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Abstract
One of the most computationally expensive steps of the low-rank ADI method for 
large-scale Lyapunov equations is the solution of a shifted linear system at each 
iteration. We propose the use of the extended Krylov subspace method for this task. 
In particular, we illustrate how a single approximation space can be constructed to 
solve all the shifted linear systems needed to achieve a prescribed accuracy in terms 
of Lyapunov residual norm. Moreover, we show how to fully merge the two iterative 
procedures in order to obtain a novel, efficient implementation of the low-rank ADI 
method, for an important class of equations. Many state-of-the-art algorithms for the 
shift computation can be easily incorporated into our new scheme, as well. Several 
numerical results illustrate the potential of our novel procedure when compared to 
an implementation of the low-rank ADI method based on sparse direct solvers for 
the shifted linear systems.

Keywords  Lyapunov equations · Low-rank ADI · Extended Krylov method · Shifted 
linear systems

Novelty statement:  Extended Krylov subspace methods (EKSM) and the low-rank alternating 
directions implicit (LR-ADI) iteration have been competing methods for the solution of large-scale 
algebraic Lyapunov equations. In this paper, we make an important step towards a new method 
merging them into a combined procedure that inherits advantages from both worlds.
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1  Introduction

The low-rank alternating direction implicit (LR-ADI) [42, 54] method is one of the 
state-of-the-art methods for the numerical solution of large-scale Lyapunov equa-
tions [19, 65]. This linear matrix equation can be encountered in many applications: 
control and system theory [34, 66], especially some model reduction techniques for 
dynamical systems [3, 15], but also discretization of certain partial differential equa-
tions (PDEs) [71], and many more.

We consider Lyapunov equations of the form

where A,E ∈ ℝn×n , and B ∈ ℝn×q , q ≪ n. Moreover, E is supposed to be symmetric 
positive definite (SPD) and the matrix pencil (A,E) to be asymptotically stable, i.e., 
its spectrum is contained in the open left half plane ℂ− , which guarantees that a 
unique solution X exists, and is symmetric positive semidefinite [53].

A special case of (1) is attained whenever E = I, namely the equation of interest is

Oftentimes the coefficient matrix E possesses a structured sparsity pattern. For 
instance, it is (block) diagonal when the matrices stem from a finite element discre-
tization that uses mass-lumping. In this case, we can easily transform (1) and obtain 
an equation of the form (2). This can, for example, be achieved by simply pre- and 
post-multiplying (1) by E−

1

2 to potentially preserve symmetry of A. For the sake of 
simplicity, we thus focus on (2) in the following.

In case of very large problem dimensions, the solution X cannot be stored since 
this matrix is, in general, dense. However, it is well known that its singular values 
quickly decay to zero under suitable assumptions, see, e.g., [5, 13, 33, 55], so that 
accurate low-rank approximations ZZT ≈ X, Z ∈ ℝn×t , t ≪ n, can be constructed. 
The efficient computation of the low-rank factor Z is the task of LR-ADI and of all 
other low-rank methods (see, e.g., the survey papers [19, 65] for further details on 
different low-rank methods for linear matrix equations).

It is well known that the convergence rate of the LR-ADI method is strictly 
connected to the selection of some parameters {pi}i=1,…,j ⊂ ℂ− called shifts1. 
The computation of effective shifts is a highly non-trivial task and it has been a 
rather active research topic in the last decades. Many strategies are available in 
the literature and these can be divided into two categories: Offline routines [54, 
60, 73], where the shifts are computed a priori, before LR-ADI starts and then, 
potentially, cyclically reused, and online schemes [12, 37], where the shifts are 

(1)AXE� + EXA� + BB�

(2)AX + XA� + BB� = 0.

1  We only consider proper sets of shifts, namely {pi}i=1,…,j is closed with respect to complex conjuga-
tion.
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computed on the fly within the iterative procedure. The name shifts for the values 
pj comes from the fact that in each LR-ADI iteration we need to solve a shifted 
linear system with a coefficient matrix of the form A + pjE , or A + pjI , in case of 
(1), or (2), respectively. Notice that since (A,E) (or A in case of (2)) is asymptoti-
cally stable and {pj} ⊂ ℂ− , all the linear systems involved in the LR-ADI scheme 
are well defined.

In Algorithm 1, we report an implementation of the LR-ADI scheme for the solu-
tion of (1). Notice that Algorithm 1 is designed to drastically reduce the amount of 
complex arithmetic calculations. Indeed, even though A and B in (2) are real, the 
shifts pj are often complex if A is nonsymmetric, so that complex arithmetic may 
occur (see [11], [36, Chapter 4], and references therein for details and derivations).

One of the most computationally expensive steps of Algorithm 1 is the solution of 
the shifted linear systems with q right-hand sides in line 3. Such a job has to be carried 
out at each LR-ADI iteration. In this contribution, we propose to employ state-of-the-
art block Krylov subspace methods for this task. In particular, for (2), we illustrate how 
to efficiently reuse the approximation space employed at the jth LR-ADI iteration and 
utilize it also in the next one. To this end, it is crucial that the right-hand side of the lin-
ear system we need to solve at the (j +1)-st iteration can be represented in terms of the 
basis of the subspace employed in the previous iteration. This simple but critical obser-
vation lets us design a novel, efficient procedure that can lead to noticeable savings 
in the running time for the solution of (2). Indeed, all the LR-ADI steps can be com-
pletely merged into the Krylov routine so that the LR-ADI iteration is only implicitly 

Algorithm 1   LR-ADI for Lyapunov equations
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performed. Moreover, also the LR-ADI shift computation can be incorporated into the 
framework proposed in this paper.

The following is a synopsis of the paper. Section 2 is devoted to recalling the general 
(block) Krylov subspace framework for shifted linear systems. In particular, some details 
about the extended Krylov subspace method presented in [64] are given in Section 2.1. 
In Section 3, we present the main contribution of the paper and we show how to fully 
merge the LR-ADI iteration into the projection method adopted for the linear system solu-
tion. The selection of effective shifts is crucial for attaining a fast convergence in terms of 
number of LR-ADI iterations, and numerous strategies have been proposed in the litera-
ture to accomplish this task (see, e.g., [12, 16, 37, 54, 58, 60, 71, 73]). In Section 5, we 
illustrate how many of these routines can be integrated into our novel framework with 
no additional cost. The potential of our strategy is depicted in Section 6, where several 
numerical results are reported. We close the paper with our conclusions in Section 7.

Throughout the paper, we adopt the following notation. The matrix inner product 
is defined as ⟨X,X⟩

F
 : = trace(YTX) so that the induced norm is ‖X‖2

F
= ⟨X,X⟩F . The 

Kronecker product is denoted by ⊗ whereas In and On×m denote the identity matrix of 
order n and the n × m zero matrix, respectively. Only one subscript is used for a square 
zero matrix, i.e., On×n = On, and the subscript is omitted whenever the dimension of 
I and O is clear from the context. Moreover, ei is the ith basis vector of the canoni-
cal basis of ℝn . The brackets [⋅] are used to concatenate matrices of conformal dimen-
sions. In particular, a MATLAB-like notation is adopted and [M,N] denotes the matrix 
obtained by putting M on the left of N whereas [M;N] the one obtained by putting M on 
top of N, i.e., [M;N] = [MT,NT]T. If w ∈ ℝn , diag(w) denotes the n × n diagonal matrix 
whose ith diagonal entry corresponds to the ith component of w. Given X ∈ ℂn×m , we 
write X = Re(X) + ı Im(X), where Re(X) and Im(X) are its real and imaginary parts, 
respectively, and ı is the imaginary unit. The complex conjugate of X is denoted by 
X = Re(X) − �Im(X).

