
Polygenic prediction of educational 
attainment within and between families 
from genome-wide association analyses in 3 
million individuals

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41588-022-01016-z



 

 

 

 

 

Supplementary Information for 

Polygenic prediction of educational attainment within and between 

families from genome-wide association analyses in 3 million individuals 

Correspondence to: 

Daniel Benjamin, daniel.benjamin@gmail.com 

Aysu Okbay, a.okbay@vu.nl 

Peter Visscher, peter.visscher@uq.edu.au 

Alexander Young, alextisyoung@gmail.com 

  

mailto:daniel.benjamin@gmail.com
mailto:a.okbay@vu.nl
mailto:peter.visscher@uq.edu.au
mailto:alextisyoung@gmail.com


Contents 
Supplementary Note ................................................................................................................. 5 

1 Coding the educational attainment (EA) variable ......................................................... 5 

1.1 Educational attainment recoding in the UK Biobank ................................................. 5 

1.1.1 EA2/EA3 coding .................................................................................................. 5 

1.1.2 NVQ, HND and HNC: qualification description ................................................. 6 

1.1.3 NVQ/HND/HNC/equivalent and EA .................................................................. 8 

1.1.4 EA4 coding .......................................................................................................... 9 

1.2 Impact of including individuals aged 16-29 years old in the 23andMe GWAS ....... 10 

1.2.1 Recoding of the EA4 UKB EA measure for the simulation .............................. 10 

1.2.2 Results ............................................................................................................... 13 

2 Additive GWAS .............................................................................................................. 14 

2.1 Study overview ......................................................................................................... 14 

2.2 Methods .................................................................................................................... 14 

2.2.1 Cohorts ............................................................................................................... 14 

2.2.2 Phenotypes ......................................................................................................... 14 

2.2.3 Genotyping and imputation ............................................................................... 14 

2.2.4 Association analyses .......................................................................................... 15 

2.2.5 Quality control ................................................................................................... 16 

2.2.6 Meta-analysis (𝑵 = 𝟑, 𝟎𝟑𝟕, 𝟒𝟗𝟗) ..................................................................... 17 

2.2.7 Sensitivity analysis for definition of lead SNPs using COJO ............................ 19 

2.2.8 Comparison of lead SNP definitions ................................................................. 20 

2.3 Replication of EA3 lead SNPs .................................................................................. 21 

3 X chromosome analyses ................................................................................................. 26 

3.1 UK Biobank association analyses ............................................................................. 26 

3.1.1 Sex-stratified association analyses in UKB ....................................................... 26 

3.1.2 Meta-analysis of sex-stratified association results in UKB ............................... 28 

3.2 23andMe association analysis ................................................................................... 29 

3.3 Quality control of UK Biobank and 23andMe results .............................................. 29 

3.4 Meta-analysis of UK Biobank and 23andMe results (𝑵 = 𝟐, 𝟕𝟏𝟑, 𝟎𝟑𝟑) ................. 29 

3.5 Comparison to autosomes ......................................................................................... 30 

4 Dominance GWAS.......................................................................................................... 32 

4.1 Additive and dominance genetic variance: theoretical background.......................... 33 

4.1.1 Genetic dominance at a single locus: background and definitions .................... 33 

4.1.2 Additive GWAS ................................................................................................ 34 

4.1.3 Dominance GWAS ............................................................................................ 34 

4.1.4 Partitioning the genetic variance ....................................................................... 34 



4.2 GWAS of dominance genetic variance: methods ..................................................... 35 

4.2.1 Cohorts ............................................................................................................... 35 

4.2.2 Association analyses .......................................................................................... 35 

4.2.3 Quality control ................................................................................................... 36 

4.3 Dominance GWAS meta-analysis (𝑵 = 𝟐, 𝟓𝟕𝟒, 𝟐𝟓𝟑) ............................................. 36 

4.4 Statistical power to estimate dominance effects ....................................................... 37 

4.5 Decomposition of the variation in the estimates from our dominance GWAS meta-

analysis ................................................................................................................................ 39 

4.6 Replications across our dominance GWAS of variance in the 23andMe and UKB data

 41 

4.6.1 Binomial replication tests .................................................................................. 42 

4.6.2 Replication results ............................................................................................. 42 

4.6.3 Simulation framework to estimate the expected replication record ................... 43 

4.6.4 Estimating κ2  ..................................................................................................... 43 

4.6.5 Simulation results .............................................................................................. 45 

4.7 Directional dominance (inbreeding depression) ....................................................... 46 

4.7.1 Background ........................................................................................................ 46 

4.7.2 Estimation of ID from dominance GWAS summary statistics .......................... 47 

4.7.3 Analysis of summary statistics from the UKB and 23andMe............................ 48 

4.7.4 Reconciling evidence of directional dominance with evidence of negligible 

dominance variance ......................................................................................................... 48 

5 Predicting EA and cognitive performance ................................................................... 50 

5.1 Constructing the polygenic indexes .......................................................................... 50 

5.2 Phenotypes ................................................................................................................ 52 

5.2.1 Education outcomes ........................................................................................... 52 

5.2.2 Cognitive and academic achievement outcomes ............................................... 53 

5.3 Controls ..................................................................................................................... 54 

5.4 Defining Prediction Accuracy ................................................................................... 55 

5.5 Expected Prediction Accuracy of the EduYears PGI ................................................ 55 

5.6 Results ....................................................................................................................... 56 

5.7 Analysis of European genetic ancestries to African genetic ancestries relative 

accuracy in UK Biobank ..................................................................................................... 59 

5.8 Post-hoc analyses with SBayesR PGI ....................................................................... 61 

6 Prediction of disease risk from the EA PGI ................................................................. 62 

6.1 Construction of PGIs ................................................................................................. 62 

6.1.1 EA PGI .............................................................................................................. 62 

6.1.2 Diseases PGI ...................................................................................................... 62 

6.2 Prediction of disease from PGI ................................................................................. 64 



6.2.1 Analyses ............................................................................................................. 64 

6.2.2 Results ............................................................................................................... 64 

7 Comparing direct and population effects of the EA PGI ............................................ 66 

7.1 Population and Direct Effects of a PGI ..................................................................... 66 

7.2 Relationship to Analysis in Kong et al. (2018) ......................................................... 68 

7.3 Datasets and phenotypes ........................................................................................... 68 

7.4 Statistical Methods .................................................................................................... 69 

7.4.1 Step 1: Estimating effects in the different subsamples ...................................... 70 

7.4.2 Step 2: Computing the sampling covariance matrix of the combined vector of 

effects 70 

7.4.3 Step 3: Estimating the correlation between maternal and paternal PGI ............ 71 

7.4.4 Step 4. Meta-analyzing estimates ...................................................................... 72 

7.4.5 Step 5. Further transforming the estimates ........................................................ 72 

7.4.6 Supplementary Results ...................................................................................... 73 

8 Empirical Bayesian model and GWAS replication simulation framework .............. 75 

8.1 Posterior distribution of 𝛼𝑗   ..................................................................................... 75 

8.2 Posterior distribution of 𝑑𝑗   ..................................................................................... 76 

8.3 Proof that 𝜎𝑑 ,𝑗
2 = (1− 2𝑝𝑗𝑞𝑗 )/𝑁𝑗2𝑝𝑗𝑞𝑗  ............................................................... 78 

8.4 GWAS replication simulation framework ................................................................ 80 

8.5 Use of unadjusted summary statistics when fitting the empirical Bayesian model .. 81 

9 Analysis of assortative mating ....................................................................................... 83 

10 Proofs for sibling-based analysis ................................................................................... 85 

11 Additional acknowledgements ....................................................................................... 87 

12 References ....................................................................................................................... 89 

Supplementary Figures .......................................................................................................... 95 

 

  



Supplementary Note 

1 Coding the educational attainment (EA) variable 

Our coding of the educational attainment (EA) variable closely follows that of previous 

large-scale GWAS of educational attainment1,2. However, we have made small 

modifications to the coding of EA in the UKB, as we describe in Supplementary Note 

section 1.1. Also, while our previous GWAS excluded individuals aged less than 30 

years old at the time EA was measured, the GWAS in the 23andMe cohort that we 

analyze in this paper includes individuals aged 16 to 29 years old; in Supplementary 

Note section 1.2, we report the results of a simulation using UKB data that suggests the 

impact of including individuals aged less than 30 in this cohort is negligible.  

1.1 Educational attainment recoding in the UK Biobank 

In previous large-scale GWAS of educational attainment (EA), UK Biobank 

participants who have a qualification in the category “NVQ or HND or HNC or 

equivalent” but no college or university degree were coded as having 19 years of 

education1,2. However, we have realized that this classification overstates the average 

EA of NVQ/NHD/HNC/equivalent holders. Furthermore, the diverse nature of the 

qualifications held by these individuals means that assigning one value to all might 

discard useful variation in the data. Accordingly, we have recoded EA for holders of an 

NVQ/HND/HNC/equivalent to take the value {“Age left full-time education” - 5}. To 

manage outliers, we have dropped all holders of an NVQ/HND/HNC/equivalent who 

report leaving full-time education before age 12. In this section, we provide details 

about the previous coding, which we refer to as the EA2/EA3 coding, and the revised 

coding, which we refer to as the EA4 coding. 

1.1.1 EA2/EA3 coding 

UK Biobank (UKB) participants had to answer the following question related to their 

EA: 

1. “Which of the following qualifications do you have? (You can select more than 

one)” 

Individuals without a college degree were further asked: 

2. “At which age did you complete your continuous full-time education?”  

Following Okbay et al. (2016)1 (henceforth EA2), Lee et al. (2018)2 (henceforth EA3) 

mapped individuals to an ISCED 1997 level based on their answers to Question 1. The 

following table summarizes the ISCED 1997 levels, which were used to harmonize the 

measure of educational attainment across cohorts: 

ISCED 1997 levels and associated years of schooling 

ISCED 

1997 

level 

 

Definition 

 
US years of 

schooling 

0  Pre-primary education  1 

1  Primary education or first stage of basic education  7 

2  Lower secondary or second stage of basic education  10 

3  (Upper) secondary education  13 



4  Post-secondary non-tertiary education  15 

5 
 First stage of tertiary education (not leading directly to an advanced research 

qualification) 

 
19 

6 
 Second stage of tertiary education (leading to an advanced research 

qualification, e.g. a PhD) 

 
22 

The following table shows the mapping from the UKB survey response categories to 

the ISCED 1997 level and EA coding that were used in EA2/EA3: 

Mapping from UKB response to EA (EA2/EA3 coding) 

UKB response  EA2/EA3 coding 

Qualification  Percentage  ISCED 1997 level EA 

College or university degree  32.4%  ISCED 5 20 

A/AS Levels or equivalent  7.3%  ISCED 3 13 

O Levels/GCSEs or equivalent  12.8%  ISCED 2 10 

CSEs or equivalent  3.7%  ISCED 2 10 

NVQ, HND, HNC or equivalent  10.7%  ISCED 5 19 

Other professional qualification   14.5%  ISCED 4 15 

None of the above  16.9%  ISCED 1 7 

No response  1.9%  Excluded Excluded 

Since UKB participants could report more than one qualification, the value of EA for 

each individual was calculated as follows. Let iX  be the set of all qualifications held by 

individual i and ( )if X  the set of associated EA values (the image of iX ) under the above 

mapping. Then }max{ ( )i iE f XA = . 

In the UKB, one survey response category is “NVQ or HND or HNC or Equivalent”. 

EA2 and EA3 coded this group of qualifications as equivalent to 19 years of education. 

This is just one year less than those who hold a college degree and six years more than 

those who hold A Levels. We believe that the following evidence shows that this coding 

overstates the educational attainment of NVQ/HND/HNC/equivalent holders. 

1.1.2 NVQ, HND and HNC: qualification description 

NVQ and other vocational qualifications 

National Vocational Qualifications (NVQs) and other vocational qualifications are a 

wide range of work-based qualifications that aim to certify that the holder can perform 

their job at a high standard. Accordingly, vocational qualifications in the UK span a 

broad range of difficulties, lengths and modes. For example, NVQs can range from 

entry-level (ISCED 1997 level 2) to doctoral level (ISCED 1997 level 6) qualifications, 

using official ISCED Mappings and UK qualification level classifications3,4. 

However, between 2012 and 2020, the vast majority of vocational qualifications 

awarded in the UK were awarded at low levels, as the following table shows: 

Vocational qualifications awarded by qualification level, 2012-2020 

UK level  ISCED 1997 level  Proportion of awards 

Entry level  2  11.7% 

Level 1  2  23.6% 

Level 1/2  3  5.5% 

Level 2  3  39.5% 

Level 3  3  17.9% 

Note: Number of individuals in UKB sample is 502,602. Percentage is share coded with the EA value corresponding to 

that qualification. 



Level 4  4  1.0% 

Level 5  4  0.6% 

Level 6  5  0.2% 

Level 7  6  0.09% 

Level 8  6  0.004% 

The above data are recent, whereas most participants in the UKB would have acquired 

their vocational qualification during the latter half of the 20th century. These individuals 

would have interacted with a different vocational qualifications landscape, as the 

framework for vocational education has changed somewhat over the years, with the 

1986 introduction of the NVQ perhaps the biggest change. However, the variety and 

type of qualifications on offer have remained similar as official frameworks have 

changed, and the nature of vocational qualifications as non-academic qualifications has 

also remained constant5. We believe that the relative sparsity of high-level vocational 

qualifications likely carries over to earlier periods. Accordingly, the evidence provided 

in the above table (displayed graphically as Panel a of Supplementary Figure 3) 

suggests that the majority of NVQs and other vocational qualifications held by those in 

the UKB sample are likely to be at ISCED 1997 Levels 2 and 3. 

HNC/HND 

The Higher National Certificate (HNC) is a higher education qualification that is 

equivalent to the first year of an undergraduate degree. It usually takes one year to 

complete full time or two years part-time. Thus, the HNC is roughly in between ISCED 

1997 Levels 4 and 5. 

The Higher National Diploma (HND) is a higher education qualification in which 

students attain an HNC in the first year and subsequently continue their study in the 

second year. Accordingly, the HND is roughly equivalent to the first two years of an 

undergraduate degree, and also sits between ISCED 1997 Levels 4 and 5. 

NVQ, HNC, and HND over time  

We have not been able to find data that would allow us to be precise about the relative 

frequency of different types of qualifications in the category “NVQ or HNC or HND 

or equivalent”. However, we can make some rough judgements based on the available 

data.  

Approximately 6.5 million vocational qualifications were awarded per year from 2015 

to 2019, and 7.5 million were awarded in the academic year 2015/16. Since individuals 

often attain more than one vocational qualification in a year, these figures overstate the 

number of vocational qualification holders. However, between 1985 and 2001, the 

percentage of 16 and 17-year-olds in vocational and work-based training in England 

remained almost constant at 40%5. This 40% projects to roughly 300,000 16/17-year-

olds per cohort undertaking vocational and work-based training in the UK between 

1985 and 2001, based on a cohort size of 740,0001. Moreover, the stability of this 

 
1 In the UK, live births averaged 760,000 per year from 1969 to 1985 and 880,000 per year from 1940 to 

197084–86. Calculations show that approximately 70% of U16 deaths occurred under the age of 1 from 

1980 to 201287. The U16 mortality rate was imputed from historical infant mortality rates with net U16 

migration assumed to be 0. The imputed average U16 mortality rate is 4.5% for 1940-1970 and 2% for 

1969-198588. All estimates are rounded to two significant figures. 

Note: Figures calculated using Ofqual’s Vocational Qualifications dataset for period Q1 2012-Q1 2020. 56,430,940 total 

qualifications awarded. https://www.gov.uk/government/statistical-data-sets/vocational-qualifications-dataset. 

https://www.gov.uk/government/statistical-data-sets/vocational-qualifications-dataset


percentage suggests that vocational qualifications might have been similarly popular 

during the earlier time period (roughly 1960-1990) when most UKB participants were 

acquiring qualifications. Using an estimated cohort size of 840,000 for the period 1940-

19701, approximately 340,000 16/17-year-olds per cohort are projected to have 

undertaken vocational and work-based training in this time period. 

In contrast, approximately 15,000 students per year received either the HNC or the 

HND between 2015 and 20196. More broadly, 216,170 learners were enrolled in ISCED 

1997 level 4/5 qualifications similar to and including the HNC/HND (sub-bachelor 

higher qualifications) in 2015/20167, which sets an upper bound on the number of sub-

bachelor higher qualifications awarded in 2015/16. This upper bound is over an order 

of magnitude smaller than the yearly number of vocational awards over the same time 

period (which was ~6.5 million, as mentioned above). Moreover, evidence suggests that 

enrolment in ISCED 1997 level 4/5 qualifications has remained largely constant over 

the past 60 years: in both 1962/1963 and 1979/1980, roughly 200,000 students were 

enrolled in sub-bachelor higher education at ISCED 1997 levels 4 and 58 (a number 

similar to the 216,170 in 2015/2016, as mentioned above). This is less than estimated 

enrolment in vocational qualifications among just 16/17-year-olds from 1960 to 1990. 

Summary 

Given these data, it seems likely to us that sub-bachelor higher qualifications were 

awarded less frequently than vocational qualifications across the time period in which 

UKB participants were acquiring the majority of the qualifications that they currently 

hold. Accordingly, sub-bachelor qualifications are likely not as common as vocational 

qualifications among UKB participants, although the exact extent of the divide is 

unclear. 

The range of qualifications in the category “NVQ or HND or HNC or equivalent” is 

broad, including a variety of vocational and academic qualifications. Data on 

qualification attainment suggests that qualifications held by those in this category are 

mostly vocational qualifications at ISCED 1997 levels 2 and 3, with some sub-bachelor 

higher qualifications at ISCED 1997 levels 4 and 5. 

1.1.3 NVQ/HND/HNC/equivalent and EA 

The second table above shows that an NVQ/HND/HNC/equivalent is the highest 

qualification for 10.7% of the sample. This group constitutes a non-negligible portion 

of the UKB cohort, so it is important that the EA variable be correctly coded for 

NVQ/HND/HNC/equivalent holders. However, the above analysis suggests that the 

EA2/EA3 coding of NVQ/HND/HNC/equivalent holders as having 19 years of 

schooling, which corresponds to ISCED 1997 Level 5 and is just one year less than the 

coding for college, is potentially erroneous. 

Data from the UKB support this conclusion. The distribution of “Age left full-time 

education (FTE)” (from Question 2) for those whose qualification is 

NVQ/HND/HNC/equivalent is depicted in Panel b of Supplementary Figure 3, and 

the mean “Age left FTE” is 17. This is much lower than would be suggested by the 

original coding of 19 years of education, and there is also substantial heterogeneity in 

“Age left FTE” among this group. 

Moreover, the EA2/EA3 coding does not give an increasing relationship with other 

measures of education and socioeconomic status. In Panels c and d of Supplementary 



Figure 3, “Average age left FTE” and “Prop. of hholds earning >£52k p.a.” are 

increasing in “EA (EA2/EA3 coding)” only up to the point of 15 or 13 years of 

education, respectively. NVQ/HND/HNC/equivalent holders have both a lower 

“Average age left FTE” and lower earnings than those with A Levels, those with 

professional qualifications, and those with a college education. The gap between 

NVQ/HND/HNC/equivalent holders and college graduates in terms of the proportion 

earning more than £52,000 per year is especially large. 

Overall, the data suggest that NVQ/HND/HNC/equivalent holders should not be coded 

as having 19 years of education. To do so overstates the EA of those who hold such 

qualifications and is inconsistent with other correlated indicators of socioeconomic 

status. Accordingly, the EA variable should be recoded. 

1.1.4 EA4 coding 

The only change to the EA coding in EA4 vs. in EA2/EA3 is that EA for 

NVQ/HND/HNC/equivalent qualifications is coded as {“Age left FTE” - 5}, which 

aims to represent the number of years someone with such a qualification might have 

spent in FTE, given a school-beginning age of 5. Again, the value of EA for each 

individual was calculated as follows. Let iX  be the set of all qualifications held by 

individual i and )( ig X  the set of associated EA values (the image of iX ) under the EA4 

mapping. Then }max{ ( )i iE g XA = . 

Subsequently, all observations reporting less than seven years of schooling are dropped 

to exclude outliers (there are fewer than 50 such observations). The EA4 coding is as 

follows, with the change from the EA2/EA3 coding shaded in gray: 

New EA coding 

Qualification ISCED 1997 level  EA 

College or university degree ISCED 5  20 

A/AS Levels or equivalent ISCED 3 13 

O Levels/GCSEs or equivalent ISCED 2 10 

CSEs or equivalent ISCED 2 10 

NVQ or HND or HNC or equivalent ISCED 2/3 “Age left FTE” – 5 

Other prof. qual. (e.g., nursing, teaching) ISCED 4 15 

None of the above ISCED 1 7 

No response Excluded Excluded 

This modification aims to capture the heterogeneity within the category “NVQ or HNC 

or HND or equivalent”, as discussed above. Individuals who attain qualifications in this 

category show considerable variation in “Age left FTE”. Adopting the new coding 

allows EA to be measured more accurately for those who have vocational or higher 

education qualifications. Moreover, only 3.5% of those whose highest qualification is 

“NVQ or HNC or HND or equivalent” have missing data for “Age left FTE”, so the 

updated coding does not discard a large amount of data. While some individuals provide 

very high responses to Question 2 (i.e. “Age left FTE” greater than 30), these are a 

small fraction (<1%) of the data (and were not discarded). 

Panel e of Supplementary Figure 3 demonstrates that the above change leads to a 

more consistent relationship between “Age left FTE” and “EA (EA4 coding)”. In 

particular, the large gap in “Age left FTE” between NVQ/HND/NHC/equivalent 

holders and college graduates has been eliminated. 



Panel f of Supplementary Figure 3 also suggests that the new coding better represents 

actual EA for the majority of those with an NVQ/HND/HNC/equivalent. Considering 

only individuals coded with values of the EA variable for which there are at least 1,500 

observations, those with higher EA tend to earn more. However, the earnings pattern 

for the small group of NVQ/HND/HNC/equivalent holders who report spending an 

extreme amount of time in FTE (“Age left FTE” greater than 22) is less consistent. The 

proportion of individuals earning more than £52,000 per year within this group is 

roughly 20% and decreasing in “Age left FTE”. It seems that these people do not truly 

have EA equivalent to more than 17 years, which is a source of measurement error. 

However, the total number of individuals who report extreme values for “Age left FTE” 

is less than 1% of the sample (see Panel b of Supplementary Figure 3). Thus, it is not 

likely that these individuals have much influence on estimated coefficients. 

1.2 Impact of including individuals aged 16-29 years old in the 

23andMe GWAS 

In previous analyses of EA1,2, the SSGAC has typically excluded anyone aged less than 

30 years old to ensure that almost everyone in the sample has completed their formal 

schooling. However, the 23andMe GWAS of EA for EA4 includes individuals aged 16-

29 years old, who constitute ~16% of the 23andMe sample. This gives rise to potential 

issues of truncation, where some individuals who have not completed their formal 

schooling report the qualifications they currently have, rather than the complete set of 

qualifications they will attain. For these individuals, EA represents “total years of 

education at survey date” rather than “total years of education”, which is the intended 

meaning of EA. 

To explore the effect of this potential truncation on GWAS results, we conducted a 

simulation with the UKB data. The exercise aims to simulate the GWAS of additive 

genetic variance that would have been run in the UKB had 16% of the UKB participants 

responded to the education-related questions between the ages of 16 and 29 years old. 

For this, as we describe in more detail below, we recoded the EA measure for a random 

16% of the UKB participants to mimic what the measure would have been had the 

respondent been surveyed before age 30; we then ran a GWAS of this recoded EA 

measure in the UKB (combining the recoded 16% with the remaining 84% of 

participants); finally, we computed the genetic correlation between the resulting 

summary statistics and the summary statistics from our baseline GWAS of additive 

variance for EA in the UKB. 

1.2.1 Recoding of the EA4 UKB EA measure for the simulation 

As mentioned in Supplementary Note section 1.1, UK Biobank (UKB) participants 

had to answer the following question related to their EA: 

1. Which of the following qualifications do you have? (You can select more than 

one) 

Individuals without a college degree were further asked: 

2. At which age did you complete your continuous full-time education? 



Each individual was then assigned the maximum EA associated with the qualifications 

that they held, as summarized in the above table. Individuals with EA < 7 were 

excluded.  

In this simulation, we aim to code a new EA measure that is consistent with how 

individuals would have answered the above questions at an age in the range 16-29. 

Recoding 

To simulate the nature of the data collection issue in the 23andMe cohort, a new variable 

indicating “Educational Attainment at Response” (EAR) is derived for each individual 

by the following process: 

1. Select 16% of the individuals in the UKB at random and define these as the U30 

Sample for the simulation. This selects 16% of the sample to be treated as 16-

29 years old.  

2. For the remaining 84% of the sample, let EAR = EA. 

3. For each individual in the U30 Sample: 

a. Draw an “Age at Response” (AAR) from a U[16, 29] distribution.2 Let 

“Maximum Educational Attainment at Response” (MEAR) be defined 

as AAR – 5.3  

b. If an individual did not attain a college degree:  

i. Disallow all qualifications other than NVQ/HND/HNC for 

which the associated EA value from the EA4 coding (see 

Supplementary Note section 1.1.4) is greater than MEAR (i.e., 

disallow all the qualifications that an individual is unlikely to 

have attained at their AAR). 

ii. If one has an NVQ/HND/HNC qualification and AAR < “Age 

Left FTE”, disallow the NVQ/HND/HNC qualification. Then, if 

AAR ≥ “Age Left FTE” – 2, assume the individual has obtained 

another NVQ/HND/HNC at age “Age Left FTE” – 2 (with 

corresponding EA coding of “Age Left FTE” – 7). If AAR ≤ 

“Age Left FTE” – 2, then disallow all NVQ/HND/HNC 

qualifications.4 

iii. If an individual has at least one qualification that has not been 

disallowed, code EAR according to the standard UKB coding for 

their highest remaining qualification. 

 
2 We do not know the distribution of ages among the 23andMe respondents who were surveyed before 

age 30. We believe assuming a uniform distribution is likely to be a conservative assumption. 
3 Five is the age at which a child starts education in the UK. 
4 Note that EA4 codes NVQ/HND/HNC as “Age left FTE” – 5, and thus implicitly assumes that an 

individual with such a degree obtained that qualification at the age they left FTE. Thus, if AAR < “Age 

Left FTE”, the individual would not have obtained the NVQ/HND/HNC. However, to allow for the 

possibility that the individual could have obtained another NVQ/HND/HNC prior to the one they 

obtained at “Age left FTE”, we assume they obtained another NVQ/HNC/HNC at “Age left FTE” – 2. 



iv. Else if an individual does not have any qualifications that have 

not been disallowed, code EAR = 7α + (1 − α)MEAR, where 

α = 0.7.5 

c. If an individual did obtain a college degree:  
i. If the individual also attained an NVQ/HND/HNC, let the 

associated EA value for the NVQ/HND/HNC be 13.6 

ii. If AAR >= 22, code EAR according to the standard UKB coding 

(i.e., EAR=EA=20).7 

iii. If AAR < 22, disallow the college degree, and then: 

• If the individual disclosed only their college degree, 

assume that the individual also holds A/AS Levels and O 

Levels/GCSEs.8 

• Whether the individual disclosed other qualifications or 

not, disallow all qualifications for which the associated 

EA value is greater than MEAR. 

• If an individual has at least one qualification that has not 

been disallowed, code EAR according to the standard 

UKB coding for their highest remaining qualification. 

• Else if an individual does not have any qualifications that 

have not been disallowed, code EAR = 7α + (1 −

α)MEAR, where α = 0.7. 

4. Rerun the GWAS using EAR as the phenotype and compute the genetic 

correlation between the summary statistics from the original and those from the 

new GWAS using EAR. 

Examples 

 
5 If an individual has no remaining qualifications, they may either truly have no other qualifications, in 

which case EAR should be coded as 7 (the value associated with having no formal qualifications in the 

original coding). Alternatively, they might have misread the first question (which asks about all 

qualifications) and responded only with their highest qualification. In that latter case, there is a danger 

of under-coding EAR. A weighted average of 7 and MEAR should correct this potential bias. Based on 

the fact that 30% of college degree holders (who should all have other qualifications) report no other 

qualifications, a reasonable value of α might be 0.7. 
6 People who did not obtain a college degree did not answer question 2 (about the age at which they 

completed FTE), the responses to which are used to impute the EA of NVQ/HND/HNC holders. Thus, 

we have to impute a suitable value of EA for college-degree holders who also obtained an 

NVQ/HND/HNC. We take the imputed EA value for the NVQ/HND/HNC holders who have a college 

degree as the average “Age Left FTE -5” of the NVQ/HND/HNC holders without college degrees in the 

sample. While this is an ad hoc solution, only 10% of college degree holders also report having an 

NVQ/HND/HNC, so the effect of any error should be small.  
7 We effectively assume that college degrees are completed at age 22. We use a cut-off of 22 rather than 

the implied 25 from the baseline EA coding for college-degree holders. (EA for college-degree holders 

is coded as 20, and education in the UK begins at age 5. The baseline EA coding assigns an EA of 20 to 

anyone with an undergraduate degree of more, and thus pools both undergraduate and graduate degrees. 

The modal student obtains an undergraduate degree and graduates before 25, which justifies the lower 

cut-off.)  
8 The majority of individuals who went to college will have A/AS Levels and O Levels/GCSEs. We can 

impute these qualifications for people who misread the question and only disclosed their highest/most 

recent qualification. 



Individual 1 

Individual 1 reports the following qualifications: 

• College or university degree (EA = 20) 

• A/AS Levels or equivalent (EA = 13) 

• O Levels/GCSEs or equivalent (EA = 10) 

This individual is originally coded with EA = 20. Suppose that AAR is drawn as 17. 

Then MEAR is 12. Since the individual holds a college degree and AAR < 22, the 

college degree is disallowed. In the next step, the A/AS Levels are also disallowed, but 

the O Levels/GCSEs are allowed. Individual 1 is left with the following qualification: 

O Levels/GCSEs or equivalent (EA = 10). So, individual 1 will be coded with EAR = 

10. 

Individual 2 

Suppose that Individual 2 has the same qualifications as individual 1 but only reports 

the college degree. They are originally coded as EA = 20, and AAR is again drawn as 

17, so MEAR is 12. As above, the college degree is disallowed, so now individual 2 has 

no remaining qualifications. Then, we impute A/AS Levels and O Levels/GCSEs. 

Based on MEAR, we eliminate A/AS Levels. So, like individual 1, individual 2 will be 

coded with EAR = 10. 

Individual 3 

Individual 3 reports the following qualifications: 

• O Levels/GCSEs or equivalent (EA = 10) 

• NVQ/HND/HNC or equivalent (EA = 14) 

AAR is drawn as 18, so MEAR is 13. Then NVQ/HND/HNC or equivalent is reduced 

by two and retained, while O Levels/GCSEs are also retained. Then EAR = 12. 

1.2.2 Results 

We ran a GWAS of EAR in the UKB and computed the genetic correlation between 

the resulting summary statistics and the summary statistics from our baseline GWAS 

of additive variance for EA in the UKB. We estimated a genetic correlation that is 

indistinguishable from unity (�̂�𝑔 = 0.9985, 𝑆𝐸 = 0.0022) between the two sets of 

summary statistics, thus indicating that the inclusion of individuals aged 16-29 years 

old at the time when EA was measure would not have substantially affected our UKB 

GWAS. We conclude that the inclusion of individuals in that age range in the 23andMe 

GWAS is unlikely to materially affect the results we report in this paper.  

  



2 Additive GWAS 

2.1 Study overview 

Our primary analysis is a genome-wide association study (GWAS) on educational 

attainment that extends the GWAS discovery sample size from 𝑁 = 1,131,881 in our 

previous GWAS to 𝑁 = 3,037,499.  

Below, we describe the methods of our additive GWA analysis and summarize the key 

findings.  

2.2 Methods 

2.2.1 Cohorts 

Our primary additive GWA analysis builds on a previous GWAS on educational 

attainment2 (henceforth referred to as EA3) that analyzed 1.1 million individuals from 

71 studies. The EA3 study, in turn, extended another GWAS on educational attainment 

(EA2)1 that combined 64 discovery cohorts and one replication cohort (𝑁 = 405,072). 

Here, we increase the sample size to N = 3,037,499 by meta-analyzing three sets of 

summary statistics: publicly available results from EA3 that exclude 23andMe and 

UKB (N = 324,162), new association results from 23andMe (N = 2,272,216), and new 

association results from a GWAS we conducted in UKB with an improved coding of 

the EA measure (N = 441,121; see Supplementary Note section 1).  For summary 

information about the 23andMe and UKB cohorts, see Panel A of Supplementary 

Table 15). 23andMe research participants provided informed consent and participated 

in the research online, under a protocol approved by the external AAHRPP-accredited 

IRB, Ethical & Independent Review Services (E&I Review). Participants were included 

in the analysis on the basis of consent status as checked at the time data analyses were 

initiated. Analysis of the UK Biobank was conducted under application numbers 11425 

and 12505. Informed consent was obtained from UK Biobank subjects.  For the 

remaining cohorts included in our analysis, see Supplementary Table 16 of Lee et al.2 

and Supplementary Table 1.1 of Okbay et al.1). 

2.2.2 Phenotypes 

As in our prior work, we analyze the EduYears phenotype obtained by mapping the 

highest level of education that a respondent achieved to an International Standard 

Classification of Education (ISCED) category and then imputing a years-of-education 

equivalent for each ISCED category (see Supplementary Note section 1.1.1 for the 

ISCED to years-of-education mapping). The phenotype measurement and distribution 

for the 23andMe cohort and the updated UKB GWAS (see Supplementary Note 

section 1) are summarized in Panel B of Supplementary Table 15. For analogous 

information on the remaining cohorts, see Supplementary Tables 17 and 1.3 in Lee et 

al.2 and Okbay et al.1, respectively. Across all 71 cohorts, the sample-size-weighted 

mean of EduYears is 15.4 years of schooling with a standard deviation of 3.4.  

2.2.3 Genotyping and imputation 

The genotyping platform, pre-imputation quality-control filters applied to the genotype 

data, subject-level exclusion criteria, imputation software used, and the reference 



sample used for imputation for all cohorts other than 23andMe are summarized in 

Supplementary Tables 18 and 1.4 of Lee et al.2 and Okbay et al.1 respectively. The 

remainder of this subsection discusses genotyping and imputation for the 23andMe 

cohort. 

