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We consider an anisotropic search for the stochastic gravitational-wave (GW) background by
decomposing the gravitational-wave sky into its spherical harmonics components. Previous analyses
have used the diffraction limit to define the highest-order spherical harmonics components used
in this search. We investigate whether the angular resolution of this search is indeed diffraction-
limited by testing our ability to detect and localize simulated GW signals. We show that while using
low-order spherical harmonics modes is optimal for initially detecting GW sources, the detected
sources can be better localized with higher-order spherical harmonics than expected based on the
diffraction limit argument. Additionally, we discuss how the ability to recover simulated GW sources
is affected by the number of detectors in the network, the frequency range over which the search
is performed, and the method by which the covariance matrix of the GW skymap is regularized.
While we primarily consider point-source signals in this study, we briefly apply our methodology to
spatially-extended sources and discuss potential future modifications of our analysis for such signals.

I. INTRODUCTION

Since the first direct detection of gravitational-waves
(GW) from the collision of two black holes on September
14, 2015 [1], the field of gravitational-wave astronomy
has been an exciting and relatively new way to probe
the far reaches of our universe. The ability to detect
gravitational-waves with detectors like the Laser Inter-
ferometer Gravitational-wave Observatory (LIGO) and
Virgo detectors [2, 3] has opened up a wide range of
questions to investigate. Recent developments include
the observation of neutron star-black hole coalescences
[4], a binary black hole coalescence with a total mass of
150 Mg [5], and a coalescence between a black hole and
a 2.6 My object which is either the lightest black hole or
the heaviest neutron star discovered in a compact binary
system [6]. As of the end of LIGO-Virgo’s third observ-
ing run (03), 90 GW event candidates have been detected
[7], and merger rates have been estimated to be between
17.3 Gpe=3 yr=! and 45 Gpc™3 yr=! for binary black
holes, between 13 Gpc™3 yr~! and 1900 Gpc=2 yr~! for
binary neutron stars, and between 7.4 Gpc™2 yr~! and
320 Gpc=3 yr~! for neutron star-black hole binaries [3].

While these detections are of signals from individual
GW events, it is also possible for a GW background to
form as the superposition of many unresolved GW signals
[9, 10]. Such a background may have contributions which
are astrophysical or cosmological in origin. Examples of
astrophysical contributions include binary mergers and
supernovae [11-17] while examples of cosmological con-
tributions include GWs generated during the inflation-
ary epoch and in phase transitions in the early universe
[18-20] . Moreover, the GW background is likely to be
anisotropic. The potential sources of anisotropy include
primordial density fluctuations (e.g. reflected in the dis-
tribution of compact binaries throughout the universe),

the local distribution of GW sources (e.g. pulsars in the
Milky Way galactic plane [21, 22]), the velocity of the
Solar System, and others [23-28].

Advanced LIGO and Advanced Virgo data have
been wused to search for the anisotropic stochas-
tic gravitational-wave background (SGWB), producing
stringent upper limits on GW energy density across
the sky [29-31]. Traditionally, diffraction limit argu-
ments were used to assess the angular resolution of these
searches. In this paper, we take a closer look at the in-
trinsic angular resolution of anisotropic SGWB searches,
finding that they can surpass then resolution expected
based on diffraction limit arguments. In Section II we
present the formalism for anisotropic SGWB search. In
Section III we present some intuitive arguments on angu-
lar resolution limitiations. In Sections IV, V, and VI we
present the angular resolution in recovery of simulated in-
dividual point sources, simulated multiple point sources,
and simulated extended sources, respectively. We offer
concluding remarks in Section VII.

II. SPHERICAL HARMONICS
DECOMPOSITION

We consider the anisotropic SGWB search in which
we decompose the map of the gravitational-wave sky into
spherical harmonics components. We assume an unpolar-
ized, Gaussian, and stationary SGWB. The most general
quadratic expectation value of the GW strain h4(f,©)
of frequency f, sky direction ©, and polarization A, that
satisfies these assumptions is given by:
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where P(f, ©) gives the spectral and angular distribution
of the background [32]. We assume that P(f,©) can be
factored into its separate spectral and angular compo-
nents

P(£,0) = H(f)P(O), (2)

where H(f) is a dimensionless quantity which we choose
to take the form of a power law both for its simplicity
and its ability to approximate most interesting SGWB

models,
nn=(£)" ®)

