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We perform an anisotropic search for the stochastic gravitational-wave (GW) background by
decomposing the gravitational-wave sky into its spherical harmonics components. Previous analyses
have used the diffraction limit to define the highest-order spherical harmonics components used in this
search. We investigate whether the angular resolution of this search is indeed diffraction-limited by testing
our ability to detect and localize simulated GW signals. We show that while using low-order spherical
harmonic modes is optimal for initially detecting GW sources, the detected sources can be better localized
with higher-order spherical harmonics than expected based on the diffraction limit argument. Additionally,
we discuss how the ability to recover simulated GW sources is affected by the number of detectors in the
network, the frequency range over which the search is performed, and the method by which the covariance
matrix of the GW skymap is regularized. While we primarily consider point-source signals in this study,
we briefly apply our methodology to spatially extended sources and discuss potential future modifications
of our analysis for such signals.
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I. INTRODUCTION

Since the first direct detection of gravitational
waves (GW) from the collision of two black holes on
September 14, 2015 [1], the field of gravitational-wave
astronomy has been an exciting and relatively new way
to probe the far reaches of our universe. The ability to
detect gravitational-waves with detectors like the Laser
Interferometer Gravitational-wave Observatory (LIGO)
and Virgo detectors [2,3] has opened up a wide range of
questions to investigate. Recent developments include the
observation of neutron star-black hole coalescences [4], a
binary black hole coalescence with a total mass of
150 M⊙ [5], and a coalescence between a black hole
and a 2.6 M⊙ object which is either the lightest black hole
or the heaviest neutron star discovered in a compact
binary system [6].
While these detections are of signals from individual

GWevents, it is also possible for a GW background to form
as the superposition of many unresolved GW signals [7,8].
Such a background may have contributions which are
astrophysical or cosmological in origin. Examples of
astrophysical contributions include binary mergers and
supernovae [9–15] while examples of cosmological con-
tributions include GWs generated during the inflationary
epoch and in phase transitions in the early universe
[16–18]. Moreover, the GW background is likely to be

anisotropic due to inhomogeneous distributions of GW
sources. Potential sources of anisotropy are dependent on
the evolution of the large scale structure in the universe
such as galaxy and cluster mergers as well as the power
spectrum from an early inflationary epoch. Such primor-
dial density fluctuations can have many implications,
such as on the distribution of compact binaries through-
out the universe, the local distribution of GW sources
(e.g., pulsars in the Milky Way galactic plane [19,20]),
and others [21–26].
Advanced LIGO and Advanced Virgo data have been

used to search for the anisotropic stochastic gravitational-
wave background (SGWB), producing stringent upper
limits on GW energy density across the sky [27–32].
Traditionally, diffraction limit arguments were used to
assess the angular resolution of these searches. In this
paper, we take a closer look at the intrinsic angular
resolution of anisotropic SGWB searches, finding that
they can surpass the resolution expected based on
diffraction limit arguments. In Sec. II we present the
formalism for anisotropic SGWB search. In Sec. III we
present some intuitive arguments on angular resolution
limitiations. In Secs. IV, V, and VI we present the angular
resolution in recovery of simulated individual point
sources, simulated multiple point sources, and simulated
extended sources, respectively. We offer concluding
remarks in Sec. VII.
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II. SPHERICAL HARMONICS DECOMPOSITION

We consider the anisotropic SGWB search in which we
decompose the map of the gravitational-wave sky into
spherical harmonics components. This search stands in
contrast to the radiometer search which assumes GW
signals are confined to individual pixels. The radiometer
search is only valid for GW sources which are well-
separated, and most recent radiometer searches used pixels
of area 3 deg2 [27]. This resolution is smaller-scale than
what the diffraction limit would suggest for the spherical
harmonics decomposition search, which is better suited to
spatially extended anisotropies in the SGWB.
We assume an unpolarized, Gaussian, and stationary

SGWB. The most general quadratic expectation value of
the GW strain hAðf;ΘÞ of frequency f, sky directionΘ, and
polarization A, that satisfies these assumptions is given by:

hh�Aðf;ΘÞhA0 ðf0;Θ0Þi ¼ 1

4
Pðf;ΘÞδAA0δðf − f0ÞδðΘ;Θ0Þ

ð1Þ

where Pðf;ΘÞ gives the spectral and angular distribution
of the background [33]. We assume that Pðf;ΘÞ can be
factored into its separate spectral and angular components

Pðf;ΘÞ ¼ HðfÞPðΘ̂Þ; ð2Þ

where HðfÞ is a dimensionless quantity which we choose
to take the form of a power law both for its simplicity and
its ability to approximate most interesting SGWB models,

