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Abstract
Koopman operator theory has been successfully applied to problems from var-
ious research areas such as fluid dynamics, molecular dynamics, climate sci-
ence, engineering, and biology. Applications include detecting metastable or
coherent sets, coarse-graining, system identification, and control. There is an
intricate connection between dynamical systems driven by stochastic differen-
tial equations and quantum mechanics. In this paper, we compare the ground-
state transformation and Nelson’s stochastic mechanics and demonstrate how
data-driven methods developed for the approximation of the Koopman oper-
ator can be used to analyze quantum physics problems. Moreover, we exploit
the relationship between Schrödinger operators and stochastic control problems
to show that modern data-driven methods for stochastic control can be used
to solve the stationary or imaginary-time Schrödinger equation. Our findings
open up a new avenue toward solving Schrödinger’s equation using recently
developed tools from data science.
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1. Introduction

Relationships between the Schrödinger equation and the Fokker–Planck equation have been
explored since the early days of quantum mechanics. Schrödinger [1] already wrote:

Eine gewisse Verwandtschaft der wellenmechanischen Grundgleichung und der Fokker-
schen Gleichung, sowie der an beide anknüpfenden statistischen Begriffsbildungen hat
sich wohl jedem aufgedrängt, der mit den beiden Ideenkreisen hinlänglich vertraut ist6.

He then continues to point out two major differences, namely that (1) in classical systems the
probability density ρ itself obeys a linear differential equation, whereas in quantum mechan-
ics the wave function ψ (not the probability density ρ) satisfies a related linear differential
equation, from which we can obtain the probabilities by computing ρ = |ψ|2, and that (2) the
imaginary unit i changes the nature of the differential equation and makes it reversible, while
in the classical case the dynamics are irreversible.

There are many different formulations and interpretations of quantum mechanics, a con-
cise overview is given in [2]. The pilot-wave description by de Broglie–Bohm and Nelson’s
stochastic mechanics are often subsumed under hidden variable theories, where the latter is
less well-known and often presented as a stochastic variant of the former [3]. The main concep-
tual difference, however, is that in the original de Broglie–Bohm theory the dynamics depend
on the phase of the wave function obeying the Schrödinger equation, whereas Nelson aimed at
deriving the wave function and the Schrödinger equation, assuming only that particle trajecto-
ries can be described by diffusion processes in configuration space [3, 4]. While conventional
quantum mechanics and stochastic mechanics make the same predictions, the wave function
ψ plays no fundamental role in the context of Nelson’s formulation and can be viewed as a
convenient computational device [5]. Nevertheless, it is also possible to obtain the associated
stochastic process given a wave function ψ that solves the Schrödinger equation. We will use
this viewpoint as a convenient tool to derive stochastic dynamics. A comprehensive review and
comparison of hidden variable theories and their interpretations can be found in [6].

We will not discuss the physical interpretation of hidden variables, our goal instead is
to establish and exploit mathematical connections between stochastic processes—in partic-
ular classical drift–diffusion processes—and quantum mechanics. In recent years, a wealth
of numerical methods has been developed in order to analyze stochastic dynamics based
on trajectory data, see [7–12]. Moreover, we showed in [13] that data-driven methods for
the analysis of classical dynamical systems can be applied either directly to quantum sys-
tems or to their stochastic counterparts. To this end, we used a well-known transformation of
the Schrödinger equation into a Kolmogorov backward equation, which is governed by the
generator of an associated stochastic differential equation. This transformation is based on
the assumption that a strictly positive ground state exists. Equivalent transformations exist
also for the Fokker–Planck equation [14, 15]. These methods were then used to compute
eigenfunctions of the time-independent Schrödinger equation.

In this paper, we will derive the transformation of the Schrödinger equation to the Kol-
mogorov equation in a more general context and show how the transformation leads to
numerical methods to solve the Schrödinger equation based on data. We will present and illus-
trate various algorithms in detail, requiring different amounts of prior information. The main
contributions of this work are:

6 A certain relationship between the basic wave mechanical equation and the Fokker equation, as well as the related
statistical concepts, has probably struck anyone who is sufficiently familiar with both ideas.
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• We revisit the connections between Koopman operator theory and quantum mechan-
ics using the transformation of the Schrödinger equation into a Kolmogorov backward
equation. We compare the transformation to Nelson’s stochastic formulation and explain
how this transformation can be used to obtain multiple new solutions of Schrödinger’s
equation based on trajectory data, provided a single solution is known.

• We recapitulate the relationships between solutions of the imaginary-time Schrödinger
equation and a stochastic optimal control problem based on the Feynman–Kac formula
and Hamilton–Jacobi–Bellman (HJB) equation. We then use recent results for data-driven
control of control-affine systems to show that the Schrödinger equation can be solved by
means of an optimal control problem constrained by an ordinary differential equation. This
formulation does not require any prior knowledge of a solution.

• We show how to apply recently developed data-driven techniques for the approximation
of the Koopman operator to quantum systems. In the quantum context, this allows us to
compute ground and excited states as well as general solutions of the time-dependent
Schrödinger equation.

In section 2, we will introduce the Koopman operator and its generator as well as the
Schrödinger operator. In section 3, hidden variable interpretations of quantum mechanics,
which we will use for the numerical analysis of quantum systems, will be outlined. Fur-
thermore, we will explore connections between the ground-state transformation and Nelson’s
stochastic mechanics and derive stochastic descriptions of well-known quantum systems.
An optimal control formulation for the Schrödinger equation will be derived in section 4.
Section 5 shows how Koopman operator theory can be applied to quantum physics problems
and section 6 how the control formulation can be used to solve the imaginary-time Schrödinger
equation. Open questions and future work will be discussed in section 7.

2. Koopman operator theory and quantum mechanics

We start by briefly introducing the stochastic Koopman operator and the Schrödinger operator.
The goal is to apply Koopman operator theory and related numerical methods to quantum
systems.

2.1. The Koopman operator

Consider a dynamical system defined on a state spaceX ⊂ Rd, given by a stochastic differential
equation

dXt = b(Xt, t)dt + σ(Xt, t)dBt. (1)

Here, b is called the drift term, σ the diffusion term, and Bt is a standard Wiener process. We also
introduce the notation a(x, t) :=σ(x, t)σ(x, t)� for the covariance matrix of the diffusion. The
Koopman operator [10, 16–18] is then defined, for any time lag Δt � 0 and suitable functions
f , by the conditional expectation:

(Kt,Δt f )(x) = E
x[ f (Xt+Δt )] = E[ f (Xt+Δt ) |Xt = x ]. (2)

The Koopman operator for ordinary differential equations, i.e., σ ≡ 0, can be regarded as a
special case where the computation of the expectation value can be omitted. The family of
operators Kt,Δt satisfy the important semigroup property

Kt,Δt1+Δt2 = Kt+Δt1 ,Δt2Kt,Δt1 .

3
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This motivates the definition of the associated generator of the Koopman operator (2) as
the time derivative Lt f = limΔt→0

1
Δt

(
Kt,Δt f − f

)
. The result is the following second order

differential operator, also known as Kolmogorov backward operator:

Lt f (x) =
d∑

i=1

bi(x, t)
∂ f (x)
∂xi

+
1
2

d∑
i=1

d∑
j=1

ai j(x, t)
∂2 f (x)
∂xi∂x j

= b(x, t) · ∇ f (x) +
1
2

a(x, t) : ∇2 f (x). (3)

The adjoint of the Koopman operator is called Perron–Frobenius operator, its generator is the
Fokker–Planck operator

L∗
t p(x) = −

d∑
i=1

∂(bi(x, t)p(x))
∂xi

+
1
2

d∑
i=1

d∑
j=1

∂2(ai j(x, t)p(x))
∂xi∂x j

.