Here we use the reference frequency fiof = 25 Hz. The
spectral index « is commonly assumed to take values of 0,
2/3, and 3 corresponding to a cosmological background,
CBC background, and a generic flat strain spectrum, re-
spectively. We further decompose the angular distribu-
tion P(O) into a basis of spherical harmonic components
Yom:
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The goal of the search is therefore to estimate the values
of the P, coefficients. To do this, we must first define
the cross-correlation spectrum between two detectors I
and J at time ¢ and frequency f:

Cry = 2530 )30 ). (5

Here 7 is the duration of an observation segment, and
we use the finite-time Fourier transform of each detector
time series data, which contains both the detector noise
and the GW signal: 3;(t; f) = ny(t; f) + hr(t; f). If we
assume that the noise between the detectors is uncorre-
lated, then the expectation value of the cross-correlation
spectrum is:

(Coslts 1)) = 20 Dot 1) (6)

Equations 1 and 2 then lead to [32]:

(Cryt; ) =H(f) [ d&y(t:6,f)P(O).  (7)
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where ~(t; e, f) is a geometric function that takes into
account the response of the detector pair to GW signals
given the detectors’ relative locations and orientations

[32]:
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In the above equation we use the detector response func-
tions F(t; ©), detector locations #7(t) [32], and speed of

light c. We can substitute Eq. 4 into Eq. 7 and integrate
over the two-sphere to obtain

(Cri(t; 1)) = H(f)vim(t; £)Pim, (9)

where
Vim (t; f) = / d67(t; 0, f)Yim(©) (10)
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are purely geometric factors associated with the IJ de-
tector pair and repeated indices are summed over.

We proceed to define a likelihood function for the cross-
correlation spectrum given a sky map defined by spheri-
cal coefficients {Pj,,} [29]:

P(Cril{Pim}) x EXP([CIJ(t; ) = H()vim(t; f) Pim]”
Nl [CLy(t's 1) = H() e (85 ') Pl’m’]) (11)

where Ny ¢4 is the covariance matrix of Cr;(t; f) given
by [33]:

Nyt pror = S0y Pr(t; f)Ps(t; f), (12)

and Py (t; f) is the one-sided power spectrum of the data
from detector I. The spherical harmonic coefficients that
maximize this likelihood function are given by:

le = Z (Fﬁl)lmJ/m/Xl’m" (13)
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Equation 14 defines the “dirty map” of the SGWB con-
volved with the response antenna pattern of the I.J detec-
tor pair. The covariance matrix of the dirty map is given
in Eq. 15. Since Eq. 13 represents the deconvolution of
the GW signal from the detector response, we refer to it
as the “clean map”. We can obtain the covariance ma-
trix of this clean map by inverting the covariance matrix
of the dirty map. Because of this property, we refer to
the matrix defined in Eq. 15 as the Fisher information
matrix [32].

Inverting the Fisher matrix, however, is nontrivial, as
gaps in the detector network’s sensitivity across the sky
cause singular values within the Fisher matrix. We there-
fore must regularize the Fisher matrix prior to inversion.
In Eq. 13 the subscript R denotes that the inverted
Fisher matrix has been regularized. We utilize the singu-
lar value decomposition (SVD) method for this regular-
ization, choosing which eigenmodes to discard and which



to retain prior to inversion. In Section IV we consider
several options for implementing the SVD regularization.

We note that the spherical harmonic expansion defined
in Eq. 4 is cut off at some ¢,,,,. The choice of £,,,, is
an assumption of the search. In past searches, this value
was chosen based on a diffraction limit argument in which
a diffraction-limited spot size 6 for a particular baseline
is defined using the distance d between detectors in a
baseline pair and the most sensitive frequency f, of the
baseline (which depends on the assumed spectral model):

., (16)
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where for the LIGO-Hanford and LIGO-Livingston de-
tectors

c 50Hz
B
Whether or not this argument is appropriate or suffi-

cient for making optimal GW signal detections is a ques-
tion we address in Sections IV and V.