HðfÞ ¼
�

f
fref

�
α−3

: ð3Þ

Here we use the reference frequency fref ¼ 25 Hz to
maintain consistency with the methods used in the most
recent search for the anisotropic background [27]. The
spectral index α is commonly assumed to take values of 0,
2=3, and 3 corresponding to a cosmological background
[34], CBC background [35], and a generic flat strain
spectrum [13], respectively. We further decompose the
angular distribution PðΘÞ into a basis of spherical har-
monic components Ylm:

PðΘ̂Þ ¼
Xlmax

l¼0

Xl
m¼−l

PlmYlmðΘ̂Þ: ð4Þ

The goal of the search is therefore to estimate the values
of the Plm coefficients. To do this, we must first define the
cross-correlation spectrum between two detectors I and J at
time t and frequency f:

CIJ ¼
2

τ
s̃�I ðt; fÞs̃Jðt; fÞ: ð5Þ

Here τ is the duration of an observation segment, and this
time is used to find the finite-time Fourier transform of each
detector time series data, which contains both the detector
noise and the GW signal: s̃Iðt; fÞ ¼ ñIðt; fÞ þ h̃Iðt; fÞ. If
we assume that the noise between the detectors is uncorre-
lated, then the expectation value of the cross-correlation
spectrum is

hCIJðt; fÞi ¼
2

τ
hh�I ðt; fÞhJðt; fÞi: ð6Þ

Equations (1) and (2) then lead to [33]:

hCIJðt; fÞi ¼ HðfÞ
Z
S2
dΘ̂γðt; Θ̂; fÞPðΘ̂Þ: ð7Þ

where γðt; Θ̂; fÞ is a geometric function that takes into
account the response of the detector pair to GW signals
given the detectors’ relative locations and orientations [33]:

γðt; Θ̂; fÞ ¼ 1

2
FA
I ðt; Θ̂ÞFA

J ðt; Θ̂Þei2πfΘ̂·ðx⃗IðtÞ−x⃗JðtÞÞ=c ð8Þ

In the above equation we use the detector response
functions FA

I ðt; Θ̂Þ, detector locations x⃗IðtÞ [33], and speed
of light c. We can substitute Eq. (4) into Eq. (7) and
integrate over the two-sphere to obtain

hCIJðt; fÞi ¼ HðfÞγlmðt; fÞPlm; ð9Þ
where

γlmðt; fÞ ¼
Z
S2
dΘ̂γðt; Θ̂; fÞYlmðΘ̂Þ ð10Þ

are purely geometric factors associated with the IJ detector
pair and repeated indices are summed over.
We proceed to define a likelihood function for the cross-

correlation spectrum given a sky map defined by spherical
coefficients fPlmg [27]:

pðCIJjfPlmgÞ∝expð½CIJðt;fÞ−HðfÞγlmðt;fÞPlm��
×N−1

ft;f0t0 ½CIJðt0;f0Þ−Hðf0Þγl0m0 ðt0;f0ÞPl0m0 �Þ
ð11Þ

where Nft;f0t0 is the covariance matrix of CIJðt; fÞ given
by [36]:

Nft;f0t0 ¼ δtt0δff0PIðt; fÞPJðt; fÞ; ð12Þ

and PIðt; fÞ is the one-sided power spectrum of the data
from detector I. The spherical harmonic coefficients that
maximize this likelihood function are given by:

P̂lm ¼
X
l0m0

ðΓ−1
R Þlm;l0m0Xl0m0 : ð13Þ
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where

Xlm ¼
X
f;t

γ�lmðt; fÞ
HðfÞ

PIðt; fÞPJðt; fÞ
CIJðt; fÞ; ð14Þ

Γlm;l0m0 ¼
X
f;t

γ�lmðt; fÞ
H2ðfÞ

PIðt; fÞPJðt; fÞ
γl0m0 ðt; fÞ: ð15Þ

Equation (14) defines the “dirty map” of the SGWB
convolved with the response antenna pattern of the IJ
detector pair. The covariance matrix of the dirty map is
given in Eq. (15). Since Eq. (13) represents the deconvo-
lution of the GW signal from the detector response, we
refer to it as the “clean map.”We can obtain the covariance
matrix of this clean map by inverting the covariance matrix
of the dirty map. Because of this property, we refer to
the matrix defined in Eq. (15) as the Fisher information
matrix [33].
Inverting the Fisher matrix, however, is nontrivial, as

gaps in the detector network’s sensitivity across the sky
cause singular values within the Fisher matrix. We there-
fore must regularize the Fisher matrix prior to inversion. In
Eq. (13) the subscript R denotes that the inverted Fisher
matrix has been regularized. We utilize the singular value
decomposition (SVD) method for this regularization,
choosing which eigenmodes to discard and which to retain
prior to inversion. In Sec. IV we consider several options
for implementing the SVD regularization.
We note that the spherical harmonic expansion defined in