2 � Block Krylov methods for shifted linear systems

The literature about the numerical solution of shifted linear systems by Krylov subspace 
methods is rather vast. Indeed, sequences of shifted linear systems arise in many appli-
cations belonging to different research areas like control theory [23, 41], wave propaga-
tion problems [8], mechanical systems [27], and quantum chromodynamics [32].

This algebraic problem is trickier than it looks and many researchers have contrib-
uted to its understanding providing important insights on its properties and designing 
efficient, robust algorithms for its solution. Here is an incomplete list of contributions 
on numerical schemes for sequences of shifted linear systems and their analysis [7, 28, 
29, 48, 62, 67, 68, 70].

In this section, we consider sequences of shifted linear systems of the form

where the right-hand side W does not depend on the index j, even though, in line 3 
of Algorithm 1, Wj−1 does change at every LR-ADI iteration. In Section 3, we show 

(3)(A + pjI)Sj = W, W ∈ ℝn×q
,
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how to adapt the machinery, presented here, to the case of linear systems of the form 
(A + pjI)Sj = Wj−1 , arising within the LR-ADI scheme.

Any Krylov routine for (3) computes a numerical solution of the form 
S
(j)
m = S0 + VmY

(j)
m ≈ Sj , Vm = [V1,… ,Vm] ∈ ℝn×m�q , ℓ ≥12, Vi ∈ ℝn×�q , i =1,…,m, 

Y
(j)
m ∈ ℂm�q×q , where the orthonormal columns of Vm span a suitable subspace Km , 

namely, Range (Vm) = Km , S0 is an initial guess, and the matrix Y (j)
m  can be com-

puted by imposing different conditions. In particular, Y (j)
m  is often computed by either 

imposing a Galerkin condition on the residual or minimizing the residual norm. For 
the sake of simplicity, we consider S0 = O in the following.

One of the most common choices for the approximation space Km is the block 
Krylov subspace

See, e.g., [30, 50, 61] and the references therein for further details on the block poly-
nomial Krylov subspace �◻

m
(A,W) and related methods.

However, Simoncini showed in [64] that the extended Krylov subspace [24]

can be a powerful alternative for the solution of (3) in many cases. For instance, 
when A is large and real while the pj’s are complex (see also Section 2.1).

The basis Vm of both the polynomial and extended Krylov subspace can be con-
structed by means of the (extended) Arnoldi process and the following Arnoldi rela-
tion is fulfilled

where T
m
= V�

m+1
AVm ∈ ℝ(m+1)�q×m�q , Tm is its principal square submatrix, and 

Em+1 = em+1 ⊗ Iℓq (see, e.g., [56, 63]).
The Arnoldi relation (6) is one of the most crucial tools in the solution of (3) by 

Krylov methods. Indeed, it can be used to show the fundamental shift-invariance 
property of the Krylov subspaces (4) and (5), and the following relation holds true

See, e.g., [62, Equation (2.1)], [64, Equation (3.1)].
Equation (7) says that we can compute only one approximation space for solving 

(3). In particular, the space constructed using A, i.e., �◻

m
(A,W) or ��◻

m
(A,W) , can 

be employed, by possibly being expanded, to solve all the shifted linear systems in 
the sequence (3).

Polynomial Krylov subspace methods often need many iterations to achieve 
the prescribed accuracy, so that a large subspace is constructed. This leads to an 
increment in both the storage demand and the computational efforts of the selected 

(4)�
◻

m
(A,W) = Range([W,AW,… ,Am−1W]).

(5)��
◻

m
(A,W) = Range([W,A−1W,AW,A−2W,… ,Am−1W,A−mW]),

(6)AVm = VmTm + Vm+1E
�

m+1
T
m
,

(7)(A + pjIn)Vm = Vm(Tm + pjIm�q) + Vm+1E
�

m+1
T
m
.

2  The value of ℓ depends on the adopted approximation space. It holds, ℓ =1 for the polynomial Krylov 
subspace in (4), whereas ℓ =2 for the extended Krylov subspace in (5).
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solution procedure. Different strategies have been developed to avoid the construc-
tion of a too large subspace.

With the goal of achieving a fast convergence in terms of number of iterations, 
the linear system (3) can be preconditioned, namely is transformed into an equiva-
lent problem with better spectral properties. However, designing effective precondi-
tioning operators for a sequence of shifted linear systems is a difficult task and often 
highly problem dependent. Very sophisticated schemes have been proposed in the 
literature (see, e.g., [4, 9, 20, 21, 46]).

Restarted routines are an alternative solution. In this framework, the approximation 
space Km is expanded until it reaches a prescribed maximum dimension. If the desired 
level of accuracy is not achieved, the last computed basis block Vm+1 is employed as 
initial block in the construction of a new subspace K′

m
 . This procedure is iterated until 

a stopping criterion is fulfilled (see, e.g., [29, 62] and [30, Section 3.2.1]). However, in 
our framework, the LR-ADI shifts pj’s are often computed on the fly and, thus, are not 
all available at the same time. Therefore, to fully take advantage of the computational 
efforts needed to solve the linear system (A + pj−1I)Sj−1 = W , we would have to store 
all the bases computed during the employed restarted Krylov procedure and use them 
to solve the jth linear system, as well. Unfortunately, this would destroy all the benefits 
in terms of storage complexity gained from the restart-paradigm.

In [64], Simoncini showed that the employment of the extended Krylov subspace 
(5), in place of (4), often leads to a faster convergence, in terms of iterations, to the 
point that the constructed subspace is usually smaller than the polynomial counterpart 
needed to reach the same level of accuracy. We, thus, decide to use such an approxima-
tion space for the solution of the shifted linear systems within the LR-ADI method and 
in the next section we recall some details of the extended Krylov subspace method.

Notice that the faster convergence of the extended Krylov subspace (5) comes 
with a toll. Indeed, at each iteration, a linear system with A has to be solved dur-
ing the basis construction. Nevertheless, the increase in the overall workload of the 
solution process can be limited in general. Indeed, if we want to use a direct solver 
to invert A, for instance, the LU factors of A can be computed once and for all before 
the LR-ADI scheme starts. On the other hand, if an iterative procedure is employed, 
analogously a single preconditioner for A has to be designed once.

As already mentioned, in the formulation (3), the right-hand side W is fixed, 
namely it does not depend on the shift index j. However, in line 3 of Algorithm 1, 
the linear systems we need to solve are of the form

 At a first glance, having a nonconstant right-hand side does not allow for the 
employment of the shifted Krylov framework we briefly described above. A larger 
class of solvers, the so-called recycling Krylov methods, seems more appropriate 
(see, e.g., [31, 52, 67, 69, 70] for general sequences of shifted linear systems, and [1, 
2, 26] for some recycling Krylov techniques applied in a model reduction context). 
However, in Section 3, we show that, in the LR-ADI context for j > 1, the residual 
factor Wj−1 belongs to the subspace Km employed in the solution of the (j −1)-st 
linear system (A + pj−1I)Sj−1 = Wj−2 . Along with the shift-invariance property of the 

(A + pjI)Sj = Wj−1.
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Krylov subspace, this observation allows us to utilize only one subspace for the solu-
tion of all the shifted linear systems within the LR-ADI method. In turn, as shown in 
Section 6, we can notably reduce the computational effort of the overall procedure.

