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SI. FUNCTIONAL RENORMALIZATION

GROUP IN NON-SU(2) SYSTEMS

that

The supplementary material aims to provide the most
relevant concepts and equations of the functional renor-
malization group study applied in the main text. First,
we show the flow equations of the fermionic four-point
vertex T4 in the absence of SU(2) symmetry and after-
wards describe in detail how to post-process the vertex to
obtain information about the spin/charge and supercon-
ducting instabilities in the system. In parts, we follow the
description published in the Method Section of Ref. [S1L

We approximate the formally exact functional renor-
malization group by discarding self-energies, frequency
dependencies of the four-point vertex, and vertices with
more than four legs. The method smoothly interpolates
from the non-interacting theory at infinite scale A to the
fully interacting theory at A = 0. In our implementation,
we employ a sharp cutoff on the Green’s function such

J

G2y (iko, k) = O(|iko| — A)GO, (iko, k). (S1)
Here, GO(ikg, k) = (iko—H°(k))~! is the non-interacting
Green’s function as a matrix in spin space.With this
scale-dependent propagator, we derive an ordinary dif-
ferential equation for the four-point vertex function
I4A [S21S4] that is visualized diagrammatically in

Fig. The resulting equations read
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FIG. S1. Diagrammatic form of the non-SU(2) symmetric
flow equtations for the four-point vertex I'®. Slashed prop-
agator lines refer to the single-scale propagator.
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Here, the channel-projections to the particle-particle (), menta kyx, k'y are transformed as
and direct particle-hole (/1)) channels read
o /( ) oA qp =ki1+ky, kp=ky, kp==ks, (S8)
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The bosonic momentum qx and the two fermionic mo-

Here, the momenta k; 2 3 refer to the indices of the ver-
tex function in standard ordering with 1,2 incoming and



3,4 outgoing legs. The scale-derivatives in the corre-
sponding channels in Egs. and are written with

the respective bosonic and fermionic momentum indices,
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whereas Eq. refers to fermionic indices in standard
ordering. The loop contributions in Egs. and

can be written as

(S10)
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where we defined the channel-dependent momentum dif-
ferences k% = qF — ky and k2 = ¢ + k1. ugy(k) de-
note Bloch functions of the single-particle tight-binding
Hamiltonian with dispersion e (k).

Technically, we discretize momentum space for the ver-
tex functions with a 24 x 24 meshing of the reciprocal
primitive zone. The Green’s functions (and loops) are
calculated on a much finer mesh with 649 points for each
of the 24 x 24 points. In order to preserve symmetries, the
fine points are chosen in the Wigner-Seitz cells defined
by the coarse mesh. An instructive description of this
meshing procedure is found in Ref. [S5. The central dif-
ferential equation (in A) is integrated with an enhanced
adaptive FEuler scheme that first constrains the step size
to be 10% of the current A at maximum and further
scales the step size inversely to the maximum value of
')A We consider the flow as diverged when the maxi-
mum absolute value of a vertex component is larger than
30t. From the value at which this divergence occurs, we
obtain the critical scale A, and by inspection of the chan-
nel that contributes most strongly to the divergence of
')A whether a particle-particle () or a particle-hole
(D, C) instability is present.

SII. FUNCTIONAL RENORMALIZATION
GROUP FLOWS

For selected points along the v = 0 vertical line in
the phase diagram (Fig. 1 of the main text), we plot the
channel contribution maxima and the vertex maximum
as a function of A to visualize the pronounced tendency
towards order in Fig. We define the channel contri-
bution maximum X2, of channel X € P,C, D as
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FIG. S2. Channel maxima as a function of the RG scale A for
v = 0 and varied ¢ (bottom left of each panel). Blue curves
denote the /’-channel maximum, orange curves the /)-channel
maximum and gray curves the vertex maximum. The dashed
gray line shows the value of Ac.