Eq. (4) is cut off at some lmax. The choice of lmax is an
assumption of the search. In past searches, this value was
chosen based on a diffraction limit argument for which we
define a diffraction-limited spot size θ for a particular
baseline. This spot size is defined by the distance d between
the detectors and the most sensitive frequency fα of the
baseline (which depends on the assumed spectral model):

lmax ¼
π

θ
; ð16Þ

where for the LIGO-Hanford and LIGO-Livingston
detectors

θ ¼ c
2dfα

≈
50 Hz
fα

: ð17Þ

Whether or not this argument is appropriate or sufficient
for making optimal GW signal detections is a question we
address in Secs. IV and V.

III. SOURCE OF ANGULAR RESOLUTION
LIMITATION

The diffraction limit relation in Eq. (17) gives a reason-
able order-of-magnitude estimate for the angular resolution
and captures the intuition that a larger baseline should

improve the angular resolution [37]. However, there are
important shortcomings of this formula as usually presented.
First, the word “diffraction” gives a misleading picture of the
physics, since the angular resolution limitation actually
comes from phase coherence between sources at different
angular separations (as discussed below in more detail).
Second, gravitational-wave sources are typically not mono-
chromatic, and it is not clear a-priori how to transfer this
diffraction limit to broadband sources. Therefore a more
detailed investigation is needed to pin down the angular
resolution of a given GW detector network.
An important subtlety is that for deterministic signal

models, such as transient CBC signals or isolated rotating
neutron stars, the angular resolution of the recovered signal
is evidently not limited by the diffraction limit. The CBC
signal model assumes (quite reasonably) that there is one
source explaining the gravitational-wave signal. This
allows triangulation of the arrival times of the signal, along
with the antenna patterns, to pin down the sky location of a
source to (in principle) an arbitrary good localization—
currently the best localization is of order 10 square degrees
for the highest SNR events seen to date. On the other hand,
the anisotropic SGWB search makes no assumption about
the number of GW sources, about their distribution across
the sky, nor about their individual waveforms. As we
illustrate below in a toy model, the superposition of
multiple simultaneous GW signals arriving from different
directions to a GW detector can lead to a suppression of
sensitivity on small angular scales, and therefore to reduced
angular resolution. The generality of the anisotropic SGWB
search therefore comes with a loss in angular resolution.
As we will see below, the resolution is set by a complex
interplay of the frequency-dependent GW detector sensi-
tivity, frequency-dependent SGWB model, and the ampli-
tude of the SGWB spectrum.
In addition to the phase coherence, there is an addi-

tional effect due to blind spots in the detector network.
This problem is a manifestation of the well-known bias-
variance tradeoff. As noted above, the Fisher matrix is
usually not invertible, meaning that formally the variance
is infinite. Regularizing the Fisher matrix reduces the
variance, but at the cost of introducing a bias in the
recovered signal.
Inspired by this, we briefly describe a toy model that can

be used to gain insight into the origin of angular resolution
of the SGWB search. As depicted in Fig. 1, we consider a
pair of detectors rotating on the boundary of a circle of
diameter L and observing scalar waves propagating in the
same plane (e.g., two water buoys measuring the height of
passing water waves). The detectors rotate with frequency
fE such that fE ≪ f. Our detectors will have a response
function FðθÞ, where θ denotes the polar angle in the plane.
We consider two special cases: (a) an isotropic response
FðθÞ ∝ 1 and (b) a directional “lighthouse” response
FðθÞ ∝ δðθ − θ0Þ, where θ0 is the opening angle of the
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detector. In the circular harmonic basis, we can define our
overlap reduction function as [equivalent to Eq. (10)]:

γnðt; fÞ ¼
1

2

Z
dθeinθF1ðθ; tÞF2ðθ; tÞe2πifLθ̂·n̂ðtÞ=c; ð18Þ

where θ̂ is the unit vector pointing in the direction of θ and
n̂ points from detector 2 to detector 1. In the isotropic
response case, a suitable choice of coordinate axes allows
us to rewrite our overlap reduction function as

γnðt; fÞ ¼
1

2
einð2πfEtÞJnð2πfL=cÞ; ð19Þ

where Jn are the Bessel functions. In the lighthouse
response case, this function reduces to

γnðt; fÞ ¼
1

2
ein2πfEtei2πfL cosð2πfEtÞ=cδ2ðϕ1;ϕ2Þ; ð20Þ

where ϕ1;ϕ2 are the directions of detectors 1,2 at time
t ¼ 0. The cross correlation between the two detectors is
defined as in Eq. (5), with its expectation value defined as

hCðt; fÞi ¼
X
n

γnðt; fÞPn ð21Þ

We are now ready to analyze the angular resolution of
this toy model. Following the anisotropic SGWB search
formalism, we define the likelihood function

lnðLÞ ∝
X
t

jCðt; f0Þ − γnðt; f0ÞPnj2
P2
0

; ð22Þ

where for this model we will only be considering a single
frequency bin and P0 is the noise variance in this bin.
Our maximum likelihood estimator is then given as

