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Graph neural networks (GNNs) have emerged as a powerful machine learning approach for
the prediction of molecular properties. In particular, recently proposed advanced GNN mod-

els promise quantum chemical accuracy at a fraction of the computational cost.

While

the capabilities of such advanced GNNs have been extensively demonstrated on benchmark
datasets, there have been few applications in real atomistic simulations. Here, we therefore
put the robustness of GNN interatomic potentials to the test, using the recently proposed
GemNet architecture as an example. Models are trained on the QM7-x database of organic
molecules and used to perform extensive MD simulations. We find that low test set errors are
not sufficient for obtaining stable dynamics and that severe pathologies sometimes only be-
come apparent after hundreds of ps of dynamics. Nonetheless, highly stable and transferable
GemNet potentials can be obtained with sufficiently large training sets.

Atomistic simulations are an invaluable tool for gaining
mechanistic and structural insight into chemical systems,
including solid materials', interfaces®?3, liquids* or even
complex biological systems like the SARS-CoV-2 virus®.
They are also becoming increasingly important in the de-
sign of new materials and drugs®”. In many ways, the
prototypical atomistic simulation is a Molecular Dynam-
ics (MD) trajectory, which propagates the atomic coordi-
nates of a system in time, starting from some initial con-
ditions. MD simulations are extremely common, both
by themselves and as part of more elaborate sampling
procedures like parallel tempering or metadynamics.

In principle, highly accurate MD trajectories can be
obtained from electronic structure methods like density
functional theory (DFT). Unfortunately, such ab initio
MD (AIMD) simulations require the (approximate) solu-
tion of the electronic Schrodinger equation at every time
step. This makes them very expensive from a compu-
tational perspective and ultimately limits the applicabil-
ity of AIMD to a few hundreds of atoms and relatively
short (i.e ps) timescales. For many scientific questions,
simulations of much larger systems, longer timescales or
(usually) both are required. To this end, empirical inter-
atomic potentials are typically used. These provide an
analytical expression for high-dimensional potential en-
ergy surfaces which can be evaluated in a small fraction
of the time required for a DFT calculation. This gain in
efficiency invariably comes at the expense of a decrease
in accuracy and/or transferability, however.

To bridge this gap between computational cost and ac-
curacy, machine learned interatomic potentials have re-
cently gained popularity in computational chemistry® 11
and materials science'> . In particular, a range of neu-
ral network!®'” and kernel based potentials'®!® have
been developed and applied to a wide variety of chemical
systems. While somewhat more expensive than classical
force fields, these potentials are able to predict energies
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and forces with DFT accuracy and have thus become an
important part of the toolbox of computational chem-
istry.

One of the most recent additions to this family of
methods are potentials based on graph neural net-
works (GNNs), such as SchNet, DimeNet, GemNet and
NequlP.29-3! Here, much progress towards ever more ac-
curate and expressive potentials has been made, e.g. by
using equivariant formulations or embedding atom pairs
and triplets. While such efforts naturally focus on es-
tablished benchmark databases like QM93233 MD1734
or OC20%°, comparatively little research has been con-
ducted to show the applicability of such advanced GNN
potentials in real atomistic simulations. A notable excep-
tion to this is a recent paper of Batzner and coworkers?2,
which demonstrated that potentials based on the equiv-
ariant NequlP architecture could be used in stable and
accurate MD simulations, when trained on AIMD data
for the respective system.

In this contribution, we aim to provide an in-depth
exploration of the robustness of state-of-the-art GNN
potentials based on the GemNet architecture?! in MD
simulations. To this end, we ran a total of 245 ns of
dynamics (around 500 million timesteps) across a wide
range of temperatures and organic molecules. By check-
ing samples from these large ensembles with DFT refer-
ence calculations, the extrapolative capabilities of these
potentials in configuration and chemical space was tested
simultaneously. Furthermore, the impact of training set
size on the robustness of the potentials was explored.