DNA extraction and genotyping were performed on saliva samples by National 

Genetics Institute (NGI). Samples were genotyped on five different genotyping 

platforms (see Panel C of Supplementary Table 15). Samples that failed to reach 

98.5% call rate were re-analyzed. Individuals whose analyses failed repeatedly were re-

contacted by 23andMe customer service to provide additional samples. 

Imputation was conducted with a reference panel that combines the May 2015 release 

of the 1000 Genomes Phase 3 haplotypes9 with the UK10K imputation reference 

panel10. Prior to imputation, each chromosome of the reference panel was split into 

chunks of no more than 300,000 variants, with overlaps of 10,000 variants on each side. 

A single batch of 10,000 individuals was used to estimate Minimac311 imputation 

model parameters for each chunk.  

Phased participant data were generated using Finch, a tool internally developed by 

23andMe that implements the Beagle graph-based haplotype phasing algorithm12, and 

Eagle213. Haplotype graphs were constructed for all participants from a representative 

sample of genotyped individuals, and then out-of-sample phasing of all genotyped 

individuals was performed against the appropriate graph. For the X chromosome, 

separate haplotype graphs were built for the non-pseudoautosomal region and each 

pseudoautosomal region, and these regions were phased separately. Phased participant 

data were imputed against the merged reference panel using Minimac3, treating males 

as homozygous pseudo-diploids for the non-pseudoautosomal region.  

2.2.4 Association analyses 

Cohorts were asked to estimate the following regression equation for each measured 

SNP 

𝐸𝑑𝑢𝑌𝑒𝑎𝑟𝑠 = 𝛽0 + 𝛽1 𝑆𝑁𝑃 + 𝑷𝑪 𝜸 + 𝑩 𝜶 + 𝑿 + 𝜖,  

where SNP is the allele dose of the SNP; 𝑷𝑪 is a vector of the first ten principal 

components (PCs) of the variance-covariance matrix of the genotypic data, estimated 

after the removal of genetic outliers; 𝑩 is a vector of standardized controls, including a 

third-order polynomial in year of birth, an indicator for being female, and their 

interactions; and 𝑿 is a vector of study-specific controls. Samples were restricted to 

individuals whose EduYears was measured no earlier than age 30 and who passed the 

cohort’s quality control, which should include the removal of genetic outliers, 

individuals with poor genotyping rates, and individuals that are not of European genetic 

ancestries. Supplementary Tables 19 and 1.5 in Lee et al.2 and Okbay et al.1, 

respectively, describe the study-specific details on the association analyses for all 

cohorts other than 23andMe.  

For the GWAS in 23andMe, participants were first restricted to a set of individuals who 

are of European genetic ancestries, as determined through an analysis of local genetic 

ancestry14. The reference population data was derived from public datasets (the Human 

Genome Diversity Project, HapMap, and 1000 Genomes), as well as 23andMe 

customers who have reported having four grandparents from the same country. A 

maximal set of unrelated individuals was chosen using a segmental identity-by-descent 

(IBD) estimation algorithm15. Individuals were defined as related if they shared more 



than 700 cM IBD, including regions where the two individuals share either one or both 

genomic segments IBD.  

Association test results were computed for the genotyped and the imputed SNPs. For 

tests using imputed data, imputed dosages were used rather than best-guess genotypes. 

For each marker, a linear regression was performed following the specification above 

with age instead of birth year and additional controls for genotype batch effects.  

PCs were computed using ~65,000 high quality genotyped variants present in all five 

genotyping platforms on a subset of 1 million participants randomly sampled across all 

the genotyping platforms. PCs for participants not included in the analysis were 

obtained by projection. 

2.2.5 Quality control 

To the new 23andMe and UKB results, we applied a quality control protocol close to 

the one described in EA2 and implemented in the EasyQC R package. We deviated 

from the EA2 protocol in the following steps: 

- We used data from the Haplotype Reference Consortium reference panel 

(r1.1)16, instead of 1000 Genomes Phase 117, to check for strand misalignment, 

position mismatch, allele concordance and allele frequency discrepancies. 

- Because the 23andMe sample size was very large, applying a minor allele count 

threshold of 25 as in EA2 would mean preserving markers that are very rare. 

We wanted to err on the side of conservatism and apply a stricter filter of minor 

allele frequency (MAF) > 0.1%. 

- We dropped genotyped markers with a call rate less than 95% or Hardy-

Weinberg equilibrium exact test P value less than 10−20. We chose a low 

Hardy-Weinberg P value cutoff because the sample sizes of the 23andMe and 

UKB cohorts were very large, which could result in markers with negligible 

deviations from Hardy-Weinberg equilibrium having very low Hardy-Weinberg 

P values and getting filtered out. 

- We filtered out standard-error outliers by comparing the reported standard 

errors to the following approximation to the standard error of a coefficient 

estimated by OLS: 

𝑆𝐸𝑝𝑟𝑒𝑑,𝑗 =
�̂�𝑦

√𝑁
×

1

√2 ×𝑀𝐴𝐹𝑗 × (1 −𝑀𝐴𝐹𝑗)

, 

where �̂�𝑦 is the standard deviation of EduYears in the input GWAS, 𝑀𝐴𝐹𝑗  is 

the minor allele frequency of SNP 𝑗 and 𝑁𝑗 is the GWAS sample size for SNP 

j. We filtered out markers with 
𝑆𝐸𝑝𝑟𝑒𝑑,𝑗

𝑆𝐸𝑗
<

1

2
  or  

𝑆𝐸𝑝𝑟𝑒𝑑,𝑗

𝑆𝐸𝑗
> 2).  

After the filtering step, we generated and visually inspected a set of diagnostic plots as 

described in the Supplementary Section 1.7 in Okbay et al.1 to make sure there were no 

anomalies in the 23andMe and UKB results. Supplementary Table 16 summarizes the 

number of markers dropped in each filtering step in these two GWAS.  



2.2.6 Meta-analysis (𝑵 = 𝟑, 𝟎𝟑𝟕, 𝟒𝟗𝟗) 

We conducted a sample size weighted meta-analysis of all SNPs that passed the quality 

control thresholds in the new 23andMe and UKB results, and the 69 results files from 

EA3 (all except 23andMe and UKB) using the software METAL18. After applying a 

sample size filter of 500,000, we were left with meta-analysis results for 10,675,380 

autosomal SNPs. The upper panel of main text Figure 1 displays the Manhattan plot 

for the meta-analysis. 

Panel A of Extended Data Figure 1 shows the quantile-quantile plot of the P values 

from the meta-analysis. The P values deviate strongly from a uniform distribution, 

consistent with a polygenic genetic architecture19 (𝜆𝐺𝐶 = 3.545, calculated using the 

median 𝜒2), and the strength of this deviation depends on allele frequency. Panel B 

shows the distribution of P values stratified by allele frequency. For common variants 

defined as variants with MAF > 5%, the genomic inflation factor is 6.167. For low 

frequency variants with MAF between 1% and 5%, 𝜆𝐺𝐶 goes down to 2.797, and for 

rare variants (0.1% < MAF < 1%), we have 𝜆𝐺𝐶 = 1.840. 

We did not apply genomic control to the cohort-level results prior to meta-analysis. 

Instead, we inflated the standard errors by the square root of the intercept (√1.663) 
from an LD score regression20 after the meta-analysis. The LD score regression was 

restricted to the set of HapMap3 SNPs with MAF > 1% with LD scores estimated using 

the 1000 Genomes Phase 1 reference sample21. Therefore, we are implicitly assuming 

that HapMap3 SNPs with MAF > 1% are representative of all SNPs included in our 

meta-analysis in terms of stratification or other biases. The GWAS in our meta-analysis 

were conducted on genotypes imputed to various reference panels (e.g. 1000 

Genomes21, Haplotype Reference Consortium (HRC)16, etc.) that contain many SNPs 

with rare alleles, and our quality control pipeline allows SNPs with MAF between 0.1% 

and 1% to be kept. The LD score intercept adjustment could lead to an inflated Type-I 

error rate for these rare SNPs if the bias for rare SNPs were greater than that of common 

SNPs. We are not aware of any evidence on this point. We note, however, that we are 

less confident that the estimated LD score intercept is sufficiently adjusting for 

stratification biases for these rare SNPs.   

In order to interpret the LD score regression intercept of 1.663, we compare it to the 

overall observed inflation. The average 𝜒2 statistic across HapMap3 SNPs in our 

sample is 9.906. Thus, the intercept estimate of 1.663 suggests that biases due to 

stratification or cryptic relatedness explain only a small share of the overall inflation in 

the test statistics, with roughly 93% (i.e. 1 −
1.663−1

9.906−1
 )  being due instead to 

polygenicity. For a graphical summary of the LD score stratification analyses, see 

Extended Data Figure 2.   

We selected the set of approximately independent genome-wide-significant SNPs using 

a clumping algorithm implemented in Plink22. The algorithm, with the parameters that 

we chose, works as follows: It first chooses the SNP with the smallest P value and then 

clumps with it all SNPs in the same chromosome that are in LD with it, as defined by 

𝑟2 > 0.1. The next clump is greedily formed around the SNP with the next smallest P 

value not already assigned to the first clump. This process was iterated until no SNPs 

remained with P value < 5 × 10−8. We calculated the LD between SNPs using 

14,576,403 variants and 14,097 individuals from the public release of the HRC 

reference panel16 that remained after the following QC filters: (i) genotyping call rate 

> 0.95, (ii) minor allele frequency > 0.001, (iii) Hardy-Weinberg equilibrium exact test 



P value > 10−5, (iv) subject missingness rate < 0.01, (v) realized genetic relatedness 

coefficient23 < 0.025, and (vi) plink --neighbor Z score > -5. The result was 3,952 

approximately independent clumps, each centered around a genome-wide-significant 

SNP. In what follows, we refer to these approximately independent SNPs as our lead 

SNPs. Of the 3,952 lead SNPs, 3,562 have minor allele frequencies greater than or equal 

to 5%, 357 between 1% and 5%, and 33 below 1%. The 3,952 lead SNPs are spread 

across the autosomes, with a randomly selected SNP having an 8% chance of being in 

a genome-wide-significant locus (i.e., pairwise 𝑟2 >  0.1 with at least one lead SNP)9. 

To gauge the magnitude of the estimated SNP effects, we used a well-known 

approximation to transform the Z-statistics from the sample-size-weighted meta-

analysis (the output of the software METAL) into unstandardized regression 

coefficients:  

𝛽�̂� = 𝑍𝑗
�̂�𝑦

√2 𝑁𝑗  𝑀𝐴𝐹𝑗  (1 − 𝑀𝐴𝐹𝑗)

 

for SNP 𝑗 with minor allele frequency 𝑀𝐴𝐹𝑗 , sample size  𝑁𝑗, 𝑍-statistic 𝑍𝑗, and 

standard deviation of the phenotype �̂�𝑦. For a derivation, see the SOM in EA124. 

Without adjustment for winner’s curse, the estimated effects (in absolute value) of the 

3,952 lead SNPs are all in the range 0.006-0.085 SD units, corresponding to 

approximately 1 to 15 weeks of schooling per reference allele (assuming the standard 

deviation of EduYears is 3.4). The median, 25th percentile, and 75th percentile effect 

sizes are 0.009, 0.007, and 0.012 SD units (1.6, 1.2 and 2.1 weeks of schooling, 

respectively). An additional copy of the trait-increasing allele is on average associated 

with 0.011 SD units, which implies 1.9 weeks of schooling. When we consider common 

(𝑀𝐴𝐹 ≥ 5%), low-frequency (1% ≤  𝑀𝐴𝐹 < 5%) and rare (𝑀𝐴𝐹 < 1%) variants 

separately, the averages are instead 0.009, 0.021 and 0.041 SDs, corresponding to 1.6, 

3.7, and 7.2 weeks of schooling. The minor allele frequency of the SNP with the largest 

effect size is 0.001.  

Next, we used an empirical Bayesian approach to adjust the estimated effect sizes for 

the winner’s curse. (See Supplementary Note section 8 for a description of our 

empirical Bayesian model.) We first estimated the parameters 𝜋 and 𝜏2 that govern a 

spike-and-slab prior distribution for the additive effect sizes 𝛼𝑗 . We used Maximum 

Likelihood Estimation (MLE) with the unadjusted summary statistics (see 

Supplementary Note section 8.5) for all 10,675,380 SNPs that passed our quality 

control filters. We obtained the estimates (�̂�, �̂�2) = (0.60, 3.277 × 10−6). We then 

used the spike-and-slab prior distribution, treating these estimates as the true parameter 

values governing the prior, to calculate the posterior distribution of each SNP’s true 

effect size. For all 3,952 lead SNPs, the estimated posterior probability 𝜋 that the SNP 

captures signal from a true causal SNP for EA was estimated to be 1.0. We simulated 

the true effect sizes of the lead SNPs by drawing 1,000 times from the posterior 

distribution of each lead SNP, and then identified the 5th, 25th, 50th (median), 75th, and 

 

9
 In EA3, we reported that the chance of a random SNP being in a genome-wide-significant locus was 

17%. This number actually corresponded to the probability that a genome-wide-significant SNP 

randomly positioned on the genome is clumped together with one of the 1,271 lead SNPs instead of 

becoming a lead SNP itself. If we calculate the EA3 figure the same way we do here, we get 3%.    

 



95th percentiles of the simulated effect sizes. The median simulated effect (in absolute 

value) of the 3,952 lead SNPs corresponds to 1.4 weeks of schooling per allele, and the 

effects at the 5th, 25th, 75th, and 95th percentiles are 0.9 weeks, 1.1 weeks, 1.9 weeks, 

and 3.5 weeks, respectively. These are our winner’s-curse-adjusted estimated effect 

sizes. 

In order to assess the overall homogeneity of effects across the new 23andMe and 

(updated-phenotype-measure) UKB results and the remaining cohorts from EA3 (i.e., 

the EA3 meta-analysis but excluding 23andMe and UKB), we estimated their pairwise 

genetic correlations using bivariate LD score regression25. We found genetic 

correlations close to 1, but statistically distinguishable from it: 𝑟𝑔(23𝑎𝑛𝑑𝑀𝑒, 𝑈𝐾𝐵) =

0.88 (𝑆𝐸 = 0.01); 𝑟𝑔(23𝑎𝑛𝑑𝑀𝑒, 𝐸𝐴3) = 0.93 (𝑆𝐸 = 0.01); 𝑟𝑔(𝑈𝐾𝐵, 𝐸𝐴3) =

0.96 (𝑆𝐸 =  0.01), suggesting some heterogeneity between the results. 

2.2.7 Sensitivity analysis for definition of lead SNPs using COJO 

We assessed the sensitivity of our conclusions about the number of lead SNPs with a 

conditional and joint multiple-SNP analysis (COJO)26. In our COJO analysis, we again 

used the HRC reference data that we used for clumping (described above in 

Supplementary Note section 2.2.6).  

We performed COJO using the implementation found in the GCTA software23. Model 

selection was performed using the stepwise selection process outlined in the original 

COJO paper26, in which SNPs from across the genome are iteratively added to the 

model. We set the LD window to 100 Mb, i.e., SNPs that are further than 100 Mb are 

assumed to have zero LD correlation. 

Our COJO analysis identified 2,925 variants at genome-wide significance. 1,147 of 

these are also identified by the clumping algorithm. Another 1,055 are in LD (𝑟2 ≥ 0.1) 

with a lead SNP identified by the clumping algorithm. The remaining 723 are 

independent (𝑟2 < 0.1) from the clumping lead SNPs. The mean 𝜒2 across these 723 

SNPs is 19.4, much lower than the mean 𝜒2 across lead SNPs that are identified by both 

COJO and clumping (mean 𝜒2 = 70.1) or the COJO lead SNPs that are in LD with 

clumping lead SNPs (mean 𝜒2 = 52.0). This suggests that COJO is pushing the P values 

of some SNPs that are well above the genome-wide significance cutoff to below the 

cutoff by conditioning on other SNPs, thereby identifying additional associations. 

Conversely, by conditioning on other SNPs, COJO is pushing the P values of some 

SNPs that otherwise would be genome-wide significant to above the P value cutoff. 

These 2,805 SNPs are identified by the clumping algorithm but not by COJO, and 1,599 

of them (mean 𝜒2 = 40.4) are not in LD with any of the COJO lead SNPs. On average, 

the lead SNPs identified by both the clumping algorithm and COJO (or identified by 

only one of the methods but in LD with the lead SNPs from the other method) have 

higher minor allele frequencies (mean MAF = 0.28) compared to SNPs identified by 

only one of the methods (mean MAF = 0.22), suggesting that the two methods tend to 

disagree more on lower frequency SNPs. 

In order to classify each of the COJO lead SNPs as either “primary” or “secondary”, we 

applied our clumping algorithm to the list of 2,925 COJO variants (Supplementary Table 

2). The clumping algorithm eliminated 41 SNPs from the list of COJO lead SNPs (pairwise 

𝑟2 > 0.1 with at least one COJO lead SNP with lower P value). We call these 41 SNPs 

secondary associations and the remaining 2,884 SNPs primary associations. 



2.2.8 Comparison of lead SNP definitions 

In GWAS with such large sample sizes as our current study, the 𝜒2 statistic can attain 

very large values for some SNPs, which can generate false positives when our clumping 

algorithm is used to identify lead SNPs. To see why, consider a SNP that is truly null 

but neighbors a lead SNP that has 𝜒2 > 300. If the null SNP’s LD with the lead SNP 

is just below the algorithm’s cutoff of r2 = 0.1 (and the null SNP is not in LD with any 

other SNPs), then purely due to its correlation with the lead SNP, it will have a 𝜒2 

statistic just above the genome-wide significance threshold of 29.7, and hence will be 

incorrectly identified as another lead SNP. In practice, we believe most such false 

positives are generated due to a null SNP being in LD with two or more associated 

SNPs (rather than being in LD with just one truly associated SNP). We suspect it is 

because of this that we find so many more lead SNPs with our clumping than our COJO 

definition.  

In some additional analyses, we assessed which of the two lead SNP definitions, 

clumping or COJO, is more suitable for GWAS conducted in very large samples. First, 

we compared the two methods in terms of the predictive power of polygenic indexes 

(PGIs) made using only lead SNPs (𝑃 < 5 × 10−8) in two of our prediction cohorts, 

the Health and Retirement Study (HRS) and the National Longitudinal Study of 

Adolescent to Adult Health (Add Health). For this analysis, we used a version of our 

meta-analysis that excludes HRS, Add Health, and the Wisconsin Longitudinal Study, 

which we obtained for the prediction analyses in Supplementary Note section 5. In 

order to maximize comparability, we restricted the meta-analysis to SNPs available in 

both HRS and Add Health. Next, we applied our clumping and COJO algorithms 

(described in Supplementary Note sections 2.2.6 and 2.2.7, respectively) to the 

summary statistics, which resulted in 3,878 clumping and 2,942 COJO lead SNPs. For 

each set of lead SNPs, we obtained PGIs using Plink227 as weighted sums of genotype 

probabilities at each SNP in the set, where the weights for the clumping PGI were set 

equal to the coefficient estimates from the meta-analysis and, for the COJO PGI, to the 

posterior effect sizes estimated by COJO. In each of the two prediction cohorts, we 

estimated four models with EduYears as the dependent variable: (i) a model with only 

controls (a full set of dummy variables for year of birth, an indicator variable for sex, a 

full set of interactions between sex and year of birth, and the first 10 principal 

components (PCs) of the variance-covariance matrix of the genetic data), (ii) a model 

with the clumping PGI and controls, (iii) a model with the COJO PGI and controls, and 

(iv) a model with both PGIs and controls. Using the differences in 𝑅2 values from these 

models, we looked at how much predictive power (incremental-𝑅2) each PGI had, as 

well as how much additional variation they explain when fitted into a model with the 

other PGI and controls (Supplementary Table 25). When added into a model with 

only controls, the clumping PGI had more predictive power than the COJO PGI in HRS 

(COJO incremental-𝑅2 = 6.64%, clumping incremental-𝑅2 = 6.98%), and vice-versa in 

Add Health (COJO incremental-𝑅2 = 9.99%, clumping incremental-𝑅2 = 9.18%). 

Similarly, in HRS, the additional variance explained by the COJO PGI when added into 

a model with the clumping PGI and controls (incremental-𝑅2 = 0.74%) was lower than 

the additional variance explained by the clumping PGI when added into a model with 

the COJO PGI controls (incremental-𝑅2 = 1.08%). In Add Health, the outcome was 

reversed (COJO incremental-𝑅2 = 1.66%, clumping incremental-𝑅2 = 0.85%). 

These results suggest there could be two forces at play that partly offset each other:  



1. Within a given locus, COJO can identify secondary associations (whereas 

clumping drops all SNPs that are in LD with the top SNP). For this reason, the 

COJO-based predictor may have greater out-of-sample predictive power.  

2. Genome-wide, in our data, the clumping algorithm identifies a greater number 

of lead SNPs than COJO at a fixed threshold of genome-wide significance 

(probably because, in our clumping definition of a lead SNP, LD with other 

SNPs could cause relatively weakly associated SNPs to cross the threshold of 

genome-wide significance, as mentioned above). Because EA is a highly 

polygenic phenotype, including more SNPs in the PGI tends to make it more 

predictive. 

This reasoning implies that if we held the total number of SNPs constant in the 

comparison, COJO should do better. To test this hypothesis, we conducted a second 

analysis using a clumping PGI made with a stricter P value threshold (𝑃 <
4.61 × 10−9) so that the number of SNPs in the PGI equals the number of SNPs in the 

COJO PGI. We estimated the same quantities using the COJO PGI and the new 

clumping PGI. As predicted, we found that the COJO PGI had higher predictive power 

than the new clumping PGI in both cohorts when added into a model with only controls 

(HRS incremental-𝑅2 = 6.31%, Add Health incremental-𝑅2 = 8.35%). Moreover, in 

both cohorts, the additional variance explained by the COJO PGI when added into a 

model with the new clumping PGI and controls (HRS incremental−𝑅2 = 1.07%, Add 

Health incremental-𝑅2 = 2.20%) was higher than the additional variance explained by 

the new clumping PGI when added into a model with the COJO PGI and controls (HRS 

incremental-𝑅2 = 0.74%, Add Health incremental-𝑅2 = 0.55%). 

When the LD reference sample used in the COJO analysis is small or noisy, the 

posterior effect sizes estimated by COJO can be less predictive than the original GWAS 

effect sizes. To assess whether this affects our results, we reran all analyses using a 

COJO PGI made using the same set of COJO lead SNPs, but using GWAS effect sizes. 

The conclusions qualitatively stayed the same, with the incremental-𝑅2’s for the new 

COJO PGI being slightly lower in all models (except for the incremental-𝑅2 of adding 

the COJO PGI to a model with only controls in HRS).  

Our findings support the conclusion that in our results, there is more information per 

SNP in the COJO lead SNPs compared to the clumping lead SNPs. For this reason, and 

because COJO is more likely to identify causal SNPs by virtue of identifying 

conditional associations, COJO appears to be a more suitable methodology for defining 

lead SNPs, at least when GWAS sample sizes are very large. However, it is important 

to note that both COJO and clumping lead SNPs capture information that is not captured 

by the other methodology: the regression coefficients for both PGIs remain statistically 

distinguishable from 0 when they are simultaneously fitted into a model with controls, 

whether or not we include the same number of SNPs in the PGIs (Supplementary 

Table 26). In the current study, we adopt clumping as our main lead SNP definition in 

order to be report a number of lead SNPs that is comparable with the previously 

published EA GWASs, but we also report the COJO lead SNPs.  

2.3 Replication of EA3 lead SNPs 

Lee et al.2 reported a replication analysis, using the new data in EA3 beyond that in 

EA2, of the 162 genome-wide-significant lead SNPs from EA2. Here, using the new 

data in EA4 beyond that in EA3, we repeat this analysis for the lead SNPs from EA3, 



but with a few differences. Instead of attempting to replicate the 1,271 genome-wide 

significant lead SNPs from EA3, we re-run the EA3 meta-analysis by replacing the 

UKB GWAS in that analysis with our updated UKB GWAS that uses the new 

phenotype coding explained in Supplementary Note section 1. This way, we ensure 

that the only difference between the (updated) EA3 meta-analysis and the current EA4 

meta-analysis is the additional individuals from the 23andMe cohort, which we will use 

for this replication exercise.  

We start by getting the list of genome-wide significant lead SNPs from the updated 

EA3 meta-analysis using our main clumping algorithm described in Supplementary 

Note section 2.2.6. The algorithm results in 1,572 SNPs, 1,571 of which are available 

in our current meta-analysis with matching alleles10. We focus on 1,451 of these SNPs, 

for which we have additional individuals from 23andMe in the current meta-analysis. 

To examine their out-of-sample replicability, we calculated Z-statistics from the 

subsample of our data that was not included in the updated EA3 meta-analysis (𝑁𝑚𝑎𝑥 

= 2,272,21611). Let the Z-statistics of association from, respectively, (updated) EA3, 

the new data, and our current EA4 meta-analysis, be denoted by 𝑍𝐸𝐴3, 𝑍𝑛𝑒𝑤 and  𝑍𝐸𝐴4. 

Note that we cannot calculate 𝑍𝑛𝑒𝑤 directly because the 23andMe sample included in 

the EA3 meta-analysis (𝑁 =  365,538) is a subset of the 23andMe sample in EA4, and 

we do not have summary statistics from association analyses conducted only in subjects 

that contributed to the second but not the first meta-analysis. However, because our 

current EA4 meta-analysis uses sample-size weighting, we can calculate 𝑍𝑛𝑒𝑤 

indirectly from the following approximation 

𝑍𝐸𝐴4 ≈ 𝑍𝐸𝐴3√
𝑁𝐸𝐴3
𝑁𝐸𝐴4

+ 𝑍𝑛𝑒𝑤√
𝑁𝑛𝑒𝑤
𝑁𝐸𝐴4

 

where SNP subscripts have been dropped for notational convenience and 𝑁’s are 

sample sizes. We used the unadjusted 𝐸𝐴3 and 𝐸𝐴4 summary statistics to compute 

𝑍𝑛𝑒𝑤 with this approximation (since the approximation does not hold with adjusted 

summary statistics), and subsequently adjusted the resulting 𝑛𝑒𝑤 summary statistics by 

inflating their standard errors by the square root of the LD score regression (estimated 

in the 𝑛𝑒𝑤 summary statistics). In the replication below, we use these adjusted 𝑛𝑒𝑤 

summary statistics. We note that the 𝑍𝑛𝑒𝑤 defined here is not necessarily equal to the 

𝑍 statistic of association calculated directly in the new data (e.g., if the new 23andMe 

data contains individuals related to individuals in the earlier 23andMe data), but it 

captures the signal from the independent component of that sample and therefore is the 

correct value to use in this replication analysis.2  

Of the 1,451 SNPs that we focus on, 1,447 have matching signs in the new data. For 

the remaining 4 SNPs, the estimated effect is statistically significant at 𝑃 < 0.1 only 

for one. Of the 1,447 SNPs with matching signs, 1,343 are significant at 𝑃 < 0.01, 

1,005 are significant at 𝑃 < 10−5, and 687 are significant at 𝑃 < 5 × 10−8.  The 

replication results are shown graphically in Extended Data Figure 3.  

 
10 One SNP, rs12748397, is available in the 23andMe GWAS included in EA3 but not in the current 

23andMe GWAS. Therefore, in the current EA4 meta-analysis, its sample size is below the minimum 

sample-size threshold of 500,000, and it gets filtered out. 
11 The maximum sample size for the new data is larger than 𝑁𝑚𝑎𝑥,𝐸𝐴4 − 𝑁𝑚𝑎𝑥,𝐸𝐴3 = 1,905,618 because 

some SNPs are included in the current 23andMe summary statistics but not in the EA3 23andMe 

summary statistics. For those SNPs, the maximum sample size is equal to the sample size of the current 

23andMe summary statistics, which is 2,272,216. 



These numbers understate the replication record because there is substantial variation 

in the sample size of the new data, 𝑁𝑛𝑒𝑤, across the 1,451 SNPs (𝑁𝑛𝑒𝑤,𝑚𝑖𝑛 =

345,532 , 𝑁𝑛𝑒𝑤,𝑚𝑎𝑥 = 2,272,216), so some SNPs replicate less strongly due to low 

power in the replication sample. To enforce more similar sample sizes across SNPs, we 

supplement the above analysis with one where we applied the following sample-size 

filters to the EA3 GWAS prior to clumping: 𝑁𝐸𝐴3 > 0.8 × 𝑁𝐸𝐴3,max and 𝑁𝑛𝑒𝑤 >
0.8 × 𝑁𝑛𝑒𝑤,max. Applying our clumping algorithm to the filtered EA3 GWAS leaves us 

with a set of 1,504 genome-wide-significant SNPs (compared with the 1,572 above), 

all of which are available in the new data with matching alleles12. Of the 1,504 SNPs, 

1,502 have matching signs in the new data. None of the 2 SNPs with non-matching 

signs are significant at 𝑃 < 0.1. Of the 1,502 SNPs that have matching signs, 1,409 are 

significant at 𝑃 < 0.01, 1,071 are significant at 𝑃 < 10−5, and 746 are significant at 

𝑃 < 5 × 10−8. 

This replication record is strong. Under the null hypothesis that all the variation in the 

EA3 estimates of the additive effect sizes 𝛼𝑗 is due to noise (or confounding due to 

population stratification and other sources of bias that are not shared between the EA3 

data and the new data), only 50% of the SNPs would have concordant signs, and 0.5%, 

0.0005%, and 0.00000025% would have concordant signs and be significant at the 0.01, 

10−5, and 5 × 10−8 levels, respectively. That null hypothesis is strongly rejected. 

To benchmark the replication results, we conducted simulations under the assumption 

that the true additive effect sizes 𝛼𝑗 are identical across the EA3 data and the new data. 

The replication simulation framework is described in detail in Supplementary Note 

section 8 and is similar to that used in Supplementary Note section 4 of the 

Supplementary Information of Karlsson Linnér et al. (2019)28. Following the 

simulation framework, we first estimated the parameters 𝜋 and 𝜏2 of the prior 

distribution of the additive effect sizes 𝛼𝑗 . (See Supplementary Note section 8 for a 

description of our empirical Bayesian model of that posterior distribution.) As in 

Supplementary Note section 2.2.6, we used Maximum Likelihood Estimation (MLE) 

to fit the distribution to the unadjusted summary statistics (see Supplementary Note 

section 8.5) for all 10,675,380 SNPs that passed our quality control filters. Our 

estimates are (�̂�, �̂�2) = (0.60, 3.277 × 10−6). We then used the spike-and-slab prior 

distribution, treating these estimates as the true parameter values governing the prior, 

to calculate the posterior distribution of each SNP’s true effect size. Finally, we 

simulated the replication by drawing from the SNPs’ posterior distributions 

(Supplementary Note section 8 provides additional details). The following table 

shows the simulated expected replication record and its standard deviation across 

simulations, together with the results of the actual replications: 

 

Expected and Actual Replication Results 

  Without sample size filters 
(𝑀 = 1,451 matched SNPs  

with new data) 

 With sample size filters 
(𝑀 = 1,504 matched SNPs  

with new data) 

 
12 The 1,504 SNPs are not a subset of the 1,572 genome-wide-significant SNPs above because we 

clumped the summary statistics (to identify the new set of genome-wide-significant SNPs) after applying 

the new sample-size filters. All of the new genome-wide-significant SNPs are available in the new data 

because both sample-size filters (in particular, the filter 𝑁𝑛𝑒𝑤 > 0.8 × 𝑁𝑛𝑒𝑤,max, which implies 

availability in the new data) were applied to the EA3 SNPs prior to clumping. 



Test  Simulated 

replication 

Actual 

replication 

 Simulated 

replication 

Actual 

replication 

Sign concordance  1,450.48  
(0.71) 

1,447  1,503.90  
(0.32) 

1,502 

Sign conc. + 𝑃 < 0.01  1,403.80 
(6.38) 

1,343  1,468.48 
(6.02) 

1,409 

Sign conc. + 𝑃 < 10−5  1,091.84 
(15.20) 

1,005  1,155.92 
(15.75) 

1,071 

Sign conc. + 𝑃 < 5 × 10−8  743.58 
(16.39) 

687  794.59 
(17.70) 

746 

Note: the actual and simulated replication records for each test are expressed as the numbers of SNPs 

that passed (or that are predicted to pass) the test; the standard deviation of the simulated replication 

record is shown in parentheses.   

 

Overall, the actual replication results are similar to the predictions from our simulations 

but not quite as good. The lower-than-expected replication record could point to a 

positive (but likely low) false-discovery rate in EA3, but there are a number of other 

explanations that we think are likely. Most simply, the true additive effect sizes 𝛼𝑗 are 

likely not identical across the EA3 data and the new data. Indeed, the genetic correlation 

between our estimates in the EA3 data and in the new data is �̂�𝑔 = 0.94 (𝑆𝐸 = 0.01), 

which is statistically distinguishable from unity. In addition, we think it is likely that 

our assumed spike-and-slab distribution does not yield a sufficiently good 

approximation to the SNPs’ true effect-size distribution, now that the GWAS sample 

size is so large. 

Another possibility, which we examine here, is that our simulation is sensitive to input 

model parameters that are not separately identified very precisely. To evaluate this, we 

reran the simulations for various assumed values of the parameter 𝜋 (which captures 

the fraction of SNPs that are nonnull SNPs), while keeping the overall amount of 

variation in the SNPs’ true effect sizes constant. (Specifically, we kept the product of 

𝜋 and 𝜏2 – which is equal to the overall amount of variation – constant at the value 

implied by the estimates we used for the above simulations: 𝜋 ∙ 𝜏2 = �̂� ∙ �̂�2 = 0.60 ∙
3.277 × 10−6 = 1.966 × 10−6.) We note that the estimate of 𝜋 tends to vary across 

different sets of summary statistics: for instance, in the summary statistics from the 

updated EA3 meta-analysis, �̂� = 0.49, while �̂� = 0.69 in the summary statistics from 

the current paper restricted to the set of SNPs with MAF no less than 0.01 (and, as 

mentioned above, �̂� = 0.60 in the summary statistics from the current paper for all 

SNPs).  

The following table shows the results for 𝜋 ∈ {0.25,0.50,0.75}. As can be seen, the 

simulated replication results vary somewhat as a function of the assumed values of 𝜋. 