P̂n ¼ ðΓ−1ÞnmXm; ð23Þ

with

Xn ¼
1

P2
0

X
t

γ�nðt; f0ÞCðt; f0Þ ð24Þ

Γnm ¼ 1

P2
0

X
t

γ�nðt; f0Þγmðt; f0Þ: ð25Þ

We first consider the case of an isotropic response. The
Fisher matrix Γmn, after summing over t, reduces to

Γmn ¼
1

4P2
0

J2nð2πf0L=cÞNSδmn; ð26Þ

where NS is the number of time segments. Since the Fisher
matrix is diagonal, we see that all eigenvalues are nonzero
for general 2πf0L=c. However, Jnð2πf0L=cÞ peaks around
2πf0L=c ¼ n0, so wave numbers n > 2πf0L=c are sup-
pressed. The effect of this eigenvalue suppression is
quantitatively similar to the diffraction limit argument
[cf. Eq. (17)], and it applies even for arbitrarily long
observation times (and, by extension, high SNRs) since
all eigenvalues scale equally with these quantities. We
therefore see that for an isotropic response, a detector pair’s
resolution is limited to angular scales similar to those given
by the diffraction limit argument, albeit for a very different
physical reason. As mentioned at the beginning of this
section, the angular resolution’s limit comes from the phase
coherence of sources at different angular separations, which
is physically different from, for example, the way in which
waves bend around an obstacle or aperture.
Next, we consider the lighthouse detector response

function and apply the same analysis. We again obtain a
diagonal Fisher matrix that reduces to

Γmn ¼
1

4P2
0

δmnδ
2ðϕ1;ϕ2Þ; ð27Þ

for which all eigenvalues are equal implying that there is no
limit to the angular resolution, i.e., the resolution can be
arbitrarily improved by having a larger SNR signal. We
conclude therefore that detector networks with perfectly
isotropic responses have angular resolutions similar to
those set by the diffraction limit argument, while perfectly
directional detectors have unlimited angular resolution. In
practice, however, the LIGO-Virgo detectors have aniso-
tropic responses but not perfectly so. That is, they have
responses somewhere between the two extreme cases

FIG. 1. Diagram of our toy model. The detectors are located at
x⃗1ðtÞ and x⃗2ðtÞ, are separated by a distance L, and orbit their
center with frequency fE. The unit vector n̂ðtÞ points from x⃗2ðtÞ
to x⃗1ðtÞ, and the unit vector θ̂ points in the direction of the wave’s
propagation.
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considered above. Consequently, we should expect the
anisotropic SGWB search angular resolution to be limited,
but also better than what is predicted by the diffraction
limit argument.
Unfortunately, the above analysis cannot be simply

extended to GW detectors operating in three dimensions
and across a wide frequency band with a colored noise
power spectrum. Consequently, to assess the angular
resolution of the anisotropic SGWB search, we resort to
a series of simulations described in the following Sections.

IV. SINGLE POINT SOURCE

As noted above, the diffraction-limit argument in
Eq. (17) may give a reasonable order-of-magnitude esti-
mate of the angular resolution for the anisotropic SGWB
search. However, this argument is inaccurate for multiple
reasons. First, the angular resolution of this search is not
limited by a diffraction process of GWs interacting with
the detectors but rather by the phase coherence between
detectors. As discussed in the previous section, the direc-
tionality of the detector response plays an important role in
the angular resolution, which is not accounted for in the
diffraction limit argument. Second, when considering a
network of multiple baselines, each with different separa-
tion distances and peak sensitivities, Eq. (17) cannot be
directly applied. Third, the question of regularization of the
Fisher matrix (which is also related to the number of
detector baselines in the network and to their relative
sensitivities) also directly impacts the angular resolution
of the search.
To assess the angular resolution limitations, we resort to

a series of simulations and we cast the problem in terms
of finding the search parameters that give optimal results
when performing a spherical harmonics decomposition
(SHD) SGWB search. These parameters include the fre-
quency range over which the search is performed, the
highest-order spherical harmonic modes that are consid-
ered, and the method/threshold used for Fisher matrix
regularization. These parameters will differ depending on
the signal model, and we will address what constitutes
optimal results.
We begin by considering a broadband point-source GW

simulation. While the SHD analysis is particularly well-
suited for the recovery of spatially-extended sources,
a point-source recovery is still possible with the SHD
analysis, and the angular resolution of the recovery can be
quantified in terms of lmax. Note that recovery of a point-
source does not imply that an infinitely small feature of the
GW skymap has been recovered, but rather that the source
can be localized as a finite-size feature in the GW skymap,
with a reasonable number of search parameters. In this
analysis, we use the same data processing MATLAB pipeline
used to perform the O3 anisotropic search [27] and outlined
in Sec. II. The point-source simulation assumes a power-
law spectral shape as defined in Eq. (28):