2.1 � The extended Krylov subspace method for shifted linear systems

In this section, we recall the extended Krylov subspace method for shifted linear sys-
tems presented in [64].

Given the sequence of shifted linear systems (3), the extended Krylov subspace 
method computes a solution of the form S(j)m = VmY

(j)
m  , where the 2mq orthonormal 

columns of Vm span the extended Krylov subspace (5), whereas the 2mq × q matrix 
Y
(j)
m  can be computed in different manners.

For instance, Y (j)
m  can be computed by imposing a Galerkin condition on the 

residual R(j)
m = (A + pjI)VmY

(j)
m −W , namely by imposing V�

m
R
(j)
m = 0 . Thanks to 

the shifted Arnoldi relation (7), it is easy to show that such a Galerkin condition is 
equivalent to solving the projected linear systems

where E1 = e1 ⊗ I2q, and � ∈ ℝ2q×q is such that W = V1γ.
With Y (j)

m  at hand, the Frobenius norm of the residual ‖R(j)
m ‖F can be computed at 

low cost, as

following [64, Equation (3.2)].
Alternatively, following the discussion in [68, Section 4.1], the matrix Y (j)

m  can be 
computed also by minimizing the residual norm, i.e.,

Once again, thanks to the shifted Arnoldi relation (7), the minimization problem in 
(10) simplifies, and we can compute Y (j)

m  as

Note the abuse of notation: in (11) E1 ∈ ℝ2(m+1)q×2q whereas E1 ∈ ℝ2mq×2q in (8).
If QP = T

m
+ pj[I2mq;O2q×2mq] denotes the QR factorization of T

m
+ pj[I2mq;O2q×2mq] , 

and we consider the following partition

 then the matrix Y (j)
m  in (11) can be computed as

(8)(Tm + pjI)Y
(j)
m

= E1� ,

(9)‖R(j)
m
‖F = ‖E�

m+1
T
m
Y (j)
m
‖F,

(10)Y (j)
m

= argmin
Y∈ℝ2mq×q

‖
‖
‖
(A + pjI)VmY −W

‖
‖
‖F

.

(11)Y (j)
m

= argmin
Y∈ℝ2mq×q

‖
‖
‖
(T

m
+ pj[I2mq;O2q×2mq])Y − E1�

‖
‖
‖F

.

Q = [Q1,Q2],Q1 ∈ ℝ2(m+1)q×2mq,Q2 ∈ ℝ2(m+1)q×2q,P =

[
P1

O2q×2mq

]

,P1 ∈ ℝ2mq×2mq,

(12)Y (j)
m

= P−1
1
Q�

1
E1� ,
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and the residual norm is given by

The overall procedure is summarized in Algorithm 2, where Σ contains the indices 
of all yet unsolved systems, whereas ΣC contains the indices of all the systems that 
have already been solved. The basis block Vm+1 can be computed by following [63]. 
This operation involves both matrix-vector products and linear system solves with A. 
Moreover, the basis Vm is real whenever A and W are so. Complex arithmetic may 
occur in the computation of Y (j)

m  , if Im(pj)≠0.
Notice that as soon as the jth linear system has converged, namely the related 

relative residual norm is sufficiently small, we stop solving the jth projected prob-
lem3. Once all the linear systems have converged, we terminate the iterative process.

To conclude, we would like to point out that, to the best of our knowledge, this 
is the first time the minimal residual condition (11) is proposed within the extended 
Krylov subspace method for shifted linear systems.

3 � Merging the two iterative procedures

In this section, we show how the LR-ADI iteration and the extended Krylov sub-
space method for shifted linear systems can be merged together into a novel, effi-
cient iterative procedure for the solution of (2).

(13)‖R(j)
m
‖F = ‖Q�

2
E1�‖F.

Algorithm 2   Extended Krylov subspace method for shifted linear systems

3  Either (8) or (11).
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As already mentioned, in the sequence of shifted linear systems in line 3 of 
Algorithm 1, also the right-hand side Wj−1 depends on the current LR-ADI itera-
tion j. Therefore, at a first glance, we seemingly have to build a new subspace 
at each iteration j, by employing the current Wj−1 as initial block. However, in 
the following theorem, we show that Wj−1 belongs to the subspace constructed to 
solve the (j −1)-st linear system so that such a space can be used, by being pos-
sibly expanded, also in the solution of the subsequent linear system.

Theorem 3.1  Let Sj = Vmj
Ymj

 , j ⩾ 1 , Range(Vmj
) = ��

◻

mj
(A,B) for certain mj ⩾ 0 . 

Then

Proof  We are going to show the statement by induction on j.
The first linear system to be solved within the LR-ADI method is 

(A + p1I)S1 = B and the extended Krylov subspace ��◻

m1
(A,B) can be employed to 

this end. The computed solution is of the form S1 = Vm1
Ym1

 , m1 >0, where 
Range(Vm1

) = ��
◻

m1
(A,B) and Ym1

∈ ℂ2m1q×q . It is thus easy to show that 
W1 = B − 2Re(p1)S1 = Vm1

(E1� − 2Re(p1)Ym1
) is such that Range(W1) ⊆ ��

◻

m1
(A,B).

We now assume the statement holds for a certain j − 1 ⩾ 1 , and we show it 
holds for j as well. Since Sj = Vmj

Ymj
 by assumption and Range(Wj−1) ⊆ ��

◻

mj−1
(A,B) 

by inductive hypothesis, namely we can write Wj−1 = Vmj−1
Υj−1 for a certain 

Υj−1 ∈ ℝ2mj−1q×q , we have

Therefore, Range(Wj) ⊆ ��
◻

mj
(A,B) . □

Theorem 3.1 shows that Wj is exactly represented in ��◻

mj
(A,B) . This means 

that the latter subspace can be still employed for the computation of Sj+1 by being 
possibly expanded. Indeed, no components of Wj are annihilated when either the 
Galerkin or the minimal residual condition is imposed. In the following corollary, 
we show how to easily write down the projected problems (8) and (11) along with 
the corresponding residual norm computation.

Corollary 3.1  Assume the prerequisites of Theorem 3.1 hold. If a Galerkin condi-
tion is imposed for the computation of Sj = Vmj

Ymj
 , then the matrix Ymj

 amounts to 
the solution of the projected linear system

where Υj−1 ∈ ℝ2mj−1q×q is such that Wj−1 = Vmj−1
Υj−1 , mj−1 ⩽ mj . The related resid-

ual norm can be computed by

Range(Wj) ⊆ ��
◻

mj
(A,B).

Wj = Wj−1 − 2Re(pj)Sj = Vmj−1
Υj−1 − 2Re(pj)Vmj

Ymj

= Vmj

(
[Υj−1;O2(mj−mj−1)q×q

] − 2Re(pj)Ymj

)
.

(14)(Tmj
+ pjI2mjq

)Ymj
= [Υj−1;O2(mj−mj−1)q×q

],
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Similarly, if a minimal residual norm condition is imposed, we have

so that

where the 2q orthonormal columns of Q2 are a basis of the kernel of 
T
mj
+ pj[I2mjq

;O2q×2mjq
].