If 𝜋 = 0.25, the actual replication fares less well than what the simulation predicts. If 

𝜋 = 0.75, however, the replication fares about just as well as the simulation’s 

prediction on the test of whether the lead SNPs have matching signs and P values less 

than 10−5 in the new data, and better than the simulation’s prediction on the test of 

whether the lead SNPs have matching signs and are genome-wide significant in the new 

data. (On the other hand, on the sign concordance test, the actual replication 

consistently fares less well than the simulated prediction.) Overall, our assessment is 

that the replication record is strong regardless of which particular parameter values are 



assumed, but the benchmarking of just how strong is sensitive to assumptions about 

genetic architecture that cannot be assessed with the current data. 

 

Sensitivity of Expected Replication Results to Assumed Fraction of Nonnull SNPs  

  Without sample size filters 
(𝑀 = 1,451 matched SNPs  

with new data) 

Test  Actual 

replication 

 Simulated 

replication 

With 𝜋 = 0.25  

Simulated 

replication 

With 𝜋 = 0.50 

Simulated 

replication 

With 𝜋 = 0.75 

Sign concordance  1,447  1,450.78  
(0.47) 

1,450.59  
(0.64) 

1,450.33  
(0.80) 

Sign conc. + 𝑃 < 0.01  1,343  1,429.63 
(3.95) 

1,412.86 
(5.47) 

1,387.74 
(6.94) 

Sign conc. + 𝑃 < 10−5  1,005  1,259.78 
(11.47) 

1,143.90 
(14.74) 

1,012.78 
(16.45) 

Sign conc. + 𝑃 < 5 × 10−8  687  999.27 
(15.81) 

814.37 
(17.20) 

645.00 
(16.98) 

Note: the actual and simulated replication records for each test are expressed as the numbers of SNPs 

that passed (or that are predicted to pass) the test; the standard deviation of the simulated replication 

record is shown in parentheses.   

  



3 X chromosome analyses 

Our primary GWAS meta-analysis of additive variation in EduYears was restricted to 

autosomal SNPs. Following the same analysis plan as in EA32, we conducted a separate 

association analysis of the X chromosome SNPs in our largest two cohorts: UKB and 

23andMe, increasing the sample size from 𝑁 = 694,894 to 𝑁 = 2,713,033. Here, we 

report results from this association analysis as well as a number of supplemental 

analyses that analyze the contribution of common SNPs in the X chromosome to 

additive variation in EduYears. 

In this section, we follow the notation and framework established in the EA3 

Supplementary Section 4.1. We start by describing the association analyses conducted 

in UKB. Next, we report the amount of dosage compensation and male-female genetic 

correlation that we estimate using the sex-stratified UKB results. Finally, we report the 

results from a meta-analysis of mixed-sex association analyses conducted in UKB and 

23andMe using identical allele coding. 

3.1 UK Biobank association analyses 

3.1.1 Sex-stratified association analyses in UKB  

We conducted new sex-stratified association analyses of the X chromosome in UKB 

that used the new EduYears phenotype coding described in Supplementary Note 

section 1 and Panel B of Supplementary Table 15. Our new X chromosome analyses 

in UKB also differ from the analyses in EA32 in the following steps: 

1. We changed some of the control variables to match what we did in our 

autosomal UKB association analysis. Specifically, as in our autosomal UKB 

association analysis, we residualized EduYears on the first 40 PCs provided by 

UKB (instead of the first 10 PCs that we constructed ourselves as in EA32) and 

a third-degree polynomial in birth year (instead of indicator variables for birth 

year). As in both our autosomal UKB association analysis and EA3, we also 

residualized EduYears on indicator variables for genotype-measurement batch. 

2. Instead of imputing the X chromosome genotypes ourselves, we used the 

imputed genotype dosages officially released by UKB that were not available 

at the time EA32 was conducted. 

3. Instead of restricting the sample to unrelated individuals, we included all 

individuals of European genetic ancestries after filtering out individuals who 

have withdrawn their consent for their data to be used, heterozygosity 

missingness outliers and individuals with sex/gender mismatch or putative sex 

chromosome aneuploidy. We identified individuals of European genetic 

ancestries as individuals who self-report to be White, British, Irish, or of any 

other white background and whose loading on the first PC of the genotype data 

(in the official UKB release) was greater than 0. 

4. To account for relatedness, we ran the association analysis in BOLT-LMM 

v2.3.429 (instead of Plink1.922) using genotype dosages (instead of hard calls). 

As model SNPs (an input in BOLT-LMM), we used 548,860 hard-called 

HapMap3 SNPs that remained after filtering for MAF > 1% and pruning with 

an 𝑟2 threshold of 0.9. 



 

In our sex-stratified association analyses, (𝑁𝑚𝑎𝑙𝑒𝑠 =  201,456, 𝑁𝑓𝑒𝑚𝑎𝑙𝑒𝑠 =  239,361; 

larger samples than in EA3 because, as noted above, we did not restrict the sample to 

unrelated individuals), we obtained association results for 1,165,370 biallelic SNPs 

with imputation accuracy > 0.3 and MAF > 0.0001 in the non-pseudoautosomal region 

of the X chromosome.  

Let 𝛽𝑖 denote the coefficient from the population regression of the phenotype on 𝑥𝑖, 
where 𝑖 ∈ {𝑚, 𝑓} indicates males or females, and 𝑥𝑖 is the allele count with 𝑥𝑚 ∈ {0,1} 
and 𝑥𝑓 ∈ {0,1,2}. Dosage compensation can be parameterized as 𝛽𝑚  =  𝑑𝛽𝑓, with 1 ≤

𝑑 ≤ 2, where 𝑑 = 1 in the absence of dosage compensation and 𝑑 = 2 under full 

dosage compensation. Under Hardy-Weinberg equilibrium, the variance contributed by 

a SNP is 𝑑2𝑝(1 − 𝑝)𝛽𝑓
2 in males, where 𝑝 is the minor allele frequency of the SNP, 

and 2𝑝(1 − 𝑝)𝛽𝑓
2 in females. 

Under the assumption that 𝛽𝑚  =  𝑑𝛽𝑓 across all X-chromosome SNPs with a common 

value of 𝑑, we can estimate 𝑑 using sex-stratified association results. Let 𝛾 ≡
ℎ𝑚
2

ℎ𝑓
2 =

𝑑2

2
 

be the dosage compensation (DC) ratio, where ℎ𝑖
2 is the SNP heritability for the X 

chromosome. Then 

𝛾 =  
(�̂�𝑚

2 − 1)𝑁𝑓

(�̂�𝑓
2 − 1)𝑁𝑚

 

where 𝑖 ∈ {𝑚, 𝑓} indicates males or females, �̂�𝑖
2 is the mean 𝜒2 statistic across SNPs in 

the association analysis, and 𝑁𝑖 is the sample size (see EA3 Supplementary Section 4.12 

for a full derivation)30. The ratio takes on a value between 0.5 (zero DC) and 2 (full 

DC). For SNPs with MAF > 1%, we estimated a ratio of 0.78 (S.E. = 0.10)13, which 

implies 𝑑 = 1.25. This DC ratio estimate is somewhat smaller than what we found in 

EA32 (DC ratio = 1.05), but is contained in the 95% confidence interval (0.66 to 1.44). 

Next, we used results from the sex-stratified association analyses to test the hypothesis 

that the male-female genetic correlation on the X chromosome is unity. The male-

female genetic correlation on the X chromosome can be calculated as 

 
�̂�𝑔 =

𝑍𝑚𝑍�̂�

√(�̂�𝑓
2 − 1)(�̂�𝑚2 − 1)

 
(3.1) 

where 𝑍𝑚𝑍�̂� is the mean of the product of the Z-statistics from the female and male 

analyses (see EA3 Supplementary Section 4.12 for the derivation). The standard errors 

 
13 Assuming that the individual association test statistics are distributed as a non-central 𝜒2 with expected 

value given by 1 +
𝑁𝑖ℎ𝑖

2

𝑀𝑒𝑓𝑓
  where 𝑖 ∈ {𝑚, 𝑓} and 𝑀𝑒𝑓𝑓  is the effective number of loci (which is assumed to 

be the same in males and females) and variance 2 (1 +
ℎ𝑖
2𝑁𝑖

𝑀𝑒𝑓𝑓
), the variance of the mean test statistic 

across the chromosome is approximately 
2

𝑀𝑒𝑓𝑓
[1 + 2(�̂�2 − 1)] , and the variance of the dosage 

compensation ratio is approximately 𝛾2 [
𝑉𝑎𝑟(�̂�𝑚

2 )

(�̂�𝑚
2 −1)

2 +
𝑉𝑎𝑟(�̂�𝑓

2)

(�̂�𝑓
2−1)

2]. The 𝑀𝑒𝑓𝑓  value used here was 1,300. See 

EA3 Supplementary Section 4.3 for how this value was estimated. 



were calculated using a block jackknife procedure with 𝐵 = 1000 blocks of contiguous 

SNPs across the X chromosome using the formula  

𝑆𝐸(�̂�𝑔) = √
𝐵 − 1

𝐵
∑(�̂�𝑔 − 𝑟𝑔

(𝑘)
)
2

𝐵

𝑘=1

, 

where for each block 𝑘, 𝑟𝑔
(𝑘)

 is calculated as an estimate of the genetic correlation as in 

equation (3.1) using all SNPs except for those included in the 𝑘-th block. For SNPs with 

MAF > 1%, we estimated a male-female genetic correlation close to, but statistically 

distinguishable from, unity (𝑟𝑔 = 0.94;  𝑆𝐸 = 0.03), and smaller than what we found 

in EA32 (𝑟𝑔
𝐸𝐴3 = 1.01;  𝑆𝐸 =  0.05). 

3.1.2 Meta-analysis of sex-stratified association results in UKB 

In a joint analysis of males and females, the phenotype is regressed on a genotype 

variable equal to 𝑥𝑓 ∈ {0,1,2} for females and 𝑐𝑥𝑚 for males, with 𝑥𝑚 ∈ {0,1} and 𝑐 ∈
[1,2], where 𝑐 = 1 corresponds to the zero-DC analysis, 𝑐 = 2 to the full-DC analysis, 

and 𝑐 between 1 and 2 to a partial-DC analysis. (Note that 𝑑, defined above, denotes 

the true amount of DC, whereas 𝑐, defined here, denotes the amount of DC assumed in 

the empirical analysis.) Under the simplifying assumption that the residual variance is 

exactly one in both males and females, the coefficient from a joint analysis can be 

written as 

𝑏𝑗𝑜𝑖𝑛𝑡 =

𝑐𝑏𝑚
𝑉𝑎𝑟(𝑏𝑚)

+
𝑏𝑓

𝑉𝑎𝑟(𝑏𝑓)

𝑐2

𝑉𝑎𝑟(𝑏𝑚)
+

1

𝑉𝑎𝑟(𝑏𝑓)

, 

where 𝑏𝑚 and 𝑏𝑓 are regression coefficients that would be estimated in separate male 

and female association analyses, respectively, if these analyses were conducted 

separately. In EA3 Supplementary Section 4.12, we show that (i) in a joint analysis, this 

estimator is unbiased when 𝑐 equals the true dosage compensation parameter 𝑑 and (ii) 

an optimally weighted meta-analysis of association results from sex-stratified analyses 

will weight the sex-specific estimates as in this equation, setting 𝑐 = 𝑑. That is, the 

joint analysis with 𝑐 = 𝑑 is optimal in the sense that the resulting estimator has the 

lowest variance among the class of unbiased estimators. 

We conducted two inverse-variance-weighted meta-analyses (𝑁 = 440,817) for 

1,165,370 SNPs on the X chromosome, one assuming zero DC (𝑐 = 1) and the other 

assuming full DC (𝑐 = 2). The mean 𝜒2 statistic under full DC was smaller under all 

MAF cutoffs (see Supplementary Table 17) but the differences were small. Note that 

the estimator defined above is unbiased only when 𝑐 = 𝑑 . Therefore, this result is to 

be expected as the value of 𝑑 estimated in our data is 1.25, closer to a model of zero 

DC than full DC.  

Supplementary Table 17 provides a summary overview of the results from the sex-

specific and joint (no DC and full DC) analyses for all SNPs with allele frequency above 

1%, 0.1% or 0.01%.  



3.2 23andMe association analysis 

We obtained summary statistics from joint male-female association analyses of 346,055 

SNPs on the X chromosome conducted in a sample of 23andMe customers (𝑁 =
 2,272,216). These analyses were conducted using a 0/2 genotype coding for males, 

corresponding to a full-DC analysis. All other aspects of the analysis were identical to 

those of the autosomal analyses (see Supplementary Note section 2 and 

Supplementary Table 15 for details on genotyping, imputation, phenotype coding and 

the association model), except for some quality control steps as described in the next 

section. 

3.3 Quality control of UK Biobank and 23andMe results 

In all the analyses that follow in the remainder of this section, we use the UKB male-

female meta-analysis assuming full DC, since this was the genotype coding used by 

23andMe.  

We applied the quality control pipeline described in Supplementary Note section 2.2.5 

to the UKB and 23andMe association results, with the following differences: 

- We were unable to plot the reported standard errors against a correct analytical 

approximation for the standard errors because we did not have access to sex-

specific per-SNP sample sizes in 23andMe. (Unlike in the autosomal analyses, 

here sex-specific sample sizes are necessary for the calculation of a correct 

analytical approximation to the standard error of a SNP’s coefficient because 

the predicted standard error for males differs from that for females (and 

autosomal SNPs) and is a function of the assumed amount of dosage 

compensation.) Instead, we plotted the reported standard errors against values 

obtained using the analytical approximation that would be correct for autosomes 

(see Supplementary Note section 2.2.5). We identified no outliers upon visual 

inspection in either set of results.  

- For the same reason, we did not apply the explained variance (𝑅2) filter (see 

Supplementary Section 1.7 in Okbay et al.1). 

- We applied a stricter filter for the Hardy-Weinberg equilibrium exact test P 

value (𝑃 > 10−10) (i.e., we drop all SNPs with P-values less than 10−10, rather 

than 10−20 as used for the autosomes) because the P-values were calculated in 

the sample of females (with about half the sample size) rather than the whole 

sample. 

- We dropped SNPs with male-female allele frequency differences above 0.005 in 

UKB. 

After applying all filters, association results for 228,999 markers in 23andMe and 

333,063 markers in UKB remained. Supplementary Table 16 summarizes the number 

of markers dropped in each filtering step. 

3.4 Meta-analysis of UK Biobank and 23andMe results (𝑵 =
𝟐, 𝟕𝟏𝟑, 𝟎𝟑𝟑) 

We meta-analyzed the summary statistics from UKB and 23andMe using sample-size 

weighting in METAL18. After applying a sample size filter of 500,000 and restricting 



the set of SNPs to those that were available in both UKB and 23andMe, we were left 

with meta-analysis results for 211,581 SNPs. To adjust test statistics for bias due to 

uncontrolled-for population stratification, we inflated the standard errors by the square-

root of the LD score intercept from an autosomal meta-analysis of UKB and 23andMe 

(√1.666). The mean 𝜒2 test statistic, calculated prior to the LD score intercept 

adjustment, is 7.38. As in autosomes, the inflation of test-statistics varies by allele 

frequency: For common variants (defined as variants with MAF > 5%), the mean 𝜒2 

statistic is 10.36, for low frequency variants (1% < MAF < 5%) it is 3.92, and for rare 

variants (MAF < 1%), we have mean 𝜒2 = 2.06. Extended Data Figure 4 shows 

Manhattan and quantile-quantile plots from the meta-analysis. 

We selected the set of approximately independent genome-wide-significant SNPs using 

the clumping algorithm described in Supplementary Note section 2.2.6. We calculated 

the LD between SNPs using 440,217 variants and 13,182 individuals from the public 

release of the HRC reference panel16 that remained after restricting the sample to the 

set of individuals in the clumping reference data that we used for the autosomes14 (see 

Supplementary Note section 2.2.6) and applying the same SNP-level filters, the only 

difference being that we estimated the Hardy-Weinberg equilibrium exact test P values 

for SNPs on the X chromosome in the sample of females. The algorithm identified 57 

approximately independent SNPs at genome-wide significance. Supplementary Table 

27 lists the association results for these SNPs. 

To gauge the magnitude of per-allele SNP effects, we used an approximation to 

transform the Z-statistics from the sample-size-weighted meta-analysis (the output of 

the software METAL) into unstandardized regression coefficients:  

𝛽�̂� = 𝑍𝑗
�̂�𝑦

√2𝑀𝐴𝐹𝑗  (1 − 𝑀𝐴𝐹𝑗)(2 𝑁𝑗,𝑚  +  𝑁𝑗,𝑓) 

 

for SNP 𝑗 with minor allele frequency 𝑀𝐴𝐹𝑗 , sample size  𝑁𝑗,𝑚 in males and 𝑁𝑗,𝑓 in 

females, 𝑍-statistic 𝑍𝑗, and standard deviation of the phenotype �̂�𝑦. Note that this is the 

same approximation that we used in our additive autosomal meta-analysis except for 

the denominator, which now reflects the standard deviation of the genotype in an X-

chromosome analysis with males coded as 0/2. 

The estimated effects (in absolute value) of the 57 lead SNPs are all in the range 0.005-

0.016 SD units per reference allele, corresponding to approximately 0.9 to 2.8 weeks 

of schooling (assuming the standard deviation of EduYears is 3.3, i.e. equal to the 

sample-size-weighted standard deviation of EduYears in 23andMe and UKB). Across 

the 57 lead SNPs, an additional copy of the trait-increasing allele is on average 

associated with 0.008 SD units. The minor allele frequency of the SNP with the largest 

effect size is 0.06.  

3.5 Comparison to autosomes 

Following EA32, we compared our autosomal and X-chromosomal meta-analyses in 

terms of number of lead SNPs and heritability due to common SNPs. To make results 

 
14 The resulting sample size for the X chromosome (𝑁 = 13,182) is lower than that of the HRC reference 

data that we used for the autosomes (𝑁 = 14,097), even though we restricted the sample to the same set 

of individuals, because the sample size for the X chromosome was smaller than that for autosomes prior 

to all filters.   



from the two meta-analyses comparable in terms of sample size, we started by running 

a new autosomal meta-analysis restricted to 23andMe and UKB (𝑁 =  2,713,337). We 

subsequently applied our clumping algorithm (see Supplementary Note section 2.2.6) 

to these results to obtain the number of lead SNPs on each chromosome. For the 

purposes of this comparison, we used X-chromosomal and autosomal test statistics that 

are not adjusted for stratification biases.  

The results are shown in Supplementary Table 28 and Supplementary Figure 4. In 

terms of chromosome length, our X chromosome analysis, spanning a total distance of 

152 Mb, is most similar to chromosomes 6 through 10 (mean 150, range 135 to 171). 

However, consistent with EA32, we identified less than half as many lead SNPs on the 

X chromosome (173 lead SNPs) as on those autosomes of similar length (average 480 

lead SNPs, range 419 to 596).  

One possible factor contributing to the discrepancy is that our meta-analysis of SNPs 

on the X chromosome likely used suboptimal weights since we estimated a dosage 

compensation parameter of 𝑑 = 1.25 in UKB, whereas we conducted our meta-analysis 

assuming full dosage compensation (in order to match what was assumed in the 

23andMe association analysis). However, as we show in EA3, the suboptimal 

weighting has minimal impact on the power of the meta-analysis. The power of the 

meta-analysis we conducted in our sample of 𝑁 = 2,713,033 is equal to an optimally 

weighted meta-analysis conducted in a sample of 𝑁 =  2,570,242 individuals. The fact 

that this difference is small implies that the sub-optimality of our weighting scheme 

contributes minimally to the observed discrepancy. 

Another factor could be that the effective number of independent markers on the X 

chromosome could be less than on autosomes of similar length. If we compare the 

number of lead SNPs on the X chromosome to autosomes with a similar effective 

number of independent markers (see EA3 Supplementary Section 4.32 for a description 

of how the effective number of independent markers was calculated), we get a different 

picture. The effective number of independent markers on the X-chromosome (1,309) is 

similar to the numbers on chromosomes 19-22 (mean = 1,401, range 1,148 to 1,453). 

The average number of lead SNPs on these chromosomes is 139 (range 95 to 161) 

compared to 173 on the X chromosome, indicating that the X chromosome results are 

similar to those from autosomes with a comparable effective number of loci. 

To compare the heritability due to common SNPs on the X chromosome to the per-

chromosome SNP heritabilities of the autosomes, we used the following equation (see 

EA3 Supplementary Section 4.1 for the derivation) to estimate SNP heritabilities: 

𝐸[𝜒2] = 1 +
𝑁ℎ2

𝑀𝑒𝑓𝑓
, 

where ℎ2 is the SNP heritability, 𝑁 is the GWAS sample size, and 𝑀𝑒𝑓𝑓  is the effective 

number of loci. We found that the X chromosome has a lower SNP heritability compared 

to autosomes of similar length, but again, the SNP heritability of the X chromosome is not 

an outlier if we compare it to autosomes with a similar effective number of independent 

markers.  

Overall, our results are consistent with those of Lee et al2.  

  



4 Dominance GWAS  

This section discusses our dominance GWAS meta-analysis. It begins by providing a 

brief overview of the concepts of additive and dominance genetic variance. Second, 

this section describes how we estimated the relevant dominance parameters in our 

GWAS and the methods we followed to conduct that GWAS. Third, it reports the main 

results of our dominance GWAS meta-analysis. Fourth, it evaluates the statistical 

power to estimate dominance effects in our dominance GWAS. Fifth, it reports the 

results of an exercise in which we decompose the variation in our estimates from our 

dominance GWAS. Sixth, this section concludes by describing a cross-cohort 

replication exercise we conducted to compare the dominance effect-size estimates from 

the two cohorts in our dominance GWAS (the UKB and 23andMe cohorts). Finally, the 

seventh and last subsection reports the results of an analysis of directional dominance 

(inbreeding depression) using the summary statistics from our dominance GWAS.  

The main takeaway of the first six subsections, which focus on dominance rather than 

directional dominance, is that our results imply that there is very little dominance 

genetic variance for EA. Our GWAS of dominance variance identified no genome-

wide-significant SNPs; the decomposition exercise shows that the bulk of the variation 

in our estimates of the dominance effect “𝑑” is attributable to sampling variation rather 

than to true dominance signal; and the cross-cohort replication exercise suggests that 

the dominance GWAS estimates from one cohort do not tend to have particularly 

consistent signs and effects in another cohort, although that exercise does suggest some 

low degree of consistency compatible with a small amount of dominance variance. 

This finding – that genetic dominance accounts for no more than a small share of the 

variance – is consistent with theoretical predictions as well as results from heritability 

research in laboratory animal and livestock and from twin and pedigree studies in 

humans (for a review, see Hill et al.31). It is also consistent with theoretical results that 

predict that a highly polygenic phenotype such as EA for which there is known 

inbreeding depression32 should have little or no dominance variance33. That finding is 

also consistent with the findings of two recent papers that separately estimated that 

dominance SNP heritability averages only ~0.1% across dozens of phenotypes in the 

UKB (although neither paper studied educational attainment)34,35.   

However, two caveats should be kept in mind when interpreting these results. First, our 

analyses of dominance variance for EA are based principally on common SNPs. As 

others have pointed out (e.g., ref. 34), for dominance the loss of information due to 

imperfect linkage disequilibrium between two SNPs is proportional to the fourth power 

of their correlation (𝑟4), vs. the second power of their correlation (𝑟2) for additive 

variance. Our results thus do not rule out the possibility that there are numerous rare 

SNPs with large dominance effect sizes but that are poorly tagged by the common SNPs 

we analyze. 

The second caveat is that our results may in theory be sensitive to the scale of our EA 

variable. For example, and as is well-known, if the phenotype is an indicator (i.e., 0-1) 

variable, a locus may be purely additive on the underlying liability scale but still have 

dominance variance on the indicator scale (see, e.g., Figure 1b in ref. 36). Thus, if our 

measure of educational attainment were a variable indicating whether one completed 

college instead of years of education, it is conceivable that we would have detected 

dominance variance.   



As mentioned above, the seventh and last subsection reports the results of an analysis 

of directional dominance (inbreeding depression) for EA. We find suggestive evidence 

of ID for EA. Our estimate of ID implies the offspring of first cousins have on average 

~1.0 fewer months of EA (P = 0.04) than the offspring of unrelated individuals. 

4.1 Additive and dominance genetic variance: theoretical 

background 

This section provides a brief overview of the concepts of additive and dominance 

genetic variance in the context of a single-locus model. It also discusses the 

implications of genetic dominance for the interpretation of SNP-effect estimates from 

traditional GWAS with no dominance term and shows how to partition genetic variance 

into additive and dominance variance components. The concepts and theoretical results 

as well as many of the derivations below are not novel, and readers can consult refs. 37–

39 for more in-depth treatments; we follow the notation of ref. 37. 

4.1.1 Genetic dominance at a single locus: background and definitions 

Let AA, AT (interchangeable with TA), and TT be the three genotypes at the locus of 

interest. Alleles A and T have frequencies 𝑞 and 𝑝 = 1 − 𝑞 in the population. We 

assume Hardy-Weinberg equilibrium, so the frequencies of genotypes AA, AT, and TT 

are 𝑞2, 2𝑝𝑞, and 𝑝2, respectively. We denote the allele dosage (i.e., the number of “T” 

alleles) by 𝑥 ∈ {0,1,2}, and we define ℎ as a heterozygosity indicator that is equal to 1 

if 𝑥 = 1 (and to 0 otherwise). The relationship between the phenotype 𝑦 and the alleles 

at the locus is: 

 𝑦 = 𝜇 + 𝑎(𝑥 − 1) + 𝑑ℎ + 휀 (4.1) 

where 𝜇 is a constant and 휀 is a disturbance term that is orthogonal to 𝑥 and ℎ. The 

parameter 𝑑 is the dominance effect. 

Figure 1 illustrates this relationship between the phenotype and the genotype. The 

additive genetic model is represented by the upward-sloping line: the population 

regression of 𝑦 on 

dosage 𝑥 only (i.e., 

without including ℎ as a 

regressor). (This is the 

model we estimated and 

reported in 

Supplementary Note 

section 2 and what the 

vast majority of GWAS 

so far have estimated.) 

The regression slope 𝛼 

is known as the 

“average effect” of 

allele substitution40, and 

the variance explained 

by this model is called 

the “additive variance.” As is well-known and as shown below, 𝛼 = 𝑎 + (1 − 2𝑝)𝑑. 

Thus, additive variance depends on both the 𝑎 and the 𝑑 parameters (and on the allele 

Figure 1. Genetic dominance in a single-locus model. 



frequency 𝑝). By contrast, as is also shown below, dominance variance only depends 

on the 𝑑 parameter (and on the allele frequency 𝑝). Thus, when 𝑑 = 0, there is no 

dominance variance, but when 𝑎 = 0 and 𝑑 ≠ 0 (and 𝑝 ≠ 0.5), there will be additive 

variance. Importantly, though these quantities are intricately linked, the 𝑎 and 𝑑 

parameters are distinct from the additive and dominance variance. 

𝐷𝐴𝐴, 𝐷𝐴𝑇, and 𝐷𝑇𝑇 in Figure 1 depict the “dominance deviations” for the three 

genotypes, defined as the differences between the phenotypic values predicted by the 

additive genetic model and the actual average values at each genotype. 

4.1.2 Additive GWAS 

Here, we present derivations to show that the SNP effect at a given locus in an additive 

GWAS—what is also known as the “average effect” of allele substitution—is given by 

𝛼 = 𝑎 + (1 − 2𝑝)𝑑. 

As noted above, an additive GWAS estimates the regression 𝑦 = 𝛽0 + 𝛼𝑥 + 𝑢. (We 

ignore control variables, for simplicity.) The OLS estimator �̂� is given by 

�̂� = Cov(𝑥, 𝑦) Var(𝑥)⁄  
= Cov(𝑥, 𝜇 + 𝑎(𝑥 − 1) + 𝑑ℎ + 𝑢) Var(𝑥)⁄  
= 𝑎 + 𝑑 Cov(𝑥, ℎ)/Var(𝑥). 

Observe that Var(𝑥) = 2𝑝𝑞, E[𝑥] = 2𝑝, E[ℎ] = 2𝑝𝑞, and E[𝑥ℎ] = 𝑞2 ∙ 0 ∙ 0 + 2𝑝𝑞 ∙
1 ∙ 1 + 𝑝2 ∙ 2 ∙ 0 = 2𝑝𝑞. It follows that 

Cov(𝑥, ℎ) = E[𝑥ℎ] − E[𝑥]𝐸[ℎ] 
= 2𝑝𝑞 − [2𝑝][2𝑝𝑞] 
= 2𝑝𝑞(1 − 2𝑝). 

Therefore, 

�̂� = 𝑎 + 𝑑 ∙ 2𝑝𝑞(1 − 2𝑝) 2𝑝𝑞⁄  
= 𝑎 + (1 − 2𝑝)𝑑. 

4.1.3 Dominance GWAS 

In a dominance GWAS, the main parameter of interest is 𝑑 in equation (4.1), which 

can be estimated directly by regressing 𝑦 on (𝑥 − 1) and ℎ. (As we discuss below, in 

some cohorts we estimated the dominance GWAS by regressing 𝑦 on 𝑥 and ℎstd, where 

ℎstd =
ℎ−𝐸[ℎ]

√𝑉𝑎𝑟(ℎ)
 denotes ℎ standardized to have mean 0 and variance 1, but it is easy to 

recover the parameter 𝑑 from such a regression.) 

4.1.4 Partitioning the genetic variance 

The genetic variance implied by Model (4.1) can partitioned into additive and 

dominance variance components. Under Model (4.1),  

Var(𝑦) = Var(𝜇 + 𝑎(𝑥 − 1) + 𝑑ℎ + 휀) 
= Var(𝑎𝑥 + 𝑑ℎ + 휀) 
= 𝑎2 Var(𝑥) + 2𝑎𝑑 Cov(𝑥, ℎ) + 𝑑2 Var(ℎ) + 𝜎𝜀

2 
= 𝑎2 ∙ 2𝑝𝑞 + 2𝑎𝑑 ∙ 2𝑝𝑞(1 − 2𝑝) + 𝑑2 ∙ 2𝑝𝑞(1 − 2𝑝𝑞) + 𝜎𝜀

2 
= 2𝑝𝑞[𝑎2 + 4(1 − 2𝑝)𝑎𝑑 + (1 − 2𝑝𝑞)𝑑2] + 𝜎𝜀

2 
= 2𝑝𝑞[𝑎2 + 4(1 − 2𝑝)𝑎𝑑 + (1 − 2𝑝𝑞 + 𝑞2 + 𝑝2 − 𝑞2 − 𝑝2)𝑑2] + 𝜎𝜀

2 



= 2𝑝𝑞[𝑎2 + 4(1 − 2𝑝)𝑎𝑑 + (𝑞2 − 2𝑝𝑞 + 𝑝2)𝑑2]
+ 2𝑝𝑞[1 − 𝑞2 − 𝑝2]𝑑2 + 𝜎𝜀

2 
= 2𝑝𝑞[𝑎 + (1 − 2𝑝)𝑑]2 + [2𝑝𝑞𝑑]2 + 𝜎𝜀

2 
= 2𝑝𝑞𝛼2 + [2𝑝𝑞𝑑]2 + 𝜎𝜀

2 
= 𝜎𝐴

2 + 𝜎𝐷
2 + 𝜎𝜀

2, 

where 𝜎𝐴
2 ≡ 2𝑝𝑞𝛼2 is the additive variance and 𝜎𝐷

2 ≡ [2𝑝𝑞𝑑]2 is the dominance 

variance. The 7th equality follows from the facts that 𝑞2 − 2𝑝𝑞 + 𝑝2 = (𝑞 − 𝑝)2 =
(1 − 2𝑝)2 and that 1 − 𝑞2 − 𝑝2 = 2𝑝𝑞. 

Thus, as mentioned above, we see that there is no dominance variance when 𝑑 = 0, but 

that there is additive variance when 𝑑 ≠ 0, even when 𝑎 = 0 (unless 𝑝 = 0.5). 

4.2 GWAS of dominance genetic variance: methods 

4.2.1 Cohorts 

We meta-analyze summary statistics from two cohorts, UKB and 23andMe, with a total 

sample size of 𝑁 = 2,574,253. For summary information about the cohorts, 

phenotypes, genotyping and imputation, see Supplementary Note section 2.2.  

4.2.2 Association analyses 

For the dominance GWAS in the 23andMe cohort, we used OLS to estimate the 

following regression for each SNP: 

𝑦 = 𝜃0 + 𝑎𝑥 + 𝑑stdℎstd + 𝑣, 

where ℎstd =
ℎ−E[ℎ]

√Var(ℎ)
 denotes ℎ standardized to have mean 0 and variance 1. 

Due to computational constraints, we took a slightly different approach for the 

dominance GWAS in the UKB. We first used Plink 2.022,27 to fit the linear model 

𝑦 = 𝜃0,𝑈𝐾𝐵 + 𝑎𝑈𝐾𝐵𝑥 + 𝑑𝑈𝐾𝐵ℎ + 𝑣, 

where 𝑥 ∈ {0, 1, 2} is still allele dosage but ℎ has not been standardized. To transform 

the coefficients to match those in the 23andMe GWAS of genetic dominance, we note 

that ℎ = ℎ𝑠𝑡𝑑√𝑉𝑎𝑟(ℎ) + 𝐸[ℎ]. Substituting this definition of ℎ into the UKB 

regression yields  

𝑦 = 𝜃0,𝑈𝐾𝐵 + 𝑑𝑈𝐾𝐵E[ℎ] + 𝑎𝑈𝐾𝐵𝑥 + 𝑑𝑈𝐾𝐵√Var(ℎ) ∙ ℎ𝑠𝑡𝑑 + 𝑣. 

By observation, we find that 

𝑎 = 𝑎𝑈𝐾𝐵, and 

 𝑑std = 𝑑𝑈𝐾𝐵√Var(ℎ). 

Using the definitions of expectation and variance, we express Var(ℎ) as a function of 

Pr(ℎ = 1), which can be calculated from allele counts15: 

Var(ℎ) = Pr(ℎ = 0) ∙ (0 − 𝐸[ℎ])2 + Pr(ℎ = 1) ∙ (1 − 𝐸[ℎ])2

= [1 − Pr(ℎ = 1)] × Pr(ℎ = 1)2 + Pr(ℎ = 1) × [1 − Pr(ℎ = 1)]2. 