AHðfÞ ¼ A

�
f
fref

�
α−3

; ð28Þ

where we choose α ¼ 2=3 and vary the amplitude A. Fig. 2
illustrates the strain power spectrum of this simulation for
A ¼ 5 × 10−49, alongside the power spectral density (PSD)
of Advanced LIGO’s design sensitivity. The single point-
source was simulated at 0° declination and 12h right
ascension. The location of the injection was chosen
arbitrarily. There is, however, slight latitude-dependence
on the sensitivity of the SHD search, with the O3 1σ
sensitivity varying by a factor of ∼2 (see Fig. 8 of [27]), but
this slight variation in sensitivity was not investigated
further in this study. Each simulation was 24 hours long,
and for each detector the SGWB was added to the detector
noise corresponding to the Advanced LIGO or Advanced
Virgo design sensitivities (which are not taken to be the
same). Simulated signals were injected in the time-domain
using a pre-existing functionality within the aforemen-
tioned stochastic search MATLAB pipeline. The Recoveries
were performed using a frequency range of 20–500 Hz and
spectral index of α ¼ 2=3.
To quantify the localization of the recovered point

source, we count the number of pixels in the recovered
SNR skymap whose SNR is larger than 75% of the map’s
peak SNR value. The spot size defined in this way is shown
in Fig. 3 (left) as a function of lmax. As lmax is increased,
the spot size is reduced and the resolution of the recovered
map is improved. For comparison, for α ¼ 2=3 the most
sensitive frequency is about 65 Hz, resulting in the
diffraction limit in Eq. (17) of θ ≈ 45° and the diffraction
limit spot size of about 4% of the sky. We can also consider
the fact that we make statistically significant recoveries of

FIG. 2. Power spectral densities (PSD) of Advanced Virgo
design sensitivity (green, upper) and Advanced LIGO design
sensitivity (blue, middle) are shown in comparison with the strain
power spectrum of the simulated point source with α ¼ 2=3
(orange, lower) and amplitude A ¼ 5 × 10−49.
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the simulated source at an lmax value of 20, and the
diffraction-limited spot size corresponding to this lmax
value is θ ≈ 9°, which represents about 0.2% of the sky.
It is evident from Fig. 3 that the anisotropic SGWB search
can substantially surpass the diffraction limit, as the
smallest spot size measurements we obtain are about
0.2% of the sky map.
Figure 3 (left) also compares different Fisher matrix

regularization methods. The first regularization threshold
we apply is to keep two thirds of all eigenvalues of the
Fisher matrix (fkeep ¼ 2=3). This is the method that has
been in use for all previous SHD searches for anisotropic
SGWB [27–29]. The second regularization threshold we
apply removes the eigenvalues that are smaller that 10−3

times the largest eigenvalue [38]. A comparison between
these two methods is shown in Fig. 3 (left)—while the two
regularization methods yield similar results, the 10−3

threshold performs slightly better. For the 10−3 threshold,
a high lmax makes little difference to the spot size since
most new eigenvalues introduced by raising lmax are small
and therefore removed by the regularization threshold. This
behavior can be seen in the relatively constant spot size
measurements for high lmax values in Fig. 3 (left). We also
include spot size measurements that result from using a
more aggressive regularization scheme in which we apply a
10−2 threshold. This threshold results in more eigenmodes
being discarded during the Fisher matrix regularization,
giving larger spot size measurements.
We also consider a modified version of this search in

which we include the Virgo detector, resulting in a network
of three detector baselines. We denote this network as HLV.
A single baseline will not be sensitive to all sky directions,
and these gaps in sensitivity manifest as singular Fisher
matrix eigenvalues. When more detector baselines are

included in a network, it is possible for the Fisher matrix
to become naturally regularized as the network gains
sensitivity to more sky directions. A different Fisher matrix
regularization strategy may therefore be better suited for
multi-baseline detector networks. The size of the recovered
point-source with this multibaseline network is shown in
Fig. 3 (right). In addition to the above two regularization
thresholds, we also consider using the entire (unregular-
ized) Fisher matrix, i.e., keeping all of its eigenvalues.
For lmax < 12, using the 10−3 threshold is equivalent to

