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SI. FUNCTIONAL RENORMALIZATION
GROUP IN NON-SU(2) SYSTEMS

The supplementary material aims to provide the most
relevant concepts and equations of the functional renor-
malization group study applied in the main text. First,
we show the flow equations of the fermionic four-point
vertex Γ(4) in the absence of SU(2) symmetry and after-
wards describe in detail how to post-process the vertex to
obtain information about the spin/charge and supercon-
ducting instabilities in the system. In parts, we follow the
description published in the Method Section of Ref. S1.

We approximate the formally exact functional renor-
malization group by discarding self-energies, frequency
dependencies of the four-point vertex, and vertices with
more than four legs. The method smoothly interpolates
from the non-interacting theory at infinite scale Λ to the
fully interacting theory at Λ = 0. In our implementation,
we employ a sharp cutoff on the Green’s function such

that

GΛ
σσ′(ik0,k) = Θ(|ik0| − Λ)G0

σσ′(ik0,k) . (S1)

Here, Ĝ0(ik0,k) = (ik0−Ĥ0(k))−1 is the non-interacting
Green’s function as a matrix in spin space.With this
scale-dependent propagator, we derive an ordinary dif-
ferential equation for the four-point vertex function
Γ(4),Λ [S2–S4] that is visualized diagrammatically in
Fig. S1. The resulting equations read

d

dΛ
= + +

FIG. S1. Diagrammatic form of the non-SU(2) symmetric
flow equtations for the four-point vertex Γ(4). Slashed prop-
agator lines refer to the single-scale propagator.

d

dΛ
Γ(4),Λ =

d

dΛ

(
PΛ +DΛ + CΛ

)
, (S2)

d

dΛ
PΛ
σ1σ2σ3σ4

(qP ,kP ,k
′
P ) =

1

2

∑
kσ3′σ4′σ1′σ2′

ΓP,Λ
σ1σ2σ3′σ4′

(qP ,kP ,k)
d

dΛ
LP,Λ
σ3′σ4′σ1′σ2′

(qP ,k) Γ
P,Λ
σ1′σ2′σ3σ4

(qP ,k,k
′
P ) ,

(S3)
d

dΛ
DΛ

σ1σ2σ3σ4
(qD,kD,k

′
D) = −

∑
kσ3′σ4′σ1′σ2′

ΓD,Λ
σ1σ2σ3′σ4′

(qD,kD,k)
d

dΛ
LD,Λ
σ3′σ4′σ1′σ2′

(qD,k) Γ
D,Λ
σ1′σ2′σ3σ4

(qD,k,k
′
D) ,

(S4)
d

dΛ
CΛ

σ1σ2σ3σ4
(k1,k2,k3) = − d

dΛ
DΛ

σ1σ2σ4σ3
(k1,k2,k1 + k2 − k3) . (S5)

Here, the channel-projections to the particle-particle (P ),
and direct particle-hole (D) channels read

ΓP,Λ
σ1σ2σ3σ4

(qP ,kP ,k
′
P ) = Γ(4),Λ

σ1σ2σ3σ4
(k1,k2,k3) , (S6)
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(k1,k2,k3) . (S7)

The bosonic momentum qX and the two fermionic mo-

menta kX , k′
X are transformed as

qP = k1 + k2 , kP = k1 , k′
P = k3 , (S8)

qD = k1 − k3 , kD = k1 , k′
D = k1 + k2 − k3 . (S9)

Here, the momenta k1,2,3 refer to the indices of the ver-
tex function in standard ordering with 1, 2 incoming and
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3, 4 outgoing legs. The scale-derivatives in the corre-
sponding channels in Eqs. (S3) and (S4) are written with
the respective bosonic and fermionic momentum indices,

whereas Eq. (S5) refers to fermionic indices in standard
ordering. The loop contributions in Eqs. (S3) and (S4)
can be written as
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where we defined the channel-dependent momentum dif-
ferences kP

2 = qP − k1 and kD
2 = qD + k1. uσb(k) de-

note Bloch functions of the single-particle tight-binding
Hamiltonian with dispersion εb(k).

Technically, we discretize momentum space for the ver-
tex functions with a 24 × 24 meshing of the reciprocal
primitive zone. The Green’s functions (and loops) are
calculated on a much finer mesh with 649 points for each
of the 24×24 points. In order to preserve symmetries, the
fine points are chosen in the Wigner-Seitz cells defined
by the coarse mesh. An instructive description of this
meshing procedure is found in Ref. S5. The central dif-
ferential equation (in Λ) is integrated with an enhanced
adaptive Euler scheme that first constrains the step size
to be 10% of the current Λ at maximum and further
scales the step size inversely to the maximum value of
Γ(4),Λ. We consider the flow as diverged when the maxi-
mum absolute value of a vertex component is larger than
30t. From the value at which this divergence occurs, we
obtain the critical scale Λc and by inspection of the chan-
nel that contributes most strongly to the divergence of
Γ(4),Λ whether a particle-particle (P ) or a particle-hole
(D, C) instability is present.