 
15 Under Hardy-Weinberg equilibrium (HWE), Pr(ℎ = 1) = 2𝑝𝑞. However, we observed deviations 

from HWE in our data and so used the above expression for Var(ℎ). 



Thus, we have demonstrated equivalence between the 23andMe GWAS coefficients 

and the transformed UKB GWAS coefficients.  

4.2.3 Quality control 

We applied the same quality control pipeline described in Supplementary Note section 

2.2.5 to the dominance GWAS results from the UKB and 23andMe (for 𝑑std estimated 

in the 23andMe data and for the rescaled estimate 𝑑𝑈𝐾𝐵√Var(ℎ) from the UKB 

GWAS), but with stricter minor allele frequency (>1% instead of 0.1%) and imputation 

accuracy (>0.9 instead of 0.7) thresholds. We chose to be more conservative in the 

dominance GWAS because of the lower statistical power to detect dominance effects, 

especially for rare and badly imputed SNPs. 

In order to apply the standard error and explained variance (𝑅2) filters (described in 

Supplementary Note section 2.2.5 of this paper and in Supplementary Section 1.7 of 

Okbay et al.1, respectively) to the dominance GWAS results, we calculated the 

predicted standard errors and 𝑅2 for the dominance effect 𝑑 for each SNP j as follows: 

𝑆𝐸𝑑,𝑗 ≈
�̂�𝑦

√𝑁𝑗
×
√1 − 2𝑝𝑗𝑞𝑗  

√2𝑝𝑗𝑞𝑗
, 

𝑅𝑑,𝑗
2 ≈

�̂�𝑗
2

�̂�𝑦2
×

2𝑝𝑗𝑞𝑗

(1 − 2𝑝𝑗𝑞𝑗)
 

 

where 𝑝𝑗 = 𝑀𝐴𝐹𝑗 is the minor allele frequency and 𝑞𝑗 = 1 − 𝑝𝑗, �̂�𝑦
2 is the variance of 

EduYears in the input GWAS, 𝑁𝑗 is the GWAS sample size, and �̂�𝑗 is the estimated 

dominance effect for SNP 𝑗. (Supplementary Note section 8 presents derivations for 

the expression for 𝑆𝐸𝑑,𝑗.) 

4.3 Dominance GWAS meta-analysis (𝑵 = 𝟐, 𝟓𝟕𝟒, 𝟐𝟓𝟑) 

We conducted a sample-size-weighted meta-analysis for 5,870,596 autosomal SNPs 

that passed the quality control thresholds and were available in both the 23andMe (𝑁 =
2,272,216) and UKB (𝑁 = 302,037) results using the following formula: 

𝑍𝑗 = 𝑍𝑗,23𝑎𝑛𝑑𝑀𝑒 ×√
𝑁𝑗,23𝑎𝑛𝑑𝑀𝑒

𝑁𝑗,23𝑎𝑛𝑑𝑀𝑒 + 𝑁𝑗,𝑈𝐾𝐵
+ 𝑍𝑗,𝑈𝐾𝐵 × √

𝑁𝑗,𝑈𝐾𝐵

𝑁𝑗,23𝑎𝑛𝑑𝑀𝑒 + 𝑁𝑗,𝑈𝐾𝐵
 

for SNP j with sample size 𝑁𝑗,𝑖 and Z-statistic 𝑍𝑗,𝑖 in 𝑖 = {𝑈𝐾𝐵, 23𝑎𝑛𝑑𝑀𝑒}. To gauge 

the magnitude of the estimated SNP effects (in units of �̂�𝑦, the standard deviation of 

the phenotype), we used the approximation given above in Supplementary Note 

section 4.2.3 for the standard errors, substituted �̂�𝑦 = 1, and calculated the effect sizes 

as 𝑑�̂� = 𝑍𝑗 ∙ 𝑆𝐸𝑑,𝑗.  

The quantile-quantile (Q-Q) plot of the P values for the estimates of the dominance 

effect 𝑑 from the meta-analysis (Panel a of Supplementary Figure 5) shows very little 

inflation (𝜆𝐺𝐶 = 1.01). Separately examining SNPs by MAF, there is little inflation 

among both common SNPs (MAF > 0.05; 𝜆𝐺𝐶 = 1.01) and among low-frequency SNPs 

(0.01 ≤ MAF ≤ 0.05; 𝜆𝐺𝐶 = 1.01) (Panel b of Supplementary Figure 5).  



We did not apply genomic control to the cohort-level results prior to meta-analysis. 

Instead, similar to what we did in the additive GWAS, after the meta-analysis we 

inflated the standard errors by the square root of the intercept from an LD score 

regression. However, LD scores are calculated differently for the dominance effect 𝑑 

because of the faster decay of information from tagged SNPs as a function of LD for 

dominance effects (see, e.g., ref. 34). The LD score regression was restricted to the set 

of HapMap3 SNPs with dominance LD scores estimated using the 1000 Genomes 

Phase 1 reference sample21. The estimates from the LD score regression suggest there 

is no or very little confounding and dominance genetic signal: the intercept of the LD 

Score regression is 1.006 (S.E. = 0.004), and the dominance heritability estimate is not 

statistically distinguishable from 0. 

Figure 1 in the main text shows a Manhattan plot for the estimates of 𝑑. There are no 

genome-wide-significant SNPs, though the SNP with the smallest P value, rs8057808 

on chromosome 16, is almost genome-wide significant, with P value = 6.07 × 10−8.  

These results suggest there is no or very little true dominance genetic variance for 

educational attainment. Consistent with this, Supplementary Note sections 4.5 and 4.6 

below will show that the bulk of the variation in our dominance GWAS estimates is 

due to sampling variation rather than to true genetic dominance signal, and that the 

estimates from the two largest cohorts in our meta-analysis (23andMe and the UKB) 

do not appear to be consistent. 

 

4.4 Statistical power to estimate dominance effects 

We now evaluate our statistical power to estimate dominance effects in our dominance 

GWAS.  

Consider the regression 

𝑦 = 𝜃0 + 𝑎𝑗𝑥𝑗 + 𝑑𝑗ℎ𝑗 + 𝑣𝑗 , 

where, as above, ℎ𝑗  is the (unstandardized) heterozygosity indicator and 𝑥𝑗 ∈ {0, 1, 2} 

is allele dosage. By the Frisch–Waugh–Lovell theorem, the estimate of 𝑑𝑗 and its 

standard error in the above regression will be identical to those in the following 

regression: 

𝑀𝑥𝑦 = 𝜃0
′ + 𝑑𝑗𝑀𝑥ℎ𝑗 + 𝑣𝑗 , 

where 𝑀𝑥 = 𝐼 − 𝑥𝑗(𝑥𝑗
′𝑥𝑗)

−1
𝑥𝑗
′ is the orthogonal projection matrix that projects off the 

space spanned by 𝑥𝑗, and 𝑀𝑥ℎ𝑗 is the residual from a regression of ℎ𝑗,std on 𝑥𝑗 – i.e., it 

is the part of ℎ𝑗,std that is orthogonal to 𝑥𝑗. Since 𝑥𝑗 explains no more than a minute 

fraction of the variation in 𝑦, we note that 𝑀𝑥𝑦 ≈ 𝑦.  

As we show at the end of this subsection, the  𝑅2 of the previous regression is 

(2𝑝𝑗𝑞𝑗𝑑𝑗)
2
Var(𝑦)⁄ = 𝜎𝐷,𝑗

2 Var(𝑦)⁄ , where as defined in Supplementary Note section 

4.1 𝜎𝐷,𝑗
2  is the dominance variance for SNP 𝑗.  In other words, the 𝑅2 is the share of the 

variance in 𝑦 that is accounted for by dominance variance for SNP 𝑗.  

Without loss of generality, let us work with the standarized versions of 𝑀𝑥𝑦 ≈ 𝑦 and 

of 𝑀𝑥ℎ𝑗, which we shall denote �̈� and 𝑀𝑥ℎ𝑗̈ . Let us rewrite the previous equation with 

the standarized variables: 



�̈� ≈ 𝜃0
′̈ + 𝑑�̈�𝑀𝑥ℎ𝑗̈ + �̈�𝑗. 

The power to obtain a significant estimate of 𝑑�̈� is given by 

Power = Prob (|
𝑑�̈�
̂

�̂�
𝑑�̈�
̂
| > 𝑧𝛼 2⁄ ) ≈ Prob(|

𝑑�̈� + 𝑧𝜎𝑑�̈�̂

�̂�
𝑑�̈�
̂

| > 𝑧𝛼 2⁄ )𝑦 

≈ Prob(|
𝑑�̈�

�̂�
𝑑�̈�
̂
+ 𝑧| > 𝑧𝛼 2⁄ )

= Prob(|√𝑁𝑑�̈� + 𝑧| > 𝑧𝛼 2⁄ ) 

where 𝑧𝛼 2⁄  is the critical value at the 𝛼 level of significance; the sampling variation in 

𝑑�̈�
̂  is approximately equal to 𝑧𝜎

𝑑�̈�
̂ , with 𝑧~𝑁(0,1), in sufficiently large samples by the 

Central Limit Theorem; and where 𝜎
𝑑�̈�
̂ = √Var(𝑀𝑥ℎ𝑗̈ ) 𝑁⁄ = √1 𝑁⁄  is the sampling 

variance of the estimator of 𝑑�̈�. Because the previous regression is a univariate 

regression with standardized variables, 𝑑�̈� = √𝑅𝑗
2, where 𝑅𝑗

2 is the regression’s 𝑅2. (As 

mentioned above, 𝑅𝑗
2 = 𝜎𝐷,𝑗

2 Var(𝑦)⁄  is the share of the variance in 𝑦 that is accounted 

for by dominance variance for SNP 𝑗.) Thus, we can write  

Power = Prob (|√𝑁𝑅𝑗
2 + 𝑧| > 𝑧𝛼 2⁄ ) 

= Prob (√𝑁𝑅𝑗
2 + 𝑧 > 𝑧𝛼 2⁄ ) + Prob (√𝑁𝑅𝑗

2 + 𝑧 < −𝑧𝛼 2⁄ ) 

= {Φ(√𝑁𝑅𝑗
2 − 𝑧𝛼 2⁄ )} + {1 −  Φ (√𝑁𝑅𝑗

2 + 𝑧𝛼 2⁄ )} 

where Φ(∙) is the cumulative distribution function of a standard normal variable. 



Using this formula, we find that for a sample size 𝑁 = 2,574,253 (the size of the 

dominance GWAS meta-analysis), we have 80% power to obtain a significant estimate 

at the genome-wide level of significance (𝛼 = 5 × 10−8) of a dominance effect for a 

SNP with a 𝑅2 of 1.54 × 10−5 (i.e., for a SNP for which dominance variance explains 

0.00154% of the variation in 𝑦).  

4.5 Decomposition of the variation in the estimates from our 

dominance GWAS meta-analysis  

In this section, we decompose the variation in the estimated dominance effect sizes into 

shares due to true signal due to dominance genetic variance and to sampling variation. 

Specifically, we decompose the variance in �̂�𝑗,std, which are standardized dominance 

effect-size estimates �̂�𝑗. �̂�𝑗,std is the estimate of the coefficient on ℎ𝑗,std from a 

regression of 𝑦std on 𝑥𝑗 and ℎ𝑗,std (and controls), where 𝑦𝑠𝑡𝑑 is the standardized 

phenotype, 𝑥𝑗 ∈ {0,1,2} is allele dosage, ℎ𝑗 ∈ {0,1} is the heterozygosity indicator that 

is equal to 1 if 𝑥𝑗 = 1 (and to 0 otherwise), and ℎ𝑗,std is ℎ𝑗  standardized to have mean 

0 and variance 1. Because the reference alleles are arbitrary, E[𝑑𝑗,std|𝑝𝑗 , 𝑁𝑗] =

E[�̂�𝑗,std|𝑝𝑗 , 𝑁𝑗] = 0. 

The estimated dominance effect sizes �̂�𝑗,std are equal to the true dominance effect sizes 

𝑑𝑗,std plus an error due to sampling variation: �̂�𝑗,std = 𝑑𝑗,std + 휀σ𝑑,𝑗, where 휀 has mean 

0 and unit variance (and is approximately normally distributed due to the Central Limit 

Theorem), and σ𝑑,𝑗
2  is the variance of the estimation error of the estimate of 𝑑𝑗,std. As 

we show in Supplementary Note section 8, σ𝑑,𝑗
2  is equal to 

1−2𝑝𝑗𝑞𝑗

𝑁𝑗2𝑝𝑗𝑞𝑗
, where 𝑁𝑗 is the 

sample size for SNP  𝑗, 𝑝𝑗 is the minor allele frequency of SNP 𝑗, and 𝑞𝑗 = 1 − 𝑝𝑗. 

By the Law of Total Variance, Var(�̂�𝑗,std) = E[Var(�̂�𝑗,std|𝑝𝑗, 𝑁𝑗)] +

Var(E[�̂�𝑗,std|𝑝𝑗 , 𝑁𝑗]), where the variances and expectations are taken across the SNPs. 

Proof that the 𝑹𝟐 of the regression 𝑴𝒙𝒚 = 𝜽𝟎
′ + 𝒅𝒋𝑴𝒙𝒉𝒋 + 𝒗𝒋 is 𝝈𝑫,𝒋

𝟐 𝐕𝐚𝐫(𝒚)⁄ =

(𝟐𝒑𝒋𝒒𝒋𝒅𝒋)
𝟐
𝐕𝐚𝐫(𝒚)⁄ . 

 

First, observe that Var(𝑀𝑥ℎ𝑗) = Var(ℎ𝑗 − 𝛾𝑥𝑗) = Var(ℎ𝑗 − (1 − 2𝑝𝑗)𝑥𝑗), where 𝛾 =
Cov(ℎ𝑗,𝑥𝑗)

Var(𝑥𝑗)
=

2𝑝𝑗𝑞𝑗(1−2𝑝𝑗)

2𝑝𝑗𝑞𝑗
= (1 − 2𝑝𝑗) is the coefficient on 𝑥𝑗 from a regression of ℎ𝑗 on a constant and 𝑥𝑗. 

Therefore,  

Var(𝑀𝑥ℎ𝑗) =  Var(ℎ𝑗) − 2(1 − 2𝑝𝑗)Cov(ℎ𝑗, 𝑥𝑗) + (1 − 2𝑝𝑗)
2
Var(𝑥𝑗) 

= 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗) − 2(1 − 2𝑝𝑗)2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗) + (1 − 2𝑝𝑗)
2
2𝑝𝑗𝑞𝑗 

= 2𝑝𝑗𝑞𝑗 [(1 − 2𝑝𝑗𝑞𝑗) − 2(1 − 2𝑝𝑗)
2
+ (1 − 2𝑝𝑗)

2
] 

= 2𝑝𝑗𝑞𝑗 [1 − 2𝑝𝑗𝑞𝑗 − (1 − 2𝑝𝑗)
2
] = 2𝑝𝑗𝑞𝑗 [1 − 2𝑝𝑗𝑞𝑗 − (𝑞𝑗 − 𝑝𝑗)

2
] 

= 2𝑝𝑗𝑞𝑗[1 − 2𝑝𝑗𝑞𝑗 − 𝑞𝑗
2 + 2𝑝𝑗𝑞𝑗 − 𝑝𝑗

2] = (2𝑝𝑗𝑞𝑗)
2. 

Thus, the 𝑅2 of the regression is 𝑑𝑗
2Var(𝑀𝑥ℎ𝑗) Var(𝑦)⁄ =  (2𝑝𝑗𝑞𝑗𝑑𝑗)

2 Var(𝑦)⁄ . And per the 

derivations in Section 4.1, this is equal to 𝜎𝐷,𝑗
2 Var(𝑦)⁄  – i.e., to the share of the variance in 𝑦 that 

is accounted for by dominance variance for SNP 𝑗. 

 



Here E[�̂�𝑗,std|𝑝𝑗 , 𝑁𝑗] = 0 for all 𝑝𝑗 and 𝑁𝑗 and E[Var(�̂�𝑗,std|𝑝𝑗, 𝑁𝑗)] =

E[Var(𝑑𝑗,std + 휀σ𝑑,𝑗|𝑝𝑗, 𝑁𝑗)] = E[Var(𝑑𝑗,std|𝑝𝑗 , 𝑁𝑗)] + E[σ𝑑,𝑗
2 ] = Var(𝑑𝑗,std) +

E[σ𝑑,𝑗
2 ], where the last equality follows from applying the Law of Total Variance to 

Var(𝑑𝑗,std) and from the fact that E[𝑑𝑗,std|𝑝𝑗, 𝑁𝑗] = 0 for all 𝑝𝑗 and 𝑁𝑗. Thus, 

Var(�̂�𝑗,std) = Var(𝑑𝑗,std) + E[σ𝑑,𝑗
2 ]. 

We do not observe Var(𝑑𝑗,std), but we can estimate Var(�̂�𝑗,std) and E[σ𝑑,𝑗
2 ] from the 

summary statistics. Thus, an estimator of the variance of the true dominance effect sizes 

𝑑𝑗,std is given by Var̂(𝑑𝑗,std) = Var̂(�̂�𝑗,std) − Ê[σ𝑑,𝑗
2 ], where Var̂ and Ê denote the 

sample variance and mean taken across the SNPs’ summary statistics.  

Supplementary Table 18 shows, for SNPs in various MAF bins, the quantities 

Var̂(�̂�𝑗,std), Ê[σ𝑑,𝑗
2 ], as well as Var̂(𝑑𝑗,std) expressed as a percentage of Var̂(�̂�𝑗,std). For 

this exercise, we used the unadjusted summary statistics from our overall meta-analysis 

of dominance variance, for all 5,870,596 SNPs that passed our quality control filters 

and with MAF > 0.01. 

As can be seen in Supplementary Table 18, our calculations imply that the variance 

of the true dominance effect sizes (Var̂(𝑑𝑗,std)) accounts for only 0.68% of the variation 

in the estimated effect sizes (Var̂(�̂�𝑗,std)) across all SNPs. In other words, the bulk of 

the variation in our GWAS estimates of the dominance effect size is attributable to 

sampling variation rather than to variation in the true dominance effect sizes across the 

SNPs.  

We note that the estimates of Var̂(𝑑𝑗,std) Var̂(�̂�𝑗,std)⁄  for some of the MAF bins are 

negative, because sampling variation can cause Var̂(�̂�𝑗,std) to be smaller than Ê[σ𝑑,𝑗
2 ]. 

As a (rough) gauge of the precision of our estimate of Var̂(𝑑𝑗,std) Var̂(�̂�𝑗,std)⁄ , we 

estimated that quantity separately for each autosome. The estimates were noisy, ranging 

from -7.85% on chromosome 16 to 6.22% on chromosome 8, with a mean of 0.09% 

and a standard deviation of 3.47%. 

To benchmark these quantities related to dominance variance in educational attainment, 

Supplementary Table 18 also shows analogous quantities related to additive variance: 

Var̂(�̂�𝑗,std), Ê[σ𝑗
2], as well as the estimated variance of the true additive effect sizes 

Var̂(𝛼𝑗,std) =  Var̂(�̂�𝑗,std) − Ê[σ𝑗
2], expressed as a percentage of Var̂(�̂�𝑗,std). (Here, σ𝑗

2 

is the variance of the estimation error of the estimates of 𝛼𝑗,std, and as Supplementary 

Note section 8 shows, σ𝑗
2 ≈

1

𝑁𝑗
.) For this, we used the unadjusted summary statistics 

from our GWAS of additive variance in the 23andMe cohort, for all 10,675,380 SNPs 

that passed our quality control filters and with MAF > 0.01. 

In contrast to our estimates from the dominance GWAS, our estimate from the additive 

GWAS implies that the bulk of the variation in the estimated additive effect sizes 

(Var̂(�̂�𝑗,std)) is due to variation in the true additive genetic signal (Var̂(𝛼𝑗,std)): we 

estimate that 79.77% of the variation in the estimated additive effect sizes is due to 

variation in the true additive effect size.  

These results suggest that there is very little dominance variance for educational 

attainment. 



4.6 Replications across our dominance GWAS of variance in the 

23andMe and UKB data 

Despite the relatively large size of the two cohorts in our dominance GWAS, UKB and 

23andMe, we do not have sufficient statistical power to individually replicate the 

estimates of the SNPs with the lowest P values from either cohort in the other cohort. 

Instead, we conducted a series of replication exercises to assess whether the estimates 

of the dominance effect 𝑑 for various subsets of SNPs appear to be broadly consistent 

across the two cohorts.  

We had preregistered these replication exercises (see https://osf.io/uegqv/) in the hope 

that they would help demonstrate that the estimates of 𝑑 are consistent across the two 

cohorts. In the end, however, these replication exercises mainly serve to demonstrate 

that the estimates are not particularly consistent, although there is evidence of some low 

degree of consistency compatible with a small amount of dominance variance. Thus, 

these exercises further support the conclusion that there is very little dominance 

variance for educational attainment. 

We closely followed the methods described in the preregistration document 

(https://osf.io/uegqv/). We highlight below the small modifications we made to the 

preregistered methods, but the key result—namely that neither the signs nor the 

significance of the estimates of 𝑑 appear to be consistent across the 23andMe and UKB 

cohorts—also holds if we strictly follow the methods in the preregistration document.  

To assess whether the estimates of 𝑑 are consistent across the 23andMe and UKB 

cohorts, we defined the set of “𝑋-threshold lead SNPs” from our 23andMe GWAS as 

the set of approximately independent (𝑟2 < 0.1) SNPs whose estimates of 𝑑 have 

(adjusted) P values less than 𝑋 in our dominance GWAS in the 23andMe data, for a 

given P value threshold 𝑋.16 In our “23andMe → UKB” replication, we assessed 

whether the corresponding estimates of 𝑑 in the UKB data for the 𝑋-threshold lead 

SNPs for various thresholds 𝑋 tend to have the same signs (test (i)) and tend to have 

the same signs and P values smaller than 0.1 (test (ii)). In our “UKB → 23andMe” 

replication, we repeated this exercise, this time comparing the estimates of 𝑑 for the 𝑋-
threshold lead SNPs from our UKB GWAS to their estimates in the 23andMe data. 

We begin by describing the replication tests (i) and (ii) in more detail. We then report 

the results of the actual replication exercises. Finally, we describe a set of simulations 

we conducted to benchmark the results of replications. Supplementary Note section 8 

describes the empirical Bayesian model we used to estimate the posterior distributions 

of 𝑑 and which we used in our simulations.  

 
16 We used our main clumping algorithm, which we also used to identify the additive GWAS lead SNPs 

(see Supplementary Note section 2.2.6), to generate the 𝑋-threshold lead SNPs. The only difference is 

that the clumping process was iterated until no SNP with a P value less than 𝑋 (instead of 5 × 10−8) 

remained. Also, to maximize the number of SNPs used for these replication exercises, we applied our 

clumping algorithm to the set of SNPs that are present in both the UKB and the 23andMe data. We 

applied that clumping algorithm to the adjusted summary statistics, in which the standard errors have 

been inflated by the square root of the LD score regression intercept (and where modified LD scores 

computed for the dominance effect 𝑑 were used in the LD score regression). 

https://osf.io/uegqv/
https://osf.io/uegqv/


4.6.1 Binomial replication tests  

For each of our two cross-cohort replications, we followed the framework of Karlsson 

Linnér et al. (2019)28 and conducted two series of binomial tests of the null hypothesis 

that all the 𝑋-threshold lead SNPs are null dominance SNPs (i.e., 𝑑𝑗 = 0 for all SNPs 

𝑗). In the first series of binomial tests, we assessed for the 𝑋-threshold lead SNPs for 

various thresholds 𝑋 whether the estimates of 𝑑𝑗 have concordant signs in the 

replication GWAS (condition (i), which corresponds to test (i)). In the second series of 

binomial tests, we assessed for the 𝑋-threshold lead SNPs for various thresholds 𝑋 

whether the estimates of 𝑑𝑗 have concordant signs and (adjusted) P values smaller than 

0.1 in the replication GWAS (condition (ii), which corresponds to test (ii)). Under the 

null hypothesis of no dominance variance, we would expect 50% of the 𝑋-threshold 

lead SNPs to satisfy condition (i) and 50% × 0.1 = 5% to satisfy condition (ii).  

Because the 𝑋-threshold lead SNPs are approximately independent (pairwise r2 < 0.1), 

the number of 𝑋-threshold lead SNPs that satisfy condition (i) or (ii) can be modeled as 

a series of coin flips, where the probability of a “success” is 0.5 for condition (i) and 

0.05 for condition (ii). Let k denote the total number of 𝑋-threshold lead SNPs 

satisfying conditions (i) or (ii). It follows that under the null hypothesis 

𝑘 ~ Binomial(𝑀, 𝑝), where M is the total number of 𝑋-threshold lead SNPs and 𝑝 is 

the probability of condition (i) or (ii) occurring for a SNP (i.e., 0.5 or 0.05). For both 

binomial tests, we used one-sided tests of the null hypothesis because we are 

specifically interested in testing for a larger share of SNPs satisfying condition (i) or 

(ii) relative to what is expected under the null. 

As we discuss below, our simulations show that the P-value threshold 𝑋 that maximizes 

statistical power for either test depends on the assumed value of 𝜔, which corresponds 

to the fraction of SNPs that are nonnull dominance SNPs in our empirical Bayesian 

model of the posterior distribution of 𝑑𝑗 (which we describe in Supplementary Note 

section 8). Because we do not know the true value of 𝜔, for each of our two planned 

cross-cohort replications we conducted tests (i) and (ii) for the 𝑋-threshold lead SNPs 

for the P value thresholds 1, 0.01, 10-4, and 10-6.  

4.6.2 Replication results 

Panels A.1.i, A.2.i, B.1.i, and B.2.i of Supplementary Table 19 show the results of the 

replication exercises. We fail to reject the null hypothesis that there is no dominance 

genetic signal at the 5% level of significance in 11 of the 16 replication tests. (For both 

the 23andMe → UKB and the UKB → 23andMe replication, we conducted tests (i) and 

(ii) for four different P value thresholds, so there is a total of 16 tests.) 3 of the 5 

significant replication tests were with the P-value threshold 10-6 and involved only a 

single SNP (for the UKB → 23andMe replication) or only 3 SNPs (for the 23andMe → 

UKB); this suggests that those SNPs may be have non-null dominance effects, although 

those successful results may also be the result of chance given the small number of 

SNPs involved. Only 2 of the 12 tests involving the P-value thresholds 1, 0.01, and 10-

4 (and thus involving more than 100 SNPs) were significant, which is a little more than 

one would expect if the data only captured noise and is thus also suggestive that there 

some true, but very weak, dominance signal.   



4.6.3 Simulation framework to estimate the expected replication record 

While most of the 16 replication tests were not significant, this could in principle be 

due to lack of statistical power. To evaluate this possibility, we conducted simulations 

of the replications. For each replication, we estimated the statistical power of tests (i) 

and (ii) for the P value thresholds 1, 0.01, 10-4, and 10-6. Our approach and presentation 

are similar to those in Supplementary Note section 4 of the Supplementary Information 

of Karlsson Linnér et al. (2019)28, with adjustments to the empirical Bayesian model 

for a dominance (rather than additive) GWAS.  

Our simulations of the UKB → 23andMe replication assume that 1% of the variation in 

the estimates �̂�𝑗,std from our UKB dominance GWAS is due to true dominance signal, 

and our simulations of the 23andMe → UKB replication assume that 1% of the variation 

in the estimates �̂�𝑗,std from our 23andMe dominance GWAS is due to true dominance 

signal (and that the rest is due to sampling variation). We find that, even if true 

dominance signal explains that little of the variation in the estimates �̂�𝑗,std, most of our 

binomial replication tests should be reasonably well powered for many of the P value 

thresholds. This, together with the non-significance of many of our well-powered 

replication tests, suggests that less than 1% of the variation in the estimates �̂�𝑗,std from 

our UKB and 23andMe dominance GWAS is due to true dominance signal. This is 

consistent with our above result that only 0.68% of the variation in the estimates �̂�𝑗,std 

from our overall dominance GWAS meta-analysis is due to true signal. 

4.6.4 Estimating κ2  

The simulations are based on an empirical Bayesian model of the distribution of 𝑑𝑗 (see 

Supplementary Note section 8). A key parameter in our empirical Bayesian model is 

𝜅2, which captures the variance of “nonnull dominance SNPs” (i.e., the SNPs for which 

𝑑𝑗 ≠ 0). We began by estimating the parameter 𝜅2 for various assumed values of 𝜔. 𝜔 

is the fraction of SNPs that are nonnull dominance SNPs, and the estimate of 𝜅2 

depends on 𝜔. 

As we show in Supplementary Note section 8, our estimator of 𝜅2 for a given assumed 

value of 𝜔 is  

�̂�2 = (Var̂(�̂�𝑗,std) − Ê[σ𝑑,𝑗
2 ]) 𝜔⁄ = Var̂(𝑑𝑗,std) 𝜔⁄ , 

where the second equality follows from the derivations in Supplementary Note section 

4.5 above.  

In Supplementary Note section 4.5, we decomposed the variation in the estimates �̂�𝑗,std 

from our dominance GWAS meta-analysis and found that variation in the true 

dominance effect sizes 𝑑𝑗,std accounts for only 0.68% of the variation in �̂�𝑗,std, thus 

implying small estimates of 𝜅2. 

For the UKB → 23andMe replication, we estimated 𝜅2 for various assumed values of 

𝜔 using the (unadjusted; see Supplementary Note section 8.5) summary statistics from 

our GWAS of dominance variance in the UKB data for all 5,870,596 SNPs that have 

data in both the 23andMe and the UKB summary statistics and that passed our quality 

control filters. Our estimate is 𝜔�̂�2 = Var̂(𝑑𝑗,std) = 2.86 × 10−7, which implies that 

1.33% of the variation in �̂�𝑗,std is due to true dominance genetic signal. For the 



23andMe → UKB replication, we estimated 𝜅2 using the (unadjusted) summary 

statistics from our GWAS of dominance variance in the 23andMe data, again using the 

5,870,596 SNPs that have data in both the 23andMe and the UKB summary statistics 

and that passed our quality control filters. Our estimate is 𝜔�̂�2 = Var̂(𝑑𝑗,std) =

1.42 × 10−8, which implies that 0.48% of the variation in �̂�𝑗,std is due to true dominance 

genetic signal. 

We note that the estimates of 𝜅2 appear to be quite imprecise. To illustrate this, we 

estimated 𝜅2 separately for each autosome for the case when 𝜔 = 1. In the 23andMe 

data the mean 𝜅2 across the autosomes is 5.15 × 10−9, with a standard deviation of 

1.09 × 10−7 and minimum and maximum values of −2.30 × 10−7 and 2. 19 × 10−7. 

In the UKB the mean 𝜅2 across the autosomes is 1.56× 10−7, with a standard deviation 

of 6.98 × 10−7 and minimum and maximum values of −1.50 × 10−6 and 1.63 × 10−6. 

Since our estimates of 𝜅2 are imprecise, we simply assumed in our simulation that 1% 

of the variation in the estimates �̂�𝑗,std from our UKB dominance GWAS, as well as in 

the estimates �̂�𝑗,std from our 23andMe dominance GWAS, is due to variation in the true 

dominance effect sizes 𝑑𝑗,std (and that the rest is due to sampling variation). For our 

simulation of the UKB → 23andMe replication, this implies that 𝜔𝜅2 = 2.15 × 10−7 

in the UKB data; for our simulation of the 23andMe → UKB replication, this implies 

that 𝜔𝜅2 = 2.98 × 10−8 in the 23andMe data. 

Simulation for the UKB → 23andMe replication  

We first describe our simulation of the UKB → 23andMe replication.  

For each of the four P value thresholds and each assumed value of 𝜔, we used 

simulations to estimate the statistical power of tests (i) and (ii), the expected replication 

record �̂�[𝐶(i)] and �̂�[𝐶(ii)] for tests (i) and (ii), and the standard deviations of 𝐶(i) and 

𝐶(ii), where 𝐶(i) and 𝐶(ii) are the number of 𝑋-threshold lead SNPs satisfying conditions 

(i) and (ii) for a given threshold. To do so, we used the replication simulation framework 

as well as the empirical Bayesian model of the posterior distribution of 𝑑𝑗, both of 

which are described in detail in Supplementary Note section 8. Our estimate of the 

statistical power of tests (i) and (ii) is the fraction of the simulations in which the 

corresponding null is rejected at the 5% level. As mentioned above we assume that 

𝜔𝜅2 = 2.15 × 10−7 in the UKB data for these simulations.  

Simulation for the 23andMe → UKB replication 

For the 23andMe → UKB replication, we had conducted and reported the results of 

simulations in the preregistration document (https://osf.io/uegqv/) using an earlier 

estimate of 𝜔𝜅2 in the 23andMe data. We reran those simulations following using the 

methodology described above for the UKB → 23andMe replication and assuming that 

𝜔𝜅2 = 2.98 × 10−8 in the 23andMe data, as mentioned above17. 

 
17 Our methodology for the simulations in the preregistered document was analogous to the one we 

followed here, except that we had applied the clumping algorithm to all 23andMe SNPs instead of to the 

set of SNPs that are present in both the UKB and the 23andMe data. Furthermore, we had used an earlier 

estimate of 𝜔𝜅2 in the 23andMe data, and we had not inflated the simulated standard errors in the 

replication data by the square root of the LD score regression intercept (see Supplementary Note section 

8). 

https://osf.io/uegqv/


4.6.5 Simulation results 

Panels A.1.ii, A.2.ii, B.1.ii and B.2.ii of Supplementary Table 19 show how the 

statistical power of tests (i) and (ii) varies as a function of the assumed value of 𝜔 and 

of the P value threshold for the UKB → 23andMe and the 23andMe → UKB replication. 

As can be seen, power for both tests ranges from close to 0 to 100% depending on 𝜔 

and the P value threshold18.  