keeping all eigenvalues. The 10−3 threshold generally gives
the most localized recoveries of the three regularization
methods used. For lmax ≥ 12, the 10−3 threshold performs
similarly to the fkeep ¼ 2=3 method. For lmax > 13, the
recovered peak SNR values are not statistically significant
when we keep all eigenvalues, so we conclude that the
source is not properly recovered in this case, and we do not
report spot size values. We can conclude therefore that
some regularization is still necessary for this multibaseline
network for lmax > 13. If we decrease the amplitude of our
simulated source from A ¼ 5 × 10−49 to A ¼ 1 × 10−49, we
only make statistically significant recoveries of the source
for lmax < 6, and when we do recover this lower-amplitude
source, its spot size measurements are larger than those of
the higher-amplitude source as seen in Fig. 3 (right). This is
consistent with our expectation that larger SNR allows
recovery with better angular resolution.
Figure 4 directly compares Fisher matrix conditioning in

the HL and HLV cases. We see that for a low lmax value like
lmax ¼ 4, there is little difference in the Fisher matrix
eigenvalues between the HL and HLV networks if we only
consider eigenvalues kept using the fkeep ¼ 2=3 threshold.
If we consider all the eigenvalues, the smallest eigenvalue
in the HLV Fisher matrix is an order of magnitude larger

FIG. 3. Size of recovered point-source signal as a function of lmax for multiple regularization thresholds for the Fisher matrix. The left
plot shows results for the Hanford-Livingston baseline, and the right plot shows results from the HLV network. For the HLV case, we
also consider the unregularized Fisher matrix (keep all). Data points are excluded if the point-source was not recovered.
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than that of the HL Fisher matrix. Using higher values of
lmax shows a widening in the differences between the HL
and HLV Fisher matrix conditioning, with the HLV net-
work having larger eigenvalues even among those that are
accepted by the fkeep ¼ 2=3 regularization method. This
improvement in conditioning is likely responsible for
the slightly smaller spot size measurements for HLV (as
compared to HL) shown in Fig. 3.
We next examine the impact of the chosen frequency

band on the conditioning of the Fisher matrix, and by
extension the detectors’ resolution [31]. For the spectral
index α¼2=3, the most sensitive frequency is∼65 Hz [39].
Further, 99% of the HL baseline’s sensitivity lies within the
20–120 Hz band for the search for an isotropic SGWB with
α ¼ 2=3 [11]. We therefore start with the 20–100 Hz

frequency band that captures most of the sensitivity of
the SHD search. We compare the conditioning of the Fisher
matrix in this band with the conditioning in wider bands
(20–200 Hz and 20–500 Hz)—these wider bands include
higher frequencies and therefore may be sensitive to
smaller angular scales on the sky.
Figure 5 shows that as the lmax value increases, the

regularization of the Fisher matrix worsens drastically for
the 20–100 Hz band. Extending the frequency band to
20–200 Hz gives a marked improvement, but the con-
ditioning is the best when using the widest frequency band
of 20–500 Hz. This difference in conditioning implies that
including higher frequencies allows the detector network to
resolve smaller-scale structures in the skymap, thereby
increasing the angular resolution of the recovery.

FIG. 4. Fisher matrix conditioning plots for lmax ¼ 4, 8, and 12 comparing the HL and HLV detector networks using simulated data.
Vertical lines mark the largest 2=3 of eigenvalues. Horizontal lines mark the 10−3 threshold.

FIG. 5. Fisher matrix conditioning is shown for lmax ¼ 4, 8, and 12, comparing several different frequency bands for the HL baseline.
Vertical lines mark the lowest 1=3 of eigenvalues and horizontal lines mark the 10−3 threshold.
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Finally, we examine our ability to detect a point source
rather than our ability to localize it. We quantify the
significance of a GW source recovery in a manner similar
to that used in previous directional searches [27]. We draw
from a multivariate Gaussian distribution with zero mean
and covariance given by the inverted Fisher matrix,
resulting in a set of Plm values corresponding to a noise
skymap. The procedure is repeated 5000 times and an SNR
map is made for each such random realization of noise. In
each SNR map we define a region centered around the
location of the simulated source, extending 20° above and
below the simulated point source and 2h on either side. We
then find the mean pixel value among the top 5% of the
pixels within this region and bin this value into a histogram.
We make the same measurement using a skymap contain-
ing the simulated point source signal, like the one shown in
Fig. 6 for lmax ¼ 8. We attribute a (significance) p-value to
the peak SNR in this map by comparing it to the noise

peak-SNR histogram. An example is shown in Fig. 7,
where the vertical line denotes the peak SNR measurement
of the map in Fig. 6.
We find that increasing lmax causes an increase in the

p-value associated with its peak SNR and therefore a
decrease in the ability to detect the simulated source.
These results are shown in Fig. 8. For each additional
order of spherical harmonics modes we include in our
analysis by increasing lmax, we increase the number of
model parameters used to fit to the data, which ultimately
results in a decrease in the SNR of the recovered source. We
therefore find that low lmax values lend themselves to
optimal point source signal detection, while high lmax
values may be better suited for optimal localization of the
point source signal, depending on the signal strength. In
other words, search parameters that are optimal for
detecting a GW source may differ from those that are
optimal for localizing it.