Proof  Since Wj−1 = Vmj−1
Υj−1 and we look for a solution Sj = Vmj

Ymj
 to 

(A + pjI)Sj = Wj−1 , we can write

 If a Galerkin condition is imposed, namely V�

mj
Rmj

= 0 , then Ymj
 is the solution of the 

linear system in (14) and the related residual norm ‖Rmj
‖F can be computed as in (15).

Similarly, if a minimal residual condition is imposed, Ymj
 solves the minimization 

problem (16) and the ‖Rmj
‖F fulfills (17). □

Once Sj = Vmj
Ymj

 is computed, namely the related residual norm ‖Rmj
‖F is suf-

ficiently small, we proceed with the remaining LR-ADI operations.
We would like to point out that the expression of Wj, i.e., Wj = Vmj

Υj , can be 
exploited for the Lyapunov residual norm as well. Indeed,

This means that also the computation of the Lyapunov residual norm can be carried 
out by manipulating small matrices of dimension 2mjq × q. Similarly, the solution Zj 
can be assembled at the very end of the LR-ADI procedure once the residual norm 
in (18) is sufficiently small. Indeed,

(15)‖Rmj
‖F = ‖E�

mj+1
T
mj
Ymj

‖F.

(16)Ymj
= argmin

Y∈ℂ
2mjq×q

‖(T
mj
+ pj[I2mjq

;O2q×2mjq
])Y − [Υj−1;O2(mj−mj−1+1)q×q

]‖F,

(17)‖Rmj
‖F = ‖Q�

2
[Υj−1;O2(mj−mj−1+1)q×q

]‖F,

Rmj
= (A + pjI)Sj −Wj−1 = (A + pj I)Vmj

Ymj
− Vmj−1

Υj−1

= Vmj

(
(Tmj

+ pjI2mjq
)Ymj

− [Υj−1;O2(mj−mj−1 )q×q
]
)
+ Vmj+1

E�

mj+1
T
mj

= Vmj+1

(
(T

mj
+ pj[I2mjq

;O
2q×2mjq

])Ymj
− [Υj−1;O2(mj−mj−1+1)q×q

]
)
.

(18)‖W∗
j
Wj‖F = ‖Υ∗

j
Υj‖F.

(19)

Zj = [Zj−1,

�
−2Re(pj)Sj] = [

√
−2Re(p1)S1,

√
−2Re(p2)S2,… ,

�
−2Re(pj)Sj]

= [
√
−2Re(p1)Vm1

Ym1
,
√
−2Re(p2)Vm2

Ym2
,… ,

�
−2Re(pj)Vmj

Ymj
]

= Vmj
[[Ym1

;O2(mj−m1)q×q
], [Ym2

;O2(mj−m2)q×q
],… , Ymj

]

⋅ (

�
−2diag(Re(p1),… , Re(pj))⊗ Iq).
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The overall procedure combining the LR-ADI iteration with the extended Krylov 
subspace method for shifted linear systems is depicted in Algorithm 3 4.

As in Algorithm 1, if Im(pj)≠0, in lines 15 to 19 we set pj+1 = pj , and we follow 
the implementation suggested in [11, 36] to reduce the amount of complex arithme-
tic. In particular, Ymj+1

 can be obtained from Ymj
 without solving (14) or (16). Moreo-

ver, the adopted scheme results in a real Zj (see [11] and [36, Algorithm 4.3] for fur-
ther details).

Remark 4  Theorem 3.1 shows that Range(Wj) ⊆ ��
◻

mj
(A,B) whenever Wj is updated 

as Wj = Wj−1 −2Re(pj)Sj, namely whenever all the employed shifts are real. In case 
of shifts with nonzero imaginary part, the LR-ADI implementation we adopt sets

 Therefore, we need to show that Wj+1 defined as above is still such that 
Range(Wj+1) ⊆ ��

◻

mj
(A,B) . This can be done by applying the same exact arguments 

used in the proof of Theorem 3.1. In particular, the result follows by noticing that 
the basis Vm is real, as we assumed A and B to be real matrices, and that we can 
write

Notice that two tolerances �(j)
���

 , and ε are employed in Algorithm 3. In particu-
lar, ε is used to assess the accuracy of the computed solution in terms of the Lya-
punov residual norm, whereas �(j)

���
 is employed to determine whether the solution 

of the current linear system is sufficiently correct. In principle, the user can pro-
vide a fixed value for the inner tolerance, i.e., �(j)

���
≡ �

���
 for all j. However, the 

theory developed in [38] can be used to adaptively compute �(j)
���

 as the LR-ADI 
iterations proceed. The relaxation strategy presented in [38, Section 3] allows us 
to increase �(j)

���
 as j grows. Therefore, especially when �(j)

���
 is rather large, there 

is no need to expand the current extended Krylov subspace in general. In all the 
results reported in Section  6, we employ such a strategy and �(j)

���
 is computed 

according to [38, Equation (3.18b)] (see also [44] for similar results in case of 
Sylvester equations).

We would like to point out that the lines 23 to 28 in Algorithm 3 and the use of 
the flag flag_noexpand are crucial to reduce the computational cost of the overall 
procedure. Indeed, those lines are devoted to check whether the current subspace 
already contains enough spectral information to solve the current linear system. If 
this is the case, we do not expand the current space avoiding unnecessary incre-
ments in the memory requirements and computational efforts.

Wj+1 = Wj−1 − 4Re(pj)(Re(Sj) + βIm(Sj)).

Wj+1 = Wj−1 − 4Re(pj)(Re(Sj) + �Im(Sj))

= Vmj

(
[Υj−1;O2(mj−mj−1)q×q

] − 4Re(pj)(Re(Ymj
) + �Im(Ymj

)
)
.

4  Many subscripts have been removed to make the algorithm more readable.
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If � ∶= [[Ym1
;O2(mj−m1)q×q

], [Ym2
;O2(m2−m1)q×q

],… , Ymj
] , (19) shows that the 

numerical solution computed by the proposed LR-ADI implementation is of the form

(20)ZjZ
�

j
= −2Vmj

(�(diag(Re(p1),… , Re(pj))⊗ Iq)�
�)V�

mj
.

Algorithm 3   LR-ADI-EKSM for Lyapunov equations
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The right-hand side in (20) has the typical form of an approximate solution com-
puted by a projection method applied to (2). In particular, if the extended Krylov 
subspace method (K-PIK) presented in [63] is applied to solve (2), the computed 
approximation is of the form Xm = VmLmV

�

m
 , where the orthonormal columns of Vm 

are a basis of ��◻

m
(A,B) and Lm is computed by imposing a Galerkin condition on 

the residual matrix AVmLmV
�

m
+ VmLmV

�

m
A� + BB� . Therefore, the proposed LR-

ADI implementation can be seen as a novel projection method where the coefficients 
of the linear combination in terms of the basis vectors that provides the approximate 
solution, namely the matrix �(diag(Re(p1),… , Re(pj))⊗ Iq)�

� , is computed as out-
lined above and not by imposing a Galerkin condition on the residual matrix. This 
perspective may provide new insights on the relation between LR-ADI and K-PIK. 
However, this is beyond the scope of this paper. Similar investigations, relating LR-
ADI and rational Krylov subspace methods, have been reported in [25, 74, 75].