The associated Fokker–Planck equation describes the time evolution of the probability distri-
bution of the process Xt. If the drift term b is defined by the gradient of a scalar potential V,
the diffusion σ is isotropic, and both are time-independent, we obtain the simplified stochastic
differential equation

dXt = −∇V(Xt)dt +
√

2β−1 dBt, (4)

which is frequently used in molecular dynamics and, as we will see below, can
also be used to model quantum systems. The parameter β is called inverse tempera-
ture. The smaller β, the larger the noise. For systems of this form, the generator is
given by

L f = −∇V · ∇ f + β−1Δ f .

Koopman operators provide a lifting of the nonlinear dynamical system (1) into the infinite-
dimensional space of observable functions f , where the dynamics are driven by the linear
operator Lt. In practice, Kt,Δt must be approximated on a finite-dimensional subspace: for
linearly independent functions Φ = [φ1, . . . ,φn]�, the Galerkin projection of the Koopman
operator is given by the matrix:

Kt,Δt =
(
Ct
)−1

At, Ct
i j = E

[
φi(Xt)φ j(Xt)

]
, At

i j = E
[
φi(Xt)φ j(Xt+Δt )

]
.

Computing the matrix approximation Kt,Δt thus only requires instantaneous and one-step cor-
relation functions, which can be efficiently approximated using simulation data [9–11, 19]. By
definition, the matrix approximation Kt,Δt can be used to approximately predict the expectation
at time t +Δt for observables contained in the linear span of the functions φ1, . . . ,φn.

2.2. The Schrödinger equation

We will use atomic units throughout the paper for the sake of simplicity. Given the Hamiltonian
H = − 1

2Δ+ W, where W is the potential energy7, the time-dependent Schrödinger equation

7 In order to avoid confusion, molecular dynamics potentials are denoted by V and quantum mechanics potentials by W.
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is given by

i
∂ψ

∂t
= Hψ. (5)

This partial differential equation describes the evolution of the wave function ψ. The time-
independent Schrödinger equation, defined by

Hψ = Eψ, (6)

is an eigenvalue problem, where E is the associated energy. Given a solution ψ of (6), the
corresponding time-dependent solution of (5) is

ψ(x, t) = ψ(x)e−iEt. (7)

We refer the reader to [20] for a detailed introduction. By setting τ = it, we obtain the so-called
imaginary-time Schrödinger equation

∂ψ

∂τ
= −Hψ, (8)

which, for instance, plays an important role in quantum Monte Carlo methods. These different
types of Schrödinger equations will be used below to derive stochastic models and to generate
data.

3. Stochastic descriptions of quantum systems

There are different ways to derive stochastic descriptions of quantum systems. In this section,
we will introduce the ground-state transformation, outline Nelson’s stochastic mechanics, and
compare the resulting models.

3.1. Ground-state transformation

In [13], we considered quantum systems with strictly positive ground states. The transforma-
tion to the Kolmogorov backward equation, however, also works for complex wave functions.
Since our goal is to compare this transformation with Nelson’s stochastic mechanics, we
directly use his notation and write ψ0 = eR+iS.

Lemma 3.1. Assume that ψ0 is a stationary solution with Hψ0 = E0ψ0. Let ψ0(x) �= 0 for
all x, then H(ψ0 f ) = E(ψ0 f ) if and only if −L f = (E − E0) f , where

L f = (∇R + i∇S) · ∇ f +
1
2
Δ f .

Proof. First, we compute Δ(ψ0 f ) = Δψ0 f + 2∇ψ0 · ∇ f + ψ0Δ f . Then

(H− E)(ψ0 f ) = −1
2
Δ(ψ0 f ) + W(ψ0 f ) − E(ψ0 f )

= −1
2

(Δψ0 f + 2∇ψ0 · ∇ f + ψ0Δ f ) + W(ψ0 f ) − E(ψ0 f )

= −1
2

(2∇ψ0 · ∇ f + ψ0Δ f ) − (E − E0)(ψ0 f ).

5
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In the last step, we used (H− E0)ψ0 = − 1
2Δψ0 + Wψ0 − E0ψ0 = 0. Dividing by ψ0 and

using ψ−1
0 ∇ψ0 = ∇R + i∇S, the equation is only zero if

−L f = −(∇R + i∇S) · ∇ f − 1
2
Δ f = (E − E0) f .

�

Note that we in general obtain a complex-valued partial differential equation, but as a special
case the ground-state transformation used, e.g., in [14, 15].

Corollary 3.2. Assuming the ground state is strictly positive, i.e., S ≡ 0, this yields

L f = ∇R · ∇ f +
1
2
Δ f

and L is the generator of a drift–diffusion process (4) with potential V(x) = −R(x) and
diffusion constant β−1 = 1

2 .

The corollary implies that we can compute excited states of the quantum system by
computing eigenfunctions of the Koopman operator associated with the stochastic differen-
tial equation. This will be analyzed in more detail below. Furthermore, if we instead solve
H(ψ−1

0 f ) = E(ψ−1
0 f ), we obtain an operator

L∗ f = −(ΔR + iΔS) f − (∇R + i∇S) · ∇ f +
1
2
Δ f .

If S ≡ 0, this is the standard Fokker–Planck equation for the drift–diffusion process derived
above, whose invariant density is ρ0 = e2R. For the complex-valued case, we obtain an eigen-
function of the form ρ0 = e2(R+iS). Before moving on, we make the important observation that
the ground-state transformation is not limited to the stationary case.

Lemma 3.3. We can also apply the transformation used in lemma 3.1 to the time-dependent
Schrödinger equation:

(a) Assume that ψ0 is a solution of the time-dependent Schrödinger equation (5). Then it
holds that i ∂

∂t (ψ0 f ) = H(ψ0 f ) if and only if i ∂ f
∂t = −L f .

(b) For the imaginary-time Schrödinger equation (8) it holds that ∂
∂τ (ψ0 f ) = −H(ψ0 f ) if

and only if ∂ f
∂τ = L f .

Proof. The only difference is that we now have to compute ∂
∂t (ψ0 f ) = ∂ψ0

∂t f + ψ0
∂ f
∂t . For

the second part, we set τ = it. �

Example 3.4. As an illustration, let us consider a few one-dimensional problems that can
be solved analytically and derive stochastic models. An overview of the potentials W and the
corresponding potentials V of the associated drift–diffusion processes is shown in figure 1.

(a) The correspondence between the quantum harmonic oscillator and the Ornstein–
Uhlenbeck process is well-known, see, e.g., [14, 15]. The potential of the system is given
by W(x) = 1

2 ω
2x2, with angular frequencyω. The eigenvalues of the Schrödinger operator

are given by E
 = ω
(

 + 1

2

)
and the eigenfunctions by

ψ
(x) =
1√
2
 
!

(ω
π

)1/4
e−

ω x2
2 H


(√
ω x

)
,

6
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where H
 is the 
th physicists’ Hermite polynomial. The corresponding stochastic differ-
ential equation is

dXt = −ωXt dt + dBt.

The eigenvalues and eigenfunctions of the associated Koopman generator are λ
 = −ω

and ϕ
(x) = H


(√
ω x

)
. Using lemma 3.1, we obtain −λ
 = E
 − E0 so that E
 =

1
2 ω +

ω
. This illustrates how stochastic differential equations can be used to compute higher-
energy states, see [13] for a detailed analysis.

(b) For the particle in a box, the potential is defined by

W(x) =

{
0, 0 � x � L,

∞, otherwise.

We obtain the eigenvalues E
 =
π2(
+1)2

2L2 and the eigenfunctions ψ
 =
√

2
L sin

(
π(
+1)

L x
)
,

for 
 = 0, 1, 2, . . . , see [14, 20]. Hence, R(x) = log
(
sin

(
π
L x

))
for x ∈ (0, L) so that

dXt =
π

L
cot

(π
L

x
)

dt + dBt.