V. MULTIPLE POINT SOURCES

Another way to characterize the angular resolution of the
SHD search is by its ability to distinguish between multiple
point sources. We begin by simulating two point-sources of
equal magnitude with declinations of þ30° and −30°, and
we measure the spot size of each of the two sources by the
same process as in Fig. 3, but applied separately to the
upper and lower halves of the map. We note that the choice
to look at the two halves of each map separately requires

FIG. 6. An example SNR map is shown of a simulated point-
source with amplitude A ¼ 10−49 and location 0° declination,
12h right ascension, recovered using the HL baseline, fkeep¼2=3,
and lmax ¼ 8.

FIG. 7. Peak SNR from the map in Fig. 6 is marked by a vertical
line in comparison with the histogram of the peak SNRs obtained
from purely noise simulated skymaps.

FIG. 8. We show the significance (p-value) of the recovered
simulated peak SNR vs lmax using HL baseline, fkeep ¼ 2=3, and
point-source amplitude A ¼ 10−49. p-values equal to zero are
denoted with downward-pointing arrows at the bottom of the plot.
We also show results for the HLV network, for two different
regularization methods. We see that using higher lmax gives
recovered peak SNRs with lower significance (larger p-values).
We include lmax ¼ 0 to show that nonzero lmax values are
necessary to obtain statistically significant recoveries.
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knowledge of the sources’ actual locations, which would
not be available in real GW searches. However, the goal of
this test it to investigate the ability to resolve separated
point-sources, and not to provide the optimal methodology
for identifying multiple point sources in the skymap.
Amplitudes of simulated point sources in this test were
louder than those used previously in this paper. This choice
was necessary so as to investigate whether neighboring GW
signals with sufficiently high SNRs are better recovered
when we use sufficiently high-order spherical harmon-
ics modes.
Figure 9 shows each source’s spot size as a function

of lmax. We observe behavior similar to those of the single
point-source recoveries, namely that the spot sizes of the
two sources do in fact decrease as we use higher-order
spherical harmonics modes. Also, we see that the upper and
lower spot size measurements are very similar in most
cases. However, this does not necessarily mean that we are
properly resolving the two signals.
Figure 10 shows the SNR maps corresponding to dual

point-source simulations of amplitude A ¼ 10−48. We see
that for low lmax, the two sources are not resolved. Only at
higher lmax do we see distinct recoveries. The bottom plot
of Fig. 10 shows that the resolution of the two point sources
improves with increasing lmax.
Since we used loud simulations, the sources are still

recoverable at high lmax despite the decreasing SNR
behavior discussed in the previous section. If we were to
use sources with lower SNRs, they would only be sta-
tistically distinct from noise if we use low spherical
harmonics modes, which in turn reduces the angular
resolution of the map, preventing the sources from being

FIG. 9. Sizes of two recovered point-source signals as a
function of lmax are shown for multiple source amplitudes.
The upper and lower point sources are denoted with upward-
and downward-pointing arrows, respectively. Here we use the HL
baseline. Error bars are given for one set of points to reduce
clutter. Other data points have comparable errors.

FIG. 10. SNR maps of two recovered point-source signals
using the HL baseline are shown for point source amplitudes of
10−48 and for lmax ¼ 4, 8, 12 (top to bottom). In the bottom plot
we also show the ratio of the angular separation to the total spot
size of the upper and lower sources as we increase lmax.
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resolved. Therefore we find that in order to recover multiple
GW point sources, they must be sufficiently loud so as to
support analysis with sufficiently high-order spherical
harmonics components. This result also reinforces the
notion that low lmax should be considered when initially
performing a search in order to detect the presence of a GW
source, before attempting analysis with higher order modes
to optimize localization.
We note that the recovered spot sizes shown in Fig. 9 are

even smaller (by about 2× in area) than those shown for
single point-source simulations in Fig. 3. This is a conse-
quence of the higher amplitude, A ¼ 10−48, used in the
simulations shown in Fig. 9. In fact this amplitude has
already been excluded by past SGWB searches with
Advanced LIGO and Advanced Virgo data.