The expression (20) resembles the LDLT-form of the LR-ADI solution. This for-
mulation, while being more natural for projection-based solvers, also turned out to 
be advantageous when LR-ADI is employed as linear solver for differential matrix 
equations (see [39]).

4 � Shift computation

Many of the procedures, available in the literature, for the ADI shift computation 
need the explicit construction of a basis of Range(Zj) or a subspace thereof. For 
instance, in [12], the authors suggest to use, as shifts pj, a subset of the Ritz values 
of A with respect to Zj = Range(Z̃j) , where Z̃j ∈ ℝn×h consists of the last h >0 col-
umns of Zj that have been orthogonalized with respect to each other. However, (19) 
shows that Algorithm  3 provides us with a matrix Zj such that 
Range(Zj) ⊆ ��

◻

mj
(A,B) so that the Ritz values of A with respect to ��◻

mj
(A,B) can 

be employed as shifts. Moreover, in standard LR-ADI implementations, one has to 
explicitly compute the projection of A onto Zj increasing the computational efforts 
of the overall procedure. In our approach, the projection of A onto ��◻

mj
(A,B) is 

given for free as this amounts to Tmj
 and no additional operations are required.

The observation above can be applied to many schemes for the shift computation. 
In the following, we give some details for the residual-Hamiltonian-based shifts and 
the residual norm-minimizing shifts presented in [37].

In [37, Section  2.1.3], at the   jth LR-ADI iteration, the Hamiltonian matrix 
Hj =

[
A� O

WjW
�

j
−A

]

 is considered and its projection onto Zj , namely H̃j =

[
(Z̃�

j
AZ̃j)

�

O

Z̃�

j
WjW

�

j
Z̃j −Z̃�

j
AZ̃j

]

 , 

is constructed. In our case, we can easily construct the projection of Hj onto ��◻

mj
(A,B) 

and this is given by
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With (21) at hand, we compute its stable eigenpairs 
(

�k,

[
sk
tk

])

 , Re(λk) <0, 

sk, tk ∈ ℝ2mjq , and the (j +1)-st residual-Hamiltonian-based shift pj+1 is selected as 
the eigenvalue �

k̂
 such that t

k̂
= argmax{‖tk‖}.

For the computation of residual-norm-minimizing shifts, in [37, Section  3], a 
rather involved optimization procedure is presented. In particular, the real and imag-
inary parts of pj+1 = 𝜃j+1 + ıξj+1 are computed by solving the following minimiza-
tion problem

The objective function in (22) is expensive to evaluate, making the shift computa-
tion often more expensive than a single LR-ADI iteration. To overcome this issue, 
Kürschner proposes to employ smaller matrices Ã and W̃j in place of A and Wj. Once 
again, Ã and W̃j are the projection of A and Wj onto a suitable subspace. This sub-
space is chosen to be ��◻

�
(A,B) ∪ Range(Zj) for a certain, usually small, ℓ >0. In 

our implementation, ��◻

�
(A,B) ∪ Range(Zj) ⊆ ��

◻

mj
(A,B) if � ⩽ mj . Therefore, we 

can set Ã = Tmj
 and W̃j = Υj for the approximation of [𝜃j+1,ξj+1] (22).

5 � Numerical examples

In this section, we illustrate the potential of the scheme we propose in this paper. 
The two variants of the LR-ADI-EKSM method, we have illustrated in Section 3, 
will be denoted by LR-ADI-EKSM(G) and LR-ADI-EKSM(MR). In particular, in 
LR-ADI-EKSM(G), we solve the linear systems by imposing a Galerkin condition, 
i.e., the matrix Y is computed by solving the reduced problem (14). In LR-ADI-
EKSM(MR), Y solves the least squares problem (16).

We test Algorithm  3 on different instances of (2) coming from the discretiza-
tion of certain PDEs, and we study how the computational cost of the main steps of 
Algorithm 3 depends on the problem dimension n and rank of the right hand side q.

The results achieved by Algorithm  3 are also compared to the ones obtained 
by running a standard implementation of the LR-ADI method. In particular, we 
employed the MATLAB function mess_lradi available in the M-M.E.S.S. pack-
age [59]. Notice that mess_lradi is intended to be a black-box routine so that 
many checks and inspections are performed before the actual solution process starts. 
This may increase the overall running time of mess_lradi. Therefore, to have fair 
comparisons, we also report the results obtained by running a standard implemen-
tation of LR-ADI where the overhead cost mentioned above is not present. Such a 
routine is simply denoted by lradi in the tables that follow.

(21)H̃j =

[
T�

mj
O

Υ�

j
Υj −Tmj

]

∈ ℝ4mjq×4mjq.

(22)[�j+1, �j+1] = argmin
�∈ℝ−,�∈ℝ

‖
‖
‖
Wj − 2�((A + (� + i�)I)−1Wj

‖
‖
‖

2

.
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For a better understanding, in Table 1, we summarize the adopted linear system 
solver included in the tested routines for each of the numerical experiments that fol-
low. Similarly, in Table 1, we indicate whether a given scheme is equipped with the 
relaxation strategy coming from [38] for the selection of �(j)

���
.

For all experiments, the tolerance ε for the relative residual norm is set to 10−8. 
Moreover, except for Experiment  3, we always employ the residual-Hamiltonian-
based shifts presented in [37] and computed as illustrated in Section 5.

All results were obtained by running MATLAB R2020b [47] on a standard node5 
of the Linux cluster mechthild hosted at the Max Planck Institute for Dynamics 
of Complex Technical Systems in Magdeburg, Germany.

Experiment 1  In the first experiment, we consider a Lyapunov equation where

 Therefore, A ∈ ℝn×n , n = h2, is symmetric and stable. We first consider a matrix 
B ∈ ℝn×q with random entries and unit norm, and in Table  2, we depict how the 
overall solution time distributes among the main steps of our algorithm for different 
values of n and q.

In both LR-ADI-EKSM(G) and LR-ADI-EKSM(MR), the linear systems with 
A required for the basis construction are solved by means of the MATLAB sparse 
direct solver “backslash.” In particular, A is factorized once and for all before the 
iterative procedures start so that only triangular systems are actually solved during 
the basis construction. The computational time for the factorization of A is always 
included in the results that follow.

In this experiment, LR-ADI-EKSM(G) and LR-ADI-EKSM(MR) perform very 
similarly. We thus report only the results achieved by the former.

A = Ih ⊗ Dh + Dh ⊗ Ih, Dh = tridiag(1,−2, 1) ∈ ℝh×h.

Table 1   Solver: solver 
employed for solving the 
linear systems with A in 
LR-ADI-EKSM and K-PIK 
and with A + pjI in lradi 
and mess_lradi. In the 
column Relaxation, we indicate 
whether a certain scheme is 
equipped with the relaxation 
strategy proposed in [38]

Solver Relaxation

Experiment 1 LR-ADI-EKSM(G) backslash

lradi backslash

mess_lradi backslash

Experiment 2 LR-ADI-EKSM(MR) PGMRES

lradi PGMRES

mess_lradi PGMRES

Experiment 3 LR-ADI-EKSM(G) backslash

mess_lradi backslash

K-PIK backslash —
Experiment 4 LR-ADI-EKSM(G) backslash

mess_lradi backslash

5  CPU: 2x Intel Xeon Skylake Silver 4110 @ 2.1 GHz, 8 cores per CPU. RAM: 192 GB DDR4 ECC.
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As expected, the time devoted to the basis construction represents the major-
ity of the overall computational efforts. This is the usual case in Krylov projection 
algorithms. This cost increases as q grows. Indeed, a larger subspace is computed 
making the basis construction, and in particular the orthogonalization step, rather 
demanding. Having a large dimensional approximation space leads to a more expen-
sive shift computation, as well.