Importantly, as can be seen in Panels A.1.ii, for replication test (i) (the sign test) for the 

UKB → 23andMe, for every value of 𝜔 except 𝜔 = 10−4, there is a P value threshold 

for which estimated power equals 100%; and even for 𝜔 = 10−4, estimated power 

equals 76.9% for the P value threshold P < 10−6. In other words, under the assumption 

that 1% of the variation in the UKB dominance GWAS summary statistics is due to 

true dominance signal and as long as 𝜔 ≥ 10−3, our simulations suggest that the null 

hypothesis should have been rejected with near certainty on test (i) for at least one of 

the P value thresholds; and if 𝜔 = 10−4, the null hypothesis was likely to be rejected 

for one of the thresholds. Consistent with this, the null hypothesis was rejected at the P 

value thresholds 1 and 10-6 (although the test with the latter threshold involved only 

one SNP), thus suggesting our dominance GWAS estimate captures at least some true 

dominance signal.  

As can be seen in Panels A.2.ii, test (ii) is also well-powered for the UKB → 23andMe 

replication, with estimated power equal to 100% for at least one P value threshold if 

𝜔 ≥ 10−3. In fact, estimated power exceeds 80% for all values of 𝜔 for the P value 

threshold 10-4, so that test was well-powered regardless of 𝜔; despite this, that test was 

not significant (𝑃 = 0.33), thus suggesting that true signal accounts for less than 1% of 

the variation in the UKB dominance GWAS summary statistics.    

As can be seen from Panels B.2.i and Panels B.2.ii, the 23andMe → UKB replication is 

also well-powered, albeit a bit less so than the UKB → 23andMe replication. 

Panels A.1.iii, A.2.iii, B.1.iii and B.2.iii of Supplementary Table 19 show the 

expected replication record for tests (i) and (ii), as a function of the assumed value of 

𝜔 and of the P value threshold. For ease of interpretation, the expected replication 

record is expressed as the expected fraction of 𝑋-threshold lead SNPs that will pass 

tests (i) and (ii) (i.e, �̂�[𝐶(i)/𝑀] and �̂�[𝐶(ii)/𝑀]), and the standard deviations of 𝐶(i)/𝑀 

and 𝐶(ii)/𝑀 are shown in parentheses. The null hypothesis for test (i) is that 
𝐶(i)

𝑀
= 0.5, 

and the null hypothesis for test (ii) is that 
𝐶(ii)

𝑀
= 0.05, where 𝑀 is the number of 𝑋-

threshold lead SNP for the P value threshold used for the test.  

In sum, our simulations of the UKB → 23andMe and 23andMe → UKB replications 

suggest that the replication tests were reasonably well powered, if at least 1% of the 

variation in the UKB and 23andMe dominance GWAS summary statistics were due to 

true dominance signal. Although some replication tests were significant at the 5% level 

of significance, other well-powered tests were not, thereby suggesting that less, or no 

more than, 1% of the variation in the UKB and 23andMe dominance GWAS summary 

statistics is due to true dominance signal. 

 
18 Also note that the power-maximizing P value threshold depends on the assumed value of 𝜔. We had 

reached the same conclusion with our simulations of the 23andMe → UKB replication in the 

preregistration document available at https://osf.io/uegqv/, and this is the reasons why we did not select 

a single threshold but rather conducted tests (i) and (ii) for the P value thresholds 1, 0.01, 10-4, and 10-6. 

https://osf.io/uegqv/


4.7 Directional dominance (inbreeding depression) 

This section summarizes the theory and estimation strategy devised to quantify 

directional dominance from summary statistics of dominance GWAS. The method 

described here was developed in Yengo et al. (2021)41
  and is extensively detailed in 

Supplementary Note 3 of their manuscript. 

4.7.1 Background 

The expected number of offspring an individual will contribute to the next generation 

is classically called Darwinian fitness, or just fitness. Fitness depends on many 

phenotypes, referred to as fitness components, such as infertility, stature, lung function 

and intelligence.  

Offspring of genetically related individuals often exhibit reduced fitness32,42,43 as a 

consequence of a phenomenon known as inbreeding depression (ID). ID affects most 

fitness components (including cognitive performance) and has been shown to be largely 

caused by partially recessive alleles, whose deleterious effects on fitness occur as a 

result of increased homozygosity due to inbreeding39,44. 

For a phenotype subject to ID whose causal alleles do not interact between different 

loci, theory predicts that the phenotypic value of an individual declines linearly with 

respect to the individual’s inbreeding coefficient39. The inbreeding coefficient of an 

individual, classically denoted 𝐹, denotes the kinship coefficient, or one half the 

coefficient of relationship, between that individual’s parents. For example, the 

offspring of two unrelated individuals has 𝐹 =  0, while the offspring of two first-

cousins has an expected inbreeding coefficient 𝐹 = 0.0625. 

Conditional on inbreeding coefficient 𝐹𝑖, the expected heterozygosity of an individual 

𝑖 at SNP 𝑗 is 𝐸[ℎ𝑖𝑗|𝐹𝑖]  =  2𝑝𝑗𝑞𝑗(1 − 𝐹𝑖), while the expected allele dosage 𝐸[𝑥𝑖𝑗|𝐹𝑖] =

2𝑝𝑗  does not depend on 𝐹𝑖. Therefore, for a phenotype subject to ID, 𝑦𝑖, controlled by 

𝑀 causal variants and defined as 

𝑦𝑖  =  𝜇 + ∑(𝑎𝑗𝑥𝑖𝑗 + 𝑑𝑗ℎ𝑖𝑗)

𝑀

𝑗=1

+ 𝑒𝑖, 

it follows that 

𝐸[𝑦𝑖|𝐹𝑖]  =   (𝜇 + ∑(𝑎𝑗(2𝑝𝑗) + 𝑑𝑗(2𝑝𝑗𝑞𝑗))

𝑀

𝑗=1

) − (∑𝑑𝑗(2𝑝𝑗𝑞𝑗)

𝑀

𝑗=1

)𝐹𝑖  

≡   𝜇′ +  𝑏𝐹𝑖 . 

Consequently, a more formal definition of ID (in the population) is given by 

𝑏 = −(∑2𝑝𝑗𝑞𝑗𝑑𝑗

𝑀

𝑗=1

). 

This last equation predicts the phenotypic reduction expected in fully inbred individuals 

(F = 1) and highlights that dominance effects (𝑑𝑗) — that is, the effects of 

heterozygosity — need to be on average positive for ID to occur. This is the reason why 

ID is sometimes referred to as “directional dominance”.  



4.7.2 Estimation of ID from dominance GWAS summary statistics 

ID is classically estimated from individual-level data as the slope (𝑏) of the linear 

regression of the phenotype of interest on F. In practice, because pedigree information 

is scarce, F is often estimated from SNP data using methods like runs of homozygosity45 

and the genome-wide average of the per-SNP estimate of F23. Among the latter, one 

popular SNP-based measure of F, denoted in Yengo et al. (2017)46 as 𝐹𝑈𝑁𝐼, is defined 

for a set of 𝑀𝑆𝑁𝑃 SNPs as: 

𝐹𝑈𝑁𝐼 =
1

𝑀𝑆𝑁𝑃
 ∑

𝑥𝑘
2 − (1 + 2𝑝𝑘)𝑥𝑘 + 2𝑝𝑘

2

2𝑝𝑘(1 − 𝑝𝑘)

𝑀𝑆𝑁𝑃

𝑘=1

. 

𝐹𝑈𝑁𝐼 has useful statistical properties such as (1) minimal variance over the class of per-

SNP measures of F and (2) orthogonality to alleles counts (under Hardy-Weinberg 

equilibrium), which makes it more robust to population stratification23,46 (population 

stratification is classically captured by genetic principal components, which are linear 

combinations of allele counts).  

We define 𝑏𝑈𝑁𝐼 as the regression slope obtained from regressing the phenotype of 

interest (𝑦) on 𝐹𝑈𝑁𝐼 across individuals. When the allele frequency and LD distributions 

of causal variants do not differ from those of SNPs used to calculate 𝐹𝑈𝑁𝐼, Yengo et al. 

(2017)46 showed that 𝑏𝑈𝑁𝐼 is an unbiased estimator of ID, i.e., 𝐸[𝑏𝑈𝑁𝐼|𝐹𝑈𝑁𝐼] = 𝑏. 

Under Hardy-Weinberg equilibrium, Yengo et al. (2021)41 further established a 

connection between estimation of ID using 𝐹𝑈𝑁𝐼 and the summary statistics from a 

dominance GWAS. They did so by showing that the expectation of the Z-statistic 𝑍𝑑,𝑘 

(i.e., estimated effect divided by its standard error) of the OLS estimator of the 

dominance effect at SNP 𝑘 is given by 

𝐸[𝑍𝑑,𝑘] = −√𝑁 (
𝑏𝑈𝑁𝐼
𝑀𝐿𝐷

) ℓ𝑘, 

where 𝑁 is the dominance GWAS sample size and ℓ𝑘 is the standard LD score of SNP 

𝑘 as defined in Bulik-Sullivan et al. (2014). This equation is akin to the LD score 

regression model used to estimate SNP-based heritability20. Assuming an infinitesimal 

model where all SNPs are causal, 𝑀𝐿𝐷 can be chosen to be the number of SNPs for 

which LD scores are available. Analogous to LD score regression, 𝑏𝑈𝑁𝐼 can estimated 

by regressing 𝑍𝑑,𝑘 on −√𝑁ℓ𝑘/𝑀 across SNPs. These estimates of ID are expressed in 

phenotypic standard deviations. 

We used the LDSCdom software (https://github.com/loic-yengo/LDSCdom), which 

implements a weighted least squares estimator of 𝑏UNI. The weights are proportional to 

1/ℓ𝑘. Standard errors of the estimated slope (𝑏UNI) and intercept are obtained using a 

block-jackknife procedure based on 289 ~10 Mb-long pre-defined chromosomal 

segments. (This number of blocks in slightly larger than the 200 blocks used in LDSC, 

yet still minimises the effect of long-range LD over using shorter blocks (e.g., ~2 Mb-

long segments).) 

https://github.com/loic-yengo/LDSCdom


4.7.3 Analysis of summary statistics from the UKB and 23andMe 

We analyzed the unadjusted19 dominance GWAS summary statistics from the UKB and 

23andMe using two different sets of LD scores for those analyses. The first set contains 

LD scores of 1,290,028 SNPs with MAF > 1% calculated from the genotypes of 378 

European-genetic-ancestry participants of the 1,000 Genomes Project (1KG).  1KG LD 

scores were downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/. 

The second set contains LD scores, calculated using GCTA, for 9,326,609 SNPs with 

MAF > 1% imputed in 348,501 unrelated European-genetic-ancestry participants of the 

UKB.   

We report in Supplementary Table 20 the estimates of ID for each cohort separately 

as well as the inverse-variance-weighted meta-analysis of these two estimates. Overall, 

we found a good consistency between ID estimates obtained using either the 1KG or 

the UKB LD scores. Therefore, we hereafter only comment on ID estimates based on 

the UKB LD scores, which have smaller standard errors. Results are in units of standard 

deviations of EA. 

We found significant evidence of ID in EA using the UKB GWAS summary statistics 

(�̂�UKB ~ -1.71; S.E. = 0.6; P = 0.004). However, we did not replicate that result in the 

23andMe summary statistics despite a sign-consistent estimate of ID (�̂�23andMe ~ -
0.24; S.E. = 0.2; P = 0.26). The smaller magnitude in the 23andMe cohort may be due 

to stronger ascertainment on high EA in 23andMe, which would be expected to reduce 

the magnitude of ID. Next, we meta-analyzed these two estimates and obtained a 

marginally significant combined estimate of ID, �̂�META ~ -0.41 (S.E.  = 0.6; P = 0.04).  

Note that the Cochran’s heterogeneity statistic is I2 ~ 81.5%, which is consistent with a 

difference in ID estimates between UKB and 23andMe. 

Our meta-analyzed estimate of ID implies a 0.41 standard-deviation reduction of EA in 

fully inbred individuals, relative to the population mean. Equivalently, in a population 

where the variance of EA is ~10 years (the sample-size weighted average variance 

across our two samples), the EA of offspring of first cousins (F = 0.0625) would be 

expected to be ~1.0 month lower (−0.41 × 0.0625 × √10 × (12 months)) than that 

of the offspring of unrelated individuals.  

4.7.4 Reconciling evidence of directional dominance with evidence of 

negligible dominance variance 

Consistent with previous studies based on individual-level regression of EA on the 

inbreeding coefficient32,43, we have reported evidence of directional dominance effects 

on EA. We note that our meta-analyzed estimate of ID is considerably smaller than 

those reported in those previous studies. For instance, the main estimate from Clark et 

al.32 is �̂� = −1.54, which implies that a 1.54 standard-deviation reduction in EA in fully 

inbred individuals (vs. our meta-analyzed estimate of �̂� = −0.41). However, that 

difference is driven by our estimate in the 23andMe data: our UKB estimate is 

�̂�UKB ~  − 1.71, which is similar to Clark et al.’s estimate. 

This evidence of directional dominance for EA supports the presence of non-zero 

dominance effects and thus seem to contradict our finding of negligible dominance 

 
19 I.e., the summary statistics were not adjusted by inflating the standard errors by the square root of the 

LD score regression intercept.  

https://data.broadinstitute.org/alkesgroup/LDSCORE/


variance for EA. We reconcile these two observations by considering a simplified 

scenario where EA is controlled by 𝑀 causal SNPs with constant dominance effects 

and constant allele frequencies, i.e., 𝑑𝑗 ≡ 𝑑 and 𝑝𝑗 ≡ 𝑝.  

Under these assumptions, ID is defined as 𝑏 = 2𝑀𝑝𝑞𝑑, which is equivalent to 2𝑝𝑞𝑑 =
(𝑏/𝑀). Therefore, the dominance variance 𝜎𝑑

2, defined as the sum over all 𝑀 causal 

variants of the (2𝑝𝑗𝑞𝑗𝑑𝑗)
2
 terms, can be expressed under our simplified assumption as 

𝜎𝑑
2 = 𝑀(𝑏/𝑀)2 = 𝑏2/𝑀. Thus, 𝜎𝑑

2 is expected to be non-zero yet vanishingly small 

(on the order of 1/𝑀) for highly polygenic phenotypes such as EA. This result was first 

shown by Robertson and Hill33. 

In conclusion, our observations are not contradictory and are likely explained by the 

high degree of polygenicity of EA. 

 

  



5 Predicting EA and cognitive performance 

In this section, we examine polygenic indexes (PGIs) derived from the autosomal 

GWAS of additive variation described in Supplementary Note section 2. We assess 

empirically how well they predict a host of phenotypes related to educational 

attainment, academic achievement, and cognition in European-genetic-ancestry 

holdout cohorts. We begin by describing the methodology used to generate the PGIs 

analyzed in this section. We continue by describing the phenotypes that we analyze in 

our three holdout cohorts: the Health and Retirement Study (HRS), the National 

Longitudinal Study of Adolescent to Adult Health (Add Health), and the Wisconsin 

Longitudinal Study (WLS). Next, we describe the control variables that we include in 

our analyses and define our measure of prediction accuracy. In the final subsection, we 

present the results. 

5.1 Constructing the polygenic indexes 

LDpred PGIs. The analyses in this section are based on summary statistics from a meta-

analysis that excludes HRS, Add Health and WLS. To make fair comparisons across our 

holdout cohorts, we restrict the set of markers included in the PGIs to HapMap3 SNPs. 

We use HapMap3 SNPs because these SNPs are generally well imputed and provide 

good coverage in European-genetic-ancestry individuals. 

Our main PGIs are derived using a Bayesian approach implemented in the software 

LDpred (v. 1.0.11)47, which explicitly models genetic architecture and sets the weight 

for each variant equal to the mean of its posterior effect-size distribution after 

accounting for LD. Following EA32, we assume a Gaussian prior for the distribution of 

effect sizes. Our pipeline deviates from EA3 in the following settings: 

- Rather than using cohort-specific genotype data, we estimate LD patterns in a 

sample of 14,028 individuals and 1,214,408 HapMap3 SNPs from the public 

release of the Haplotype Reference Consortium (HRC) reference panel16 that 

remained after the following QC filters: (i) SNP call rate > 0.98, (ii) sample call 

rate > 0.98, (iii) genetic relatedness coefficient from plink1.922 < 0.025, and (vi) 

plink1.9 --neighbor Z score > -5. We opt for using the HRC data as our 

reference sample because using sequenced (as opposed to imputed) data would 

likely allow us to estimate LD patterns more accurately.  

- We use the –-z-from-se option in LDpred, which allows the program to 

obtain Z statistics from GWAS coefficients and their standard errors, as opposed 

to the default option of obtaining them using P values. We use this option 

because we have encountered issues with extremely low P values being rounded 

down to 0 by LDpred, making it impossible to obtain the Z statistics. As a result, 

SNPs with the strongest signal of association with the phenotype would be 

dropped from the analysis. 

- In EA3 we applied a call rate filter of > 0.98 to the genotype data of prediction 

cohorts, but in this paper we do not apply any call rate filter. The reason for 

applying the call rate filter in EA3 was that we were using cohort-specific 

genotype data for the estimation of LD patterns; estimating LD using SNPs with 

low call rate could lead to errors. Since we use the HRC reference panel 

described above for LD estimation in the current study, no filters on the cohort 

genotype data were necessary in addition to those that are applied by default by 



LDpred (MAF > 0.01 and the allele frequency discrepancy between the meta-

analysis and the prediction cohort does not exceed 0.15).  

In the Add Health data imputed to the HRC reference panel16, there are a total of 

1,211,662 HapMap3 SNPs. Of these, 1,201,142 are available in both the GWAS 

summary statistics and the HRC reference panel that we use to estimate LD patterns. 

6,231 SNPs are dropped by LDpred due to mismatching nucleotides, 24,126 due to low 

MAF, and 110 due to allele frequency discrepancy with the GWAS summary statistics, 

leaving 1,194,911 SNPs that are used to construct the Add Health PGI. 

The HRS  and WLS data are imputed to the 1000 Genomes Phase 3 reference panel21. 

In HRS, there are 1,216,798 HapMap3 SNPs. Of these, 1,202,197 are available in the 

GWAS summary statistics and the HRC reference panel. 40,780 SNPs are dropped by 

LDpred due to mismatching nucleotides, 23,843 due to the low MAF, and 94 due to 

allele frequency discrepancy with the GWAS summary statistics, leaving 1,161,417 

SNPs that are used to construct the HRS PGI. In WLS, there are 1,209,437 HapMap3 

SNPs, 1,197,043 of which are common across all three data sets. 7,283 SNPs get filtered 

out due to mismatching nucleotides, 23,946 due to low MAF, and 84 due to MAF 

discrepancy. The remaining 1,189,760 SNPs are used to construct the WLS PGI. 

We obtain the PGIs for European-genetic-ancestry individuals in Plink227 by 

multiplying the genotype probabilities at each SNP by the corresponding estimated 

posterior mean calculated by LDpred, and then summing over all included SNPs. We 

identify European-genetic-ancestry individuals based on the first four principal 

components of the genetic data of each cohort. In order to obtain the principal 

components, for each cohort, we first convert the imputed genotype probabilities for 

HapMap3 SNPs into hard calls. Then, we merge the data with all samples from the third 

phase of the 1000 Genomes Project21, restricting to SNPs that had a call rate greater 

than 99% and MAF greater than 1% in the merged sample. We calculate the PCs for 

the 1000 Genomes subsample and project the remaining individuals onto these PC 

weights. Finally, we plot the first four PCs against each other and visually identify 

individuals that cluster together with the 1000 Genomes EUR sample. 

LDpred PGI for African-genetic-ancestry individuals in the HRS and Add Health. In 

order to examine how well a PGI for years of education predicts EduYears among 

African-genetic-ancestry individuals, we construct an LDpred PGI for African-genetic-

ancestry individuals in HRS and Add Health using the same LDpred weights described 

above. We identify the African-genetic-ancestry individuals following the identical 

procedure that we use for European-genetic-ancestry individuals (as described in the 

previous paragraph) but using the 1000 Genomes AFR sample. 

Clumping and Thresholding PGIs. In addition to our main LDpred PGIs, we analyze 

several PGIs made using the “clumping and thresholding” (C+T)48 method. In order to 

make these PGIs, we first clump our meta-analysis excluding Add Health, HRS and 

WLS using the algorithm for obtaining lead SNPs described in Supplementary Note 

section 2.2.6 but without a P value cutoff. Then, from this set of “approximately 

independent” SNPs, we select SNPs that have association P values less than 5 × 10−8, 

5 × 10−5, 5 × 10−3, and 1 (i.e., all SNPs). For each set of SNPs, we obtain PGIs using 

Plink227 as weighted sums of genotype probabilities at each SNP in the set, where the 

weights are set equal to the coefficient estimates from the meta-analysis. 

X chromosome PGI. We also examine, in HRS, a PGI made using only the SNPs on the 

X chromosome. We conducted this analysis only in HRS because we did not have 



imputed genotypes for the X chromosome in Add Health. We made the PGI by applying 

the C+T methodology described above (see Supplementary Note section 3.4 for 

details on the clumping procedure for the X chromosome) with a P value cutoff of 1 to 

our X chromosome meta-analysis. Prior to clumping, we restricted the set of SNPs in 

the summary statistics to those available in HRS genotype data.  

5.2 Phenotypes 

We supplement the education and cognition outcomes that we analyzed in EA3 with an 

academic achievement outcome in WLS that we have not examined before: high school 

grades percentile rank. We also incorporate new waves of data from HRS that have been 

made available since EA3 was published. Below, we describe in detail how each 

outcome was constructed.  

5.2.1 Education outcomes 

We analyze education outcomes in HRS and Add Health, both of which provide 

comparable measures of completed education. Our main education phenotype is years of 

education (EduYears). In additional analyses of both the Add Health and HRS samples, we 

consider three binary variables related to educational attainment: (i) High School 

Completion, (ii) College Completion, and (iii) Grade Retention (i.e., retaking a grade). We 

omit WLS from the analysis of education outcomes because WLS has a truncated 

distribution of EduYears. 

Add Health: We obtain the EduYears variable using the following survey item from 

the Wave IV In Home Interview:  

- “What is the highest level of education that you have achieved to date? (1. 8th 

grade or less / 2. Some high school / 3. High school graduate / 4. Some 

vocational/technical training / 5. Completed vocational/technical training 

(after high school) / 6. Some college / 7. Completed college (bachelor's degree) 

/ 8. Some graduate school / 9. Completed a master's degree / 10. Some graduate 

training beyond a master's degree / 11. Completed a doctoral degree / 12. Some 

post baccalaureate professional education (e.g., law school, med school, nurse)

 / 13. Completed post baccalaureate professional education (e.g., law 

school, med school, nurse) / 96. Refused / 98. Don't know)” 

We use the following mapping to ISCED49 categories and from ISCED to EduYears for 

individuals older than 25 years old: 

- 1 → ISCED = 1 → EduYears = 7 

- 2 → ISCED = 2 → EduYears = 10 

- 3, 4, 6 → ISCED = 3 → EduYears = 13 

- 5 → ISCED = 4 → EduYears = 15 

- 7, 8, 9, 10, 12 → ISCED = 5 → EduYears = 19 

- 11, 13 → ISCED = 6 → EduYears = 22 

The Completed High School variable is an indicator variable equal to 1 if EduYears ≥ 13.  

Completed College is an indicator equal to 1 if EduYears ≥  19. 

The Grade Retention variable is an indicator variable set to 1 for “Yes” responses to 

the following item from the Wave I In Home Interview, and to 0 for “No” responses: 



“Have you ever repeated a grade or been held back a grade? (0. No / 1. Yes / 6. Refused 

/ 8. Don’t know)” 

HRS: In HRS, we use two survey items from the HRS 2018 cross-wave tracker file 

(early release - v1.0): 

- Q1. “What is the highest grade of school or year of college you completed? (0-

17)” 

- Q2. “Highest degree of education (0. No degree / 1. GED / 2. High school 

diploma / 3. Two year college degree / 4. Four year college degree / 5. Master 

degree / 6. Professional degree (Ph.D., M.D., J.D). / 9. Degree unknown/Some 

College)” 

We map the responses to ISCED categories and ISCED categories to EduYears as 

following: 

- Q1 = 0 and Q2 = 0 → ISCED = 0 → EduYears = 1 

- Q1 = 1-6 and Q2 = 0, → ISCED = 1 → EduYears = 7 

- Q1 = 7-12 and Q2 =  0 → ISCED = 2 → EduYears = 10 

- Q2 = 1 or 2 → ISCED = 3 → EduYears = 13 

- Q2 = 3 → ISCED = 4 → EduYears = 15 

- Q2 = 4 or 5 → ISCED = 5 → EduYears = 19 

- Q2 = 6 → ISCED = 6 → EduYears = 22 

The Completed High School variable is set equal to 1 for subjects who report having a 

GED or high school diploma (9 > Q2 ≥ 1), and 0 otherwise (Q2 < 1). Similarly, the 

Completed College variable is equal to 1 for subjects who report having a four-year 

college degree (9 > Q2 ≥ 4), and 0 otherwise (Q2 < 4).  

For Grade Retention, we use the following question from the 2006 - 2012 Core waves: 

“For each of the following events, please indicate whether the event occurred AT ANY 

POINT IN YOUR LIFE. If the event did happen, please indicate the year in which it 

happened most recently. (Mark (X) one box for each line. If "Yes", indicate which year.) 

Before you were 18 years old, did you have to do a year of school over again? 

(Yes/No)”. The variable was set to 1 if the response was “Yes” in any of the waves, 0 

otherwise. 

5.2.2 Cognitive and academic achievement outcomes 

In addition to the education outcomes, we analyze some detailed measures of scholastic 

achievement in adolescence available in Add Health and WLS, cognitive performance 

measures in Add Health and WLS, and measures of several dimensions of cognitive 

functioning in older individuals in HRS.  

Add Health: In Add Health, we analyze Verbal Cognition and several grade point 

average (GPA) measures. Verbal Cognition was measured using a modified version of 

the Peabody Picture Vocabulary Test50 in the first wave of Add Health, when 

participants were 12–20 years old.50 The test contains eighty-seven items where the 

interviewer reads a word aloud, and a respondent selects the illustration that best fits 

the word’s meaning. The scores were age-standardized. 



The GPA measures were calculated using the common United States 0.0 to 4.0 range 

from respondents’ transcripts that were collected from their high schools as part of 

Wave III Education Data. We analyze cumulative Overall GPA, as well as subject-

specific cumulative GPAs: Math GPA, Science GPA and Verbal GPA (calculated as the 

mean of English GPA, Foreign Language GPA, and History and Social Sciences GPA). 

HRS: In HRS, we analyze Total Cognition, Verbal Cognition, changes over time in 

Total and Verbal Cognition, and Alzheimer’s disease. Total Cognition is the sum of 

correct responses to cognitive tests from three domains common across waves 2 

through 13 (1993-2016) measuring memory (immediate word recall task, delayed word 

recall), working memory (serial 7’s), and mental status (backwards count, date naming, 

object naming, president/vice president naming), with a total score ranging from 0 to 

35. The Verbal Cognition measure was adapted from WAIS-R51. In waves 3 through 

13 (1995-2016), respondents were asked to define 5 words. Responses were rated as 

incorrect (0), partially correct (1) or completely correct (2), resulting in a total score 

ranging from 0 to 10. We include only those total and verbal cognition scores with no 

missing/imputed item values. To evaluate changes over time, we study wave-to-wave 

changes in Total Cognition and Verbal Cognition, (𝑥𝑡 − 𝑥𝑡−1). Because the data are 

longitudinal, the unit of analysis for these four cognitive outcomes is a person-year. Our 

final cognitive outcome, Alzheimer’s disease, is an indicator variable equal to one for 

subjects who report having been diagnosed with Alzheimer’s disease in one of the 2010 

– 2018 Core waves, and 0 otherwise.  

WLS: In WLS, we analyze Cognitive Performance and High School Grades Percentile 

Rank. Cognitive Performance is measured with the Henmon-Nelson test of mental 

ability52, a 30-minute multiple-choice test consisting of 90 individual verbal or 

quantitative items, with a maximum of 90 points. The Henmon-Nelson test is a 

psychometrically validated test whose scores are known to correlate highly with g. We 

use the test scores converted to the metric of junior-year since participants took the test 

at various grades, hampering the comparability of raw test scores. High School Grades 

Percentile Rank was calculated as 100 – 100 × (rank in class / # of students in class). 

5.3 Controls 

All regressions of education outcomes include the following set of controls: a full set 

of dummy variables for year of birth, an indicator variable for sex, a full set of 

interactions between sex and year of birth, and the first 10 principal components (PCs) 

of the variance-covariance matrix of the genetic data. In regressions of cognitive and 

academic achievement outcomes in HRS and Add Health, we replace year of birth with 

age at assessment. In the WLS Henmon-Nelson analysis, instead of replacing year of 

birth with age at assessment, we control for both (and their interactions with sex) 

because the analysis included both primary respondents and their siblings, whose year 

of assessment differed substantially from the year of assessment for primary 

respondents in some cases. In our analyses of GPA outcomes in Add Health, we also 

control for high school fixed effects.  

PCs are constructed after restricting the samples to individuals from European genetic 

ancestries. We start by converting the imputed genotype probabilities to hard calls and 

removing markers with imputation accuracy less than 70% or minor allele frequency 

less than 1%, as well as markers in long-range LD blocks (chr5:44mb-51.5mb, 

chr6:25mb-33.5mb, chr8:8mb-12mb, chr11:45mb-57mb). Next, we prune the markers 

to obtain a set of approximately independent markers, using a rolling window of 1000 



base pairs (incremented in steps of 5) and an R2 threshold of 0.1. We use this set of 

markers to estimate a genetic relatedness matrix. We identify all pairs of individuals 

with a relatedness coefficient greater than 0.05. We exclude one individual from each 

pair, calculate the first 10 PCs for the resulting sample of unrelated individuals using 

Plink222,27, and project the PCs onto the sample of unrelated individuals.  

For the African-genetic-ancestry individuals in HRS, we construct the PCs in a similar 

fashion, the only difference being the exclusion of long-range LD blocks. Since the 

long-range LD blocks listed above are observed in European-genetic-ancestry 

individuals, whereas African-genetic-ancestry individuals are known to have much less 

LD in general than European-genetic-ancestry individuals, we do not exclude those 

regions when calculating the PCs for the African-genetic-ancestry subsample of HRS. 

5.4 Defining Prediction Accuracy 

To evaluate prediction accuracy, we use the same two-step process that we used in EA3. 

First, we regress the phenotype on the set of controls described above without the PGI. 

Next, we rerun the same regression but with the PGI included. For quantitative 

phenotypes, our measure of predictive power is the incremental 𝑅2: the difference in 

𝑅2 between the regressions with and without the PGI. For binary outcomes, we proceed 

similarly but calculate the incremental pseudo-𝑅2 from a Probit regression. We obtain 

95% confidence intervals (CIs) around the incremental (pseudo-)𝑅2’s by performing a 

bootstrap with 1000 repetitions. 

5.5 Expected Prediction Accuracy of the EduYears PGI 

Here, we describe a framework to assess how the observed change in predictive power 

of the EduYears PGI is consistent with theoretical projections of the change in 

predictive power. This calculation is based on a generalization of de Vlaming et al.53, 

which gives the expected predictive power of a PGI for a given discovery sample size 

when the heritability of the discovery and prediction sample may be different and the 

genetic correlation of the phenotype between the discovery and prediction sample may 

be less than one. The generalization we derive here is novel, as far as we are aware. 

First, we define some terms. Let 𝑦𝑖 denote the phenotype and  �̂�𝑖 denote the PGI for 

individual 𝑖 in the prediction sample. We can decompose �̂�𝑖 as �̂�𝑖 = 𝑔𝑖 + 𝑒𝑖, where 𝑔𝑖 
is the PGI that would be estimated if the discovery sample size were infinite and 𝑒𝑖 is 

the portion of the PGI that is due to sampling variation from estimating the PGI weights. 

Because the discovery and prediction sample are non-overlapping, 𝑒𝑖 is uncorrelated 

with both 𝑔𝑖 and 𝑦𝑖 (this would be true exactly if the PGI weights were estimated using 

multivariable regression in the discovery sample, but it is approximately true if the PGI 

weights are estimated using LDpred from GWAS summary statistics, as they are 

here54). We assume that the error in the PGI is decreasing inverse-proportionately to 

the discovery sample size, 𝑁, such that Var(𝑒𝑖) = 𝑀/𝑁 for some constant 𝑀. The 

constant factor 𝑀 will be affected by factors related to the effective number of SNPs 

included in the PGI, including linkage disequilibrium patterns and assortative mating. 

We now derive a general expression for the predictive power of the PGI for different 

discovery sample sizes. We calculate 

𝐸(𝑅2) =
Cov(𝑦𝑖, �̂�𝑖)

2

Var(𝑦𝑖)Var(�̂�𝑖)
 



=
[Cov(𝑦𝑖, 𝑔𝑖) + Cov(𝑦𝑖, 𝑒𝑖)]

2

Var(𝑦𝑖)[Var(𝑔𝑖) + Var(𝑒𝑖)]
 

=
Cov(𝑦𝑖, 𝑔𝑖)

2

Var(𝑦𝑖)[Var(𝑔𝑖) + 𝑀/𝑁]
 

=
Cov(𝑦𝑖, 𝑔𝑖)

2/𝑀

Var(𝑦𝑖)[Var(𝑔𝑖)/𝑀 + 1/𝑁]
 

=
𝐴

𝐵 + 1/𝑁
, 

where 𝐴 ≡ Cov(𝑦𝑖, 𝑔𝑖)
2/[𝑀Var(𝑦𝑖)] and 𝐵 ≡ 𝑉𝑎𝑟(𝑔𝑖)/𝑀. Notice that through this 

derivation, we only assume that the sampling variance decreases at a rate 1/𝑁 and that 

the discovery and prediction samples are non-overlapping; no other assumptions are 

needed for predictive power of a PGI to have this general form of dependence on the 

GWAS discovery sample size for a fixed prediction sample. We highlight that 𝐵 is only 

related to the variance of the infinite-discovery-sample PGI and the effective number 

of SNPs, both things that are not dependent on the prediction or discovery samples. The 

parameter 𝐴 will be related to a number of factors, including the heritability of the 

phenotype in each cohort and genetic correlation of the phenotype between the 

discovery and prediction cohorts. Thus, it is only the parameter 𝐴 that may differ by 

prediction sample. 