SII. FUNCTIONAL RENORMALIZATION
GROUP FLOWS

For selected points along the ν = 0 vertical line in
the phase diagram (Fig. 1 of the main text), we plot the
channel contribution maxima and the vertex maximum
as a function of Λ to visualize the pronounced tendency
towards order in Fig. S2. We define the channel contri-
bution maximum XΛ

max of channel X ∈ P,C,D as

XΛ
max = max

k1k2k3,s1...s4

∣∣∣∣dΛdXΛ

dΛ

∣∣∣∣ , (S12)
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FIG. S2. Channel maxima as a function of the RG scale Λ for
ν = 0 and varied ϕ (bottom left of each panel). Blue curves
denote the P -channel maximum, orange curves the D-channel
maximum and gray curves the vertex maximum. The dashed
gray line shows the value of Λc.

where the expression dXΛ/dΛ is numerically obtained
from Eqs. (S3) to (S5). Note that CΛ

max ≡ DΛ
max as in

the non-SU(2) case, these two channels are connected via
reordering of the third and fourth vertex index. As the
onset of strong correlations is signaled by a divergence of
V Λ at Λc, we can inspect the type of order by comparing
DΛ

max with PΛ
max at Λ . Λc – the behavior close to the

divergence indicates which order (i.e. particle-hole (D)
or particle-particle (P )) eventually dominates.
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FIG. S3. Spin and Density weights of the particle-hole
instabilities. For each ν and ϕ where our FRG analysis pre-
dicts DW order, we calculated the weight function w(i, j) in
spin/density space and normalize by its maximum value. We
color-code this information for the four non-trivial spin/den-
sity correlations. This analysis visualizes that at no point,
the denisty-density correlation (a) is dominant, and that for
almost all other points, the spin-xx/yy correlation (b) dom-
inates over the spin-zz correlation (d) and the spin-xy/yx
correlation (c).

SIII. ANALYSIS OF SPIN/DENSITY-WAVE
PHASES

In the case of particle-hole instabilities, the resulting
ordered phase generally mixes spin with density order due
to the non-SU(2) nature of the system. Further analysis
of the instability is provided by the calculation of four-
point susceptibilities, detailed in the following.

SIII. A. Four-point susceptibilities

The interacting four-point particle-hole susceptibility
χD
σ1σ2σ3σ4

(qD) at scale Λc is obtained from a two-loop
diagram with all fermionic momenta being contracted:
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The loop function at scale Λ reads
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which is nothing else but the non-interacting four-
point particle-hole susceptibility χ0,Λ

s4s1s2s3(q
D,k1) =∑

i(k1)0
G0

s1s3(k1)G
0
s2s4(k1 + qD) at temperature Λ, and

f(x) = (ex + 1)−1. To obtain physical spin/density cor-
relation functions, we transform the four-point suscepti-
bility as follows [S6]:

χij(q) =
∑

σ1σ2σ3σ4

σσ2σ1
i σσ3σ4

j χD
σ1σ2σ3σ4

(q) . (S15)

Here, σσ1,σ2

i denote the Pauli matrices for i ∈ {x, y, z}
and the identity matrix for i = 0.

SIII. B. Averages in momentum & spin space

The leading ordering vectors in Fig. 2 (a) of the main
text were obtained with an averaging procedure on the
four-point particle-hole susceptibility. For q ∈ BZ, we
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define the momentum weight function w(q) as

w(q) =
(∥∥χD(q)σ1,...,σ4

∥∥
σ1,...,σ4;1

)3

, (S16)

where the norm is an absolute value norm taken over all
combinations of spin indices. A meaningful expression
for q̄ can only be defined for the irreducible wedge (IBZ)
defined by the triangle connecting the points Γ-K-M .
We calculate the average ordering vector as

q̄ =

∑
q∈IBZ qw(q)∑
q∈IBZ w(q)

. (S17)

In a similar manner, we can perform an averaging to
get the relative weight in xx, xy and zz direction
(cf. Fig. 2 (b)). We first define the weight function as

w(i, j) =
(∥∥χij(q)

∥∥
q,3

)2

, (S18)

where now the 3-norm is taken over the full BZ. There-
after, plotting coordinates are assigned to the three com-

binations of i, j and an average similar to Eq. (S17) is
performed to map each point to a specific color.