GNNs treat chemical systems as graphs, with nodes
representing atoms and edges representing interactions
between atom pairs. While traditional chemical graph
representations usually equate edges with covalent bonds,
GNNs assume edges between all atoms within a given
cutoff. All potentials discussed in the following are
based on the geometric message passing neural network
(GemNet)?!, which shows excellent performances on es-
tablished benchmark data sets like MD17 and OC20 as
well as QMT7-x (see Fig. 1). GemNet embeds both the
atoms and the interatomic edges via high-dimensional
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FIG. 1: Learning curves. (a) Mean absolute errors
(MAES) of atomization energies (AE) and (b) forces (F)
against the number of training configurations. MAEs
are calculated for a test set consisting of 10,100 random
configurations from the QM7-x database.

vectors. Both kinds of embeddings are then updated in
multiple layers using learnable weight matrices and by
passing messages between the edges and atoms within
a given cutoff distance. GemNet leverages the full geo-
metric information for this: The interatomic distances,
the angles between neighboring edges, and the dihedral
angles defined via triplets of edges. From the learned em-
beddings, energy contributions for each atom and layer
are obtained, which are subsequently summed up to cal-
culate the total energy of the system. The whole model is
continuously differentiable, which allows calculating the
forces via F; = —%E. As for all GNNs, the use of
a finite cutoff and per-atom energy contributions makes
the predictions size-extensive and the computational cost
scale linearly with the number of atoms.

Herein, we trained several GemNet potentials on differ-
ent subsets of the recently published QM?7-x database.3%
This dataset consists of around 4.2 million configurations
sampled from small organic molecules consisting of up to
seven non-hydrogen atoms (i.e. C, O, N, S, Cl), with 4-
23 atoms in total. Importantly, QMT7-x covers both equi-
librium and non-equilibrium structures. Starting from
6,950 structural formulas, it contains around 41,500 equi-
librium structures (including stereoisomers and conform-
ers) and 100 additional non-equilibrium structures for
each equilibrium geometry. The latter were generated by
applying linear combinations of normal mode displace-
ments to each configurations, thus approximately mim-
icking molecular dynamics within the harmonic approxi-
mation. For each configuration, total energies and forces
at the hybrid DFT (PBE0)37 level with a many-body dis-
persion correction (MBD)3® are provided, computed with
tightly converged numerical atom-centered basis sets and

integration grids®4° (see Ref. [36] for full details).

GemNet potentials were trained on atomization ener-
gies (AE) and forces (F) simultaneously. Since forces
are ultimately the driver of MD simulations and contain
more fine-grained information than energies, forces were
weighted more strongly in our fits, so that the AE only
contributes 0.1% to the loss function (see SI for details).
This essentially follows the philosophy of gradient do-
main machine learning, 344! which exclusively uses forces.
However, we do include a small AE contribution to the
loss, as energy differences across chemical space cannot
be learned effectively from forces alone.*? For training,
the QMT7-x dataset was randomly split into a test set of
10,100 configurations, training sets of 3.2k, 32k, 320k and
3.2Mio configurations and corresponding validation sets
of 800, 8k, 80k and 800k configurations (the latter being
used for hyperparameter selection, see SI). In the interest
of simplification, we will denote models trained on small
(3.2k and 32k) and large (320k and 3.2Mio) training sets
as 'sparse’ and ’exhaustive’ models respectively.

In Fig. 1, the corresponding learning curves for AE
and F are shown. The force curve shows a roughly lin-
ear decrease on the log-log scale between 3.2k and 320k
training configurations but levels off between 320k and
3.2Mio configurations. This indicates that the more ex-
haustive models approach the intrinsic accuracy that is
possible given the precision of the data and limitations of
the models themselves (e.g. due to the cutoffs employed).
Due to the lower weighting of energies in the loss the AE
curve is somewhat more noisy but follows the same trend.

To put this performance into perspective, the most
exhaustive GemNet model yields a force MAE of
0.0043 eVA~! which can be compared with an
MAE of 0.015 eVA~! for the recently developed
SpookyNet?? architecture (in this case trained on 4.2Mio
molecules). In addition, GemNet outperforms SchNet?
and DimNet+425 on QM7-x for nearly all points of the
learning curve (with the only exception being the AE er-
ror of the 32k model). Importantly, the energy errors
are very low (0.01 eV = 0.23 kcalmol~!) despite the
low weighting of AEs in the loss. It is furthermore no-
table that even the model trained on 3.2k configurations
displays quite good performance with MAEs of around
0.035 eVA~! and 0.05 eV (= 1 kcalmol~1).

To explore the robustness of the GemNet potentials
within the scope of their training set, constant temper-
ature MD simulations were performed for 20 representa-
tive molecules from QM7-x (see FIG. 2a). Here, care was
taken to include all atom types in the dataset. For each
molecule, 1 ns trajectories were generated with a 0.5 fs
timestep at three different temperatures (300 K, 600 K
and 1200 K), using all models presented in the learning
curve (see SI for details on the MD simulations). The
rationale for using these temperatures is that they lead
to increasingly extensive exploration of phase space. In-
deed, it is not uncommon to use high temperature dy-
namics for this purpose, e.g. in replica exchange MD.%3
From each trajectory, 72 configuration were uniformly
sampled and the corresponding energies and forces com-
puted with identical DFT settings to the ones used for
the QM7-x set.