Note that R(x) →−∞ for x → 0+ and x → L−.
(c) The Pöschl–Teller potential is defined by

Ws(x) = − s(s + 1)
2

sech2(x),

where s ∈ N is a parameter determining its depth [21]. The ground state is ψ0(x) =
sechs(x) with E0 = − s2

2 . Transforming this system, we obtain R(x) = s log(sech(x)) and
the drift–diffusion process

dXt = −s tanh(Xt)dt + dBt.

Numerical results will be presented in section 5.
(d) Also for the Morse potential the transformations can be carried out analytically. The

resulting potential V for the drift–diffusion process is shown in figure 1.

The fact that every analytically solvable Schrödinger equation can also serve as an example
of a solvable Fokker–Planck equation was already utilized in [14]. Conversely, given a
drift–diffusion process with potential V, inverse temperature β−1 = 1

2 , and unique invariant
density ρ0 = e−βV, then

ρ
1/2
0 L

(
ρ
−1/2
0 ψ

)
= −

[(
β

4
|∇V|2 − 1

2
ΔV

)
ψ − β−1Δψ

]
= −Hψ,

is a Schrödinger operator with potential

W =
β

4
|∇V|2 − 1

2
ΔV.

Note that the potential W is defined in such a way that the ground state energy is zero.

Remark 3.5. An interesting question then is which potentials are invariant under this
transformation. Using the ansatz V(x) = 1

2 x�Ax + b�x + c, we obtain, e.g., solutions of

7
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Figure 1. (a) Potentials W of analytically solvable one-dimensional quantum systems,
where represents the quantum harmonic oscillator, the particle in a box, the
Pöschl–Teller potential, and the Morse potential. (b) Potentials V of the correspond-
ing drift–diffusion processes. Some functions were shifted for the sake of comparison.
The Morse potential is the only non-symmetric system.

the form A = 2β−1I, b can be arbitrary, and c = β
4 b�b − 1

2 tr(A) = β
4 b�b − β−1d, where

d is the dimension of the problem. This corresponds to d uncoupled quantum harmonic
oscillators (or Ornstein–Uhlenbeck processes) whose potentials might be shifted along
the x and y axes.

3.2. Nelson’s stochastic mechanics

Nelson’s stochastic mechanics [22] is one of the most general stochastic formulations of quan-
tum mechanics. The idea is to determine a real-valued stochastic differential equation such
that the distribution of Xt equals the quantum probability distribution ρ(x, t) = |ψ(x, t)|2. While
Nelson originally aimed at deriving quantum mechanics assuming only that particles follow
diffusion processes in configuration space [3, 4], the stochastic dynamics can also be obtained
from a complex-valued solution of the time-dependent Schrödinger equation (5), which Nel-
son described as ‘quantum mechanics made difficult’ [23]. In this section, we will assume that
a reference solution ψ is known. Given a solution ψ = eR+iS, we define

u = ∇R and v = ∇S,

where u is called osmotic velocity and v current velocity. According to the theory of Brownian
motion, u is the velocity acquired by a Brownian particle that is in equilibrium with respect to
an external force, balancing the osmotic force [22]. As outlined in appendix A, the quantum
probability ρ satisfies the continuity equation

∂ρ

∂t
= −∇ · j, (9)

with the probability current j = vρ. This justifies the names osmotic and current velocity for u
and v, respectively. Based on these velocity definitions, Nelson constructs a stochastic differ-
ential equation as follows: the drift term, which is called mean forward velocity in this context,
is given by

b = u + v

8
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and the diffusion term is defined by σ = 1, which implies that β−1 = 1
2 . This system can be

viewed as a drift–diffusion process with corresponding potential V = −R − S.

Remark 3.6. A few remarks are in order:

(a) Several equivalent expressions for u and v are used in the literature. We could also define

u = Re

(
∇ψ

ψ

)
= Re(∇ log ψ) and v = Im

(
∇ψ

ψ

)
= Im(∇ log ψ).

Bacciagaluppi [3], on the other hand, writes ψ = R̃ei S so that u = 1
2
∇R̃2

R̃2 = ∇R̃
R̃

=

∇ log R̃.
(b) While in Nelson’s original derivation β−1 = 1

2 , it is possible to construct alternative
approaches with arbitrary positive diffusion constants as discussed in [3], see also
appendix A.

3.3. Comparison

The ground-state transformation (section 3.1) and Nelson’s mechanics (section 3.2) both pro-
vide stochastic differential equations based on a given wave function ψ. However, they differ
with regard to the specific settings where they can be meaningfully applied and with regard to
the kind of additional information that can be gained from analyzing these stochastic systems.
We summarize the differences as follows:

(a) The ground-state transformation can be applied to a given positive solution of the sta-
tionary Schrödinger equation (6) or of the imaginary-time equation (8). In either case,
additional solutions of the same Schrödinger equation can be determined by solving the
corresponding Kolmogorov equation, which can be achieved using Koopman operator
based methods. For the time-dependent Schrödinger equation in real time (5), the stochas-
tic differential equation becomes complex-valued and the applicability of Koopman
methods is unclear.

(b) Nelson’s mechanics provides a stochastic differential equation which allows us to track
the evolution of the quantum probability ρ for a non-zero solution of the Schrödinger
equation in real time (5), which also includes the stationary equation (6) by means of
(7). Koopman operator methods can then be used to analyze these dynamics further, as
shown in section 5.3, however, additional solutions to the Schrödinger equation cannot be
obtained directly from such models.

(c) Given a positive, real-valued solution of (6), if we construct a time-dependent solution ψ
by (7), then we clearly have ∇S ≡ 0 in the decompositionψ = eR+iS. Thereby we see that
Nelson’s mechanics and the ground-state transformation lead to the same system in this
particular case.

Finally, we briefly discuss the applicability of Nelson’s stochastic differential equation
(or the ground state system) in the stationary case, if the wave function is required to be
anti-symmetric and therefore possesses zeros by necessity. Let N be the nodal set of the
ground state ψ, i.e., ψ(x) = 0 ∀x ∈ N , and let N c be the complement of the nodal set. If
the tiling property holds [24], then by anti-symmetry, we can write ψ = ±eR, where the func-
tion R = log|ψ| is the same within each connected component of N c. Up to permutation, we
therefore obtain the same stationary and ergodic stochastic differential equation within each
component. The nodal set acts as a barrier between each of these dynamics, as −R(x) →∞ as
x approaches the nodal set, and it can be shown that the process in each component has zero

9
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probability of entering the nodal set [4, 22]. Moreover, eigenfunctions of the generator will
be the same up to permutations. By anti-symmetrizing appropriately, additional solutions of
the stationary Schrödinger equation can then be obtained from analyzing Nelson’s stochastic
differential equation within any connected component of N c. Data-driven methods that take
symmetry and antisymmetry constraints into account have been recently proposed in [25].

4. Optimal control formulation for the Schrödinger equation

The stochastic formulations we have previously considered require the knowledge of at least
one specific solution of the time-dependent (or time-independent) Schrödinger equation, either
in real or imaginary time. In what follows, we will consider an optimal control problem that
will actually allow us to compute a solution in imaginary time, requiring only knowledge of
the potential energy and the initial condition.

4.1. HJB equation and Feynman–Kac formula

We assume the state space is X = Rd , while noting that extensions to more general subsets of
Rd are possible. First, we observe that for a positive solution ψ = ψ(x, τ ) of the imaginary-
time Schrödinger equation on Rd , satisfying the initial condition ψ(x, 0) = ψ0(x), its negative
logarithm satisfies a nonlinear partial differential equation (see also [26, chapter VI.3] and
appendix A). In this section, the symbol ‖ · ‖ always denotes the Euclidean vector norm.

Lemma 4.1. Assume ψ(x, τ ) = eR(x,τ ) > 0 solves (8), and define V = −R. Then V solves the
nonlinear partial differential equation

∂V
∂τ

=
1
2
ΔV − 1

2
‖∇V‖2 + W.

