Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Proton pairing in neutron stars from chiral effective field theory

MPG-Autoren
/persons/resource/persons238841

Lim,  Yeunhwan
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lim, Y., & Holt, J. W. (2021). Proton pairing in neutron stars from chiral effective field theory. Physical Review C, 103(2): 025807. doi:10.1103/PhysRevC.103.025807.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-3D9F-0
Zusammenfassung
We study the S-1(0) proton pairing gap in beta-equilibrated neutron star
matter within the framework of chiral effective field theory. We focus
on the role of three-body forces, which strongly modify the effective
proton-proton spin-singlet interaction in dense matter. We find that
three-body forces generically reduce both the size of the pairing gap
and the maximum density at which proton pairing may occur. The pairing
gap is computed within Bardeen-Cooper-Schrieffer theory using a
single-particle dispersion relation calculated up to second order in
perturbation theory. Model uncertainties are estimated by varying the
nuclear potential (its order in the chiral expansion and high-momentum
cutoff) and the choice of single-particle spectrum in the gap equation.
We find that a second-order perturbative treatment of the
single-particle spectrum suppresses the proton S-1(0) pairing gap
relative to the use of a free spectrum. We estimate the critical
temperature for the onset of proton superconductivity to be T-c =
(3.2-5.1) x 10(9) K, which is consistent with previous theoretical
results in the literature and marginally within the range deduced from a
recent Bayesian analysis of neutron star cooling observations.