(17)

III. SOURCE OF ANGULAR RESOLUTION
LIMITATION

The diffraction limit relation in Eq. 17 gives a rea-
sonable order-of-magnitude estimate for the angular res-
olution and captures the intuition that a larger base-
line should improve the angular resolution [34]. How-
ever, there are important shortcomings of this formula
as usually presented. First, the word “diffraction” gives
a misleading picture of the physics, since the angular
resolution limitation actually comes from phase coher-
ence between sources at different angular separations (as
discussed below in more detail). Second, gravitational-
wave sources are typically not monochromatic, and it is
not clear a-priori how to transfer this diffraction limit to
broadband sources. Therefore a more detailed investiga-
tion is needed to pin down the angular resolution of a
given GW detector network.

An important subtlety is that for deterministic signal
models, such as transient CBC signals or isolated rotat-
ing neutron stars, the angular resolution of the recovered
signal is evidently not limited by the diffraction limit.
The CBC signal model assumes (quite reasonably) that
there is one source explaining the gravitational-wave sig-
nal. This allows triangulation of the arrival times of the
signal, along with the antenna patterns, to pin down the
sky location of a source to (in principle) an arbitrary
good localization—currently the best localization is of or-
der 10 square degrees for the highest SNR events seen to
date. On the other hand, the anisotropic SGWB search
is making an unmodeled determination of the GW sky.
This generality comes with a loss in angular resolution,
but does not require an assumption of a single point-like
source, which is not appropriate for large scale structures.

In other words, a skymap produced by the CBC search is
a probability distribution for the location of one source,
while the anisotropic SGWB search skymap is an image
of the entire population of GW sources across the sky.

In addition to the phase coherence, there is an addi-
tional effect due to blind spots in the detector network.
This problem is a manifestation of the well-known bias-
variance tradeoff. As noted above, the Fisher matrix is
usually not invertible, meaning that formally the vari-
ance is infinite. Regularizing the Fisher matrix reduces
the variance, but at the cost of introducing a bias in the
recovered signal.

Inspired by this, we briefly describe a toy model that
can be used to gain insight into the origin of angular
resolution of the SGWB search. We consider a pair of
detectors rotating on the boundary of a circle of diame-
ter L and observing scalar waves propagating in the same
plane (e.g. two water buoys measuring the height of pass-
ing water waves). The detectors rotate with frequency fg
such that fp < f. Our detectors will have a response
function F'(0), where 6 denotes the polar angle in the
plane. We consider two special cases: (a) an isotropic
response F'(f) o< 1 and (b) a directional “lighthouse” re-
sponse F(0) o« §(0 — 6p), where 6 is the opening angle
of the detector.

In the circular harmonic basis, we can define our over-
lap reduction function as (equivalent to Eq. 10):

1 ) A
Tt 1) = 3 / ¢ 4 (0, 1) Fy (0, £)e2mi I LOA0/e  (1g)

where 0 is the unit vector pointing in the direction of
f and n points from detector 2 to detector 1. In the
isotropic response case, a suitable choice of coordinate
axes allows us to rewrite our overlap reduction function
as

Yult, f) = %em(zﬂfEt)Jn(Qw fL/c), (19)

where .J,, are the Bessel functions. In the lighthouse re-
sponse case, this function reduces to

1 . )
’Yn(t, f) _ iem27rfEt6127rfLcos(27rfEt)/c62(¢1’d)z)’ (20)

where ¢1, ¢o are the directions of detectors 1,2 at time
t = 0. The cross correlation between the two detectors is
defined as in Eq. 5, with its expectation value defined as

(C(t, f) = Z'Yn(tv )Pn (21)

We are now ready to analyze the angular resolution of
this toy model. Following the anisotropic SGWB search
formalism, we define the likelihood function

(L) < > 1916 fo) _;(:S(t’ fO)P"IQ, (22)



where for this model we will only be considering a single
frequency bin and P, is the noise variance in this bin.
Our maximum likelihood estimator is then given as

Pn = (Fil)nmea (23)
with
X = 53 Y0 J0)C L) (24)
0
T = 75 S0l folmlts o). (25)
0 ¢

We first consider the case of an isotropic response. The
Fisher matrix I'),,, after summing over ¢, reduces to

1

an = 759
A2

J2(27 foL/¢)N§Omn, (26)

where Ng is the number of time segments. Since the
Fisher matrix is diagonal, we see that all eigenvalues
are nonzero for general 27 foL/c. However, J, (27 foL/c)
peaks around 2w foL/c = ng, so wave numbers n >
2n foL/c are suppressed. The effect of this eigenvalue
suppression is quantitatively similar to the diffraction
limit argument (c.f. Eq. 17), and it applies even for ar-
bitrarily long observation times (and, by extension, high
SNRs) since all eigenvalues scale equally with these quan-
tities. We therefore see that for an isotropic response,
a detector pair’s resolution is limited to angular scales
similar to those given by the diffraction limit argument,
albeit for a very different physical reason.