Proof. Using that − 1
2Δψ = ψ

[
1
2ΔV − 1

2‖∇V‖2
]
, we find:

0 =
∂ψ

∂τ
+Hψ = ψ

[
−∂V
∂τ

+
1
2
ΔV − 1

2
‖∇V‖2 + W

]
.

Dividing by ψ, we obtain the result. �

The partial differential equation in lemma 4.1 is well-known as the Hamilton–
Jacobi–Bellman (HJB) equation in stochastic optimal control. It is associated with the
following control problem:

J(x, τ ) = min
u:[τ ,T]→R

d

u∈U

E
x

[∫ T

τ

W(Xu
s ) +

1
2
‖u(s)‖2 ds − log(ψ0(Xu

T))

]
s.t. dXu

s = u(s) ds + dBs, Xu
τ = x. (10)

Here, U is a given class of admissible controls u, see [26, chapter IV.2] for the technical details.
In a control context, the potential W would be called running cost, while −log(ψ0) is called
terminal cost. The function J, finally, is called value function of the optimal control problem.

If the HJB equation possesses a strong solution, then this solution in fact equals the value
function J, and the wave function can be inferred from the control problem (10):

Theorem 4.2 ([26], theorem VI.4.1). Let V ∈ C2,1(Rd, [0, T]) be a strong solution to the
HJB equation

10
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−∂V(x, τ )
∂τ

=
1
2
ΔV(x, τ ) + W(x) − 1

2
‖∇V(x, τ )‖2,

V(x, T) = − log(ψ0(x)), (11)

satisfying a linear growth condition ‖∇V‖ � C(1 + ‖x‖). Then V = J for the optimal con-
trol problem (10), and it follows that ψ(x, τ ) = exp(−J(x, T − τ )) solves the Schrödinger
equation (8) with initial conditionψ(x, 0) = ψ0(x). The optimal Markov control policy is given
by u∗(x, τ ) = ∇J(x, τ ).

The key to solving the control problem (10) is to estimate expectations of specific observ-
ables at all time instances in the control interval [τ , T], which can then be integrated due to
linearity of the expectation. This can be achieved efficiently using Koopman-based methods,
as we will explain in section 4.2. Let us also spell out the connection between the control for-
mulation and the transformation in lemma 3.3. As ψ(x, τ ) = exp(−J(x, T − τ )) obtained from
the value function is a solution of the Schrödinger equation in imaginary time, we can directly
apply lemma 3.3 to ψ. The drift of the resulting stochastic differential equation is

−∇ψ

ψ
(x, τ ) = −∇ log(ψ)(x, τ ) = ∇J(x, T − τ ) = u∗(x, T − τ ).

The transformation thus leads to the generator of the optimally controlled stochastic differential
equation for the problem (10).

Remark 4.3. From the Girsanov theorem [27] and Jensen’s inequality, it follows that the
value function J always overestimates the negative logarithm V of the wave function ψ (see
[26, chapter VI]):

J(x, τ ) = min
u∈U

E
x

[∫ T

τ

W(Xu
s ) +

1
2
‖u(s)‖2 ds − log(ψ0(Xu

T))

]
� − log

(
E

x

[
exp

[
−
∫ T

τ

W(Bx
s ) ds

]
ψ0(Bx

T)

])
= − log(ψ(x, T − τ ))

= V(x, T − τ ). (12)

The second equality in (12) is known as the Feynman–Kac formula [28, 29], highlighting yet
another stochastic interpretation of Schrödinger’s equation. However, as the expectation in the
Feynman–Kac formula acts on a nonlinear function of the time integral, Koopman methods
are not directly applicable. Therefore, we prefer the control formulation (10).

4.2. Solution of the control problem

A wealth of numerical methods for the solution of the control problem (10) exist, for instance
using dynamic programming [30, 31] or Monte Carlo sampling [32]. More recently, refor-
mulations as deterministic control problems via the Koopman generator, which allow for a
significant reduction of the complexity, were proposed [12, 33, 34]. For an application to
quantum control, see [35]. In particular for control-affine systems, i.e.,

dXu
s =

(
b(Xu

s ) + G(Xu
s )u(s)

)
ds + σ(Xu

s )dBs, (13)

and any observable function φ, the linearity of the Koopman generator allows us to construct
a deterministic bilinear surrogate model for the observed quantity z(s) = Ex[φ(Xu

s )] using a
finite set of Koopman generators [33]. Assuming that dim(u) = d, we introduce the finite set

11
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U = {0, e1, . . . , ed}, where the e j are the standard Euclidean basis vectors. By fixing the control
in (13) to the elements of U, we obtain d + 1 autonomous systems as well as d + 1 associated
Koopman generators

LU j f =
(
b + GU j

)
· ∇ f +

1
2

a : ∇2 f , j = 0, . . . , d.

Introducing

A = L0 and B j = LU j − L0,

for j = 1, . . . , d, we obtain a bilinear system for z(s) = Ex[φ(Xu
s )]:

ż = Az +

⎛⎝ d∑
j=1

B ju j

⎞⎠z, (14)

cf [33] for a detailed derivation.
Returning to the imaginary-time Schrödinger equation, since the stochastic differential

equation in (10) is control-affine, i.e., of the form (13), we can in principle train a Koopman-
based surrogate model (14) using data. However, one issue that we immediately face is that
the system in (10) is unstable for u �= 0, which makes accurate surrogate modeling extremely
challenging. To avoid this issue, we introduce a new control variable ν (with ν(s) ∈ R

du) and
a state-dependent matrix G(x) ∈ Rd×du satisfying rank(G(x)) = d for all x ∈ Rd, and set

u(s) = G(Xu
s )ν(s).

This way, the dynamic constraint in (10) is replaced by

dXu
s = G(Xu

s )ν(s)ds + dBs, (15)

and we may choose G(x) in such a way that the system corresponding to each U j becomes
stable, rendering data-driven approximations feasible. Note that the Bellman equation for the
stabilized control problem is still given by (11), hence the connection to the Schrödinger
equation remains valid, see appendix B.

As a final step for the transformation of (10) to a deterministic system, we need to ensure that
all individual terms in the objective function in (10) can be computed by a finite-dimensional
model for the Koopman generator. Since, by linearity, we have

E
x

[∫ T

τ

W(Xu
s ) +

1
2
‖G(Xu

s )ν(s)‖2 ds − log(ψ0(Xu
T))

]
=

∫ T

τ

{
E

x
[
W(Xu

s )
]
+

1
2
E

x
[
(ν(s))�(G(Xu

s ))�G(Xu
s )ν(s)

]}
ds

− E
x
[
log(ψ0(Xu

T))
]

=

∫ T

τ

{
E

x
[
W(Xu

s )
]
+

1
2

(∑
i, j

νi(s)Ex
[(

(G(Xu
s ))�G(Xu

s )
)

i, j

]
ν j(s)

)}
ds

− E
x
[
log(ψ0(Xu

T))
]
, (16)

12
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a straightforward solution is to directly include these terms in the dictionary Φ = (φ1, . . . ,φn)
used for learning the Koopman model (cf section 2.1), i.e.,

z(s) =
[
W(Xu

s ) log(ψ0(Xu
s ))

(
(G(Xu

s ))�G(Xu
s )
)

i, j
. . .

]
,

where the third term represents all the entries of G�G.

Remark 4.4. We will see in the numerical results in section 6 that G can be chosen such
that (15) becomes an Ornstein–Uhlenbeck process for each fixed control in U. Depending on
the specific problem setup, the dictionary entries then mainly consist of monomials up to a
certain order.

5. Data-driven methods for quantum systems

A plethora of data-driven methods for the approximation of the Koopman operator and
Perron–Frobenius operator from simulation or measurement data have been developed over
the last years [9, 10, 18], including many tensor [36–38], kernel [39–42], or neural network
[43–45] extensions aiming at mitigating the curse of dimensionality. We will show how such
methods (or generalizations thereof) can be used to analyze quantum systems. These data-
driven methods can either be applied directly to data obtained by solving the Schrödinger
equation or the corresponding stochastic formulations. We will highlight only a few poten-
tial use cases by first showing how the methods are typically used for classical systems and
then applying these methods to quantum systems.