SIII. C. Competition of density and spin ordering

As stated in the main text, we observe that at any
point in the phase diagram, spin-spin correlations dom-
inate over density-density correlations of the respective
orders. We aim to visualize this behavior in Fig. S3,
where we plot the weights w(i, j) of the four non-trivial
spin/density correlation functions for all DW states. The
weights are normalized for each value of ϕ and ν to
their maximum value. For almost all values of ν and
ϕ, the xx/yy correlations dominate. Only at ϕ & 0 and
ϕ ≈ π/3, there are small regions of dominant zz ordering.

SIV. ANALYSIS OF SUPERCONDUCTING
PHASES

In the case of the flow indicating a particle-particle
instability, we employ a twofold method of analyzing the
ordering tendencies. First, in the spirit of Eqs. (S13)
and (S14), we calculate the particle-particle susceptibility
at scale Λc:
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(S19)

where fn(k) is a formfactor and Lf,P,Λ
σ1σ2σ3σ4

(qP ,k1) refers to the particle-particle Fermi loop:
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Second, we solve a linearized gap equation for Γ(4),Λ:

λ∆σ1σ2
(k) =

∑
k′σ3σ4σ1′σ2′

ΓP,Λ
σ1σ2σ3σ4

(qP = 0,k,k′)Lf,P,Λ
σ3σ4σ1′σ2′

(qP = 0,k′)∆σ1′σ2′ (k
′) . (S21)

For numerical treatment, it is notable that the eigenprob-
lem Eq. (S21) is non-Hermitian; and therefore not stable.
So we instead perform a singular value decomposition of
the matrix composed of ΓP,Λ and Lf,P,Λ:

Γ̂P,ΛL̂f,P,Λ = Û Σ̂ V̂ † , (S22)

with singular values Σ̂ and right (left) singular vectors V̂
(Û). All Fermi surface projection is encoded in the right
singular vectors V̂ , whereas Û display the symmetry of
the superconducting order parameter in the full BZ.

For further analysis of the gap symmetry, we trans-

form the singular vectors corresponding to the maximal
singular values (i.e. leading singular vectors) to singlet
and triplet space [S7, S8]:

∆̂(k) = i
[
ψ(k) + σ̂ · d(k)

]
σ̂y , (S23)

where σ̂ is the vector of Pauli matrices.
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FIG. S4. Left: Superconducting gap functions in singlet/triplet (left two columns) and spin up/spin down (right two columns)
space. The first row corresponds to an s/f -wave instability, the second and third rows to two degenerate d/p-wave instabilities.
Right: Fermi-surface (FS) projected superconducting gap functions. Each panel is showing the same instability as on the
left, with the only difference being the use of right singular vectors V̂ instead of left singular vectors Û in the singular value
decomposition of Eq. (S22) which leads to the FS projection.
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FIG. S5. Band structure of the atomistic tight binding model
of twisted bilayer WSe2 for various values of perpendicular
electric field D within experimental reach.

SIV. A. Spin-resolved gap functions

For the two points in the phase diagram where we dis-
play singlet/triplet resolved gap functions (cf. Fig. 3 of
the main text), we provide plots of the same gap func-
tions in the spin-z basis in Fig. S4. We further add the
gap functions in singlet/triplet basis to the same figure
to emphasize the differences.
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FIG. S6. Band structure of the effective one-band moiré tight-
binding model at various ϕ roughly corresponding to the ex-
amined values of D in Fig. S5.

SV. ATOMISTIC TIGHT-BINDING MODEL OF
TWISTED BILAYER TUNGSTEN DISELENIDE

To confirm that the influence of a perpendicular elec-
tric field on the moiré minibands of tWSe2 is captured
by ϕ in the effective model, we construct a tight binding
model as described in Ref. S9. This model is based on
the 22-band model for monolayer WSe2 [S10] (11 orbitals
per spin) and then extended to a commensurate super-
cell making the twisted bilayer. As twist angle, we use
θ = 5.08◦. Moreover, we assume the lowest harmonic
approximation for relaxation of the atomic positions in
z direction (as detailed for the case of twisted bilayer
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graphene in the appendix of Ref. S11) and ignore inter-
layer couplings of the metal d-orbitals [S9]. We model
the perpendicular D field as on-site potential acting on
only the outer p orbitals and assume the effects of the
field on all other orbitals to be screened. As a result,

we obtain the field dependent band structure shown in
Fig. S5. The highest energy conduction bands represent
the bands of our effective model for values ϕ . π/3 (cf.
Fig. S6). The tight binding band structure is in accor-
dance with ab-initio simulations provided in Fig. 2 (g) of
Ref. S12.
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