where the expression dX*/dA is numerically obtained
from Eqgs. to . Note that CA, = DA, asin
the non-SU (2) case, these two channels are connected via
reordering of the third and fourth vertex index. As the
onset of strong correlations is signaled by a divergence of
VA at A, we can inspect the type of order by comparing
DA with PA at A < A. — the behavior close to the

divergence indicates which order (i.e. particle-hole (D)
or particle-particle (P)) eventually dominates.
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FIG. S3. Spin and Density weights of the particle-hole
instabilities. For each v and ¢ where our FRG analysis pre-
dicts DW order, we calculated the weight function w(s, j) in
spin/density space and normalize by its maximum value. We
color-code this information for the four non-trivial spin/den-
sity correlations. This analysis visualizes that at no point,
the denisty-density correlation (a) is dominant, and that for
almost all other points, the spin-zz/yy correlation (b) dom-
inates over the spin-zz correlation (d) and the spin-zy/yx
correlation (c).

SIII. ANALYSIS OF SPIN/DENSITY-WAVE

PHASES

In the case of particle-hole instabilities, the resulting
ordered phase generally mixes spin with density order due
to the non-SU(2) nature of the system. Further analysis
of the instability is provided by the calculation of four-
point susceptibilities, detailed in the following.

SIII. A. Four-point susceptibilities

The interacting four-point particle-hole susceptibility
XE y050.(@p) at scale A is obtained from a two-loop
diagram with all fermionic momenta being contracted:

XUDIU2JSU4 (qD) = Nk_2 Z L(];’ljcjr;ﬁcﬂay (qD7 kD) FaDl7//:'C2/ T304/ (qD7 kD) le) Lg';/Dz;i\zcag,oq (qD7 le) . (813)
ka/DO'1/0'2/0'3/0'4/
The loop function at scale A reads
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which is nothing else but the non-interacting four-
point particle-hole susceptibility x93 . .. (¢", k1) =
2 itkn)o GY ., (k1)GY,,, (k1 + gqp) at temperature A, and
f(x) = (e +1)~1. To obtain physical spin/density cor-
relation functions, we transform the four-point suscepti-
bility as follows [S6]:

E 0201 0304 D
0; Uj Xz710'2030'4 (q) .
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(S15)

ev, (k1) — e, (k)

7172 denote the Pauli matrices for i € {x,vy, 2}
and the identity matrix for ¢ = 0.

Here, o7*

SIII. B. Averages in momentum & spin space

The leading ordering vectors in Fig. 2 (a) of the main
text were obtained with an averaging procedure on the
four-point particle-hole susceptibility. For q € BZ, we



define the momentum weight function w(q) as

w(g) = (||><D(q)m,...,g4||01,__A7U4;1)3, (S16)

where the norm is an absolute value norm taken over all
combinations of spin indices. A meaningful expression
for @ can only be defined for the irreducible wedge (IBZ)
defined by the triangle connecting the points I'-K-M.
We calculate the average ordering vector as

_— qule qu(q)

qule w(q) (817)

Q

In a similar manner, we can perform an averaging to
get the relative weight in xz, xy and zz direction
(cf. Fig. 2 (b)). We first define the weight function as

(S18)
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where now the 3-norm is taken over the full BZ. There-
after, plotting coordinates are assigned to the three com-
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binations of i,j and an average similar to Eq. (S17) is
performed to map each point to a specific color.

SIII. C. Competition of density and spin ordering

As stated in the main text, we observe that at any
point in the phase diagram, spin-spin correlations dom-
inate over density-density correlations of the respective
orders. We aim to visualize this behavior in Fig.
where we plot the weights w(i, j) of the four non-trivial
spin/density correlation functions for all DW states. The
weights are normalized for each value of ¢ and v to
their maximum value. For almost all values of v and
©, the zz/yy correlations dominate. Only at ¢ = 0 and
© & m/3, there are small regions of dominant zz ordering.