Next, we consider the lighthouse detector response
function and apply the same analysis. We again obtain
a diagonal Fisher matrix that reduces to

1

Pmn = T2
AP?

6mn52(¢17 ¢2)7 (27)

for which all eigenvalues are equal implying that there is
no limit to the angular resolution, i.e. the resolution can
be arbitrarily improved by having a larger SNR signal.
We conclude therefore that detector networks with per-
fectly isotropic responses have angular resolutions similar
to those set by the diffraction limit argument, while per-
fectly directional detectors have unlimited angular reso-
lution. In practice, however, the LIGO-Virgo detectors
have anisotropic responses but not perfectly so. That is,
they have responses somewhere between the two extreme
cases considered above. Consequently, we should expect
the anisotropic SGWB search angular resolution to be
limited, but also better than what is predicted by the
diffraction limit argument.

Unfortunately, the above analysis cannot be simply ex-
tended to GW detectors operating in three dimensions
and across a wide frequency band with a colored noise
power spectrum. Consequently, to assess the angular res-
olution of the anisotropic SGWB search, we resort to a
series of simulations described in the following Sections.

IV. SINGLE POINT SOURCE

As noted above, the diffraction-limit argument in Eq.
17 may give a reasonable order-of-magnitude estimate of
the angular resolution for the anisotropic SGWB search.
However, this argument is inaccurate for multiple rea-
sons. First, the angular resolution of this search is not
limited by a diffraction process of GWs interacting with
the detectors but rather by the phase coherence between
detectors. As discussed in the previous Section, the direc-
tionality of the detector response plays an important role
in the angular resolution, which is not accounted for in
the diffraction limit argument. Second, when considering
a network of multiple baselines, each with different sepa-
ration distances and peak sensitivities, Eq. 17 cannot be
directly applied. Third, the question of regularization of
the Fisher matrix (which is also related to the number
of detector baselines in the network and to their relative
sensitivities) also directly impacts the angular resolution
of the search.

To assess the angular resolution limitations, we resort
to a series of simulations and we cast the problem in
terms of finding the search parameters that give optimal
results when performing a spherical harmonics decompo-
sition (SHD) SGWB search. These parameters include
the frequency range over which the search is performed,
the highest-order spherical harmonic modes that are con-
sidered, and the method/threshold used for Fisher matrix
regularization. These parameters will differ depending on
the signal model, and we will address what constitutes
optimal results.

We begin by considering a broadband point-source GW
simulation. While the SHD analysis is particularly well-
suited for the recovery of spatially-extended sources, a
point-source recovery is still possible with the SHD anal-
ysis, and the angular resolution of the recovery can be
quantified in terms of £,,4,. In this analysis, we use
the same data processing pipeline used to perform the
O3 anisotropic search [29] and outlined in Section II.
The point-source simulation assumes a power-law spec-
tral shape as defined in Eq. 28:

f a—3
AH(f):A( > : (28)
fref
where we choose v = 2/3 and vary the amplitude A. Fig.
1 illustrates the strain power spectrum of this simulation
for A =5 x 107%°, alongside the power spectral density
(PSD) of Advanced LIGO’s design sensitivity. The sin-
gle point-source was simulated at 0° declination and 12"
right ascension. Each simulation was 24 hours long, and
for each detector the SGWB was added to the detec-
tor noise corresponding to the Advanced LIGO or Ad-
vanced Virgo design sensitivities (which are not taken
to be the same). Recoveries were performed using a fre-
quency range of 20-500 Hz and spectral index of o = 2/3.

To quantify the localization of the recovered point
source, we count the number of pixels in the recovered
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FIG. 1. Power spectral density (PSD) of Advanced LIGO
design sensitivity (blue, upper) is shown in comparison with
the strain power spectrum of the simulated point source with
a = 2/3 (orange, lower).