5.1. Dynamic mode decomposition

One of the simplest but also most popular methods to estimate the Koopman operator from
data is dynamic mode decomposition (DMD) [46, 47].

Conventional DMD. Let Δt be a fixed lag-time and ΘΔt the flow map associated with an
arbitrary dynamical system of the form (1). Given training data {(x(i), y(i))}m

i=1, where y(i) =
ΘΔt (x(i)), we define the data matrices X, Y ∈ Rd×m by

X =
[
x(1) x(2) . . . x(m)

]
and Y =

[
y(1) y(2) . . . y(m)

]
.

DMD is based on the assumption that a linear relationship between the inputs and outputs
exists, i.e., y(i) = Ax(i). The matrix A ∈ Rd×d is then estimated by solving the regression
problem

min
A∈Rd×d

‖Y − AX‖F.

The solution is given by A = YX+, where + denotes the pseudoinverse. The DMD eigenvalues
and modes are defined to be the eigenvalues and eigenvectors of A. If d � m, then estimating
the full matrix A is numerically inefficient, even storing A might be infeasible. There are many
different algorithms to compute the DMD eigenvalues and modes without computing the full
matrix A, see, for example, [47].

DMD for quantum systems. Assuming the HamiltonianH is time-independent, the formal
solution of (5) can be written as

ψ(x, t +Δt) = e−iΔtHψ(x, t).

13
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Table 1. Eigenvalues computed by applying DMD to the Schrödinger equation (5) and
the imaginary-time Schrödinger equation (8).

Real time Imaginary time


 μ
 λ
 μ
 λ


0 0.999 − 0.045i 0.499 0.951 0.450
1 0.989 − 0.149i 1.498 0.861 1.498
2 0.969 − 0.247i 2.496 0.779 2.496
3 0.940 − 0.342i 3.492 0.705 3.492
4 0.901 − 0.434i 4.487 0.638 4.487

By discretizing the spatial domain of a quantum system and replacing the second-order deriva-
tives by finite-difference approximations, the partial differential equation reduces to a system of
ordinary differential equations. Let xr ∈ R

dr denote the vector of grid points, then we can gen-

erate training data
{

(ψ(i)
0 (xr),ψ

(i)
Δt

(xr))
}m

i=1
, where ψ(i)

0 (xr) is an initial condition and ψ(i)
Δt

(xr)

the corresponding solution at time Δt. This can be written in matrix form as

Ψ0 =
[
ψ(1)

0 (xr) ψ(2)
0 (xr) . . . ψ(m)

0 (xr)
]

and

ΨΔt =
[
ψ(1)
Δt

(xr) ψ(2)
Δt

(xr) . . . ψ(m)
Δt

(xr)
]
.

As in the case of standard DMD, we can determine a matrix that approximates the dynamics
of the system, i.e.,

A = ΨΔt Ψ
+
0 .

That is, the matrix A propagates discretized solutions of the Schrödinger equation in time. The
eigenvalues μ
 and eigenvectors v
 of the matrix A can then be used to approximate eigenval-
ues and eigenfunctions of the Schrödinger equation. In order to obtain eigenvalues λ
 of the
Schrödinger equation, we define

λ
 =
i
Δt

log(μ
).

Numerical results. Let us consider the quantum harmonic oscillator. We choose the lag
time Δt = 0.1 and discretize the interval [−5, 5] using d = 100 equidistant grid points, which
we denote by xr. This spatial discretization turns the partial differential equation (5) into a
system of coupled complex-valued ordinary differential equations. We then generate m = 200
initial conditions ψ(i)

0 (xr) = 𝟙I(i) (xr) ∈ Cdr , where 𝟙I(i) denotes an indicator function for a ran-
domly chosen interval I(i) ⊆ [−5, 5]. The corresponding vectors ψ(i)

Δt
(xr) ∈ Cdr are computed

by solving the resulting system of ordinary differential equations using a standard Runge–Kutta
integrator. (Note that we are not using the stochastic dynamics derived in section 3 in this case.)
With the aid of the data matricesΨ0,ΨΔt ∈ Cdr×m, we compute the matrix A and its eigenvalues
and eigenvectors. The results are shown in figures 2(a) and (b). The highlighted eigenvalues are
listed in table 1. The eigenvalues and eigenvectors are good approximations of the analytically
computed results, see example 3.4.

Instead of solving the Schrödinger equation (5), we can also solve the imaginary-time
Schrödinger equation (8) and apply DMD. The eigenvalues of the Schrödinger equation can
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Figure 2. (a) Eigenvalues of the matrix A associated with the Schrödinger equation.
(b) A few select eigenvectors corresponding to the highlighted eigenvalues with the same
color. (c) Eigenvalues using the imaginary-time Schrödinger equation.

then be estimated via

λ
 = − 1
Δt

log(μ
).

The results are shown in figures 2(b) and (c) and the corresponding eigenvalues are also listed
in table 1. We again obtain accurate estimates of the eigenvalues and eigenfunctions. The
advantage of the imaginary-time formulation is that the eigenvalues are well ordered and not
distributed on the complex unit circle and consequently only determined up to 2π. The matrix
A could now also be used to predict the evolution of the system. This is another important use
case of DMD.

5.2. Extended dynamic mode decomposition

Extended dynamic mode decomposition (EDMD) [9, 10] can be regarded as a nonlinear variant
of DMD.

Conventional EDMD. The data is first embedded into a typically higher-dimensional
feature space using a nonlinear transformation φ : Rd → Rn. The chosen basis functions
φ1, . . . ,φn : Rd →R could, for instance, be indicator functions, monomials, or radial basis
functions, the optimal choice depends on the system for which we aim to approximate the
Koopman operator. We define the transformed data matrices Φx ,Φy ∈ Rn×m by

Φx =
[
φ(x(1)) φ(x(2)) . . . φ(x(m))

]
and Φy =

[
φ(y(1)) φ(y(2)) . . . φ(y(m))

]
.

The minimization problem thus becomes

min
K∈Rn×n

∥∥Φy − K�Φx

∥∥
F
.

The solution is now given by

K� = ΦyΦ
+
x =

(
ΦyΦ

�
x

)(
Φx Φ

�
x

)+
= Cyx C+

xx .

The matrices Cxx and Cxy = C�
yx are empirical estimates of the matrices Ct and At introduced

in section 2.1. The matrix K is the representation of the Koopman operator projected onto the
space spanned by the basis functions φ. Approximate eigenvalues and eigenfunctions of the
Koopman operator can be computed by determining the eigenvalues and eigenvectors of K. If
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the number of basis functions n is larger than the number of snaphots m, a dual method called
kernel EDMD [40, 41] can be used. The basis functions are then implicitly defined by the
feature map associated with the kernel. Instead of an eigenvalue problem involving covariance
and cross-covariance matrices of size n × n, a problem involving (time-lagged) gram matrices
of size m × m needs to be solved. EDMD can be used in the same way to compute eigenfunc-
tions of the Perron–Frobenius operator. The matrix representation in that case is P� = Cxy C+

xx .
See [10] for a detailed derivation.

EDMD applied to quantum systems. We could also apply EDMD or kernel EDMD to
the data generated in section 5.1, but we will now present a different use case and show how
EDMD and its extensions can be applied to the stochastic formulations derived in section 3.
We assume that the process is stationary, non-stationary problems will be discussed in the
following subsection.