VI. EXTENDED SOURCES

We extend the methodology presented in previous sec-
tions to recovery of spatially extended sources. Extended

sources come in many varieties, and we do not attempt an
exhaustive study here. Instead, we chose to study an
extended source in the shape of a two-dimensional
Gaussian distribution centered at 0° declination and 12h

right ascension with amplitude 5 × 10−49 and standard
deviations of 30° in each direction. We first create a clean
map of this signal in the HEALPix basis [40]. We then
perform the SHD search on noise-only data to produce a
Fisher matrix and dirty map corresponding to only noise.
Multiplying this noise-only Fisher matrix by the clean
signal map gives the dirty map corresponding to the
extended source [cf. Eq. (13)]. This dirty map is added to

FIG. 11. From top to bottom, clean map of 2-D Gaussian
simulation, its corresponding dirty map, and the sum of this dirty
map with the noise-only dirty map.

FIG. 12. Significance of the recovered extended source as a
function of lmax, using the HL baseline and Gaussian source of
amplitude of 5 × 10−49.

FIG. 13. Size of the recovered extended source as a function
of lmax, using the HL baseline and Gaussian source of
amplitude of 5 × 10−49.
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the noise-only dirty map to give a final dirty map containing
both noise and the simulated source. Figure 11 shows the
clean signal map, the dirty signal map, and the final
combined dirty map.
The final combined dirty map and the Fisher matrix are

then used to perform the same analysis described in Sec. IV.
Namely, we obtain spot-size and significance measure-
ments using the same methodology as in the point-source
case, using the HL baseline and fkeep ¼ 2=3. Figure 12
shows the significance of the recovered signal as a function

of lmax. As in the point-source case, we see the significance
is the largest (p-values are the smallest) for low lmax values.
For this particular simulation, lmax ¼ 8 seems to be the
cutoff beyond which our recoveries are not statistically
significant. In Fig. 13 we show the spot size as a function
of lmax. As in the point-source case, we observe the spot
size decreasing as lmax increases. The smallest size is
reached for lmax ¼ 7, at which point the recovered spot
makes up about 1% of the map, roughly consistent with the
size of the simulated extended source. Attempting recovery
for lmax > 7 is not successful since the SNR of the
simulation is not large enough to support analyses with
larger numbers of free parameters. This is illustrated in
Fig. 14, where e.g., for lmax ¼ 10 we see no discernible
recovery of the extended source.
Overall, we observe that recoveries of the simple

spatially extended source follow the same patterns as
recoveries of point sources. Future work is needed for a
more exhaustive study of spatially extended sources of
different shapes and morphologies.

VII. CONCLUSIONS

Observations of GWs from individual compact binary
coalescences have raised the possibility of observing the
SGWB in the upcoming observation runs of terrestrial GW
detectors. Observation of SGWB anisotropy promises to be
an important source of information about the population of
systems that give rise to the SGWB. Consequently, under-
standing the angular resolution of the anisotropic SGWB
search and how it changes as a function of search
parameters will be increasingly important in future analyses
of GW data.
In this paper we have investigated the impact of several

search parameters on the angular resolution of the anis-
tropic SGWB search. We have found that the use of a wide
frequency band, such as 20–500 Hz, and of a detector
network containing multiple baselines both help increase
the number of directions (or spherical harmonic modes)
to which our network is sensitive. Consequently, this
improves the conditioning of the Fisher matrix, simplifies
its inversion, and overall improves the angular resolution of
the search.
We have also demonstrated that for detecting the

presence of an anisotropic SGWB, one should search using
low-order spherical harmonics modes. Once the detection
is made, follow-up analyses using higher-order spherical
harmonic modes should be pursued to improve the angular
resolution of the analysis and better localize the source.
Since searching with increasingly higher-order modes
reduces the significance of the recovery, the maximum
number of modes (i.e., lmax) will be ultimately set by the
amplitude (or SNR) of the GW source. In other words, the
optimal localization of a GW source is achieved by using
the highest number of spherical harmonics modes that
still give statistically significant recoveries. Further, for a

FIG. 14. SNR maps of the recovered extended source using the
HL baseline and Gaussian source of amplitude of 5 × 10−49.
From top to bottom, lmax ¼ 4, 6, 8, 10.
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sufficiently strong SGWB it is possible to surpass the
traditional “diffraction limit” on the angular resolution of
the anisotropic SGWB search.
Similarly, we have shown that multiple point sources

can be recovered and resolved by the anisotropic SGWB
search. If the sources’ amplitudes are sufficiently large,
the search could be conducted with a sufficiently large
lmax so as to resolve the point sources, while still
providing statistically significant recovery. Spatially
extended sources follow a similar pattern, as we have
demonstrated on a simple case of a Gaussian-distributed
extended source.
Future studies should consider more complete sampling

of shapes and morphologies of spatially extended sources.
We also note that the results presented in this paper could

be altered when a different spectral model is used (e.g., for
spectral index α different from 2=3), as well as when using
larger GW detector networks that include more than the
three detectors considered here.
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