In Fig. 1 (left y-axis), we illustrate how the dimension of the computed extended 
Krylov subspace grows in terms of j for n =360 000 and different values of q.

In this experiment, we can notice that the subspace constructed to solve the 
second shifted linear system, namely (A + p2I)S2 = W1 , is a very rich approxi-
mation space in terms of spectral information. Indeed, we need to only slightly 
expand it to solve the subsequent linear systems without compromising the 
decrease in the Lyapunov residual norm (see Fig. 1 (right y-axis)). This means 
that the majority of the computational efforts are dedicated to solve the second 
linear system, and we can capitalize on them for j > 2 reducing the overall work-
load of the solution process. We would like to mention that such a phenomenon 
is partially due to the adaptive selection of the inner tolerance �(j)

���
 coming from 

[38].
We now compare LR-ADI-EKSM(G) with the function mess_lradi of the 

M-M.E.S.S. package [59], an abstract function handle-based implementation 
of the LR-ADI, and lradi, a plain matrix-based implementation of the same 
algorithm.

To this end, we make B ∈ ℝn the normalized vector of all ones. For having fair com-
parisons, we employ the shifts computed by the LR-ADI-EKSM(G) in all the differ-
ent implementations. This leads to a very similar trend in the relative residual norm 
achieved by the routines even though the shifted linear systems in mess_lradi and 

Table 2   Experiment 1. Computational timings devoted to the different main steps of LR-ADI-EKSM(G) 
for different values of the problem size n and rank of the right-hand side q 

Basis, basis construction (Algorithm  3 — lines 2, 5, and 6); Projected Pr., computation of Y (Algo-
rithm 3 — lines 7 and 24); Shift, shifts computation (Algorithm 3 — line 22); Etc, remainder of the 
algorithm (e.g., factorization of A). It. indicates the number of ADI iterations that have been implicitly 
performed

Basis Projected Pr. Shift Etc Total

n q It. Time (s) Time (s) Time (s) Time (s) Time (s)

360 000 1 28 8.00 0.07 1.84 2.33 12.24
3 27 21.70 0.26 10.35 3.66 35.97
5 27 32.79 0.50 22.38 4.60 60.27

640 000 1 29 16.87 0.09 2.59 4.74 24.29
3 31 42.74 0.31 14.91 7.45 65.41
5 31 101.15 0.81 34.70 9.26 145.92

1 000 000 1 26 28.99 0.09 2.64 7.52 39.24
3 31 112.60 0.45 19.04 11.67 143.76
5 29 183.80 1.12 40.56 14.52 240.00
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lradi are solved at very high accuracy6, whereas the relaxation strategy of [38] is 
implemented in LR-ADI-EKSM(G). In Fig. 2, we report the relative difference between 
the relative residual norms computed by LR-ADI-EKSM(G) and mess_lradi 
throughout all the necessary iterations j for different problem dimension n along with 
the values of �(j)

���
 we employed. In agreement with the results presented in [38], we can 

notice that the distance between the computed relative residual norms is always rather 
moderate and smaller than �(j)

���

7. Very similar results are obtained by comparing the 
residual norms attained by lradi in place of mess_lradi.

We also compare the routines in terms of computation time. The results are col-
lected in Table 3. Since we employ the shifts computed within LR-ADI-EKSM(G) 
also for mess_lradi and lradi, we do not consider the time devoted to the shift 
computation when reporting the performances of LR-ADI-EKSM(G) in Table 3.

The results in Table 3 show that, for this experiment, our proposed scheme com-
bined with the relaxation strategy presented in [38] leads to a remarkable speed-up 
of the solution process — up to 50% — when compared to a standard implementa-
tion of the LR-ADI method.

Fig. 1   Experiment 1. Dimension of the constructed extended Krylov subspace and computed normalized 
residual norms as j grows, i.e., the ADI progresses, for problem size n =360 000

6  The MATLAB sparse direct solver “backslash” is employed for solving (A + pjI)Sj = Wj−1 for all j.
7  This is true for all the experiments we ran except for n =640 000, at the very last iteration where 
rLR-ADI-EKSM
27

≈ 1.3 × 10
−8 whereas �(27)

���
≈ 1.6 × 10

−8
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Experiment 2  In the second experiment, we consider a problem similar to [51, 
Example 6]. In particular, the matrix A comes from the centered finite difference 
discretization of the 3-dimensional convection-diffusion operator

L(u) = −�Δu + � ⋅ ∇u,

Fig. 2   Experiment 1. Relative gap 
|rLR−ADI−EKSM

j
− r

����_�����

j
|

r
����_�����

j

 between the residual norms rLR-ADI-EKSM
j

 

and r����_�����
j

 computed by LR-ADI-EKSM(G) and mess_lradi, respectively, as j grows, i.e., ADI 
converges, and different problem sizes n, together with the corresponding inner inexact solver tolerance 
�(j) , denoted �n to relate the problem sizes

Table 3   Experiment 1. 
Computational timings achieved 
by LR-ADI-EKSM(G), lradi, 
and mess_lradi for different 
problem sizes n 

 It. indicates the number of ADI iterations that have been (implic-
itly) performed

LR-ADI-EKSM(G) lradi mess_lradi

n It. Time (s) Time (s) Time (s)

360 000 24 10.08 31.84 30.94
640 000 27 19.99 65.84 66.22
1 000 000 36 39.18 101.18 101.61
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 on the unit cube with zero Dirichlet boundary conditions. The convection vector 
w is given by w = (ϕ1(x)ψ1(y)π1(z),0,π3(z)) = ((1 − x2)yz,0,ez) whereas ζ >0. By 
employing h nodes in each direction, the discretization phase leads to a matrix A that 
can be written as

 where Dh = �(h − 1)2 ⋅ tridiag(−1, 2,−1) ∈ ℝh×h , N = −
(h−1)

2
⋅ tridiag(−1, 0, 1) ∈ ℝh×h , 

and Φi, Ψi, and πi are diagonal matrices whose diagonal entries correspond to 
the nodal values of the corresponding functions ϕi, ψi, and πi (see [51] for further 
details). B ∈ ℝn , n = h3, is a vector with random entries.

Due to the 3D nature of the problem, the nonsymmetric linear systems with A 
involved in the basis construction in LR-ADI-EKSM are solved by GMRES [57]. 
In particular, we employ the GMRES implementation written by Lund et  al [35], 
namely the function bgmres in [45]. GMRES is stopped whenever the computed 
relative residual norm gets smaller than 10−10.

It is well known that (polynomial) Krylov methods for linear systems need to be 
preconditioned to achieve a fast convergence in terms of number of iterations. To 
this end, as suggested in [51], we employ the following preconditioning operator 
when solving the linear systems with A,

 where �1 is the mean value of the function π1 in [0,1]. At each GMRES iteration, 
we thus have to invert P , namely we have to compute v = P

−1v for v ∈ ℝn . This 
operation is performed by solving the Sylvester equation

 where �,� ∈ ℝh2×h are such that vec(�) = v and vec(V) = v. Since the coeffi-
cient matrices in the equation above have moderate dimensions, the Bartels-Stewart 
method [6] is employed for its solution and the Schur decompositions of the coef-
ficient matrices are computed once and for all before the iterative procedure starts. 
We always employ a right preconditioning scheme in order to easily have access to 
the actual residual norm.