SIV. ANALYSIS OF SUPERCONDUCTING
PHASES

In the case of the flow indicating a particle-particle
instability, we employ a twofold method of analyzing the
ordering tendencies. First, in the spirit of Egs. (S13)
and , we calculate the particle-particle susceptibility
at scale Ac:

P A,
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(S19)
where f"(k) is a formfactor and L{:IIZQI},WZL(qP , k1) refers to the particle-particle Fermi loop:
Lﬁﬁﬁmm (¢" k1) = Z Ug,p, (1)U Ugbl(kl)uogbg(kp) Ug by (k’f) [f( ; Ebl(kl)/A) - f(€b2 (ké))/A)] . (S20)
bibs €, (k1) + €v, (k3 )
Second, we solve a linearized gap equation for T'(4):A:
Mog(k) = > Tioumelar =0k K)LLTE (7 =0.K) A, 0, (K). (s21)

k'o30401104

For numerical treatment, it is notable that the eigenprob-
lem Eq. is non-Hermitian; and therefore not stable.
So we instead perform a singular value decomposition of
the matrix composed of I'? and LfP4:
PPALSPA — syt (S22)
with singular values $ and right (left) singular vectors 1%
(U). All Fermi surface projection is encoded in the right
singular vectors V, whereas U display the symmetry of
the superconductmg order parameter in the full BZ.
For further analysis of the gap symmetry, we trans-

(

form the singular vectors corresponding to the maximal
singular values (i.e. leading singular vectors) to singlet
and triplet space [ST, [S§]:

where o is the vector of Pauli matrices.
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FIG. S4. Left: Superconducting gap functions in singlet/triplet (left two columns) and spin up/spin down (right two columns)
space. The first row corresponds to an s/ f-wave instability, the second and third rows to two degenerate d/p-wave instabilities.
Right: Fermi-surface (FS) projected superconducting gap functions. Each panel is showing the same instability as on the
left, with the only difference being the use of right singular vectors V instead of left singular vectors U in the singular value

decomposition of Eq. (S22) which leads to the FS projection.
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FIG. S5. Band structure of the atomistic tight binding model
of twisted bilayer WSes for various values of perpendicular
electric field D within experimental reach.

SIV. A. Spin-resolved gap functions

For the two points in the phase diagram where we dis-
play singlet/triplet resolved gap functions (cf. Fig. 3 of
the main text), we provide plots of the same gap func-
tions in the spin-z basis in Fig. [S4 We further add the
gap functions in singlet/triplet basis to the same figure
to emphasize the differences.

FIG. S6. Band structure of the effective one-band moiré tight-
binding model at various ¢ roughly corresponding to the ex-
amined values of D in Fig.

SV. ATOMISTIC TIGHT-BINDING MODEL OF
TWISTED BILAYER TUNGSTEN DISELENIDE

To confirm that the influence of a perpendicular elec-
tric field on the moiré minibands of tWSes is captured
by ¢ in the effective model, we construct a tight binding
model as described in Ref. This model is based on
the 22-band model for monolayer WSes [S10] (11 orbitals
per spin) and then extended to a commensurate super-
cell making the twisted bilayer. As twist angle, we use
0 = 5.08°. Moreover, we assume the lowest harmonic
approximation for relaxation of the atomic positions in
z direction (as detailed for the case of twisted bilayer



graphene in the appendix of Ref. [S11)) and ignore inter-
layer couplings of the metal d-orbitals [S9]. We model
the perpendicular D field as on-site potential acting on
only the outer p orbitals and assume the effects of the
field on all other orbitals to be screened. As a result,

we obtain the field dependent band structure shown in
Fig. The highest energy conduction bands represent
the bands of our effective model for values ¢ < 7/3 (cf.
Fig. . The tight binding band structure is in accor-
dance with ab-initio simulations provided in Fig. 2 (g) of
Ref. [S12.
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