Numerical results. Let us consider the Pöschl–Teller potential introduced in example 3.4
and set s = 4. The energy levels and (unnormalized) wave functions are then given by

E0 = −8, ψ0(x) = sech4(x),

E1 = −9
2

, ψ1(x) = sech3(x) tanh(x),

E2 = −2, ψ2(x) = sech2(x)
(
7 tanh2(x) − 1

)
,

E3 = −1
2

, ψ3(x) = sech(x) tanh(x)
(
7 tanh2(x) − 3

)
,

see also [21]. The eigenfunctions are shown in figure 3. For the Schrödinger operator, we used
kernel gEDMD—a variant of EDMD that directly approximates the infinitesimal generator
of the Koopman operator [12], but can also be used to approximate the Schrödinger opera-
tor [13] and is related to quantum Monte Carlo methods—with 100 randomly generated test
points in the interval [−5, 5] and a Gaussian kernel with bandwidth ς = 0.3. The resulting
eigenvalues and eigenfunctions are in perfect agreement with the analytically computed ones.
In order to compute eigenfunctions of the Perron–Frobenius operator, we generate 10 000 tra-
jectories (using randomly drawn initial conditions) by integrating the stochastic differential
equation with the aid of the Euler–Maruyama method, where the step size is h = 10−3 and
the lag time Δt = 0.1. Applying EDMD with a dictionary comprising 100 Gaussian functions
with bandwidth ς = 0.5 results in the generator eigenvaluesλ0 = 0, λ1 = −3.49,λ2 = −5.90,
and λ3 = −7.61. Shifting these eigenvalues according to lemma 3.1, we obtain E0 = −8,
E1 = −4.51, E2 = −2.1, and E3 = −0.39, which is close to the true solutions. Dividing the
eigenfunctions of the Perron–Frobenius operator by the ground state, we obtain estimates of
the higher-energy states of the quantum system.

Analogously, we could use eigenfunctions of the Koopman operator to compute higher-
energy states. The only difference is that we then have to multiply the eigenfunctions of the
Koopman operator by the ground state. This illustrates the close relationship between the
Schrödinger operator, the Koopman operator, and the Perron–Frobenius operator. Numerical
results for the quantum harmonic oscillator and the hydrogen atom can be found in [13].

5.3. Canonical correlation analysis

Canonical correlation analysis (CCA) was originally developed to maximize the correlation
between two multi-dimensional random variables [48]. It was shown in [49, 50] that CCA,
when applied to Lagrangian data, can be interpreted as a composition of the Koopman operator
and a reweighted Perron–Frobenius operator.
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Figure 3. (a) Eigenfunctions of the Schrödinger operator computed with the aid of
gEDMD. (b) Corresponding probability densities. The dashed line represents the
Pöschl–Teller potential. (c) Eigenfunctions of the Perron–Frobenius operator obtained
by applying EDMD to time-series data. The dashed lines are the analytically computed
eigenfunctions. Note that we choose different axis limits for the sake of visibility.

Conventional CCA. So far, we assumed that the dynamical system is time-homogeneous,
i.e., the Koopman operator depends only on the lag time Δt. If the dynamics change over time,
instead of computing eigenfunctions of the Koopman operator, typically eigenfunctions of a
related forward–backward operator are computed. This leads to the notion of coherent sets [51,
52], which can be regarded as generalizations of metastable sets. Coherent sets are regions of
the phase space that disperse slowly, i.e., particles are (almost) trapped in these sets. We again
collect data as before. The matrix of the operator representing the forward–backward dynamics
is then given by

L� = Cxy

(
Cyy + εI

)−1
Cyx(Cxx + εI)−1,

where ε is a regularization parameter that ensures that the inverse exists. Alternatively, we
could use the pseudoinverse. In what follows, the eigenvalues of this matrix are denoted by κ
.
A detailed derivation can be found in [49]. Similar kernel-based variants have been proposed
in [42] and a deep-learning counterpart in [45].

CCA applied to quantum systems. We have seen that for the non-stationary case the
ground-state transformation and Nelson’s formulation result in different models. We now apply
CCA to data generated by Nelson’s stochastic mechanics.

Assume the harmonic oscillator is in the coherent state

ψc(x, t) =
(ω
π

)1/4
e
− ω

2 (x−x0 cos(ω t))2− 1
2 iω t−iω

(
x x0 sin(ω t)− 1

4 x2
0 sin(2ω t)

)
,

see [53]. The corresponding probability density is a wave whose center is periodically moving
from x0 to −x0. If follows that

∇R = −ω(x − x0 cos(ω t)) and ∇S = −ω(x0 sin(ω t))

so that

b(x, t) = −ω(x − x0 cos(ω t) + x0 sin(ω t)) = −ω
(

x +
√

2 x0 sin(ω t − π

4
)
)

,

which can be viewed as an Ornstein–Uhlenbeck process with time-dependent but periodic
shift. We will now use a superposition of this coherent state and the second eigenfunction,
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Figure 4. (a) Wave function ψ at different time points. (b) Corresponding analytically
computed probability densities ρ and histograms of particles. (c) Subset of trajectories
colored with respect to the obtained clustering into coherent sets. (d) Coherence as a
function of the time t.

i.e., ψ = ψ2 +
1
2 ψc (properly normalized) with x0 = 2, to construct a system with nontrivial

coherent sets. The required osmotic and current velocities for such a superposition are derived
in appendix C.

Numerical results. We generate 10 000 particles sampled from the initial distribution and
integrate the stochastic differential equation from t = 0 to t = 2π. At t = 0 the wave function
has two nodes and there are thus three invariant sets. With increasing time, these sets become
connected and particles can move to the neighboring sets. At t = π the sets are disconnected
again. An illustration of the time-dependent wave function is shown in figure 4(a), the corre-
sponding analytically computed and empirical probability densities in figure 4(b). The distribu-
tion of the particles perfectly follows ρ. For the initial sampling, we used Metropolis–Hastings.
By applying kernel CCA to the trajectory data and clustering the dominant eigenfunctions, we
identify three finite-time coherent sets associated with the time-dependent potential wells. Par-
ticles starting in one coherent set will remain is this set with a high probability (compared to the

18



J. Phys. A: Math. Theor. 55 (2022) 314002 S Klus et al

probability that they transition to another set). This can be seen in figure 4(c), where we colored
some trajectories according to the computed coherent sets. The coherence, however, decreases
over time so that after a while the particles seem to be well-mixed as shown in figure 4(d). The
eigenfunction associated with κ1 is negative for the left two sets and positive for the right one
(or vice versa), while κ2 distinguishes between the coherent set in the middle and the other
two. It can be seen that κ2 quickly decreases and is not distinguishable from noise for large t.
This is consistent with the trajectory data: the yellow set is dispersed quickly, whereas the blue
set remains coherent for a longer time.

The example demonstrates that it is possible to analyze the probability flow associated with
time-dependent wave functions using Koopman operator theory and data-driven methods to
estimate eigenfunctions of associated forward–backward operators.

6. Data-driven analysis of quantum systems via control

In section 4.2, we have seen how solutions of the imaginary-time Schrödinger equation are
related to solutions of the control problem (10). We call this approach DISCo (data-driven
solution of the imaginary-time Schrödinger equation via control), and we now study DISCo in
detail for two systems, namely the quantum harmonic oscillator and the hydrogen atom.

As discussed above, the stochastic differential equation in (10) is unstable for u �= 0. Thus,
we aim to choose the matrix G in (15) in such a way that the system becomes stable, while at
the same time being easy to approximate from data. A straightforward choice in this case is
the Ornstein–Uhlenbeck process, for which we set

G(x) =
[
diag(−x) I

]
∈ R

d×2d and ν̂(s) =
[
1 . . . 1 (ν(s))�

]� ∈ R
2d.