SNR skymap whose SNR is larger than 75% of the map’s
peak SNR value. The spot size defined in this way is
shown in Fig. 2 (left) as a function of £,4.. AS lias
is increased, the spot size is reduced and the resolution
of the recovered map is improved. For comparison, for
a = 2/3 the most sensitive frequency is about 65 Hz,
resulting in the diffraction limit in Eq. 17 of # =~ 45°
and the diffraction limit spot size of about 4% of the sky.
We can also consider the fact that we make statistically
significant recoveries of the simulated source at an £,,q4
value of 20, and the diffraction-limited spot size corre-
sponding to this £,,4, value is 8 ~ 9°, which represents
about 0.2% of the sky. It is evident from Fig. 2 that the
anisotropic SGWB search can substantially surpass the
diffraction limit, as the smallest spot size measurements
we obtain are about 0.2% of the sky map.

Figure 2 (left) also compares different Fisher matrix
regularization methods. The first regularization thresh-
old we apply is to keep two thirds of all eigenvalues of the
Fisher matrix (freep = 2/3). This is the method that has
been in use for all previous SHD searches for anisotropic
SGWB [29-31]. The second regularization threshold we
apply removes the eigenvalues that are smaller that 1073
times the largest eigenvalue [35]. A comparison between
these two methods is shown in Fig. 2 (left)—while the
two regularization methods yield similar results, the 10~3
threshold performs slightly better. For the 1072 thresh-
old, a high /¢,,,, makes little difference to the spot size
since most new eigenvalues introduced by raising ez
are small and therefore removed by the regularization
threshold. This behavior can be seen in the relatively
constant spot size measurements for high ¢,,,, values in
Fig. 2 (left). We also include spot size measurements
that result from using a more aggressive regularization
scheme in which we apply a 102 threshold. This thresh-
old results in more eigenmodes being discarded during
the Fisher matrix regularization, giving larger spot size

measurements.

We also consider a modified version of this search in
which we include the Virgo detector, resulting in a net-
work of three detector baselines. We denote this network
as HLV. A single baseline will not be sensitive to all sky
directions, and these gaps in sensitivity manifest as sin-
gular Fisher matrix eigenvalues. When more detector
baselines are included in a network, it is possible for the
Fisher matrix to become naturally regularized as the net-
work gains sensitivity to more sky directions. A different
Fisher matrix regularization strategy may therefore be
better suited for multi-baseline detector networks. The
size of the recovered point-source with this multi-baseline
network is shown in Fig. 2 (right). In addition to the
above two regularization thresholds, we also consider us-
ing the entire (unregularized) Fisher matrix, i.e. keeping
all of its eigenvalues.

For {40 < 12, using the 10~2 threshold is equivalent
to keeping all eigenvalues. The 1073 threshold generally
gives the most localized recoveries of the three regular-
ization methods used. For {4, > 12, the 10~3 thresh-
old performs similarly to the freep, = 2/3 method. For
lmaz > 13, the recovered peak SNR values are not sta-
tistically significant when we keep all eigenvalues, so we
conclude that the source is not properly recovered in this
case, and we do not report spot size values. We can
conclude therefore that some regularization is still nec-
essary for this multi-baseline network for £,,,, > 13. If
we decrease the amplitude of our simulated source from
A=5x10"% to A =1 x 107%?, we only make statisti-
cally significant recoveries of the source for £,,,,, < 6, and
when we do recover this lower-amplitude source, its spot
size measurements are larger than those of the higher-
amplitude source as seen in Fig. 2 (right). This is con-
sistent with our expectation that larger SNR allows re-
covery with better angular resolution.

Figure 3 directly compares Fisher matrix conditioning
in the HL and HLV cases. We see that for a low /£,,.s
value like £,,,,, = 4, there is little difference in the Fisher
matrix eigenvalues between the HL. and HLV networks if
we only consider eigenvalues kept using the freep, = 2/3
threshold. If we consider all the eigenvalues, the small-
est eigenvalue in the HLV Fisher matrix is an order of
magnitude larger than that of the HL Fisher matrix. Us-
ing higher values of /,,,4, shows a widening in the dif-
ferences between the HL and HLV Fisher matrix condi-
tioning, with the HLV network having larger eigenvalues
even among those that are accepted by the freep = 2/3
regularization method. This improvement in condition-
ing is likely responsible for the slightly smaller spot size
measurements for HLV (as compared to HL) shown in
Fig. 2.