Finally, we describe how we calibrate the parameters 𝐴 and 𝐵 to assess how well our 

observed predictive power aligns with theoretical expectations. We will do so using 

non-linear least squares. Specifically, using multiple estimates of predictive power 

across several prediction cohorts and PGIs based on various discovery sample sizes, we 

find 

min
𝐴𝑗,𝐵

{
 

 
∑(𝑅𝑗,𝑘

2 −
𝐴𝑗

𝐵 +
1
𝑁𝑘

)

2

𝑗,𝑘
}
 

 
 

where 𝑅𝑗,𝑘
2  is the estimated incremental R-squared of the PGI in prediction sample 𝑗 

using PGI 𝑘 and 𝑁𝑘 is the discovery sample size of PGI 𝑘. Notice that we find a different 

value of 𝐴𝑗 for each prediction sample, but we hold 𝐵 constant across all prediction 

cohorts. These parameters are estimated using four PGIs from three studies published 

prior to this one: Rietveld et al.24, Okbay et al.1 (one PGI from the discovery sample 

and one PGI from the combined discovery and replication sample), and Lee et al.2 

Using this procedure, we estimate 𝐵 = 2.242 × 10−6. For the Add Health prediction 

cohort, we estimate 𝐴AddHealth = 3.455 × 10
−7. For the HRS, we have 𝐴HRS =

3.091 × 10−7. 

Using the estimated values of 𝐴𝑗 and 𝐵 and using the sample size from this study (N = 

3,014,057), we calculate the projected theoretical predictive power of the PGI from this 

study in our prediction cohorts. 

5.6 Results 

Supplementary Table 4 and Extended Data Figure 6 provide a summary overview 

of the results from our prediction analyses as well as descriptive statistics for the 



phenotypes considered. In addition to the measure of prediction accuracy described 

above, for each outcome, we report the coefficient of the EduYears PGI and its standard 

error from an ordinary least squares regression of the outcome on the PGI and controls. 

Since the unit of analysis is a person-year for all cognitive outcomes in HRS except for 

Alzheimer’s disease, we cluster standard errors at the person level in these regressions. 

Education Outcomes. We begin with our primary phenotype, EduYears. In Add Health, 

one standard deviation increase in the EduYears PGI is associated with 1.33 years of 

schooling (𝑆𝐸 = 0.04), with an incremental-𝑅2 of 15.8% (95% CI: 14.0% to 17.3%). 

In HRS, the PGI has an incremental-𝑅2 of 12.0% (95% CI: 10.8% to 12.9%). One 

standard deviation increase in the EduYears PGI is associated with 1.22 extra years of 

schooling (𝑆𝐸 = 0.03) in HRS.  

Figure 2a in the main text depicts how the predictive power of the EduYears PGI 

changes with increasing EduYears GWAS meta-analysis sample sizes over time. In this 

figure, the actual predictive power of each PGI is plotted against the projected 

predictive power as a function of the discovery sample size (calculated as described in 

Supplementary Note section 5.5). To maximize comparability, all numbers reported 

in the figure are based on PGIs constructed using the methods described above and a 

common set of SNPs (namely, all HapMap3 SNPs present in each of the five meta-

analyses). Our current meta-analysis increases the sample size from 𝑁 = 1,131,881 to 

𝑁 = 3,037,499. This increase in sample size is paired with an increase in the prediction 

accuracy of the EduYears PGI from 11.0% to 15.9% in Add Health. In HRS, the 

incremental-𝑅2 increases from 9.6% to 12.1% (Supplementary Table 29). The 

predictive power of the PGI in the HRS aligns almost perfectly with expectation, but 

the predictive power of the PGI in Add Health exceeds expectations. 

In Extended Data Figure 5 and Supplementary Table 3, we show the predictive 

power of polygenic indexes made using the “clumping and thresholding” (C+T)48 

method with different P value cutoffs (5 × 10−8, 5 × 10−5, 5 × 10−3, and 1). As a 

point of comparison, we also include our main LDpred PGI constructed using HapMap3 

SNPs. The C+T PGI made using only genome-wide-significant SNPs explains 9.1% of 

the variance in EduYears in Add Health and 7.0% in HRS. Compared to the equivalent 

PGIs from EA3 (Add Health incremental 𝑅2 = 3.8%, HRS incremental 𝑅2 = 2.5%), this 

is a substantial increase. The predictive power of the PGI goes up as the P value 

threshold increases until the cutoff of 5 × 10−3, where the PGI explains 13.5% of the 

variation in Add Health and 10.9% in HRS. The PGI with the P value cutoff of 1 (i.e., 

including all approximately independent SNPs) explains slightly less (12.7% in Add 

Health, 10.4% in HRS). Finally, the LDpred PGI generates further gains in predictive 

power for both Add Health and HRS, to 15.8% and 12.0%, respectively. 

Next, we examine the results from analyses of our three binary education outcomes: (i) 

High School Completion, (ii) College Completion, and (iii) Grade Retention. In Add 

Health, a one-standard-deviation increase in the EduYears PGI is associated with a 5.5 

percentage-point increase in the probability of completing high school (incremental 

pseudo-𝑅2 = 7.8%), a 18.6 percentage-point increase in the probability of completing 

college (incremental pseudo-𝑅2 = 12.6%), and a 8.9 percentage-point reduction in the 

probability of having retaken a grade (incremental pseudo-𝑅2 = 5.4%). The 

corresponding figures in the HRS are a 10.8 percentage-point increase in the probability 

of completing high school (incremental pseudo-𝑅2 = 8.0%), a 14.6 percentage-point 

increase in the probability of completing college (incremental pseudo-𝑅2 = 9.3%), and 

a 5.9 percentage-point decrease in the probability of having retaken a grade 



(incremental pseudo-𝑅2 = 2.6%). All effects are statistically distinguishable from zero 

at P < 0.001 and substantial with respect to baseline prevalences of 93%, 32% and 19%, 

in Add Health, and of 82%, 25% and 16% in HRS, respectively.  

Figure 2b in the main text and Extended Data Figure 7 visualize the results by 

showing the prevalences of each of our 3 binary outcomes across deciles of our 

EduYears PGI, where the 1st decile reflects the lowest PGIs and the 10th decile reflects 

the highest PGIs. Each quintile contains roughly 565 individuals in Add Health and 

roughly 1,085 individuals in HRS. We observe substantial differences between 

prevalences in lowest and highest PGI deciles: 63.4 and 46.2 percentage-point 

difference in the prevalence for College Completion, 20.0 and 36.5 percentage-point 

difference for High School Completion, and 31.0 and 21.6 percentage-point difference 

for Grade Retention in Add Health and HRS, respectively. 

Finally, in HRS, we examine a PGI made using our X chromosome meta-analysis 

results. The PGI has an incremental 𝑅2 of 0.38% (95% CI: 0.12% to 0.80%) in the 

sample of men, 0.13% (95% CI: 0.02% to 0.38%) in the sample of women, and 0.25% 

(95% CI: 0.10% to 0.49%) in the pooled-sex sample. The predictive power of the PGI 

is larger in the sample of men compared to women (although the confidence intervals 

overlap), which seems counterintuitive given that we estimate higher X chromosome 

heritability of EduYears in the sample of women in UKB (see Supplementary Table 

17). However, using GCTA23, we estimated a larger autosomal heritability for 

EduYears in HRS males (ℎ2 = 0.29, 𝑆. 𝐸. = 0.06) compared to females (ℎ2 = 0.19,
𝑆. 𝐸. = 0.08), suggesting that contrary to what we observe in UKB, X chromosome 

heritability of EduYears in HRS may be larger in males. 

In order to assess how much the predictive power of the X chromosome PGI increased 

with the increase in sample size, we compared two PGIs based on the EA3 and EA4 X 

chromosome meta-analyses, made using the same methodology and SNPs available in 

both studies. These results are shown in Table 1. 

Cognitive and Academic Achievement Outcomes. In Add Health, we examine five 

academic achievement outcomes: (i) Verbal Cognition (Peabody verbal score), (ii) 

Overall GPA, (iii) Math GPA, (iv) Science GPA, and (v) Verbal GPA. The EduYears 

PGI positively predicts all outcomes (P value < 0.001). A one-standard-deviation 

increase in the PGI is associated with a 3.7-point increase in the Peabody test scores 

(incremental-𝑅2 = 8.7%), a 0.3-point increase in Overall GPA (incremental-𝑅2 = 

12.3%) and Math GPA (incremental-𝑅2 = 8.4%), and 0.4-point increases in Science 

GPA (incremental-𝑅2 = 10.0%) and Verbal GPA (incremental-𝑅2 = 12.4%). 

In HRS, we analyze cognitive functioning in older individuals using measures of Total 

and Verbal Cognition, changes in total and verbal cognition over time, and Alzheimer’s 

disease. The EduYears PGI positively predicts the Total Cognition and Verbal 

Cognition scores (P value < 0.001) with incremental-𝑅2 = 3.1% and 4.7%, respectively. 

However, the PGI’s association with wave-to-wave changes in Total Cognition is only 

suggestive (P value = 0.04) and the PGI does not predict wave-to-wave changes in 

Verbal Cognition (P value = 0.46) or Alzheimer’s disease (P value = 0.15).  

Finally, we examine Henmon-Nelson test scores and High School Grades Percentile 

Rank in WLS. The EduYears PGI is positively predictive of both outcomes. A one 

standard deviation increase in the PGI is associated with a 2.9-point increase in the 



Henmon-Nelson test scores (incremental-𝑅2 = 6.1%)20 and an 8.0-point increase in 

High School Grades Percentile Rank (incremental-𝑅2 = 7.7%). 

EduYears in African-genetic-ancestry individuals in the HRS and Add Health. We 

examine how well the EduYears PGI predicts EduYears among African-genetic-

ancestry individuals in HRS (N = 2,507) and Add Health (N = 1,716). We find that the 

PGI has an incremental 𝑅2 of 1.3% (95% CI: 0.6% to 2.2%) in HRS and 2.3% (95% 

CI: 1.1% to 3.7%) in Add Health. This represents 89% and 85% attenuation in the 

predictive power of the PGI compared to our European-genetic-ancestry samples from 

HRS and Add Health, respectively (Supplementary Table 21). We note that the HRS 

incremental 𝑅2 is smaller than we report in EA3 (incremental-𝑅2 = 1.6%). In order to 

understand the reason for the discrepancy, we estimated the incremental-𝑅2 in the same 

HRS African-genetic-ancestry prediction sample that we analyzed in EA3, and found 

that in that sample, the incremental 𝑅2 rises to 2.2%. Therefore, we conclude that the 

decrease in incremental 𝑅2 stems from the sample definition: in EA3, our African-

genetic-ancestry prediction sample was restricted to the list of African-American 

individuals provided by the HRS, whereas here, we identify African-genetic-ancestry 

individuals as described in Supplementary Note section 5.1. 

5.7 Analysis of European genetic ancestries to African genetic 

ancestries relative accuracy in UK Biobank 

We define the European genetic ancestries to African genetic ancestries relative 

accuracy (RA) as  

𝑅𝐴𝐸→𝐴 =
𝑅𝐴𝐹𝑅
2

𝑅𝐸𝑈𝑅
2 , 

where 𝑅𝐴𝐹𝑅
2  and 𝑅𝐸𝑈𝑅

2  are prediction accuracies (fractions of phenotypic variance 

explained) of PGIs derived from a GWAS conducted in European-genetic-ancestry 

populations. The previous literature has established that the RA is usually substantial. 

For example, Duncan et al.55 found that the average 𝑅𝐴𝐸→𝐴 across multiple phenotypes 

is 36%, and Martin et al.56, who examined mostly different phenotypes but with some 

overlap, found an average 𝑅𝐴𝐸→𝐴 of 22%. In our analyses of our EA PGI in the HRS 

and Add Health samples described above, our estimate of 𝑅𝐴𝐸→𝐴 is 11% and 15%, 

respectively (both estimates are similar to the 15% we found for HRS for the EA PGI 

from a previous GWAS of EA2). 

To investigate the factors contributing to the substantial loss of prediction accuracy, 

and to understand if the reduction observed for EA is anomalously large relative to what 

has been found for other phenotypes, we used a method57 that was recently developed 

by Wang et al.57. Wang et al. applied their method to five quantitative phenotypes 

(albeit not EA) and three common diseases in the UKB (average 𝑅𝐴𝐸→𝐴 of 24% across 

the eight phenotypes). Wang et al. consider a model in which the loss in prediction 

accuracy depends on population differences in linkage disequilibrium (LD), allele 

frequencies, and SNP heritability, as well as on the cross-population correlation of 

 
20 The incremental 𝑅2 of the PGI for Henmon-Nelson test scores is lower than what we report in EA3 

(incremental-𝑅2 = 7.73%). We note that these results are not comparable for two reasons: (i) In EA3, the 

phenotype is erroneously reported to be the “raw Henmon-Nelson test scores”, while it actually is an IQ 

score mapped from raw Henmon-Nelson test scores, (ii) the sample of individuals in the current study is 

larger. 



causal SNP effects. They then derive an analytic formula that can be used to infer the 

contribution of LD and allele frequencies to the relative accuracy between any two 

populations. While their formula is derived for PGIs based on independent genome-

wide-significant SNPs, they show through simulations that it also gives a good 

approximation for genome-wide PGIs, such as PGIs (like ours) based on LDpred47. For 

EA, we also observed similar RA between our LDpred-based PGI and that based on 

independent genome-wide-significant SNPs (Supplementary Table 21).  

To facilitate comparability with Wang et al.’s57 results for European genetic ancestries 

to African genetic ancestries prediction accuracy loss, we extended their original 

analyses to also include EA. We thus performed a GWAS of HapMap 3 SNPs 

(1,365,446 SNPs) in a sample of European-genetic-ancestry individuals in UKB (N = 

425,231 individuals). We identified 507 approximately independent genome-wide-

significant SNPs (using the LD clumping algorithm implemented in Plink1.922, setting 

the window size equal to 1 Mb and the LD r2 threshold of 0.1). We then used these 507 

SNPs to generate PGIs and evaluate their accuracy in UKB hold-out samples of African-

genetic-ancestry individuals (N = 6,514) and European-genetic-ancestry individuals (N 

= 10,000). We found a RA of 0.33% (S.E. = 0.94%).  

Next, we used the methods developed in Wang et al.57 to compare our empirical 

estimate of RA to the RA predicted by the model. To generate the prediction, we used 

genotypes from 503 European-genetic-ancestry and 504 African-genetic-ancestry 

participants in the 1000 Genomes Project to estimate genetic-ancestry-specific MAF 

and LD correlations between all candidate causal variants (defined as any SNP within 

a 100 kb window of a genome-wide-significant SNP whose squared correlation with 

the genome-wide-significant SNP is above 0.45). Following Wang et al.57, we then 

substituted these estimates into their Equation (2) and evaluated the expression. For 

EA, the predicted RA is 35%. 

Extended Data Figure 8 and Supplementary Table 5 show these results for EA 

together with the results obtained by Wang et al. in an analogous way for the eight 

phenotypes they study. Compared to the other phenotypes, not only is the observed RA 

substantially lower for EA, but the proportion of loss attributable to MAF and LD is 

somewhat smaller for EA. The smaller proportion of loss attributable to MAF and LD 

implies that the remaining loss is due to environmental factors, which would cause 

differences in phenotypic heritability across populations or an imperfect cross-

population correlation of causal effects (for example, due to gene-environment 

interactions). 

We highlight three caveats to our analysis. First, differential ascertainment of African-

genetic-ancestry versus European-genetic-ancestry participants of the UKB could have 

biased the observed RA. In fact, the mean EA in the African-genetic-ancestry sample 

is slightly larger than the mean EA in the European-genetic-ancestry sample—15.9 

years versus 15.3 years (t-test P = 2.5 × 10−21)—suggesting a stronger ascertainment 

bias. This differential ascertainment bias could reduce the heritability in the African-

genetic-ancestry sample relative to the European-genetic-ancestry sample, thereby 

contributing to the reduced predictive power in the African-genetic-ancestry sample. 

(The sample size of African-genetic-ancestry individuals is too small to reliably 

estimate the SNP heritability.). Consequently, the contribution of MAF and LD 

differences between European and African genetic ancestries to the loss of accuracy is 

likely to be larger in the general UK population compared to the UKB sample.  



Second, the African genetic-ancestry-sample likely includes a higher fraction of 

immigrants to the UK than the European-genetic-ancestry sample. Individuals who 

completed some or all of their schooling outside the UK education system are less 

comparable. 

Third, we have followed Wang et al.57 in studying African-genetic-ancestry and 

European-genetic-ancestry samples in the UKB, so our findings may not generalize to 

our sample of African-Americans in the HRS and Add Health. In fact, for PGIs based 

on independent genome-wide significant SNPs, we find RAs of 10.27% (S.E. = 4.52%) 

and 13.52% (S.E. = 5.96%) in HRS and Add Health, respectively, substantially larger 

than the RA in the UKB.  

5.8 Post-hoc analyses with SBayesR PGI 

We ran all of our main analyses in the paper using a PGI constructed with LDpred, 

partly for comparability with Lee et al.2 and partly because at the time we undertook 

our main analyses, we had convergence problems with SBayesR58 that were 

subsequently fixed. In post-hoc analyses, we assessed the predictive power of a PGI 

made using the SBayesR methodology implemented in the GCTB software59. SBayesR 

is a Bayesian method that differs from LDpred in that it imposes a flexible finite mixture 

of normal distributions as the prior on the SNP effects instead of a point-normal mixture 

distribution. Like LDpred, SBayesR requires an estimate of LD between SNPs. We 

used the 2,865,810 pruned common variants from the full UKB European-genetic-

ancestry (N ≈ 450,000) data set from Lloyd-Jones et al.58 as our LD reference data. We 

excluded 3,638 SNPs in the MHC region (Chr6 : 28-34Mb) from the analysis as 

recommended by Lloyd-Jones et al.58, as this was observed to improve model 

convergence. The 2,548,339 remaining SNPs that were available in the meta-analysis 

excluding HRS, Add Health and WLS were included in the analysis. We ran SBayesR 

assuming 4 components in the finite mixture model, with initial mixture probabilities 

𝝅 = (0.95, 0.02, 0.02, 0.01) and fixed 𝜸 = (0.0, 0.01, 0.1, 1), where 𝜸 is a parameter 

that constrains how the common SNP effect variance scales in each of the four 

distributions. The MCMC was run for 10,000 iterations with 2,000 taken as burn-in. 

We obtained the PGIs for European-genetic-ancestry individuals in Plink227 by 

multiplying the genotype probabilities at each SNP by the corresponding estimated 

posterior mean calculated by SBayesR, and then summing over all included SNPs 

(2,548,339 in Add Health, 2,540,570 in HRS). The PGI explained 17.0% (95% CI: 

15.2% to 18.5%) of the variance in EduYears in Add Health and 12.9% (95% CI: 

11.7% to 13.9%) in HRS, approximately 1 percentage-point higher than the LDpred 

PGI in each of the two cohorts. 



6 Prediction of disease risk from the EA PGI 

To evaluate the potential relevance of the EA PGI in clinical setting, we estimated its 

predictive power for 10 common diseases among individuals of European genetic 

ancestry in the UK Biobank. To benchmark those results, we also estimated the 

predictive power of disease-specific PGI for each disease.  

Our results imply that the predictive power of the EA PGI for the diseases is non-trivial 

compared to the disease-specific PGI: the predictive power of the EA PGI is on average 

about half that of the disease-specific PGI across the 10 diseases. 

6.1 Construction of PGIs 

6.1.1 EA PGI 

The EA PGI was constructed using LDpred (v.1.0.11)47, following the pipeline 

described in Supplementary Note section 5.1 and using the summary statistics of an 

EA meta-analysis that excludes the UK Biobank. A total of 1,134,788 SNPs that 

overlapped across the summary statistics, UK Biobank genotype data, and the 

1,214,408 HapMap3 SNPs in the HRC reference panel that we used to estimate LD, 

and passed the LDpred quality control filters, were used to construct the PGI.   

6.1.2 Diseases PGI 

The PGIs for diseases were derived and analyzed at a separate location (the University 

of Queensland) than the EA PGI. To minimize the differences in the way the PGIs were 

constructed across the two locations, we used the same reference panel to estimate LD 

in the two locations (i.e., 14,028 individuals and 1,214,408 HapMap3 SNPs from the 

public release of the aforementioned HRC reference panel). We also restricted our hard-

call genotypes and discovery GWAS summary statistics to the same set of HapMap3 

SNPs. The main difference between the way the EA and diseases PGIs were constructed 

is that dosage data were used for the EA PGI, whereas hard calls were used for the 

disease-specific PGIs. Because we only used HapMap3 SNPs for all PGI and because 

HapMap3 SNPs tend to be well-imputed, this difference is unlikely to matter much in 

practice. 

UK Biobank genotype data and diseases phenotypes 

Genotype data from UK Biobank (UKB, Project: 12505) individuals were imputed 

using the HRC and UK10K as the reference sample. Genotype probabilities were 

converted to hard-call genotypes using Plink2 (--hard-call-threshold 0.1), 

excluding SNPs with Hardy-Weinberg equilibrium test P value < 10−5, missing 

genotype rate > 0.05, or imputation accuracy (INFO) score < 0.3. Individuals with 

European genetic ancestry were identified by projecting the UKB sample onto the first 

two principal components (PCs) of the 1000 Genome Project (1KGP), using HapMap3 

SNPs with MAF > 0.01 in both data sets. An individual was assigned European genetic 

ancestry if they had > 0.9 posterior probability of belonging the 1KGP European 

reference cluster. A total of 8,546,065 SNPs with MAF ≥ 0.01 among the UKB 

European individuals were identified, of which 1,133,746 SNPs overlapped with the 

1,214,408 HapMap3 SNPs used in EA PGI derivation step. 

442,091 UKB European individuals with non-missing EA phenotype and covariates 

(sex, a third degree polynomial in birth year and interactions with sex, the first 40 PCs, 



and batch dummies) were retained after sample quality control (QC). (We used the 

same set of QC’d individuals as we used for an earlier version of our EA GWAS in the 

UKB; our final EA GWAS in the UKB used slightly fewer individuals since, 

subsequent to the analyses discussed here, some individuals withdrew their consent for 

their data to be analyzed.) Diseases phenotypes were generated based on UKB Category 

1712 and Data-Field 41270 among these individuals. 

Briefly, we only selected cases with data from primary care, hospital admission, or 

death registry records (those with self-reported data only were removed). After the case 

status was defined, among the remaining individuals we removed individuals with 

similar diseases (control screening, e.g., we removed individuals with type 1 diabetes 

or gestational diabetes from type 2 diabetes controls). In total, we selected 10 common 

diseases. Supplementary Table 23 provides additional details on the definitions and 

coding of these diseases and of the cases and controls. 

Discovery GWAS summary statistics 

For PGI derivation, we used summary statistics from GWAS studies conducted among 

participants of European genetic ancestry for nine traits: type 2 diabetes (T2D)60, low-

density lipoprotein cholesterol (LDLC)61, systolic blood pressure (SBP)62, rheumatoid 

arthritis (RA)63, femoral neck bone mineral density (BMD)64, major depression (MD)65, 

asthma66, coronary artery disease (CAD)67 and migraine68. For migraine GWAS 

summary statistics, only SNPs with association P value < 10−5 were available. 

A PGI was constructed for each of the nine traits, and these nine PGI were used to 

predict a set of ten phenotypes (the PGI for CAD was used to predict two diseases: 

ischaemic heart disease and myocardial infarction). Supplementary Table 22 lists the 

GWAS used to construct the nine PGIs, provides additional details on how the summary 

statistics were obtained, and shows the phenotypes that were predicted with each PGI. 

UKB samples were, to the best of our knowledge, not included in any of the nine GWAS 

studies, consistent with the results from bivariate LD score regression analyses 

(Supplementary Table 24). These GWAS summary statistics were formatted and 

restricted to the aforementioned 1,133,746 SNPs. 

PGI derivation 

For the first eight traits listed above, we first estimated the weights using LDpred 

(v.1.0.11) and obtained the PGI using Plink1.9. For migraine, we used a clumping and 

thresholding derivation strategy (since only SNPs with P value < 10−5 were available). 

LDpred was run using the same settings and HRC reference data used in the EA PGI 

derivation step. The HRC reference data (EGAD00001002729) were downloaded from 

https://www.ebi.ac.uk/ega/ after ethics approval, and were converted from vcf format 

to Plink binary format using Plink1.9. The LD matrix was calculated using Plink1.9 

and was used as input for –-ldf in the gibbs step (instead of using the genotype data 

as input and letting LDpred calculate the LD matrix). In order to calculate the LD 

matrix, we first restricted the data to the 1,214,408 HapMap3 SNPs and 14,028 

individuals in the HRC reference data that were also used in the EA PGI derivation 

step. We then used Plink1.9 with the options --r2 --ld-window 99999 --ld-

window-kb 500 --ld-window-r2 0. PGIs were obtained using the LD-

adjusted weights in Plink1.9 and hard-call genotypes for the 1,133,746 SNPs with MAF 

≥ 0.01 among the UKB European individuals that overlapped with the 1,214,408 

HapMap3 SNPs.  

https://www.ebi.ac.uk/ega/


The SNPs from the formatted migraine GWAS summary statistics (only SNPs with 

association P value < 10−5) were clumped, discarding SNPs within 1,000 kb of, and in 

r2 > 0.1 with, another (more significant) SNP using the aforementioned LD reference 

data. After clumping, the weights from the GWAS summary statistics of these 

remaining SNPs, together with the aforementioned UKB hard-call genotypes, were 

used to calculate migraine PGI in Plink (v1.90b). 

6.2 Prediction of disease from PGI 

6.2.1 Analyses 

As mentioned in the Online Methods, we computed the predictive power of the EA and 

disease-specific PGI for the various diseases (Supplementary Table 6). Our measure 

of a PGI’s predictive power for binary phenotypes is the incremental Nagelkerke’s R2 

after adding the PGI to a logistic regression of the disease phenotype on sex, a third-

degree polynomial in birth year and interactions with sex, the first 40 PCs, and batch 

dummies. For each disease, we then compared the incremental Nagelkerke’s R2 of the 

EA and disease-specific PGI. 95% confidence intervals (CIs) around the incremental 

Nagelkerke’s R2 was obtained by performing a bootstrap with 1,000 repetitions. We 

also estimated the incremental Nagelkerke’s R2 after adding the EA PGI, the disease 

PGI and their interaction to a logistic regression of the disease phenotype on the same 

covariates as above. 

We also computed the odds ratio for selected diseases by deciles of the EA PGI in the 

UK Biobank (Supplementary Table 7). We converted the EA PGI into deciles (1= 

lowest, 10 = highest), and nine dummy variables were created to contrast each of deciles 

2-10 to decile 1 as the reference. Odds ratio and 95% confidence intervals were 

estimated using logistic regression while controlling for covariates (sex, a third degree 

polynomial in birth year and interactions with sex, the top 40 PCs, and batch dummies). 

In another analysis, we converted the EA PGI into deciles (1 = lowest, 10 = highest 

PGI), and created nine dummy variables to contrast each of deciles 2-10 to decile 1 as 

the reference (Supplementary Table 8). Odds ratio (OR) and 95% CIs were estimated 

using logistic regression while controlling for the covariates. We also computed the OR 

and 95% CIs of the EA PGI top decile relative to the bottom 9 deciles pooled togther, 

again adjusting for the covariates. We repeated this analysis using deciles based on the 

disease-specific PGI instead of the EA PGI, as well as using deciles of risk as predicted 

based on the combination of the EA PGI, disease-specific PGI, and their interaction. 

Finally, we repeated these analyses but using the lowest decile of the EA PGI, disease-

specific PGI and risk as predicted based on the EA PGI, disease-specific PGI and their 

interaction relative to the top 9 deciles combined. 

6.2.2 Results 

The results are shown in the main text Figure 3 and Supplementary Table 6. The EA 

PGI is a predictor of all 10 diseases (P < 2.98×10-8 for osteoporosis and much smaller 

for the other phenotypes), and the predictive power of the EA PGI (as measured by the 

Nagelkerke’s R2) is on average about half as large as that of the disease-specific PGI. 

Importantly, for all 10 diseases, the incremental Nagelkerke’s R2 from the model with 

the combined PGI (with the EA PGI, the disease-specific PGI, and their interactions) is 

larger than the incremental Nagelkerke’s R2 from the model with the disease-specific 

PGI only, typically by ~40-50%. Interestingly, the predictive power of the combination 



of the PGIs is approximately equal to the sum of that of the EA PGI and disease-specific 

PGI considered separately, suggesting that EA PGI is help for predicting these common 

diseases independent of the disease-specific PGI21. 

Through the stratification of the EA PGI of the UKB participants into deciles, as shown 

in Extended Data Figure 9 and Supplementary Table 7, it can be seen that the top 

deciles have substantially lower ORs than the lower deciles for all 10 diseases, 

consistent with a protective role of the EA PGI for these diseases. 

We also computed the OR of the EA PGI top decile relative to the remaining 9 deciles 

combined. As can be seen in Supplementary Table 8, for 9 of the 10 diseases the ORs 

of getting the disease are sizeably smaller for individuals in the top decile, again 

pointing to a protective role of the EA PGI for these diseases (for 9 of the 10 

phenotypes, the P value for the null hypothesis that the OR in the top decile is equal to 

the OR in the other deciles is ≤ 6.97 × 10−19; the exception is osteoporosis, for which 

𝑃 = 0.08). We then repeated the exercise, but using the bottom EA PGI decile relative 

to the remaining 9 deciles combined. The OR were all larger than 1.0 (𝑃 ≤ 1.79 × 10−5 

for all 10 phenotypes, including osteoporosis). We repeated this exercise by comparing 

deciles of the disease PGI and of risk as predicted based on the EA PGI, disease-specific 

PGI and their interaction22. As expected, the results are stronger than for the EA PGI 

alone and are shown in Supplementary Table 8. 

  

 
21 This “near-additivity” of the predictive power of the EA PGI and disease-specific PGI is likely due to 

two factors. First, the PGIs are noisy estimators of the additive genetic factors. The noise in the two PGIs 

attenuates their correlation, thus reducing the amount of disease variance they commonly explain. 

Second, the genetic correlations between EA and the diseases is probably low to moderate only.  

To see both of these points, let 𝑌 = 𝛽1𝑆1 + 𝛽2𝑆2 + 휀, where 𝑌 is the phenotype and 𝑆1 and 𝑆2 are the EA 

and disease-specific PGIs. If we regress 𝑌 on 𝑆1 only, the resulting regression coefficient on 𝑆1 will be 

asymptotically equal to 𝑝𝑙𝑖𝑚 𝛾1 ≡ 𝛾1 =
Cov(𝑌,𝑆1)

Var(𝑆1)
= 𝛽1 +

Cov(𝑆1,𝑆2)

Var(𝑆1)
𝛽2, and the regression 𝑅2 will be 

asymptotically equal to 𝑝𝑙𝑖𝑚 𝑅𝑆1
2 =

𝛾1
2Var(𝑆1)

Var(𝑌)
=

(𝛽1+
Cov(𝑆1,𝑆2)

Var(𝑆1)
𝛽2)

2
Var(𝑆1)

Var(𝑌)
. Similarly, the 𝑅2 of a regression 

of 𝑌 on 𝑆2 will be asymptotically equal to 𝑝𝑙𝑖𝑚 𝑅𝑆2
2 =

(𝛽2+
Cov(𝑆1,𝑆2)

Var(𝑆2)
𝛽1)

2
Var(𝑆2)

Var(𝑌)
. Finally, the 𝑅2 of the 

regression of 𝑌 on 𝑆1 and 𝑆2 will be asymptotically equal to 𝑝𝑙𝑖𝑚 𝑅𝑆1,𝑆2
2 =

(𝛽1)
2Var(𝑆1)+(𝛽2)

2Var(𝑆2)

Var(𝑌)
. For 

the first point above, observe that when the PGIs 𝑆1 and 𝑆2 are very noisy estimators of the underlying 

additive genetic factors for EA and for the disease, Var(𝑆1) and Var(𝑆2) will be large relative to 

Cov(𝑆1, 𝑆2). For the second point above, observe that when the genetic correlation is small, Cov(𝑆1, 𝑆2) 

will be small relative to Var(𝑆1) and Var(𝑆2). Both of these imply that 
Cov(𝑆1,𝑆2)

Var(𝑆1)
 and 

Cov(𝑆1,𝑆2)

Var(𝑆2)
 will be 

small, in which case 𝑝𝑙𝑖𝑚 𝑅𝑆1,𝑆2
2 ≈  𝑝𝑙𝑖𝑚 𝑅𝑆1

2 + 𝑝𝑙𝑖𝑚 𝑅𝑆2
2 . Thus there will be “near-additivity” of the 

predictive power of the EA PGI and disease-specific PGI.  
22 Note that increased femoral neck bone mineral density is associated with a lower risk of osteoporosis. 

Therefore, we took the top decile for the femoral neck bone mineral density PGI for the odds ratio 

calculations that demonstrate reduced risk (OR < 1). 



 

7 Comparing direct and population effects of the EA PGI 

Direct genetic effects are the causal effects of an individual’s genetic material on that 

individual; indirect genetic effects are the causal effects of an individual’s genetic 

material on another individual’s phenotypes (through the environment)69,70. 

Associations between genetic variants, or PGIs, and phenotypes capture both direct 

genetic effects and indirect genetic effects, in addition to confounding due to gene-

environment correlation (including bias from population stratification) and assortative 

mating71. We aim to decompose the population-level association between the EA PGI 

and various phenotypes into direct and remaining components by using genetic data on 

siblings and parents. 

7.1 Population and Direct Effects of a PGI 

Without loss of generality, we assume that the PGIs are standardized in the population 

to have variance one. Let 𝑃𝐺𝐼𝑖𝑗 be the phenotype of sibling 𝑗 in family 𝑖, where “family” 

refers to a set of full biological siblings and both of their biological parents. 

The “population effect”, 𝜓, of a PGI is the coefficient from regression of an individual’s 

phenotype, 𝑌𝑖𝑗, on that individual’s PGI, 𝑃𝐺𝐼𝑖𝑗:  

 𝜓 = Cov(𝑃𝐺𝐼𝑖𝑗, 𝑌𝑖𝑗). (7.1) 

We refer to 𝜓 as the “population effect,” as it reflects the overall association between 

phenotype and PGI in the population. The population effect does not have a causal 

interpretation since it may include the effects of gene-environment correlation, 

including parental indirect effects and uncorrected-for population stratification bias, 

and assortative mating. The primary goal of the analysis is to compare the direct effect 

of the PGI, defined next, to this population effect. 

