic variance according to the
result in Lemma 6 (note that the contribution for l = 0 appears only once, and that the
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result needs to be multiplied by 1
4 ij for the estimation of A):

σ2
φij ,∞ = 〈φij , φij〉µ + 2

∞∑
l=1

〈φij , Kl∆tφij〉µ

=
(n!)2

22n

dn2−1e∑
k=0

2n−2k

(k!)2(n− 2k)!

[ ∞∑
l=0

qlk +
∞∑
l=1

qlk

]

=
(n!)2

22n

dn2−1e∑
k=0

2n−2k

(k!)2(n− 2k)!

[
1

1− qk
+

qk
1− qk

]

=
(n!)2

22n

dn2−1e∑
k=0

2n−2k

(k!)2(n− 2k)!

1 + qk
1− qk

.
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