We next examine the impact of the chosen frequency
band on the conditioning of the Fisher matrix. For the
spectral index a = 2/3, the most sensitive frequency is
~ 65 Hz [36]. Further, 99% of the HL baseline’s sensi-
tivity lies within the 20-120 Hz band for the search for
an isotropic SGWB with « = 2/3 [13]. We therefore
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FIG. 2. Size of recovered point-source signal as a function of ¢,,4, for multiple regularization thresholds for the Fisher matrix.
The left plot shows results for the Hanford-Livingston baseline, and the right plot shows results from the HLV network. For
the HLV case, we also consider the unregularized Fisher matrix (keep all). Data points are excluded if the point-source was

not recovered.
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FIG. 3. Fisher matrix conditioning plots for ¢,,.. = 4,8, and 12 comparing the HL. and HLV detector networks using simulated
data. Vertical lines mark the largest 2/3 of eigenvalues. Horizontal lines mark the 10~3 threshold.

start with the 20-100 Hz frequency band that captures
most of the sensitivity of the SHD search. We compare
the conditioning of the Fisher matrix in this band with
the conditioning in wider bands (20-200 Hz and 20-500
Hz)—these wider bands include higher frequencies and
therefore may be sensitive to smaller angular scales on
the sky.

Figure 4 shows that as the /,,,, value increases, the
regularization of the Fisher matrix worsens drastically
for the 20-100 Hz band. Extending the frequency band
to 20-200 Hz gives a marked improvement, but the condi-
tioning is the best when using the widest frequency band
of 20-500 Hz. This difference in conditioning implies that

including higher frequencies allows the detector network
to resolve smaller-scale structures in the skymap, thereby
increasing the angular resolution of the recovery.

Finally, we examine our ability to detect a point source
rather than our ability to localize it. We quantify the
significance of a GW source recovery in a manner similar
to that used in previous directional searches [29]. We
draw from a multivariate Gaussian distribution with zero
mean and covariance given by the inverted Fisher matrix,
resulting in a set of Py, values corresponding to a noise
skymap. The procedure is repeated 5000 times and an
SNR map is made for each such random realization of

noise. In each SNR map we define a region centered
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FIG. 4. Fisher matrix conditioning is shown for ¢,,., = 4,8, and 12, comparing several different frequency bands for the HL
baseline. Vertical lines mark the lowest 1/3 of eigenvalues and horizontal lines mark the 10™% threshold.

around the location of the simulated source, extending
20° above and below the simulated point source and 2"
on either side. We then find the mean pixel value among
the top 5% of the pixels within this region and bin this
value into a histogram. We make the same measurement
using a skymap containing the simulated point source
signal, like the one shown in Fig. 5 for £,,,, = 8. We
attribute a (significance) p-value to the peak SNR in this
map by comparing it to the noise peak-SNR histogram.
An example is shown in Fig. 6, where the vertical line
denotes the peak SNR measurement of the map in Fig.
5.

Declination [degree]

Right ascension [hours]

FIG. 5. An example SNR map is shown of a simulated point-
source with amplitude A4 = 10™*° and location 0° declination,
12" right ascension, recovered using the HL baseline, f keep =
2/3, and lyaz = 8.

We find that increasing ¢,,,, causes an increase in the
p-value associated with its peak SNR and therefore a de-

p(max snr>=3.7882) = 0.1%
T T T

X,
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FIG. 6. Peak SNR from the map in Fig. 5 is marked by a
vertical line in comparison with the histogram of the peak
SNRs obtained from purely noise simulated skymaps.

crease in the ability to detect the simulated source. These
results are shown in Fig. 7. For each additional order of
spherical harmonics modes we include in our analysis by
increasing £,,4., we increase the number of model param-
eters used to fit to the data, which ultimately results in
a decrease in the SNR of the recovered source. We there-
fore find that low £,,,, values lend themselves to opti-
mal point source signal detection, while high £,,,,, values
may be better suited for optimal localization of the point
source signal, depending on the signal strength. In other
words, search parameters that are optimal for detecting
a GW source may differ from those that are optimal for
localizing it.
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FIG. 7. We show the significance (p-value) of the recovered
simulated peak SNR vs £qq using HL baseline, freep = 2/3,
and point-source amplitude A = 107%°. p-values equal to
zero are denoted with downward-pointing arrows at the bot-
tom of the plot. We also show results for the HLV network,
for two different regularization methods. We see that using
higher £, gives recovered peak SNRs with lower significance
(larger p-values).