This process is stable for all ν such that the Koopman generators associated with

dXu
s = −(Xu

s − U j) ds + dBs, j = 1, . . . , d + 1, U =
[
0 e1 . . . ed

]
,

can be reliably approximated from data. In this case, the objective function in (10) can be
transformed accordingly (cf the general formulation (16)):

J(x, τ ) = E
x

[∫ T

τ

{
W(Xu

s ) +
1
2
‖u(s)‖2

}
ds − log(ψ0(Xu

T))

]
=

∫ T

τ

{
E

x
[
W(Xu

s )
]
+

1
2
E

x
[
(Xu

s )�Xu
s − 2(Xu

s )� ν(s) + ν�(s)ν(s)
]}

ds

− E
x
[
log(ψ0(Xu

T))
]

=

∫ T

τ

E
x
[
W(Xu

s )
]
+

1
2
E

x
[
(Xu

s )�Xu
s

]
− E

x
[
(Xu

s )
]�
ν(s)

+
1
2
ν�(s)ν(s) ds − E

x
[
log(ψ0(Xu

T))
]
. (17)

Consequently, the dictionary Φ needs to contain at least the terms (for 1 � i, j � d):

Φ(x) =
[
W(x) log(ψ0(x)) xi xi x j . . .

]
. (18)

Choosing the remaining terms in the dictionary is a critical step. The literature on Koop-
man operator methods contains a broad selection of different options, e.g., monomial bases,
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Gaussians [8, 19], indicator functions [7, 54], reproducing kernels [39–42], deep learning
architectures [43–45], and many more. However, as we expect quantum systems to behave
quite differently compared to molecular or fluid dynamics simulations, we leave the selection
of the dictionary as a topic for future research.

Example 1. The quantum harmonic oscillator. We consider the one-dimensional quantum
harmonic oscillator, and aim to solve the imaginary-time equation (8) with initial condition
equal to the ground state. We then have

W(x) =
x2

2
and ψ0(x) = e−

x2
2 ⇒ log(ψ0(x)) = − x2

2
.

The analytical solution is ψ(x, τ ) = e−
x2+τ

2 . Thus, if we consider monomials up to order at
least two in the dictionary Φ, i.e., Φ(x) =

[
1 x x2 . . .

]
, then (17) becomes

J(x, τ ) =
1
2

∫ T

τ

z3(s) + z3(s) − 2z2(s)ν(s) + ν2(s)ds − 1
2

z3(T). (19)

In order to obtain an approximate solution for the imaginary-time Schrödinger equation, we
solve the following optimal control problem on a grid of initial conditions x and τ :

min
ν:[τ ,T]→Rd

(19) s.t. (14) with initial condition z(τ ) = Φ(x). (20)

For the numerical approximation of the Koopman generators, we consider monomials up to
order three as observables, i.e., Φ(x) =

[
1 x x2 x3

]
. We then collect 30 000 data points

for each of the d + 1 = 2 systems using i.i.d. sampling from the interval X
U j
0 ∈ [−3, 3], where

U j ∈ {0, 1}. Finally, we calculate finite-dimensional matrix approximations of the operatorsA
and B in (14) via the gEDMD algorithm from [12]. We thus obtain a four-dimensional system
describing the dynamics of z within the subspace spanned by the monomial functions. The
prediction capability of the Koopman model for the terms Ex[Xu

s ] and E
x[(Xu

s )2] is shown in
figure 5, and we observe very good performance over a large time horizon and for complex
control inputs.

The resulting bilinear model can now be used to solve the deterministic optimal control
problem (20) instead of the stochastic problem (10). The solution for the imaginary-time
Schrödinger equation is then obtained using ψ(x, τ ) = e−J(x,T−τ ) (see theorem 4.2). Figure 6
shows that—after scaling the solutions such that

∫
ψ(x, 0)dx = 1—we observe a very high

accuracy with an absolute error εabs = |ψDISCo − ψanalytical| ≈ 10−3 and relative error as shown
in the right panel. More precisely, for x ∈ [−2, 2], which covers approximately 95% of the
density, we have an average error of less than 0.4%, and a maximum error of 1.1%.

Example 2. The hydrogen atom. As a more challenging example, we consider the hydro-
gen atom, with initial condition given again by the analytical ground state. The state space is
X = R3, while

W(x) = −1
r
= − 1

‖x‖ and ψ0(x) = e−‖x‖ ⇒ log(ψ0(x)) = −‖x‖.
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Figure 5. Prediction of Ex[Xu
s ] andEx

[
(Xu

s )2
]
, where u(s) is sampled i.i.d. from the inter-

val [−10, 10]. The true expected values are calculated by averaging over 1000 repeated
simulations of the SDE (13).

Figure 6. (a) Solution of the imaginary-time Schrödinger equation obtained by DISCo,
i.e., via the solution of problem (20). (b) The analytical solution ψ(x, τ ) = e−

1
2 (τ+x2).

(c) Relative error εrel =
|ψDISCo−ψanalytical |

|ψanalytical |
.

Figure 7. Average prediction performance (averaged over 1000 controlled trajectories
and ten model realizations) for different dictionary sizes p, pinv, and pnorm. The best
configuration turns out to be p = 2 and pinv = pnorm = ∅.

The analytical solution is ψ(x, τ ) = e−
1
2 τe−‖x‖. With this, the objective function in (10)

and—using the Ornstein–Uhlenbeck process as described above—(17) becomes

E
x

[∫ T

τ

{
− 1
‖Xu

s ‖
+

1
2
E

x
[
(Xu

s )�Xu
s

]
− E

x
[
(Xu

s )
]�
ν(s) +

1
2
ν�(s)ν(s)

}
ds + ‖Xu

T‖
]
. (21)
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Thus, the dictionary has to contain, in addition to monomial terms up to degree at least two,
entries for 1

‖Xu
s ‖ as well as ‖Xu

s ‖, i.e.,

Φ(x) =

[
1

‖x‖ ‖x‖ 1 xi xi x j . . .

]�
, 1 � i, j � 3.

In order to make an informed dictionary selection, we perform a cross validation over a range
of possible dictionaries Φ. These are constructed in the following way. Denote by Φ̂p the
dictionary consisting of all monomials up to degree p. Then set

Φ(x) =

⎡⎢⎢⎣
Φ̂p(x)

Φ̂pinv (x)
1

‖x‖
Φ̂pnorm(x)‖x‖

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
[
1 xi xi x j . . .

]�[
1

‖x‖
xi

‖x‖
xi x j

‖x‖ . . .

]�
[
‖x‖ xi‖x‖ xi x j‖x‖ . . .

]�
⎤⎥⎥⎥⎦,

with p, pinv, and pnorm being variable parameters that define the respective degrees of the mono-
mial dictionaries. Moreover, we consider the special cases pinv = ∅ or pnorm = ∅, in which 1

‖x‖
(or ‖x‖, respectively) are not explicitly calculated, but approximated using entries from Φ̂p as
follows:

E

[
1

‖x‖

]
≈ 1

‖E[x]‖ and E
[
‖x‖

]
≈ ‖E[x]‖.

Even though these approximations can be very coarse, the results are convincing in prac-
tice since the prediction accuracy appears to be generally higher for classical monomial
dictionaries.

Denoting by I1, I2, Iinv, and Inorm the index sets for the entries corresponding to the identity,
squared, inverted norm and norm terms, i.e.,

ΦI1 (x) =

⎡⎣x1

x2

x3

⎤⎦, ΦI2 (x) =

⎡⎣x2
1

x2
2

x3
3

⎤⎦, ΦIinv (x) =
1

‖x‖ , ΦInorm(x) = ‖x‖,

the objective function (21) becomes∫ T

τ

{
−zIinv (s) +

1
2

∑
j∈I2

(zI2 ) j(s) − (zI1 (s))�ν(s) +
1
2

(ν(s))�ν(s)

}
ds + zInorm (T), (22)

and the resulting control problem we need to solve then becomes

min
ν:[τ ,T]→Rd

(22) s.t. (14) with initial condition z(τ ) = Φ(x). (23)

Before we approach this, we first perform a study over various degrees for p, pinv, and pnorm.
To this end, we train ten models for each parameter set and then validate the prediction accuracy
of the resulting models against 1000 trajectories with random sinusoidal inputs with uniformly
distributed parameters:

u(s) =

⎡⎣a1 sin(b1 s + c1)
a2 sin(b2 s + c2)
a3 sin(b3 s + c3)

⎤⎦, where ai ∝ U(0, 5), b j ∝ U(2π, 6π), ck ∝ U(0, 2π).
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Figure 8. Comparison between expectations calculated by taking averages over 1000
Ornstein–Uhlenbeck simulations (solid lines) and the predictions obtained from the best
data-driven models (dashed lines) out of ten repetitions for different sizes of p, pinv, and
pnorm. If the terms 1

‖x‖ or ‖x‖ are not explicitly contained in the dictionary, then we
approximate them as described above.