Also, for the shifted linear systems with A + pjI , within mess_lradi and 
lradi, we employ preconditioned GMRES equipped with the preconditioning 
operator P + pjI . Once again, this preconditioner is applied by solving the Sylvester 
equation

 Even though this is in general a better preconditioner for A + pjI compared to P , 
its application involves complex arithmetic whenever Im(pj)≠0 with a consequent 
increment in the computational efforts devoted to the preconditioning step.

For this experiment, lradi is equipped with the relaxation strategy presented in [38].

A = (Dh + Π3N
�)⊗ Ih ⊗ Ih + Ih ⊗ Dh ⊗ Ih + Ih ⊗ Ih ⊗ Dh + Π1 ⊗Ψ1 ⊗Φ1N,

P = (Dh + Π3N
�)⊗ Ih ⊗ Ih + Ih ⊗ Dh ⊗ Ih + Ih ⊗ Ih ⊗ Dh + 𝜋1Ih ⊗Ψ1 ⊗Φ1N,

(Dh ⊗ Ih + Ih ⊗ Dh + 𝜋1Ψ1 ⊗Φ1N)� + �(Dh + Π3N
�)

�

= �,

(Dh ⊗ Ih + Ih ⊗ Dh + 𝜋1Ψ1 ⊗Φ1N)� + �(Dh + Π3N
� + pjIh)

�

= �.
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Also for this experiment, LR-ADI-EKSM(G) and LR-ADI-EKSM(MR) perform 
very similarly, with LR-ADI-EKSM(MR) achieving slightly better results in terms of 
computational time. We thus report only the performance of LR-ADI-EKSM(MR).

The results are collected in Table 4 for different values of n and ζ. In Table 4, we 
also report the number of shifts with nonzero imaginary part.

We would like to mention that we ran some experiments with mess_lradi 
where the shifted linear systems were solved by means of the MATLAB sparse direct 
solver “backslash” in place of preconditioned GMRES. However, for this example, 
the potentially higher accuracy of the direct solves did not benefit the computation 
and the execution times we achieved with “backslash” could not keep up with the 
ones reported for GMRES in Table 4. We, thus, decided to omit them here.

From the results in Table 4, we can see that LR-ADI-EKSM(MR) is very com-
petitive and always achieves computational timings that are significantly smaller 
than the ones required by mess_lradi. Thanks to the relaxation procedure com-
ing from [38], lradi performs better than mess_lradi.

The performance of all the tested routines is strictly related to the number of 
complex shifts needed to converge. When this is sizable with respect to the total 
number of iterations, many of the n × n linear systems A + pjI  within mess_
lradi and lradi involve complex arithmetic, whereas this is needed only in the 
solution of the small dimensional least squares problem for the computation of Y in 
LR-ADI-EKSM(MR).

We notice that, for a fixed n, the computational time of LR-ADI-EKSM(MR) 
decreases, in general, by reducing ζ, even tough the number of LR-ADI iterations 
that are implicitly performed increases. This is due to the computational efforts 
required by the solution of the linear systems with A during the basis construc-
tion. Indeed, for ζ =0.05, many more GMRES iterations are required than what 
is necessary for ζ =0.005. In Fig. 3, we report the number of GMRES iterations 
needed to solve the linear system with A at each m, namely every time a new 
basis vector of the adopted extended Krylov subspace needs to be computed.

A rather large number of GMRES iterations are required for solving the linear sys-
tems with A in case of ζ =0.05 making the construction of the basis of ��◻

m
(A,B) more 

Table 4   Experiment 2. Computational timings achieved by LR-ADI-EKSM(MR), lradi, and mess_
lradi for different problem sizes n and diffusivities ζ 

 It. indicates the number of ADI iterations that have been (implicitly) performed

LR-ADI-EKSM(MR) lradi mess_lradi

ζ n It. #{pj ∉ ℝ} Time (s) Time (s) Time (s)

0.05 125 000 20 12 80.61 153.28 187.52
512 000 20 12 812.74 1 342.27 2 161.99
1 000 000 22 10 3 183.54 5 764.21 6 133.54

0.005 125 000 45 44 65.23 361.58 382.11
512 000 61 60 419.45 2 156.94 3 497.51
1 000 000 67 62 1 194.37 5 802.41 10 517.13
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demanding. On the other hand, few GMRES iterations are sufficient to meet the prescribed 
accuracy for ζ =0.005 and the overall solution procedure turns out to be very successful.

Experiment 3  In this experiment, we compare LR-ADI-EKSM also with K-PIK [63], 
since the two routines construct the same subspace8. We consider the thermal part 
of the thermo-elastic modeling of a building-block of an experimental machine tool 
given by the following heat equation

(23)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

cp𝜌
𝜕T

𝜕t
= 𝜆ΔT , in Ω,

𝜆
𝜕T

𝜕n
= f , on Γc ⊂ 𝜕Ω,

𝜆
𝜕T

𝜕n
= 𝛼(Text − T), on Γext ⊂ 𝜕Ω,

T(0) = 0.

Fig. 3   Experiment 2. Number of GMRES iterations needed to solve the linear systems with A during the 
basis construction in LR-ADI-EKSM(MR) for different values of the diffusivity ζ and n =125 000

8  The implementation of K-PIK we employed will be available in the next M-M.E.S.S. release, along 
with other projection methods for matrix equations. Such implementation is equivalent to the one that 
can be found on Simoncini’s webpage, http://​www.​dm.​unibo.​it/​∼simon​cin/​softw​are.​html.
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The discretization in space using the finite element method (here applying the 
proprietary tool ANSYS9) on the three-dimensional domain, given by the machine 
frame indicated in Fig. 4, leads to the LTI system

where A represents the discretized Laplacian together with the Robin boundary con-
tributions from Γext and represented by Fi, while B results from the external control 
inputs (heats fluxes, e.g., induced by the drive motors) on Γc. Note that the elastic 

(24)EṪ =

(

A −

t∑

i=1

𝛼iFi

)

T + Bu(t).

Fig. 4   Experiment 2. Finite element grid of the machine frame indicated on the CAD model of the full 
machine. (Source: DFG CRC/TR-96 (https://​trans​regio​96.​de))

9  https://​www.​ansys.​com/
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part of the thermo-elastic model can be encoded entirely in the output equation of 
the corresponding dynamical system and is, thus, not relevant here [40]. The alge-
braic problem resulting from this system amounts to a Lyapunov equation of the 
form (1). However, due to mass lumping in ANSYS, the mass matrix E is diago-
nal and SPD. We can, thus, easily invert its square root and consider the Lyapunov 
equation

So, again, we can efficiently retract to a problem of the form (2). Once a low-rank 
approximation Z̃Z̃� to X̃ is computed, the low-rank factor Z such that ZZT ≈ X can be 
retrieved by performing Z = E

−
1

2 Z̃.
The actual machine frame in Fig. 4 consists of several parts itself, which are dis-

cretized separately. This leads to differently sized models of the structure in (24). 
These are reflected by the rows of Table  5. Accordingly, we solve the Lyapunov 
equation considering different configurations of the PDE (23), respectively the LTI 
system in (24). In particular, this allows us to vary the number of degrees of free-
dom employed in the discretization phase, leading to different problem dimensions 
n, modify the Neumann boundary conditions obtaining diverse matrices Fi, and con-
sider different values for the rank q of B. Moreover, we set αi =10 for all i =1,…,t.