V. MULTIPLE POINT SOURCES

Another way to characterize the angular resolution
of the SHD search is by its ability to distinguish be-
tween multiple point sources. We begin by simulating
two point-sources of equal magnitude with declinations
of +30° and —30", and we measure the spot size of each
of the two sources by the same process as in Fig. 2, but
applied separately to the upper and lower halves of the
map. We note that the choice to look at the two halves of
each map separately requires knowledge of the sources’
actual locations, which would not be available in real GW
searches. However, the goal of this test it to investigate
the ability to resolve separated point-sources, and not to
provide the optimal methodology for identifying multiple
point sources in the skymap. Amplitudes of simulated
point sources in this test were louder than those used
previously in this paper. This choice was necessary so
as to investigate whether neighboring GW signals with
sufficiently high SNRs are better recovered when we use
sufficiently high-order spherical harmonics modes.

Figure 8 shows each source’s spot size as a function
of lpae. We observe behavior similar to those of the
single point-source recoveries, namely that the spot sizes
of the two sources do in fact decrease as we use higher-
order spherical harmonics modes. Also, we see that the
upper and lower spot size measurements are very similar
in most cases. However, this does not necessarily mean
that we are properly resolving the two signals.

Figure 9 shows the SNR maps corresponding to dual
point-source simulations of amplitude A = 1074, We
see that for low /4., the two sources are not resolved.
Only at higher /,,,, do we see distinct recoveries. The
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FIG. 8. Sizes of two recovered point-source signals as a func-
tion of l;q. are shown for multiple source amplitudes. The
upper and lower point sources are denoted with upward- and
downward-pointing arrows, respectively. Here we use the HL
baseline. Error bars are given for one set of points to reduce
clutter. Other data points have comparable errors.

bottom plot of Fig. 9 shows that the resolution of the two
point sources improves with increasing £,,q-

Since we used loud simulations, the sources are still
recoverable at high ¢,,,,, despite the decreasing SNR be-
havior discussed in the previous Section. If we were to
use sources with lower SNRs, they would only be sta-
tistically distinct from noise if we use low spherical har-
monics modes, which in turn reduces the angular res-
olution of the map, preventing the sources from being
resolved. Therefore we find that in order to recover mul-
tiple GW point sources, they must be sufficiently loud so
as to support analysis with sufficiently high-order spher-
ical harmonics components. This result also reinforces
the notion that low /,,,, should be considered when ini-
tially performing a search in order to detect the presence
of a GW source, before attempting analysis with higher
order modes to optimize localization.

We note that the recovered spot sizes shown in Fig. 8
are even smaller (by about 2x in area) than those shown
for single point-source simulations in Fig. 2. This is a
consequence of the higher amplitude, A = 107%®, used in
the simulations shown in Fig. 8. In fact this amplitude
has already been excluded by past SGWB searches with
Advanced LIGO and Advanced Virgo data.

VI. EXTENDED SOURCES

We extend the methodology presented in previous Sec-
tions to recovery of spatially extended sources. Extended
sources come in many varieties, and we do not attempt
an exhaustive study here. Instead, we chose to study an
extended source in the shape of a two-dimensional Gaus-
sian distribution centered at 0° declination and 12" right
ascension with amplitude 5 x 104 and standard devia-
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FIG. 9. SNR maps of two recovered point-source signals us-
ing the HL baseline are shown for point source amplitudes of
1078 and for lyer = 4,8,12 (top to bottom). In the bottom
plot we also show the ratio of the angular separation to the
total spot size of the upper and lower sources as we increase

lmax .

tions of 30" in each direction. We first create a clean map
of this signal in the HEALPix basis [37]. We then perform
the SHD search on noise-only data to produce a Fisher
matrix and dirty map corresponding to only noise. Mul-
tiplying this noise-only Fisher matrix by the clean signal

map gives the dirty map corresponding to the extended
source (c.f. Eq. 13). This dirty map is added to the
noise-only dirty map to give a final dirty map contain-
ing both noise and the simulated source. Fig. 10 shows
the clean signal map, the dirty signal map, and the final
combined dirty map.
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FIG. 10. From top to bottom, clean map of 2-D Gaussian
simulation, its corresponding dirty map, and the sum of this
dirty map with the noise-only dirty map.