Figure 9. (a) Comparison between analytic and DISCo solutions of the imaginary-time
Schrödinger equation at τ = 0.5 for 1000 i.i.d. initial conditions from the interior of a
sphere with radius 2. (b) Visualization of the DISCo solution from (a), where coloring
denotes the value of the wave function ψ.

The error is then calculated as the average L2 error between the prediction of the Koopman
model for the terms relevant in the objective function and the expected value of the true sys-
tem, approximated by averaging over 1000 simulations using the Euler–Maruyama scheme.
Figure 7 shows this analysis, where on average the best configuration turns out to be p = 2 and
pinv = pnorm = ∅, i.e., despite being mathematically inexact, it is beneficial to rely exclusively
on polynomial basis functions. Nevertheless, the best models including either the term 1

‖x‖ or
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‖x‖ are quite similar, which is shown for an exemplary test trajectory in figure 8. Still, the
model with pinv = pnorm = ∅ (third column) appears to be slightly superior.

Based on these conclusions, we proceed with the model with p = 2 and pinv = pnorm = ∅
for simulating the imaginary-time Schrödinger equation by solving (23). Figure 9 shows a
comparison between the normalized DISCo solution (23) with the analytical solution for τ =
0.5 and 1000 randomly drawn points from the sphere with radius 2. Despite minor inaccuracies,
we observe a very good agreement, with an average error of approximately 4.5%.

7. Conclusion

We have shown how Koopman operator theory can be applied to quantum mechanics prob-
lems, either by transforming the Schrödinger equation into a Kolmogorov backward equation
or by using Nelson’s stochastic mechanics, and how data-driven methods for the approxi-
mation of the Koopman operator can be used to analyze quantum systems. The analysis of
non-stationary problems requires the approximation of forward–backward operators, which
was illustrated with the aid of a superposition of wave functions. Moreover, we pointed out
relationships between the imaginary-time Schrödinger equation and stochastic optimal con-
trol problems. This allowed us to exploit Koopman-based control techniques in order to
solve the Schrödinger equation by means of an optimal control problem constrained by an
ordinary differential equation. We presented numerical results for various benchmark prob-
lems such as the quantum harmonic oscillator, the Pöschl–Teller potential, and the hydrogen
atom.

We have seen in section 5 that it is in principle possible to directly apply DMD and
related techniques to quantum systems. However, this approach suffers from the curse of
dimensionality as direct integration of the time-dependent Schrödinger equation is still
required. With this in mind, methods that rely only on time-series data generated by asso-
ciated stochastic differential equations seem particularly promising. Future work will have
to focus on determining tailor-made dictionaries for quantum systems, and on the use of
kernel methods or deep learning architectures in this context. Bohmian mechanics may
also open up an interesting avenue for the analysis of quantum systems using particle
trajectories.

The proposed DISCo approach to solve the imaginary-time Schrödinger equation via deter-
ministic optimal control problems presents a novel and entirely data-driven approach to this
long-standing problem. We have shown that a simple Ornstein–Uhlenbeck-type model seems
to work well as a choice of control system. Assessing its suitability to model more complex
systems, and the investigation of different types of control systems, will be one of the most
pressing open questions in this context, next to the definition of bespoke dictionaries mentioned
above.
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Appendix A. Continuity equation

We start with the probability density p(x, t) associated with (1). This density solves the
Fokker–Planck equation, which can be written as a continuity equation, i.e.,

∂p
∂t

= −∇ ·

⎡⎣⎛⎝b − 1
2p

d∑
j=1

∂

∂x j
(ai j p)

⎞⎠ p

⎤⎦.
If, moreover, the diffusion σ in (1) is a constant multiple of the identity, the continuity equation
simplifies to

∂p
∂t

= −∇ ·
[(

b − σ2

2p
∇p

)
p

]
= −∇ ·

[(
b − σ2

2
∇ log p

)
p

]
.

On the other hand, assume that ψ = eR+iS solves (5). Then

i

(
∂R
∂t

+ i
∂S
∂t

)
= −1

2
(∇R · ∇R −∇S · ∇S + 2 i∇R · ∇S +ΔR + iΔS) + W.

For the imaginary part, this yields

∂R
∂t

= −∇R · ∇S − 1
2
ΔS.

The quantum probability distribution, given by ρ = e2R, thus satisfies

∂ρ

∂t
= 2

∂R
∂t

ρ = (−2∇R · ∇S −ΔS)ρ = −∇ · [∇Sρ] = −∇ · [vρ].

Consequently, we will have p = ρ if the drift term b and diffusion constant σ are chosen such
that

b − σ2

2
∇ log ρ = b − σ2∇R = ∇S,

which will be satisfied, e.g., for

σ2 = 1 and b = ∇R +∇S = u + v.

Note that by setting σ2 = 0, we obtain Bohmian mechanics.

Appendix B. Bellman equation for stabilized control problem

We verify the claim made in section 4.2 that if the control policy in (10) is written as u(s) =
G(Xu

s )ν(s), then a strong solution V to the HJB equation (11) equals the value function of the
stabilized control problem

J(x, τ ) = min
ν:[τ ,T]→R

d

ν∈U

E
x

[∫ T

τ

W(Xu
s ) +

1
2
‖G(Xu

s )ν(s)‖2 ds − log(ψ0(Xu
T))

]
s.t. dXu

s = G(Xu
s )ν(s) ds + dBs, Xu

τ = x. (24)
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To this end, we consider the dynamic programming equation [26, chapter IV.3]

−∂V(x, τ )
∂τ

= inf
ν∈U

[
1
2
ΔV(x, τ ) + W(x) + νTG(x)T · ∇V(x, τ ) +

1
2
‖G(x)ν‖2

]
,

V(x, T) = − log(ψ0(x)).

As the first two terms are independent of ν, it suffices to minimize the remaining two terms
with respect to ν, which leads to the criticality condition:

(G(x)�G(x))ν = −G(x)�∇V(x, τ ).

This equation is satisfied for any ν∗ ∈ Rdu such that G(x)ν∗ = −∇V(x, τ ). As G(x) is full rank,
at least one such ν∗ exists, and the minimal value attained is

(ν∗)�G(x)� · ∇V(x, τ ) +
1
2
‖G(x)ν∗‖2 = −1

2
‖∇V(x, τ )‖2.

Thus, the dynamic programming equation is equivalent to the HJB equation (11).

Appendix C. Superposition of two wave functions

For a superposition of two wave functions ψ = ψ1 + ψ2 with ψ j = eR j+i S j , we obtain the
current and osmotic velocities u = u′

w
and v = v′

w
, with

u′ = e2R1∇R1 + e2R2∇R2

+ eR1+R2 [cos(S1 − S2)(∇R1 +∇R2) − sin(S1 − S2)(∇S1 −∇S2)],

v′ = e2R1∇S1 + e2R2∇S2

+ eR1+R2 [sin(S1 − S2)(∇R1 −∇R2) + cos(S1 − S2)(∇S1 +∇S2)],

w = e2R1 + e2R2 + 2eR1+R2 cos(S1 − S2).

We use such a superposition of two wave functions to construct a system with time-dependent
dynamics in section 5.
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