The “direct effect” of a PGI comes from estimating the regression: 

 𝑌𝑖𝑗 = 𝜇 + 𝛿𝑃𝐺𝐼𝑖𝑗 + 𝛼(𝑃𝐺𝐼𝑝(𝑖) + 𝑃𝐺𝐼𝑚(𝑖)) + 𝜖𝑖𝑗 (7.2) 

where 𝑃𝐺𝐼𝑝(𝑖) is the PGI of the father in family 𝑖; 𝑃𝐺𝐼𝑚(𝑖) is the PGI of the mother in 

family 𝑖; 𝜇 is a constant; 𝛿 is what we call the “direct effect” of the PGI and reflects the 

association of the individual’s PGI with the phenotype through direct genetic effects 

(and only through direct genetic effects); 𝛼 captures indirect genetic effects, gene-

environment correlation, and the inflation of the correlation between phenotype and 

PGI due to assortative mating71 (as discussed below); and 𝜖𝑖𝑗 is the residual from this 

regression, which is uncorrelated with 𝑃𝐺𝐼𝑖𝑗 and (𝑃𝐺𝐼𝑝(𝑖) + 𝑃𝐺𝐼𝑚(𝑖)) by construction. 

The direct effect of the PGI is a function of the direct effects of genetic variants. It is 

not a function of indirect genetic effects, other gene-environment correlation, or 

assortative mating. To see why, note that the variation in an individual’s PGI after 

conditioning on parental genotypes is due to random Mendelian segregations which are 

independent of environment; thus, 𝑃𝐺𝐼𝑖𝑗 is conditionally independent of all 

environmental factors given parental genotypes. Furthermore, letting 𝐺𝑝(𝑖) and 𝐺𝑚(𝑖) 

represent the genotype vectors of the father and mother in family 𝑖, note that 



𝐸[𝑃𝐺𝐼𝑖𝑗|𝐺𝑝(𝑖), 𝐺𝑚(𝑖)] = (𝑃𝐺𝐼𝑝(𝑖) + 𝑃𝐺𝐼𝑚(𝑖))/2. The Conditional Independence 

Lemma from Young et al.73 then implies that including (𝑃𝐺𝐼𝑝(𝑖) + 𝑃𝐺𝐼𝑚(𝑖)) as a 

regressor is sufficient to control for environmental confounding, implying that the 𝛿 

coefficient reflects only direct genetic effects.  

Importantly, although direct effects of individual genetic variants are causal, the direct 

effect of the PGI does not have a straightforward causal interpretation because it 

includes the direct effects of genetic variants on the same chromosome that are in local 

linkage disequilibrium (due to physical linkage) with SNPs included in the PGI (which 

may not themselves have direct effects).  

The coefficients in equation (7.2) can be interpreted as average effects, specifically, 

weighted averages over any heterogeneity of effects across individuals that may exist. 

In particular, 𝛿 is a weighted average over the direct effects of the PGI for the 

individuals in the population, unconfounded by indirect genetic effects, other gene-

environment correlation, and assortative mating. However, the weights that define the 

weighted average can be complicated and do not necessarily correspond to a uniform 

weighting across individuals72. 

To derive the expected regression coefficient 𝜓 from equation (7.1) in terms of the 

coefficients in equation (7.2), it is necessary to account for the increased correlation 

between parent and offspring PGIs due to non-random mating, due to both population 

structure and assortative mating. If the parental PGIs have correlation 𝑟𝑎𝑚, then the 

correlation between parent and offspring PGIs is 
(1+𝑟𝑎𝑚)

2
 (as derived by Fisher40), and 

therefore 𝜓 = 𝛿 + (1 + 𝑟𝑎𝑚)𝛼.  

As we note in the main text, assortative mating increases the variance explained by the 

PGI because it induces a correlation between the PGI and the genetic component of the 

phenotype that would be orthogonal to the PGI in a random mating population. The 

degree to which 𝛼 reflects assortative mating depends upon both the degree of 

assortative mating and the fraction of the variation in the genetic component of the 

phenotype captured by the PGI69. A useful way to understand this is to consider a PGI 

that is based on a certain set of chromosomes, and the genetic component that would 

be orthogonal to the PGI in a random-mating population is based on the remaining, 

complementary set of chromosomes. (This works since alleles on different 

chromosomes are independent in a random-mating population.) Assortative mating 

causes linkage disequilibrium between causal SNPs on all chromosomes. If you 

estimate the direct effect of the PGI, then this will only capture the inflation of the 

variance of the PGI based on correlations between alleles within the set of 

chromosomes the PGI is based on, but it will not capture the effect of the remaining 

genetic component on the other chromosomes, since chromosomes segregate 

independently within a family. The population effect of the PGI, however, captures 

both the inflation of variance in the PGI due to the correlations between the alleles on 

the chromosomes the PGI is based upon, as well as (partially) the effect of the remaining 

chromosomes (due to the correlations between the PGI chromosomes and the remaining 

chromosomes induced by assortative mating). In most real-data applications, the PGI 

is based on noisy estimates of the effects of genome-wide common SNPs, but the same 

principle applies: assortative mating implies that the population effect partially captures 

the effect of the genetic component of the phenotype that would be orthogonal to the 

PGI under random mating, whereas the direct effect does not. 



7.2 Relationship to Analysis in Kong et al. (2018) 

The regression equation (7.2) is equivalent to the regression used to estimate the direct 

effect of a PGI in Kong et al.69, which regressed proband phenotype onto proband PGI 

and a PGI constructed from non-transmitted parental alleles. Since the transmitted and 

non-transmitted alleles together comprise the maternal and paternal alleles, 𝑃𝐺𝐼𝑝(𝑖) +

𝑃𝐺𝐼𝑚(𝑖) = 𝑃𝐺𝐼𝑖𝑗 + 𝑃𝐺𝐼𝑖𝑗
𝑁𝑇, where 𝑃𝐺𝐼𝑖𝑗

𝑁𝑇 is the PGI constructed from the non-

transmitted parental alleles. Therefore, we can express equation (7.2) as 

 𝑌𝑖𝑗 = 𝜇 + (𝛿 + 𝛼)𝑃𝐺𝐼𝑖𝑗 + 𝛼𝑃𝐺𝐼𝑖𝑗
𝑁𝑇 + 𝜖𝑖𝑗. (7.3) 

The estimate of the direct effect of a PGI in Kong et al. subtracts the coefficient on the 

non-transmitted parental PGI, 𝛼, from the coefficient on the proband’s PGI, (𝛿 + 𝛼). 
This is equivalent to the estimate of 𝛿 from performing the regression as in equation 

(7.2).  

While not necessary for the purposes of obtaining an unbiased estimate of the direct 

effect of the PGI, we can consider a model where the coefficients on the paternal and 

maternal PGIs can differ: 

 𝑌𝑖𝑗 = 𝜇 + 𝛿𝑃𝐺𝐼𝑖𝑗 + 𝛼𝑝𝑃𝐺𝐼𝑝(𝑖) + 𝛼𝑚𝑃𝐺𝐼𝑚(𝑖) + 𝜖𝑖𝑗. (7.4) 

The coefficients 𝛼𝑝 and 𝛼𝑚 could differ due to differences in indirect genetic effects 

from mothers and fathers, for example.  

In our analysis of trios, we use regression equation (7.4) rather than the Kong et al.69 

approach because the latter requires an additional step of determining parent-of-origin 

of alleles, which is both computationally costly and could introduce error. 

7.3 Datasets and phenotypes 

We used data from UK Biobank (UKB)74, Generation Scotland (GS)75, and the Swedish 

Twin Registry (STR)76. In both UKB and GS, first-degree relatives were identified 

using KING with the “--related --degree 1” option77. For parent-offspring relations, the 

parent was identified as the older individual in the pair. We removed 621 individuals 

from Generation Scotland that had been previously identified by Generation Scotland 

as being also present in UK Biobank. In UKB, we identified 34,955 individuals with 

genotyped siblings without both parents genotyped and 873 individuals with both 

parents genotyped; in GS, we identified 9,699 individuals with genotyped siblings but 

without both parents genotyped, and 2,674 individuals with both parents genotyped. In 

STR, 5,324 DZ twin pairs were available.  

In these three samples, we analyzed PGIs for our main EA phenotype, as well as 

cognitive performance, height and BMI. In order to make the PGIs for first-degree 

relatives in UKB, GS and STR, we first ran GWASs for EA, cognitive performance, 

height and BMI in UKB that excludes all pairs of individuals who are first-degree 

relatives, as well as the relatives of these individuals up to third degree. Then, we meta-

analyzed the EA GWAS with GWASs from all other cohorts in our current meta-

analysis excluding GS, STR and UKB, and the cognitive performance, height, and BMI 

GWAS with the largest previously published GWAS for these phenotypes that were 

publicly available and did not include UKB78–80 after applying the quality control 



pipeline described in Supplementary Note section 2.2.5 to each file (see 

Supplementary Table 16). We made EA and cognitive performance PGIs for all three 

samples, and height and BMI PGIs for UKB and GS, using these summary statistics 

and following the LDpred PGI pipeline described in Supplementary Note section 5.1. 

We did not analyze height and BMI in STR because STR was included in the published 

GWAS that we used for the height and BMI meta-analyses79,80. 

We selected 24 phenotypes related to education, cognition, income, and health 

(Supplementary Tables 10-13) available in at least one of the datasets. For all 

phenotypes in all datasets, we first regressed the phenotype onto sex and age, age2, and 

age3, and their interactions with sex. We also used additional covariates depending on 

the dataset. Specifically, for UKB, we included as covariates the top 40 genetic 

principal components provided by UK Biobank and the genotyping array dummies74. 

For GS and STR, we included the top 20 genetic principal components (see 

Supplementary Note section 5.3 for a description of how the principal components 

were created). For each phenotype in all datasets, we then took the residuals from the 

regression of the phenotype on the covariates and normalized the residuals’ variance 

within each sex separately, so that the phenotypic residual variance was 1 in each sex 

in the combined sample of siblings and individuals with both parents genotyped. The 

PGIs of the phenotyped individuals were also normalized to have variance 1 in the same 

sample. This way, effect estimates correspond to (partial) correlations, and their squares 

to proportions of phenotypic variance explained. 

7.4 Statistical Methods 

Unbiased estimates of direct genetic effects can be derived from samples of siblings 

and from samples with genotypes of both parents available2,69,71. In both cases, the 

unbiasedness of direct-effect estimates derives from the fact that genetic variation 

within a family is generated by random segregation in the parents during meiosis, which 

is uncorrelated with environment. We therefore analyzed individuals with at least one 

genotyped sibling and/or both parents genotyped. For individuals with at least one 

sibling and both parents genotyped, we analyzed them using the method for individuals 

with both parents genotyped, since this produces more precise estimates of effects than 

using sibling differences81.  

We estimated effects in each dataset, splitting each dataset into non-overlapping 

subsamples: those with at least one genotyped sibling but not both parents genotyped, 

and those with both parents genotyped.  

For UKB and GS, the steps of the statistical estimation were: 

Step 1: Separately estimate effects in the subsample of siblings and the subsample 

of individuals with both parents genotyped. 

Step 2: Compute the sampling covariance matrix of the combined vector of effects 

from siblings and trios. 

Step 3: Estimate the correlation between maternal and paternal PGI in each dataset. 

For STR, we did not have trios, so we simply computed the estimated coefficient vector 

and its sampling covariance matrix from the sample of DZ twins. 

Then, given estimated coefficient vectors and their sampling covariance matrices from 

UKB, GS, and STR, we: 



Step 4. Transform the vector of estimates and combine them across the three 

samples into a meta-analysis estimate of [𝛿, 𝛼𝑝, 𝛼𝑚] (and its sampling covariance 

matrix).  

Step 5: Use these to calculate meta-analysis estimates of 𝛿, 𝛿 + (1 + 𝑟𝑎𝑚)(𝛼𝑝 +

𝛼𝑚)/2, and 𝛼𝑚 − 𝛼𝑝 (and their sampling covariance matrix). 

We discuss these steps in more detail below.  

7.4.1 Step 1: Estimating effects in the different subsamples 

Estimating effects when both parents are genotyped 

For individuals with both parents genotyped, as in (7.4) we regress the phenotype of 

each individual jointly onto the individual’s PGI and the individual’s father’s and 

mother’s PGI: 

𝑌𝑖𝑗 ~ 𝑃𝐺𝑆𝑖𝑗 + 𝑃𝐺𝑆𝑝(𝑖) + 𝑃𝐺𝑆𝑚(𝑖). 

In this case, the expected coefficient vector is [𝛿, 𝛼𝑝, 𝛼𝑚]. 

Estimating effects from siblings 

Let 𝑛𝑖 be the number of siblings in family 𝑖. For each family, we estimate the mean PGI 

among the siblings: 𝑃𝐺𝑆̅̅ ̅̅ ̅̅
𝑖 =

1

𝑛𝑖
∑𝑃𝐺𝑆𝑖𝑗. We regress the phenotype of each individual 

onto the deviation of that individual’s PGI from the family mean, and the family mean 

PGI: 

𝑌𝑖𝑗 ~ (𝑃𝐺𝑆𝑖𝑗 − 𝑃𝐺𝑆̅̅ ̅̅ ̅̅
𝑖) + 𝑃𝐺𝑆̅̅ ̅̅ ̅̅

𝑖. 

In this case, the expected coefficient vector is [𝛿, 𝛿 + 𝑐(𝛼𝑝 + 𝛼𝑚)], where  

𝑐 = (1 +
1−𝑟𝑎𝑚

1+𝑟𝑎𝑚
E[𝑛𝑖

−1])−1, 

which can be calculated from the distribution of the number of siblings in each family. 

This coefficient depends upon the distribution of the number of genotyped siblings in 

each family in the sample because, while the covariance of the mean PGI in the family 

with individual siblings’ phenotypes is constant and captures both direct and parental 

effects, the variance of the mean PGI decreases with the number of siblings in each 

family. See Supplementary Note section 9 for a derivation.  

7.4.2 Step 2: Computing the sampling covariance matrix of the combined 

vector of effects 

Here we detail the regression method used for the UKB and GS datasets, where both 

siblings and trios are present and the relatedness structure is complex. For the STR, 

where we only had DZ twins available, we used a simpler approach that models 

phenotypic correlations between siblings, as detailed elsewhere81,82.  

In order to account for relatedness, we used a linear mixed model that captures 

phenotypic covariance due to genetic effects and shared environment. In order to do 

this, we followed previous work83 by partitioning the relatedness matrix estimated from 

genome-wide SNPs into two relatedness matrices: one with off-diagonal elements less 

than 0.025 set to zero, 𝑅𝑢; and one with off-diagonal elements greater than 0.025 set to 

zero, 𝑅𝑙. We further include a matrix that models shared environmental effects between 



siblings, 𝐶𝑠𝑖𝑏, where off-diagonal elements are 1 for pairs that are siblings, and are zero 

otherwise. Let 𝑌 be the column vector of phenotype observations in a dataset, 

partitioned as 𝑌 = [𝑌𝑠
𝑇 , 𝑌𝑡

𝑇]𝑇, where 𝑌𝑠
𝑇 is the vector of observations for individuals 

with genotyped siblings but not both parents genotyped, and 𝑌𝑡
𝑇 is the vector of 

observations for individuals with both parents genotyped. We first infer the variance 

components in a linear mixed model with the PGI as a fixed effect:  

𝑌|PGI ~ 𝑁(𝜓PGI, ℎl
2𝑅𝑙 + ℎu

2𝑅𝑢 + 𝑐sib 
2 𝐶𝑠𝑖𝑏 + 𝜎𝜖

2I), 

where PGI is the vector of individuals’ PGI values; 𝜓 is the population effect of the 

PGI; ℎl
2 is the SNP heritability remaining after accounting for the variance captured by 

the PGI; ℎu
2 is the remaining phenotypic variance that is shared in proportion to 

relatedness; and 𝑐sib 
2  captures any additional phenotypic variance shared between 

siblings. We infer the variance components by REML in GCTA23. Let Σ be the 

covariance matrix inferred by REML. We can partition Σ as 

Σ =  [
Σ𝑠 Σ𝑠𝑡
Σ𝑡𝑠 Σ𝑡

]. 

Let 𝑋𝑠 be the matrix of covariates for the sibling sample, including the deviation of the 

individuals’ PGI from the family mean and the family mean PGI; and let 𝑋𝑡 be the 

matrix of covariates for the sample with both parents genotyped. We then estimate the 

effects in each subsample as the generalized-least-squares estimates using Σ as the 

covariance matrix of the regression residuals:  

𝜃𝑠 = (𝑋𝑠
𝑇Σ𝑠

−1𝑋𝑠)
−1𝑋𝑠

𝑇Σ𝑠
−1𝑌𝑠 with Var(𝜃𝑠) = (𝑋𝑠

𝑇Σ𝑠
−1𝑋𝑠)

−1; 

𝜃𝑡 = (𝑋𝑡
𝑇Σ𝑡

−1𝑋𝑡)
−1𝑋𝑡

𝑇Σ𝑡
−1𝑌𝑡 with Var(𝜃𝑡) = (𝑋𝑡

𝑇Σ𝑡
−1𝑋𝑡)

−1. 

Further, we have that  

Cov(𝜃𝑠, 𝜃𝑡) =  (𝑋𝑠
𝑇Σ𝑠

−1𝑋𝑠)
−1𝑋𝑠

𝑇Σ𝑠
−1Σ𝑠𝑡Σ𝑡

−1𝑋𝑡(𝑋𝑡
𝑇Σ𝑡

−1𝑋𝑡)
−1. 

7.4.3 Step 3: Estimating the correlation between maternal and paternal PGI 

This is trivial when both maternal and paternal PGI are observed. For the sibling data, 

we estimate 𝑟𝑎𝑚 from the variance in mean PGI between families. From 

Supplementary Note section 9, we have that  

Var(𝑃𝐺𝐼𝑖̅̅ ̅̅ ̅̅ ) =  E[𝑛𝑖
−1] + (1 − E[𝑛𝑖

−1])(1 + 𝑟𝑎𝑚)/2. 

Solving this for 𝑟𝑎𝑚, we obtain our estimator:   

�̂�𝑎𝑚 = 
2𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅ ̅)̂ −(1+𝐸[𝑛𝑖

−1]̂ )

1−𝐸[𝑛𝑖
−1]̂ . 

As our estimate of 𝑟𝑎𝑚 in each dataset, we took the weighted average of the estimates 

of 𝑟𝑎𝑚 from the siblings and parents, weighted by the number of families. For the EA 

PGI, we estimated 𝑟𝑎𝑚 to be 0.190, 0.182, and 0.175 in UKB, GS, and STR 

respectively. We took the average of these estimates, 0.182, to use for the meta-analysis 

estimates. For the height PGI, we estimated 𝑟𝑎𝑚 to be 0.100 and 0.099 in UKB and GS 

respectively. For the BMI PGI, we estimated 𝑟𝑎𝑚 0.035 and 0.026 in UKB and GS 

respectively. For the cognition PGI, we estimated 𝑟𝑎𝑚 to be 0.053, 0.024, and 0.019 in 

UKB, GS, and STR respectively.  



7.4.4 Step 4. Meta-analyzing estimates 

In each subsample in each dataset, the expected regression coefficients are linear 

transformations of the underlying parameter vector, 𝜃 =  [𝛿, 𝛼𝑝, 𝛼𝑚]. We therefore 

have that, for some constant matrix 𝐴𝑘, 𝜃𝑘 has distribution 

 

𝜃𝑘~𝑁 (𝐴𝑘𝜃,Var(𝜃𝑘)), 

where Var(𝜃𝑘) is the known sampling covariance matrix of 𝜃𝑘.  

Here, we have parameter estimates from two subsamples from UKB and GS, and the 

siblings from STR, which we label dataset 3. Let 𝜃𝑖𝑗 be the estimate from subsample 𝑗 

in dataset 𝑖, and let 𝐴𝑖𝑗 be such that 𝐸[𝜃𝑖𝑗] = 𝐴𝑖𝑗𝜃. We assume that estimates from 

different datasets are independent, so we have  

𝜃~𝑁(𝐴𝜃, 𝑆), 

where 𝐴 =

[
 
 
 
 
𝐴𝑠
𝐴𝑡
𝐴𝑠
𝐴𝑡
𝐴𝑠]
 
 
 
 

;     𝜃 =

[
 
 
 
 
 
𝜃1𝑠
𝜃1𝑡
𝜃2𝑠
𝜃2𝑡
𝜃3𝑠]
 
 
 
 
 

 ; 𝐴𝑠 = [
1 0 0
1 𝑐 𝑐

]; 𝐴𝑡 = [
1 0 0
0 1 0
0 0 1

];  and 

𝑆 =  

[
 
 
 
 
 
 

Var(𝜃1𝑠) Cov(𝜃1𝑠, 𝜃1𝑡) 0 0 0

Cov(𝜃1𝑡, 𝜃1𝑠) Var(𝜃1𝑡) 0 0 0

0 0 Var(𝜃2𝑠) Cov(�̂�2𝑠, 𝜃2𝑡) 0

0 0 Cov(𝜃2𝑡, 𝜃2𝑠) Var(𝜃2𝑡) 0

0 0 0 0 Var(𝜃3𝑠)]
 
 
 
 
 
 

. 

We therefore have that the MLE for 𝜃 is (𝐴𝑇𝑆−1𝐴)−1(𝐴𝑇𝑆−1�̂�) with sampling 

covariance matrix (𝐴𝑇𝑆−1𝐴)−1. 

7.4.5 Step 5. Further transforming the estimates  

Finally, we transform the MLE for 𝜃 by a matrix  

𝐵 = [

1 0 0
1 (1 + 𝑟𝑎𝑚)/2 (1 + 𝑟𝑎𝑚)/2
0 (1 + 𝑟𝑎𝑚)/2 (1 + 𝑟𝑎𝑚)/2
0 −1 1

]. 

The resulting matrix 𝐵𝜃 gives, respectively: meta-analysis estimates of the direct effect, 

population effect, the difference between the population and the direct effects, and the 

difference between the maternal and paternal effects, along with their sampling 

variances. This allows us to perform Z-tests for differences between population and 

direct-effect estimates, and for differences between maternal and paternal effects. 

 



7.4.6 Supplementary Results 

For the EA PGI, we detected differences between direct and population effects for EA, 

AAFB (women), vocabulary, cognitive performance, hourly income, household 

income, BMI, self-rated health, height, HDL, and FEV1 at a Bonferroni-adjusted 

significance threshold of  
0.005

23
= 2.2 × 10−4. The EA PGI explains 5.95% of the 

variance in cognitive performance. For predicting cognitive performance, the ratio of 

direct to population effects is 0.656 (S.E. = 0.041)—larger than for predicting EA—

implying that direct effects account for 43.1% of the overall variance explained by the 

EA PGI. Vocabulary, hourly income and household income show a similar ratio of 

direct to population effects to both EA and cognitive performance. Across metabolic-

related phenotypes (BMI, HDL, SBP, DBP, non-HDL cholesterol, blood glucose) the 

EA PGI explains on average 0.56% of the variance in the phenotypes. The inverse-

variance-weighted average ratio between direct and population effects for the 

metabolic-related phenotypes is 0.645 (S.E. = 0.013). For other health-related 

phenotypes, the pattern is less clear: direct and population effects are not statistically 

distinguishable from each other for ever-smoked, drinks per week, and cigarettes per 

day. For FEV1, the ratio of direct to population effect estimates is only 0.184, implying 

that only around 3.4% of the overall variance in FEV1 explained by the EA PGI is due 

to direct genetic effects.  

For the height PGI (Supplementary Figure 2a), we detected differences between 

direct and population effects for height, FEV1, and EA at a Bonferroni-adjusted 

significance threshold of  
0.005

23
= 2.2 × 10−4. 

For the BMI PGI (Supplementary Figure 2b), we cannot statistically detect a 

difference between direct and population effects on BMI, consistent with a negligible 

influence of assortative mating and indirect genetic effects for BMI. At a Bonferroni-

adjusted significance threshold of 
0.005

23
= 2.2 × 10−4, we detect differences between 

the direct and population effects of the BMI PGI for 9 of the phenotypes: systolic blood 

pressure (SBP), height, cognitive performance, AAFB (women), household income, 

EA, hourly income, vocabulary, and FEV1. While it is possible that cross-phenotype 

assortative mating could explain these differences, this seems unlikely given the limited 

strength of assortative mating with respect to BMI itself. The difference between direct 

and population effects of the BMI PGI on SES-related phenotypes could reflect SES-

related stratification in the BMI PGI. However, this would have to be a type of 

stratification that does not have much of an impact on the correlation of the BMI PGI 

with BMI. Indirect genetic effects could explain this gap if the BMI PGI captures 

aspects of parental behavior that influence offspring SES but not offspring BMI.  

For the cognitive performance PGI (Supplementary Figure 2c), we detected 

differences between direct and population effects for cognitive performance, 

vocabulary, EA, hourly income, household income, self-rated health, height, and BMI 

at a Bonferroni-adjusted significance threshold of  
0.005

23
= 2.2 × 10−4. While we find 

a difference between the population and direct effects of the cognitive performance PGI 

on cognitive performance, the ratio of direct to population effect estimates is 0.824 

(S.E. = 0.033), much larger than for the ratio for the effect of the EA PGI on EA (0.556). 

This implies that the large differences we observe between the EA PGI direct and 

population effects cannot be explained by the effects of cognitive performance on 

educational attainment. Further, the ratio of direct to population effects of the cognitive 



performance PGI on EA is 0.526 (S.E. = 0.030), similar to the ratio for the effect of the 

EA PGI on EA. This suggests that the genetic variants correlated with cognitive 

performance are correlated with EA through pathways other than through cognitive 

performance, including through the family environment and/or through population 

stratification and assortative mating.  

We now make a general comparison of between the PGIs in terms of the contribution 

of their direct effects to cross-phenotype prediction. The inverse-variance-weighted 

average ratio of direct to population effects for the height PGI on the non-height 

phenotypes is 0.721 (S.E. = 0.030); for the BMI PGI on the non-BMI phenotypes, 0.592 

(S.E. = 0.024); and for the cognitive performance PGI on the non-cognitive-

performance phenotypes, 0.554 (S.E. = 0.021). Thus, unlike for the EA PGI, for these 

PGIs the ratio of direct to population effects—and thus also the fraction of the PGI’s 

predictive power that is due to direct effects—drops substantially when predicting 

phenotypes other than the phenotype from which the PGI was derived.  

 

 

  



8 Empirical Bayesian model and GWAS replication 

simulation framework 

Our study involved two main GWAS of educational attainment: an additive GWAS, 

which yields estimates of the “average effect of allele substitution” 𝛼 for each SNP by 

regressing educational attainment on allele dosage 𝑥, and a dominance GWAS, which 

yields estimates of the parameter 𝑑 (as well as 𝑎, which we do not analyze). Although 

our estimators of the parameters 𝛼𝑗 and 𝑑𝑗 for SNP 𝑗 are unbiased (assuming there is 

no confounding), the actual estimates �̂�𝑗 and �̂�𝑗 will tend to be too large in magnitude, 

due to the Winner’s Curse (as explained in Okbay et al. (2016)1 in the context of 

additive GWAS). Intuitively, conditional on an estimate being positive (for example), 

the expectation of the sampling error in that estimate is also positive, and so the 

expected true value of the estimated parameter is smaller than the estimate.  

This Appendix describes the empirical Bayesian model we use to compute the posterior 

distribution of the SNPs’ true 𝛼 and 𝑑, which allows us to account for the Winner’s 

Curse when computing the SNPs’ expected replication record. This Appendix also 

describes the simulation framework we use to benchmark some internal replications we 

conduct of our GWAS results. 

We continue to use following notation in this section. We let 𝑥𝑗 ∈ {0,1,2} denote allele 

dosage at SNP 𝑗; ℎ𝑗  be a dummy variable that is equal to 1 if 𝑥 = 1 (and to 0 otherwise); 

and 𝑥𝑗,std and ℎ𝑗,std denote 𝑥𝑗 and ℎ𝑗  standardized to have mean 0 and variance 1, 

respectively.  

8.1 Posterior distribution of 𝛼𝑗   

Our presentation of the empirical Bayesian model closely follows Supplementary Note 

section 4 of the Supplementary Information of Karlsson Linnér et al. (2019)28, which 

in turn follows section 8 of the Supplementary Note of Okbay et al. (2016)1. 

Let 𝛼𝑗,std be the coefficient from a regression of 𝑦𝑠𝑡𝑑 on 𝑥𝑗,𝑠𝑡𝑑 (and controls, which we 

will ignore here for simplicity), where 𝑦𝑠𝑡𝑑 denotes the standardized phenotype and 

𝑥𝑗,𝑠𝑡𝑑 denotes the standardized dosage for SNP 𝑗. Throughout this Appendix, we assume 

that 𝑦 has been standardized and work with 𝑦𝑠𝑡𝑑, unless otherwise noted. We assume 

that 𝛼𝑗,std is drawn from a mixture distribution of a Gaussian and a point mass at zero: 

𝛼𝑗,std ~ {
𝑁(0, 𝜏2) with probability 𝜋
0 otherwise,

 (8. 1) 

where 𝜏2 is the variance of SNPs with a nonzero additive effect size (i.e., 𝛼𝑗 ≠ 0) and 

𝜋 is the fraction of SNPs with a nonzero additive effect size. Henceforth, we will call 

such SNPs with a nonzero additive effect size “nonnull additive SNPs.”  

Observe that if we let 𝛼𝑗 be the coefficient from a regression of 𝑦𝑠𝑡𝑑 on (unstandardized) 

dosage 𝑥𝑗, then 𝛼𝑗 = 𝛼𝑗,std √Var(𝑥𝑗)⁄ . Our distributional assumption thus implies that 

Var(𝛼𝑗| 𝛼𝑗 ≠ 0) = 𝜏2 Var(𝑥𝑗)⁄ , i.e, that the variance of the additive effect size 𝛼𝑗 is 

inversely proportional to the variance of the dosage 𝑥𝑗.  



Let 𝜎𝑗
2 denote the variance of the estimation error of the estimate of 𝛼𝑗,std. By the Central 

Limit Theorem, that estimation error is approximately normally distributed. It follows 

that the distribution of �̂�𝑗,std is given by: 

�̂�𝑗,std ~ {
𝑁(0, 𝜏2 + 𝜎𝑗

2) with probability 𝜋

𝑁(0, 𝜎𝑗
2 ) otherwise.

 (8. 2) 

Okbay et al. (2016)1 show that, given an estimate �̂�𝑗,std of a SNP 𝑗’s additive effect size, 

the implied posterior probability that the SNP is a nonnull additive SNP is: 

𝑝�̂�𝑗 =

𝜋

√𝜏2 + σ𝑗
2

𝜙

(

 
�̂�𝑗,std

√𝜏2 + σ𝑗
2

)

 

1 − 𝜋
𝜎𝑗

𝜙 (
�̂�𝑗,std

𝜎𝑗
) +

𝜋

√𝜏2 + σ𝑗
2

𝜙

(

 
�̂�𝑗,std

√𝜏2 + σ𝑗
2

)

 

.  (8. 3) 

Also, the posterior distribution for a nonnull additive SNP is: 

(𝛼𝑗,std|�̂�𝑗,std, 𝛼𝑗 ≠ 0) ~ 𝑁 (
𝜏2

𝜏2 + σ𝑗
2 �̂�𝑗,std,

𝜏2σ𝑗
2

𝜏2 + σ𝑗
2).  (8. 4) 

To estimate the posterior distribution (𝑝�̂�𝑗 , (𝛼𝑗,std|�̂�𝑗,std, 𝛼𝑗 ≠ 0)), we first need to 

obtain estimates of 𝜋 and 𝜏2. To do so, we observe that 𝜎𝑗
2 ≈

Var(𝑦𝑗) (𝑁𝑗⁄ Var(𝑥𝑗,𝑠𝑡𝑑)) = 1/𝑁𝑗, and use Maximum Likelihood Estimation (MLE) to 

fit equation (8.2) to the unadjusted (see Supplementary Note section 8.5) summary 

statistics from the relevant GWAS of additive variance. 

8.2 Posterior distribution of 𝑑𝑗   

We also estimate the posterior distribution of 𝑑𝑗. To do so, we need to make adjustments 

to the above empirical Bayes framework for the posterior distribution of 𝛼𝑗. The main 

adjustment concerns the counterpart for 𝑑𝑗 of the distributional assumption we made 

for 𝛼𝑗, which is summarized in (8.4). As mentioned above, that assumption implies that 

the variance of the additive effect size 𝛼𝑗 is inversely proportional to the variance of the 

dosage 𝑥𝑗. Such an assumption may be biologically reasonable and is commonly made 

in the literature (see, e.g., ref. 20), but it is not obvious what the appropriate, biologically 

relevant counterpart is for 𝑑𝑗. 

Here, we assume that  

𝑑𝑗,std ~ {
𝑁(0, 𝜅2) with probability 𝜔
0 otherwise,

 (8. 5) 



where 𝑑𝑗,std is the coefficient on ℎ𝑗,std from a regression of 𝑦std on 𝑥𝑗 and ℎ𝑗,std (and 

controls, which we will again ignore here for simplicity), where, as above, ℎ𝑗,std is the 

heterozygosity indicator ℎ𝑗  standardized to have mean 0 and variance 1. 𝜅2 is the 

variance of “nonnull dominance SNPs” (i.e., the SNPs for which 𝑑𝑗 ≠ 0) and 𝜔 is the 

fraction of SNPs that are nonnull dominance SNPs. We maintain the convention that 𝑦 

has been standardized and work with 𝑦𝑠𝑡𝑑. 

The distributional assumption (8.5) implies that Var(𝑑𝑗|𝑑𝑗 ≠ 0) =  𝜅2 Var(ℎ𝑗)⁄ , i.e., 

that the variance of the dominance parameter 𝑑𝑗 is inversely proportional to the variance 

of the heterozygosity indicator ℎ𝑗 , and is thus similar to assumption (8.1). Because 

Var(𝑥𝑗) = 2𝑝𝑗𝑞𝑗, assumption (8.1) implies that Var(𝛼𝑗| 𝛼𝑗 ≠ 0) = 𝜏2 2𝑝𝑗𝑞𝑗⁄  (where 

𝑝𝑗 denotes the minor allele frequency of SNP 𝑗 and 𝑞𝑗 = 1 − 𝑝𝑗.) And because 

Var(ℎ𝑗) = 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗) (since ℎ𝑗  is an indicator that equals one with probability 

2𝑝𝑗𝑞𝑗), assumption (8.5) implies that Var(𝑑𝑗|𝑑𝑗 ≠ 0) = 𝜅2 (2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗))⁄ . 