Figures 2b and 2c¢ show the AE and F MAEs for these
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FIG. 2: Robustness of GemNet potentials in molecular dynamics (MD). (a) Representative molecules from
QMT7-x used in the MD tests. (b), (¢) Mean absolute errors (MAEs) on atomization energy (AE) and force (F)
predictions as a function of training set size and temperature. Opaque lines and symbols represent the average MAE
over all molecules in (a). Transparent lines and symbols represent the MAE of one specific molecule. (d) Percentage
of converged DFT calculations for configurations generated with different potentials and temperatures. (e) AE error
as a function of simulation time for a 1 ns MD trajectory at 600 K, using a potential trained with 3.2k
configurations. This sub-panel shows a drastic deterioration in energy predictions after around 700 ps, when the
molecule dissociates into fragments that cannot be accurately described by the model.

samples as a function of temperature and training set
size. Here, opaque symbols and lines represent MAEs
averaged over 20 different trajectories corresponding to a
given model and temperature. Transparent symbols and
lines illustrate the MAEs for each trajectory individu-
ally, to provide some insight into the spread of MAFEs
for different molecules (see SI for additional illustrations
of the respective error distributions). Overall, we find
quite consistent trends for both AE and F predictions.
Whereas the exhaustive models (320k and 3.2Mio) only
display a very slight increase of the MAEs with temper-
ature, the errors of the sparse models (3.2k and 32k)
increase dramatically. This is expected, as higher tem-
perature MD simulations more extensively explore the
phase space and consequently move away from the train-
ing configurations.

Notably, the 3.2k model already displays a very large
AE error of more than 10 eV at 300 K. The MD error
is thus orders of magnitude larger than the test set er-
ror, even though these configurations should arguably fall
within the scope of the training set. This mainly stems
from the fact that the trajectories for certain molecules
lead to completely unphysical configurations, for which
the potential then displays extremely large errors. Such

unphysical configurations also commonly lead to conver-
gence issues in the reference DFT calculations. To quan-
tify this, the percentage of converged DFT calculations
for configurations obtained with a given potential and
simulation temperature is shown in Fig. 2d. We find that
all DFT calculations converge for the 320k and 3.2Mio
potentials, while the sparse models generate increasingly
unphysical configurations with rising temperature. This
is particularly evident for the 3.2k model at 1200 K,
where only about half of the DFT calculations converge.

The marked discrepancy between the test set and MD
performance of the 3.2k model underscores the limita-
tions of using test configurations that are not generated
by the potential itself. For a ML model to be useful in
atomistic simulations, it is not sufficient to show that it
provides accurate fits for physically reasonable configura-
tions. It is equally important that the model avoids un-
physical configurations in its own simulations. Note that
testing this requires sufficiently long trajectories. This is
illustrated for a representative example in Fig. 2e. Here,
the error of the 3.2k model is actually quite low for the
first 700 ps of the simulation after which it rises sharply
to more than 20 eV due to an unphysical bond dissocia-
tion event. This behaviour can be understood as a kind
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FIG. 3: Out-of-sample validation of the GemNet potential trained on 3.2Mio configurations. (a) Kernel
density estimates of atomization energy (AE) error distributions for four out-of-sample molecules (A=Paracetamol:
red, B=4H-Furo[2,3-c|pyrrol-6-amin: black, C=Histidin: grey and D=Ser-Trp-Leu-tripeptide: orange), obtained at

1200 K using the 3.2Mio potential. (b) Kernel density estimates of the corresponding force (F) error distributions.

of ’hole’ in the potential energy surface of the model.
This hole can be rather small, but once the simulation
reaches such a configuration the trajectory is completely
unreasonable. The ’robustness’ of a ML potential can
thus be understood as a measure of how frequent and
how large such holes in the potential energy surface are.
Ultimately this can only be quantified by performing MD
simulations with the corresponding potential.

It should be stressed that this notion of robustness
is not necessarily correlated with the test MAE, despite
the fact that the robust GemNet models also display
much lower MAEs. Indeed, the robustness of traditional
bio-organic forcefileds with fixed topologies is very high.
However, in this case robustness is gained at the expense
of model flexibility. The challenge for ML potentials is
that they must be robust without sacrificing flexibility.
Our tests show that this is not trivial. On a more positive
note, we do find that GemNet potentials with sufficiently
large training sets are very robust across the phase space
of the QMT7-x dataset and beyond.