The results are collected in Table 5. It turns out that the Wachspress ADI shifts 
[42, 73] are particularly effective for this experiment, since A as well as all the Fi 
and thus E−

1

2 (A −
∑t

i=1
�iFi) E

−
1

2 are symmetric, i.e., the spectrum is real. These 
are the ideal circumstances for Wachspress shifts. We, thus, employ those shifts in 
LR-ADI-EKSM(G) and mess_lradi.

For this experiment, the LR-ADI method, either based on our new formulation or 
on a standard scheme as the one in mess_lradi, turns out to be more efficient in 
terms of computational time than K-PIK. Indeed, in spite of the smaller number of 
iterations needed to converge, the large dimension of the extended Krylov subspace 
constructed by K-PIK leads to a rather costly solution of the projected equations. 
Also LR-ADI-EKSM(G) requires the construction of an extended Krylov subspace 
whose dimension is similar to the one computed by K-PIK. However, if 
dim

�
��

◻

m
(E−

1

2

�
A −

∑t

i=1
�iFi

�
E
−

1

2 ,E−
1

2B)
�
= 2mq , the computational cost of solv-

E
−

1

2

(

A −

t∑

i=1

�iFi

)

E
−

1

2 X̃ + X̃E
−

1

2

(

A −

t∑

i=1

�iFi

)�

E
−

1

2 + E
−

1

2 BB�E
−

1

2 = 0, X̃ = (E
1

2 XE
1

2 ).

Table 5   Experiment 3. Computational timings achieved by LR-ADI-EKSM(G), K-PIK, and mess_
lradi for different values of problem size n, number of Robin boundary conditions t, and rank of the 
right-hand side q 

It. indicates the number of ADI/K-PIK iterations that have been (implicitly) performed

LR-ADI-EKSM(G) ����_�����  K-PIK

n t q It. dim
(
��

◻
)

Time (s) It. Time (s) It. dim
(
��

◻
)

Time (s)

4 813 1 23 54 644 2.73 54 7.93 15 736 8.13
13 551 2 5 53 430 8.89 53 18.09 43 440 24.93
25 872 1 10 63 1060 34.32 63 63.37 53 1080 97.74
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ing the inner problems within LR-ADI-EKSM(G) is O(4m2q2) floating-point opera-
tions (FLOPs) whereas it amounts to O(8m3q3) FLOPs for K-PIK.

We conclude by mentioning that in this experiment, we relied on the ease of com-
puting E−

1

2 . However, it may happen that the mass matrix E cannot be easily manip-
ulated, e.g., it can be possibly singular, so that the routine presented in this paper 
cannot be readily applied as we have done in this experiment. We plan to extend the 
LR-ADI-EKSM framework to this more challenging class of equations in the near 
future.

Experiment 4  In the last experiment, we show that the proposed framework still 
needs some further improvements to efficiently deal with generalized Lyapunov 
equations of the form (1) where the mass matrix E is not diagonal. To this end, we 
consider the Steel Profile data set [18, 49] from the MORwiki repository [72].

We compute the observability Gramian of the system, namely the solution X to 
the equation

where A ∈ ℝn×n is symmetric negative definite, C ∈ ℝq×n , q =6, and E ∈ ℝn×n is 
SPD but not diagonal (see [17] fur further details on the model).

If E = LLT denotes the Cholesky factorization of E, we consider the transformed 
equation

and, due to symmetry of A, employ the extended Krylov subspace 
��

◻

m
(L−1AL−�, L−1C�) as approximation space. Notice that the matrix L−1AL−T does 

not need to be explicitly constructed (see, e.g., [63, Example 5.4]). As before, once 
Z̃Z̃� ≈ X̃ is computed, we obtain a low-rank approximation to the original X by per-
forming Z = L−�Z̃.

In Table  6, we report the results achieved by LR-ADI-EKSM(G) and 
����_����� for different values of n.

From the results in Table 6, we can readily see that the standard scheme of the 
LR-ADI method implemented in mess_lradi is much faster than LR-ADI-
EKSM(G). This is due to the fact that the latter algorithm needs to construct a quite 

(25)A�XE + E�XA + C�C = 0,

(26)(L−1A�L−�)X̃ + X̃(L−1AL−�) + L−1C�CL−� = 0, X̃ = L�XL,

Table 6   Experiment 4. Computational timings achieved by LR-ADI-EKSM(G) and mess_lradi for 
different values of the problem size n 

 The running time devoted to the shift computation is not included. It. indicates the number of ADI itera-
tions that have been (implicitly) performed

LR-ADI-EKSM(G) ����_�����  

n It.  dim
(
��

◻
)
 rank(X) Time (s) It. rank(X) Time (s)

20 209 30 564 180 7.07 30 180 0.54
79 841 31 816 186 34.09 31 186 2.99
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large subspace to achieve the prescribed accuracy with a consequent increment in 
the computational efforts of the overall procedure.

We also mention that the rank of the approximate solution computed by LR-
ADI-EKSM(G) is much lower than the dimension of the constructed subspace. 
We believe that the transformation we performed in (26), and thus the employment 
of ��◻

m
(L−1AL−�, L−1CT ) , may lead to some spectral redundancy in the adopted 

approximation subspace and a slower convergence of the method. On the other hand, 
mess_lradi is able to deal with the original formulation (25) of the problem.

To address generalized equations of the form (1), we plan to study the employ-
ment of different techniques within the Krylov LR-ADI framework we presented in 
this paper. In particular, the use of nonstandard inner products and (extended) gener-
alized Krylov subspaces [43] will be explored.

6 � Conclusions

A new formulation of the LR-ADI algorithm for large-scale standard Lyapunov 
equations has been proposed. The computational core of the LR-ADI scheme con-
sists in the solution of a shifted linear system at each iteration. We showed that the 
extended Krylov subspace method can be a valid candidate for this task. In particu-
lar, we described how only one extended Krylov subspace needs to be constructed to 
solve all the necessary linear systems required by the LR-ADI method. The LR-ADI 
iteration has been completely merged into the extended Krylov subspace method 
for shifted linear systems resulting in a novel, efficient solution procedure. We also 
showed that many state-of-the-art algorithms for the shift computation can be easily 
integrated into our new scheme. Numerical results demonstrate the potential of our 
novel algorithm, especially when this is equipped with the relaxation strategy pro-
posed in [38], and many complex shifts are needed to converge.

In future work, we will consider more involved Lyapunov equations of the form 
(1) that cannot be easily transformed into (2). While standard implementations of 
the LR-ADI method naturally address such a scenario by solving linear systems of 
the form A + pjE , further care has to be taken to employ the scheme we presented in 
this paper. Indeed, the shifted Arnoldi relation (7) can no longer be exploited. The 
use of non-standard inner products and generalized Krylov subspace methods [43] 
will be investigated.

The framework presented in this paper can be generalized to enhance other LR-
ADI-like algorithms for matrix equations. For instance, the LR-ADI method for Syl-
vester equations [14] or LR-RADI schemes for Riccati equations [10, 22] can be 
equipped with a procedure similar to the one we proposed here.
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