The final combined dirty map and the Fisher matrix
are then used to perform the same analysis described in
Sec. IV. Namely, we obtain spot-size and significance
measurements using the same methodology as in the
point-source case, using the HL baseline and fieep, = 2/3.
Figure 11 shows the significance of the recovered signal as
a function of £,,,4,.. As in the point-source case, we see the
significance is the largest (p-values are the smallest) for
low £,,4. values. For this particular simulation, £,,q. = 8
seems to be the cutoff beyond which our recoveries are
not statistically significant.
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FIG. 11. Significance of the recovered extended source as a
function of £p,qz, using the HL baseline and Gaussian source
of amplitude of 5 x 10749,

In Fig. 12 we show the spot size as a function of £, 4.
As in the point-source case, we observe the spot size de-
creasing as fp,q, increases. The smallest size is reached
for ;4 = 7, at which point the recovered spot makes up
about 1% of the map, roughly consistent with the size of
the simulated extended source. Attempting recovery for
Limaz > 7 is not successful since the SNR of the simula-
tion is not large enough to support analyses with larger
numbers of free parameters. This is illustrated in Fig. 13,
where e.g. for £,,,,, = 10 we see no discernible recovery
of the extended source.
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FIG. 12. Size of the recovered extended source as a function of
lmaz, using the HL baseline and Gaussian source of amplitude
of 5 x 107,

Overall, we observe that recoveries of the simple spa-
tially extended source follow the same patterns as recov-
eries of point sources. Specifically, low values of £,
are appropriate for the first detection of an anisotropic
SGWRB, as they offer the largest statistical significance of
the recovery. Larger values of £,,,, should then be used
in follow-up analyses to better localize the source, to the

10

Declination [degree]

Right ascension [hours]

Declination [degree]

Right ascension [hours]

Declination [degree]

Right ascension [hours]

Declination [degree]

Right ascension [hours]

FIG. 13. SNR maps of the recovered extended source using
the HL baseline and Gaussian source of amplitude of 5x107%9.
From top to bottom, e = 4,6,8,10.

extent supported by the amplitude (SNR) of the source.
Future work is needed for a more exhaustive study of
spatially extended sources of different shapes and mor-
phologies.

VII. CONCLUSIONS

Observations of GWs from individual compact bi-
nary coalescences have raised the possibility of observing
the SGWB in the upcoming observation runs of terres-
trial GW detectors. Observation of SGWB anisotropy
promises to be an important source of information about
the population of systems that give rise to the SGWB.
Consequently, understanding the angular resolution of



the anisotropic SGWB search and how it changes as a
function of search parameters will be increasingly impor-
tant in future analyses of GW data.

In this paper we have investigated the impact of sev-
eral search parameters on the angular resolution of the
anistropic SGWB search. We have found that the use of a
wide frequency band, such as 20-500 Hz, and of a detector
network containing multiple baselines both help increase
the number of directions (or spherical harmonic modes)
to which our network is sensitive. Consequently, this im-
proves the conditioning of the Fisher matrix, simplifies
its inversion, and overall improves the angular resolution
of the search.

We have also demonstrated that for detecting the pres-
ence of an anisotropic SGWB, one should search using
low-order spherical harmonics modes. Once the detection
is made, follow-up analyses using higher-order spherical
harmonic modes should be pursued to improve the an-
gular resolution of the analysis and better localize the
source. Since searching with increasingly higher-order
modes reduces the significance of the recovery, the max-
imum number of modes (i.e. fq.) will be ultimately
set by the amplitude (or SNR) of the GW source. In
other words, the optimal localization of a GW source is
achieved by using the highest number of spherical har-
monics modes that still give statistically significant re-
coveries. Further, for a sufficiently strong SGWB it is
possible to surpass the traditional “diffraction limit” on
the angular resolution of the anisotropic SGWB search.
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Similarly, we have shown that multiple point sources
can be recovered and resolved by the anisotropic SGWB
search. If the sources’ amplitudes are sufficiently large,
the search could be conducted with a sufficiently large
Lmaz SO as to resolve the point sources, while still provid-
ing statistically significant recovery. Spatially extended
sources follow a similar pattern, as we have demon-
strated on a simple case of a Gaussian-distributed ex-
tended source.

Future studies should consider more complete sam-
pling of shapes and morphologies of spatially extended
sources. We also note that the results presented in this
paper could be altered when a different spectral model is
used (e.g. for spectral index « different from 2/3), as well
as when using larger GW detector networks that include
more than the three detectors considered here.
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