Another way to illustrate this is to consider the per-
formance of the 3.2k model for a trajectory generated
with the 3.2Mio potential in comparison with its own
trajectory. Specifically this means that we generate two
independent trajectories with the 3.2k and 3.2Mio model
and evaluate MAEs of the 3.2k model for configurations
drawn from each trajectory. Taking the molecule in
Fig. 2e at 1200 K, the F MAE of the 3.2k potential is
6.8 eV A~ for the 3.2k trajectory but only 0.16 eV A~!
when it is evaluated on the 3.2Mio trajectory. Again, the
sparse model performs quite well for the physically rea-
sonable configurations generated with the 3.2Mio model.
The problem only becomes apparent when testing the
sparse model on its own trajectory.

Having established the robustness of the exhaustive

models within the scope of QM7-x, we now turn to the
simultaneous exploration in chemical and configuration
space. To this end, we consider four molecules consisting
of 9-29 heavy atoms (i.e. which are significantly larger
than the training molecules). Again, 1 ns MD trajectories
were generated with the 3.2Mio potential at 1200 K. Fig-
ure 3 shows the corresponding AE and F error distribu-
tions. Strikingly, the AE errors are systematically more
positive than the DFT reference energies, most promi-
nently for the large Ser-Trp-Leu tripeptide. Here, the
mean AFE is shifted by 0.47 eV with respect to the refer-
ence, which is substantial when compared to an MAE of
0.0284 eV at 1200 K in Fig. 2b.

This shift can be explained by the absence of attractive
long-range interactions (e.g. dispersion or electrostatics)
in the GemNet potential. While message-passing neu-
ral networks can in principle include information from
beyond their cutoff distance, the QMT7-x database ex-
clusively consists of small molecules so that long-range
interactions simply cannot be learned from it. Meth-
ods to include long-range interactions are proposed in
literature?32744:45 and could also be applied to the Gem-
Net architecture. Nonetheless, GemNet and DFT en-
ergies are highly correlated (R? = 0.998, see SI) and
the standard deviation of the AE error distribution is
only 0.045 eV so that the MD trajectory for this system
should still be considered to be of high quality. While
the long-range interactions are thus considerable in mag-
nitude, they do not fluctuate very strongly.#6 This is also
the case for the other molecules, which display very nar-
row AE error distributions. Similarly, force component
errors are consistently small, with MAEs between even
0.012 eVA~! and 0.036 eV A~L.

In conclusion, we have explored the robustness of GNN
potentials based on the recent GemNet architecture in



MD simulations. We find that sufficiently large training
sets are key to obtaining robust GNN potentials and that
a low test set error does not guarantee that stable tra-
jectories can be generated. Interestingly, in some cases
severe instabilities were only discovered after hundreds
of ps of dynamics. The test set error should thus not be
taken at face value as a measure for the error one can
expect in ’real’ applications. Demonstrating ’chemical
accuracy’ on a test set is by itself not enough.

With large enough training sets, the GemNet poten-
tials used herein do display impressive performance, how-
ever. This is demonstrated by applications in high-
temperature MD simulations of systems that are signif-
icantly larger than the training molecules. In this ex-
trapolative regime, errors are mostly systematic and ex-
plainable and no instabilities were observed. Interest-
ingly, no significant improvements in terms of accuracy
or robustness were observed when training on 3.2Mio in-
stead of 320k samples, indicating that all relevant in-
formation about the underlying potential energy surface
can be learned from less than 10% of the dataset. This is
significant because robust ML potentials are often associ-
ated with iterative training procedures. Due to their size
and complexity (the models used herein fit 2.2 million
parameters), GNN models are a priori not ideal for such
settings. Indeed, training times of several GPU weeks are
not unusual, which is clearly impractical in an iterative
workflow. Well curated databases like QM7-x and pow-
erful model architectures like GemNet circumvent this
issue.

As a final point, we note that the potentials discussed
herein (as well as the underlying code) are freely available
at https://www.daml.in.tum.de/gemnet. We recom-
mend the 3.2Mio GemNet potential as a general-purpose
force field for exploring the conformational space of small
to medium organic molecules. Indeed, the accuracy and
the robustness of the 320k and 3.2Mio models is high
enough that they can be considered as a cost effective re-
placement of DFT calculations for this application. It
remains to be seen whether equally accurate and ro-
bust models can be obtained for larger chemical spaces,
broader sections of the periodic table and chemical reac-
tions.
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