The Central Limit Theorem implies that estimation error of the estimate of 𝑑𝑗,std is 

approximately normally distributed, so it follows that the distribution of �̂�𝑗,std is given 

by: 

�̂�𝑗,std ~ {
𝑁(0, 𝜅2 + σ𝑑,𝑗

2 ) with probability 𝜔

𝑁(0, σ𝑑,𝑗
2 ) otherwise.

 (8. 6) 

Having specified a distribution for 𝑑𝑗, we obtain direct counterparts to equations (8.3) 

and (8.4) above. The implied posterior probability that the SNP is a nonnull dominance 

SNP is: 

𝑝�̂�𝑗 =

𝜔

√𝜅2 + σ𝑑,𝑗
2

𝜙

(

 
�̂�𝑗,std

√𝜅2 + σ𝑑,𝑗
2

)

 

1 − 𝜔
𝜎𝑑,𝑗

𝜙(
�̂�𝑗,std

𝜎𝑑,𝑗
) +

𝜔

√𝜅2 + σ𝑑,𝑗
2

𝜙

(

 
�̂�𝑗,std

√𝜅2 + σ𝑑,𝑗
2

)

 

, 

and the posterior distribution for a nonnull dominance SNP is: 

(𝑑𝑗,std|�̂�𝑗,std, 𝑑𝑗 ≠ 0) ~ 𝑁 (
𝜅2

𝜅2 + σ𝑑,𝑗
2 �̂�𝑗,std,

𝜅2σ𝑑,𝑗
2

𝜅2 + σ𝑑,𝑗
2 ), 

where σ𝑑,𝑗
2  is the variance of the estimation error of the estimate of 𝑑𝑗,std. As we show 

below, σ𝑑,𝑗
2 =

1−2𝑝𝑗𝑞𝑗

𝑁𝑗2𝑝𝑗𝑞𝑗
.  

We would like to estimate 𝜔 and 𝜅2 in equation (8.6) using MLE applied to the 

unadjusted summary statistics from the relevant dominance GWAS, analogously to 

what we do to estimate 𝜋 and 𝜏2 for the posterior distribution of 𝛼𝑗. However, the MLE 

algorithm fails to converge for equation (8.6), likely because 𝜅2 is much smaller than 

σ𝑑,𝑗
2 , as we show Supplementary Note section 2.5. 



For that reason, we do not estimate 𝜔 and 𝜅2 jointly, but rather obtain estimates of 𝜅2 

implied various assumed values of 𝜔 and then compute the expected records of the 

planned replication exercises for these 𝜔’s and the implied 𝜅2’s.  

To obtain 𝜅2 for a given 𝜔, we note that the Law of Total Variance implies that 

Var(�̂�𝑗,std) = E[Var(�̂�𝑗,std|𝑝𝑗 , 𝑁𝑗)] + Var(E[�̂�𝑗,std|𝑝𝑗 , 𝑁𝑗]), where the variances and 

expectations are taken across the SNPs. Equation (8.6) implies that E[�̂�𝑗,std|𝑝𝑗, 𝑁𝑗] = 0 

for all 𝑝𝑗 and 𝑁𝑗 and that Var(�̂�𝑗,std|𝑝𝑗 , 𝑁𝑗) = 𝜔𝜅2 + σ𝑑,𝑗
2 . It follows that Var(�̂�𝑗,std) =

𝜔𝜅2 + E[σ𝑑,𝑗
2 ], and thus that 𝜅2 = (Var(�̂�𝑗,std) − E[σ𝑑,𝑗

2 ]) 𝜔⁄ . Our estimator of 𝜅2 for 

a given assumed value of 𝜔 is  

�̂�2 = (Var̂(�̂�𝑗,std) − Ê[σ𝑑,𝑗
2 ]) 𝜔⁄ , 

where Var̂ and Ê denote the sample variance and mean taken across the SNPs’ summary 

statistics23.  

8.3 Proof that 𝜎𝑑 ,𝑗
2 = (1− 2𝑝𝑗𝑞𝑗 )/𝑁𝑗2𝑝𝑗𝑞𝑗   

We now show that σ𝑑,𝑗
2 =

1−2𝑝𝑗𝑞𝑗

𝑁𝑗2𝑝𝑗𝑞𝑗
, where σ𝑑,𝑗

2  is the variance of the estimation error of 

the estimate of 𝑑𝑗,std, where 𝑑𝑗,std is the coefficient on ℎ𝑗,𝑠𝑡𝑑 from a regression of 𝑦𝑠𝑡𝑑 

on 𝑥𝑗 and ℎ𝑗,𝑠𝑡𝑑. For this derivation, we assume that every genotype is imputed perfectly 

and that there is no assortative mating.  

Step 1: regression of unstandardized phenotype on unstandardized dosage and 

unstandardized heterozygosity dummy 

We first derive the variance of 𝑑𝑗. Recall that 𝑑𝑗 is the coefficient on ℎ𝑗  in a regression 

of (unstandardized) 𝑦 on (unstandardized) 𝑥𝑗 and (unstandardized) ℎ𝑗  (and controls, 

which we ignore here for simplicity). The variance of 𝑑𝑗 will depend on the variances 

of 𝑥𝑗 and ℎ𝑗  and their covariance, so we first compute these. We know that Var(𝑥𝑗) =

2𝑝𝑗𝑞𝑗, and since ℎ𝑖𝑗 is a binary variable with probability 2𝑝𝑗𝑞𝑗 of being equal to 1, 

Var(ℎ𝑖𝑗) = 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗). Finally,  

Cov(𝑥𝑖𝑗, ℎ𝑖𝑗) = E[𝑥𝑗ℎ𝑗] − E[𝑥𝑗]E[ℎ𝑗] = 2𝑝𝑗𝑞𝑗 − (2𝑝𝑗)(2𝑝𝑗𝑞𝑗) = 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗). 

Next, observe that 

Var([
�̂�𝑗

�̂�𝑗
]) ≈

σ𝑦
2

𝑁𝑗
[
Var(𝑥𝑗) Cov(𝑥𝑗 , ℎ𝑗)

 Var(ℎ𝑗)
]

−1

, 

where we use the approximation σ𝜀𝑗
2 ≈ σ𝑦

2  since the 𝑅2 of the regression is very small. 

With some algebra, we see that  

[
Var(𝑥𝑗) Cov(𝑥𝑗 , ℎ𝑗)

 Var(ℎ𝑗)
]

−1

= [
2𝑝𝑗𝑞𝑗 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗)

 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)
]

−1

 

 
23 As above for the estimation of 𝜋 and 𝜏2 and as we further discuss below in Supplementary Note 

section 8.5, we use the unadjusted summary statistics to estimate �̂�2. 

 



=
1

2𝑝𝑗𝑞𝑗
[
1 1 − 2𝑝𝑗
 1 − 2𝑝𝑗𝑞𝑗

]
−1

 

=
1

2𝑝𝑗𝑞𝑗
(

1

1 − 2𝑝𝑗𝑞𝑗 − (1 − 2𝑝𝑗)
2) [

1 − 2𝑝𝑗𝑞𝑗 2𝑝𝑗 − 1

 1
]   

=
1

2𝑝𝑗𝑞𝑗
(

1

1 − 2𝑝𝑗𝑞𝑗 − 1+4𝑝𝑗 − 4𝑝𝑗
2) [

1 − 2𝑝𝑗𝑞𝑗 2𝑝𝑗 − 1

 1
]  

=
1

2𝑝𝑗𝑞𝑗
(

1

2𝑝𝑗𝑞𝑗
) [
1 − 2𝑝𝑗𝑞𝑗 2𝑝𝑗 − 1

 1
] 

=
1

(2𝑝𝑗𝑞𝑗)
2 [
1 − 2𝑝𝑗𝑞𝑗 2𝑝𝑗 − 1

 1
]. 

It follows that  

Var ([
�̂�𝑗

�̂�𝑗
]) ≈

𝜎𝑦
2

𝑁𝑗(2𝑝𝑗𝑞𝑗)
2 [
1 − 2𝑝𝑗𝑞𝑗 2𝑝𝑗 − 1

 1
], 

and in particular that Var(�̂�𝑗) ≈
𝜎𝑦
2

𝑁𝑗(2𝑝𝑗𝑞𝑗)
2. 

Step 2: regression of standardized phenotype on unstandardized dosage and 

standardized heterozygosity indicator 

Next, we derive the variance of 𝑑𝑗,std, the coefficient on ℎ𝑗,std in a regression of 

(standardized) 𝑦std on (unstandardized) 𝑥𝑗 and (standardized) ℎ𝑗,std (and controls, 

which we will ignore here for simplicity). We have σ𝜀𝑗
2 ≈ σ𝑦

2 = 1, and 

ℎ𝑗,std =
ℎ𝑗 − Ê[ℎ𝑗]

√Var̂(ℎ𝑗)

=
ℎ𝑗 − 2𝑝𝑗𝑞𝑗

√2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)

      and      Cov(𝑥𝑗 , ℎ𝑗,std)

=
Cov(𝑥𝑗 , ℎ𝑗)

√2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)

. 

It follows that 

Var ([
�̂�𝑗

�̂�𝑗,std
]) ≈

1

𝑁𝑗
[
Var(𝑥𝑗) Cov(𝑥𝑗 , ℎ𝑗,std)

 Var(ℎ𝑗,std)
]

−1

 

=
1

𝑁𝑗
([
1 0
 1

√2𝑝𝑗𝑞𝑗(1−2𝑝𝑗𝑞𝑗)

] [
Var(𝑥𝑗) Cov(𝑥𝑗 , ℎ𝑗)

 Var(ℎ𝑗)
]  [

1 0
 1

√2𝑝𝑗𝑞𝑗(1−2𝑝𝑗𝑞𝑗)

])

−1

 

=
1

𝑁𝑗
[

1 0

 √2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)
] 

                                                                 [
Var(𝑥𝑗) Cov(𝑥𝑗 , ℎ𝑗)

 Var(ℎ𝑗)
]

−1

[

1 0

 √2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)
] 

=
1

𝑁𝑗
[

1 0

 √2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)
] 



                                                                [
1

(2𝑝𝑗𝑞𝑗)
2 [
1 − 2𝑝𝑗𝑞𝑗 2𝑝𝑗 − 1

 1
]] [

1 0

 √2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)
] 

=
1

𝑁𝑗(2𝑝𝑗𝑞𝑗)
2 [
1 − 2𝑝𝑗𝑞𝑗 (2𝑝𝑗 − 1)√2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)

 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑗𝑞𝑗)

 ]. 

This implies that σ𝑑,𝑗
2  = Var(�̂�𝑗,std) ≈

2𝑝𝑗𝑞𝑗(1−2𝑝𝑗𝑞𝑗)

𝑁𝑗(2𝑝𝑗𝑞𝑗)
2 =

2𝑝𝑗𝑞𝑗−(2𝑝𝑗𝑞𝑗)
2

𝑁𝑗(2𝑝𝑗𝑞𝑗)
2 =

1−2𝑝𝑗𝑞𝑗

𝑁𝑗2𝑝𝑗𝑞𝑗
. 

8.4 GWAS replication simulation framework 

We now describe the framework we used to simulate and benchmark internal 

replications of our additive and dominance GWAS results. This framework was also 

used in Supplementary Note section 4 of the Supplementary Information of Karlsson 

Linnér et al. (2019)28. In the current paper, we used this framework in Supplementary 

Note section 2.3 to benchmark a replication of the results from our earlier EA3 GWAS 

of additive variance (Lee et al. 20182) in the new data from the current paper, and in 

Supplementary Note section 2.6 to benchmark a cross-cohort replication of the results 

of the GWAS of dominance variance across the 23andMe and UKB cohorts.  

Suppose we wish to assess how well the effect-size estimates obtained for a set of “lead 

SNPs” in a discovery dataset replicate in a replication dataset. Let 𝜃𝑗  denote the true 

effect size for SNP 𝑗, and define a test 𝑇 of whether the rescaled estimate 𝜃𝑗,std[rep] 

from the replication data is consistent with the rescaled estimate 𝜃𝑗,std[disc] from the 

discovery data. (In practice, 𝜃𝑗  is either the additive effect 𝛼𝑗 or the dominance effect 

𝑑𝑗, depending on the replication; the test 𝑇 may be, for example, whether 𝜃𝑗,std[repln] 

has the same sign as 𝜃𝑗,std[disc], or the same sign plus a P value less than a certain 

threshold.) The lead SNPs are obtained using our clumping algorithm (Supplementary 

Note section 2.2.6) and are thus approximately independent from one another. For each 

lead SNP from the discovery data, we assess whether the estimate in the replication 

data passes test 𝑇.  

We note that, consistent with the way we define the genome-wide-significant lead SNPs 

in this paper, the lead SNPs in our replications are determined using their adjusted P 

values in the discovery data (i.e., P values calculated using standard errors that have 

been inflated by the square root of the LD score regression). This only impacts the set 

of SNPs included in our replication exercises, and thus in the simulations. Our 

replication tests also use the SNPs’ adjusted P values (in the replication data), and as 

described below, we adjust the simulated standard errors accordingly. However, in our 

simulations, the relevant posterior distribution of 𝜃𝑗,std is estimated using the 

unadjusted summary statistics, as we further discuss in Supplementary Note section 

8.5 below.  

To compute �̂�[𝐶𝑇], where 𝐶𝑇 is the number of lead SNPs that pass test 𝑇, we proceed 

as follows. 

We simulate 1,000 estimates of 𝜃𝑗,std in the replication data for each lead SNP j. We 

generate the 𝑘-th simulation estimate of 𝜃𝑗,std by adding Gaussian noise to a “true” 

𝜃𝑗,std drawn from the relevant posterior distribution: 



𝜃𝑗,std,𝑘[rep] = 𝜃𝑗,std,𝑘 + 𝛿𝑗,𝑘�̂�𝜃,𝑗[rep]√InterceptLD score , 

where 𝛿𝑗,k is an independent draw from a standard normal distribution, �̂�𝜃,𝑗[rep] is the 

standard error of the estimates of 𝜃𝑗,std in the replication data, and InterceptLD score is 

the intercept from the LD score regression estimated in the replication data24. (As 

shown above in this Appendix, �̂�𝜃,𝑗[rep] =
1

𝑁𝑗
 if 𝜃 = 𝛼 and �̂�𝜃,𝑗[rep] =

1−2𝑝𝑗𝑞𝑗

𝑁𝑗2𝑝𝑗𝑞𝑗
 if 𝜃 = 𝑑, 

where 𝑁𝑗 is the sample size for SNP 𝑗 in the replication GWAS, 𝑝𝑗 is the minor allele 

frequency, and 𝑞𝑗 = 1 − 𝑝𝑗.)  

We let �̂�𝑇,𝑘 denote the number lead SNPs in the replication’s k-th simulation that pass 

test 𝑇. We obtain our estimate of 𝐸[𝐶𝑇] for the replication by averaging �̂�𝑇,𝑘 across the 

1,000 simulations: 

�̂�[𝐶𝑇] =
1

1000
∑ �̂�𝑇,𝑘.

1000

𝑘=1

 

In addition, we estimate the standard deviation of 𝐶𝑇 by using the formula for the 

sample standard deviation: 

SD̂(𝐶𝑇) = √
1

999
∑(�̂�𝑇,𝑘 − �̂�[𝐶𝑇])

2
1000

𝑘=1

. 

We note that the  �̂�𝑇,𝑘’s generated by our simulation procedure capture the uncertainty 

in 𝐶𝑇 stemming from both sampling variation and the posterior distribution of 𝜃𝑗 . Thus, 

estimating Var̂(𝐶𝑇) = (SD̂(𝐶𝑇))
2

 is the empirical counterpart to calculating the 

expectation of (𝐶𝑇 − 𝐸[𝐶𝑇])
2—i.e., calculating the variance of 𝐶𝑇—with respect to 

both the distribution of the sampling variation and the posterior distribution of 𝜃𝑗 .  

8.5 Use of unadjusted summary statistics when fitting the empirical 

Bayesian model 

As mentioned above (Supplementary Note sections 2.2.6, 2.3, 4.6, 8.1, and 8.4), for 

both our additive and dominance GWAS, we used the unadjusted summary statistics to 

compute the SNPs’ posterior distribution based on the empirical Bayesian model. 

(Adjusted summary statistics are summary statistics in which the standard errors have 

been inflated by the square root of the intercept from a LD score regression, whereas 

standard errors have not been inflated in unadjusted summary statistics. The inflation 

of the standard errors in adjusted summary statistics is a standard step employed in 

GWAS analysis to adjust for inflation in SNPs’ 𝜒2 statistics due to population 

stratification20.)  

For the cross-cohort replications in Supplementary Note sections 2.3 and 4.6, the 

simulations based on the empirical Bayesian model aim to predict the results of our 

replications under the assumption that the discovery GWAS estimates are not biased, 

including by population stratification. It is therefore appropriate to use the unadjusted 

 
24 As mentioned above, in our actual replications, the replication tests use adjusted P values in the 

replication data. Our replication simulations thus reproduce that feature.  



summary statistics and to simulate a scenario in which there is no population 

stratification. More generally and perhaps more plausibly, one can think of the 

simulations of the cross-cohort replications as assuming that the discovery and 

replication cohorts come from the same underlying population and that any residual 

stratification bias (after controlling for PCs) in the estimates in one cohort is also 

present in the estimates of the other. 

In Supplementary Note section 2.2.6, we use the unadjusted summary statistics to 

correct the lead SNPs’ estimated effect sizes for the winner’s curse. That is because the 

goal is to correct for the inflation in the magnitude of the estimates due to sampling 

variation (i.e., for the winner’s curse) rather than for bias due to residual population 

stratification (i.e., the population stratification remaining after the GWAS has already 

controlled for PCs). While the LD score regression framework could potentially be 

adapted to correct estimated effect sizes for residual population stratification (as we 

discuss in the following paragraph), that framework has not to our knowledge 

previously been used for that precise purpose. 

We note that our empirical Bayesian model could in principle be modified to be used 

with adjusted summary statistics. In the case of our model of additive variance 

(Supplementary Note section 8.1), this could be done by modifying equation (8.2) by 

adding a parameter 𝜎𝑠
2 to the variance of �̂�𝑗,std to account for bias due to population 

stratification: 

�̂�𝑗,std ~ {
𝑁(0, 𝜏2 + 𝜎𝑗

2 + 𝜎𝑠
2) with probability 𝜋

𝑁(0, 𝜎𝑗
2 + 𝜎𝑠

2 ) otherwise.
 

(As mentioned in Supplementary Note section 8.1, 𝛼𝑗,std is the coefficient from a 

regression of the standardized phenotype on the standardized dosage for SNP 𝑗, and 

controls). If we let �̃�𝑗
2 ≡ 𝜎𝑗

2 + 𝜎𝑠
2, we can replace equation (8.2) by 

 
�̂�𝑗,std ~ {

𝑁(0, 𝜏2 + �̃�𝑗
2) with probability 𝜋

𝑁(0, �̃�𝑗
2 ) otherwise.

 (8.7) 

The difficulty is then to estimate �̃�𝑗
2. Under the assumptions that justify adjusting 

GWAS summary statistics by the LD score intercept, �̃�𝑗
2 = 𝜎𝑗

2 ∙ 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑁𝑗
, 

where 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 is the intercept from the LD score regression and 𝜎𝑗
2 =

1

𝑁𝑗
 as 

mentioned in Supplementary Note section 8.1. One could thus in principle use our 

modified empirical Bayesian model (with equation (8.7)) with adjusted summary 

statistics to estimate the posterior distribution of the true effect sizes 𝛼𝑗,std corrected for 

both the winner’s curse and for population stratification. This approach could be 

particularly useful if we wanted to simulate a replication of the estimates of a standard 

(i.e., cross-sectional) GWAS in a within-family GWAS, since the estimates from the 

latter are not biased by population stratification.  

  



9 Analysis of assortative mating 

To investigate whether the estimated correlation between mate pairs’ PGIs could be 

explained by phenotypic assortative mating, we conducted further analyses in samples 

with both parents genotyped in the UK Biobank (862 mate pairs) and Generation 

Scotland (1603 mate pairs). Although the UK Biobank is not a representative sample, 

the correlation between mate pairs’ educational attainments in our sample (0.430, S.E. 

= 0.017) is not very different from those in representative UK samples: very close to 

the correlation of 0.45 estimated by Hugh-Jones et al.42 and only somewhat smaller than 

we estimate (0.513, S.E. = 0.018) in the English Longitudinal Study of Ageing43 (we 

used the 3470 mate pairs identified in the harmonized ELSA data from the Gateway to 

Global Aging (g2aging.org) and our updated UK Biobank coding of EduYears). 

We identified mate pairs by identifying genotyped parents of genotyped individuals 

within each sample. Let 𝑟𝑦 denote the phenotypic correlation between mate pairs, and 

let 𝑟𝑝 and 𝑟𝑚 denote the correlations between the phenotype and PGI for the father and 

mother, respectively. The correlation between the mate pairs’ PGIs should be equal to 

𝑟𝑦𝑟𝑝𝑟𝑚 if the correlation is explained by assortative mating on the phenotype alone, and 

the relationship between the PGI and the phenotype is linear. Furthermore, the PGI of 

the mother conditional on the mother’s phenotype, should be independent of the PGI 

of the father, conditional on the father’s phenotype. We note that we use the correlation 

in phenotypes measured in mate pairs after they paired up, which could be inflated if 

mate pairs influence each other, leading to greater phenotypic similarity than at the time 

of pairing. This would have the effect of predicting a higher mate-pair PGI correlation 

than if we had used phenotypes from the time of pairing. 

To test the model of phenotypic assortment, we estimated the expected correlation 

between mate pairs’ PGIs by estimating 𝑟𝑦, 𝑟𝑝, and 𝑟𝑚. We estimated the standard error 

of the product of 𝑟𝑦, 𝑟𝑝, and 𝑟𝑚 using 1000 bootstrap samples where we sampled over 

the mate pairs. We also estimated the correlation between the residual of the father’s 

PGI after regression onto the father’s phenotype and the residual of the mother’s PGI 

after regression onto the mother’s phenotype. This correlation between residuals should 

be zero if the correlation between mate pairs’ PGIs is explained entirely by assortative 

mating on the phenotype, and the relationship between phenotype and PGI is linear. To 

test robustness to the linearity assumption, we also computed the correlation between 

the residuals from regression of (father or mother)’s PGI onto a cubic function of the 

(father or mother)’s trait. This did not make a noticeable difference to the results 

(Supplementary Table 14), so we used only a linear model for the relationship 

between trait and PGI for the following analyses.  

We investigated whether, beyond assortative mating on the phenotype alone, 

assortment based on genetic ancestry captured by genetic principal components 

explained the observed correlation between mate pairs’ PGIs. To do this, we took the 

residuals of the father’s PGI after regression on the father’s phenotype and the father’s 

values of the top 40 genetic principal components; and we computed the correlation of 

this with the residuals of the mother’s PGI after regression on the mother’s phenotype 

and the mother’s values of the top 40 genetic principal components.  

In UKB, north and east birth coordinates in the UK (Data Fields 129-130) were 

recorded, in addition to the center where individuals were assessed (Data Field 54). To 

further assess the impact of geographic factors on the correlation between mate pairs’ 

EA PGIs, we added north and east birth coordinates and the product of north and east 

https://www.g2aging.org/


birth coordinate, along with assessment center coded as a categorical variable, as 

regressors to the regression of the EA PGI onto EA and principal components in the 

UKB. 

For EA, we hypothesized that assortment may occur through phenotypes correlated 

with EA, such as cognitive performance and vocabulary. To assess this, we added the 

cognitive performance and vocabulary phenotypes as regressors to the regressions of 

the EA PGI onto EA and principal components, and we computed the correlation 

between the mate pairs’ residuals (Supplementary Table 14). We did this in 

Generation Scotland alone, due to the lack of appropriate cognitive measures in UKB. 

  



10 Proofs for sibling-based analysis 

Consider joint regression of 𝑌𝑖𝑗 onto 𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅
�̅� and 𝑃𝐺𝐼̅̅ ̅̅

�̅�, where 𝑃𝐺𝐼̅̅ ̅̅
�̅� =

1

𝑛𝑖
∑ 𝑃𝐺𝐼𝑖𝑗
𝑛𝑖
𝑗=1 , and 𝑛𝑖 is the number of genotyped siblings (including the focal individual 

𝑗) in family 𝑖. We have that 𝐶𝑜𝑣(𝑃𝐺𝐼𝑖𝑗, 𝑃𝐺𝐼𝑖𝑘) = (1 + 𝑟)/2 for 𝑗 ≠ 𝑘; and  

 
𝐶𝑜𝑣(𝑃𝐺𝐼𝑖𝑗 , 𝑃𝐺𝐼𝑝(𝑖)) = 𝐶𝑜𝑣(𝑃𝐺𝐼𝑖𝑗 , 𝑃𝐺𝐼𝑚(𝑖)) = (1 + 𝑟)/2. (9. 1) 

First, we show that 𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅
�̅� , 𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅

�̅�) = 0. By the definition of covariance, we 

have that  

 
𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅

�̅�, 𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅
�̅�) = 𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅

�̅�, 𝑃𝐺𝐼𝑖𝑗) − 𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�). (9. 2) 

We now compute the terms in equation (9.2), that is  

 

𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅
�̅�, 𝑃𝐺𝐼𝑖𝑗) =

1

𝑛𝑖
(1 + (𝑛𝑖 − 1)

1 + 𝑟

2
) 

=
1

𝑛𝑖
+ (1 −

1

𝑛𝑖
)
1 + 𝑟

2
; 

(9. 3) 
 

(9. 4) 

and 

 

𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�) =

1

𝑛𝑖
2 (𝑛𝑖 + 𝑛𝑖(𝑛𝑖 − 1)

1 + 𝑟

2
) 

=
1

𝑛𝑖
+ (1 −

1

𝑛𝑖
)
1 + 𝑟

2
 . 

(9. 5) 
 

(9. 6) 

Therefore, 𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅
�̅� , 𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅

�̅�) = 0. This means, for the purpose of deriving the 

expected regression coefficients, the joint regression can be treated as two independent 

univariate regressions.  

To compute the expected estimates, we first compute 𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑃𝐺𝐼𝑖𝑗) and 

𝐶𝑜𝑣(𝑌𝑖𝑗 , 𝑃𝐺𝐼̅̅ ̅̅
�̅�): 

 

𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑃𝐺𝐼𝑖𝑗) = 𝛿 +
1 + 𝑟

2
(𝛼𝑝 + 𝛼𝑚); (9. 7) 

and  

 
𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑃𝐺𝐼̅̅ ̅̅

�̅�) = 𝛿𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�) + 𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅

�̅�, 𝑃𝐺𝐼𝑝(𝑖))(𝛼𝑝 + 𝛼𝑚), (9. 8) 

using the fact that 𝐶𝑜𝑣(𝑃𝐺𝐼𝑖𝑗 , 𝑃𝐺𝐼̅̅ ̅̅
�̅�) = 𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅

�̅�) and the symmetry of parent-

offspring PGI covariances. We now compute  

 

𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅
�̅� , 𝑃𝐺𝐼𝑝(𝑖)) =

1

𝑛𝑖
𝑛𝑖
1 + 𝑟

2
=
1 + 𝑟

2
 . (9. 9) 

Therefore,  



 

𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑃𝐺𝐼̅̅ ̅̅
�̅�) = 𝛿𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅

�̅�) +
1 + 𝑟

2
(𝛼𝑝 + 𝛼𝑚). (9. 10) 

We therefore have that  

 
𝐶𝑜𝑣(𝑌𝑖𝑗, 𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅

�̅�) = (1 − 𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�))𝛿. (9. 11) 

Furthermore, we have that  

 
𝑉𝑎𝑟(𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅

�̅�) = 1 + 𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�) − 2𝐶𝑜𝑣(𝑃𝐺𝐼𝑖𝑗, 𝑃𝐺𝐼̅̅ ̅̅

�̅�) 

= 1 − 𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�). 

(9. 12) 

Therefore, the regression of  𝑌𝑖𝑗 onto 𝑃𝐺𝐼𝑖𝑗 − 𝑃𝐺𝐼̅̅ ̅̅
�̅� gives an unbiased estimate of 𝛿. 

The expected regression coefficient from the regression of  𝑌𝑖𝑗 onto 𝑃𝐺𝐼̅̅ ̅̅
�̅� depends upon 

the distribution of the sizes of sibships in the sample. Let 𝑌 be a vector comprised of 

observations from multiple sibships each of size 𝑛𝑖, with 𝑛𝑖  potentially varying between 

sibships, and let 𝑃𝐺𝐼̅̅ ̅̅
�̅� be a corresponding vector of mean PGI in each family. To 

compute the expected regression coefficient in this case, we need to compute the total 

variance of 𝑃𝐺𝐼̅̅ ̅̅
�̅� across sibships of different size:  

 

𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�) = 𝔼𝑖[𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅

�̅�)] =
1 + 𝑟

2
(1 +

1 − 𝑟

1 + 𝑟
𝔼 [
1

𝑛𝑖
]). (9. 13) 

Similarly,  

 
𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅

�̅�, 𝑌) = 𝔼𝑖[𝐶𝑜𝑣(𝑃𝐺𝐼̅̅ ̅̅
�̅� , 𝑌𝑖𝑗)] 

= 𝛿𝔼𝑖[𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�)] +

1 + 𝑟

2
(𝛼𝑝 + 𝛼𝑚). 

(9. 14) 

Therefore, we have that the expected regression coefficient from the regression of 𝑌 

onto 𝑃𝐺𝐼̅̅ ̅̅
�̅� is 

 
𝐶𝑜𝑣(𝑌, 𝑃𝐺𝐼̅̅ ̅̅

�̅�)

𝑉𝑎𝑟(𝑃𝐺𝐼̅̅ ̅̅
�̅�)

= 𝛿 + (1 +
1 − 𝑟

1 + 𝑟
𝔼 [
1

𝑛𝑖
])
−1

(𝛼𝑝 + 𝛼𝑚). (9. 15) 
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Supplementary Figures 

Supplementary Figure 1. Stratified LD score regression (SLDSC). The figures 

display the results of running SLDSC on baseline annotations from Gazel et al. (2017) 

and gene set annotations from Cahoy et al. (2008). Estimates of baseline annotations 

are from running SLDSC on all the baseline annotations jointly. Estimates of Cahoy et 

al. (2008) annotations are from running SLDSC on the baseline annotations jointly with 

one Cahoy et al. annotation added at a time. All figures compare EA4 (this paper, N = 

3,037,499) results against the same analysis using EA3 (Lee et al., 2018, N = 1,131,881) 

results. Error bars are 95% confidence intervals calculated from block jackknife 

standard errors. Panels: (a): Enrichment estimates; (b): Proportion of heritability 

estimates; (c): Enrichment standard errors of EA4 against EA3; (d): Proportion of 

heritability standard errors of EA4 against EA3. Error bars in panels (a) and (b) are 

95% confidence intervals. See Supplementary Table 30 for additional details. 
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c. Enrichment standard errors 
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Supplementary Figure 2. Meta-analysis estimates of direct and population effects of PGIs. Plots the standardized effects on 23 

phenotypes of PGIs for (a) height, (b) BMI, and (c) cognitive performance. The effects of the PGI on its own phenotype are highlighted in 

gray. Bars are shaded lighter when the population and direct effects are statistically indistinguishable (two-sided Z-test P > 0.05/23, where 

23 is the number of phenotypes under study). All estimates are from meta-analyses of UKB, GS, and STR samples of siblings and trios. 

Phenotypes and the PGIs are scaled to have variance one in the combined sample, so effect sizes are partial correlation coefficients. Error 

bars are 95% confidence intervals. See Supplementary Table 9 for details on phenotypes and Supplementary Tables 10-13 for numerical 

values underlying this figure. 
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Supplementary Figure 3. Recoding of EA in the UK Biobank. Panels (a): Distribution of 

NVQs awarded by UK qualification level; (b): distribution of age left full-time education (FTE) 

for individuals whose highest qualification is “NVQ or HND or HNC or equivalent”; (c): 

average age left FTE by EA (EA2/EA3 coding); (d): proportion of households earning £52,000 

or more per year by EA (EA2/EA3 coding); (e): average age left FTE by EA (EA4 coding); 

(f): proportion of households earning £52,000 or more per year by EA (EA4 coding). In (c) and 

(e), age left FTE was set to 22 for all college graduates. In (e) and (f), values of EA (EA4 

coding) for which there were fewer than 1,500 observations were excluded. 
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Supplementary Figure 4. Comparison of autosomal and X-chromosomal association 

results. “Chromosome length” is calculated as the difference between the minimum and 

maximum base-pair position of SNPs on the chromosome. “Effective number of loci (𝑀𝑒𝑓𝑓)” is 

calculated from the 𝑀 SNPs using data from the UK Biobank (N = 329,358 individuals). For 

each chromosome, “by-chromosome SNP heritability” is calculated as ℎ2 =
(𝜒2−1)𝑀𝑒𝑓𝑓

𝑁
 where 𝜒2 

is the mean 𝜒2 test statistic for that chromosome and 𝑁 is the average GWAS sample size. 

“Number of lead SNPs” is calculated by applying our clumping algorithm (see Supplementary 

Note section 2.2.6) to the set of genome-wide-significant SNPs. The dashed line is the best fit 

from a regression of the points in the plot with the intercept constrained to zero. The value 𝑟2 

is the squared correlation coefficient of the points in each plot. Panels (a): Chromosome length 

vs. heritability; (b): Effective number of loci vs. heritability; (c): Chromosome length vs. 

number of lead SNPs; (d): Effective number of loci vs. number of lead SNPs. 
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Supplementary Figure 5. Quantile-quantile plots for the overall dominance GWAS meta-

analysis. The panels display Q-Q plots, which show the -log10(P-values) based on a two-sided 

Z-test, for (a) all SNPs and (b) SNPs grouped by minor allele frequency (MAF): low frequency 

(1-5%) and common (>5%). The plots and 𝜆𝐺𝐶 numbers are based on the unadjusted GWAS 

summary statistics (i.e., with standard errors that were not inflated by the square root of the 

estimated LD score intercept). The dotted line represents the expected -log10(P-values) under 

the null hypothesis. The gray shaded areas in the Q-Q plots represent the 95% confidence 

intervals under the null hypothesis. 
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