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Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational
colonies with a social hierarchy, and show low cancer incidence and long
life-spans. Here we asked if an immune component might underlie such
extreme physiology. The largest lymphoid organ is the spleen, which
plays an essential role in responding to immunological insults and may par-
ticipate in combating cancer and slowing ageing. We investigated the
anatomy, molecular composition and function of the NM-R spleen using
RNA-sequencing and histological analysis in healthy NM-Rs. Spleen size
in healthy NM-Rs showed considerable inter-individual variability, with
some animals displaying enlarged spleens. In all healthy NM-Rs, the
spleen is a major site of adult haematopoiesis under normal physiological
conditions. However, myeloid-to-lymphoid cell ratio is increased and splenic
marginal zone showed markedly altered morphology when compared to
other rodents. Healthy NM-Rs with enlarged spleens showed potentially
better anti-microbial profiles and were much more likely to have a high
rank within the colony. We propose that the anatomical plasticity of the
spleen might be regulated by social interaction and gives immunological
advantage to increase the lifespan of higher-ranked animals.
1. Introduction
Disease susceptibility is regulated by multiple factors including environmental
stress and genetic factors. The immune system plays a critical role in protecting
animals from infections and cancer. Optimal immune function is associated
with healthy ageing [1,2]. In cases of pathogenic insult, the immune system
protects the organism by engaging both innate and adaptive immune responses
via either myeloid cells (granulocytes, macrophages and monocytes) and
natural killer (NK) cells or lymphocytes and dendritic cells, respectively. Dereg-
ulation of the immune system is a critical factor in cancer and ageing as immune
function declines with age [2].

Naked mole-rats (NM-Rs; Heterocephalus glaber) show an extraordinarily
long lifespan for their small size (greater than 30 years) [3,4] and display a
low cancer incidence [5–7]. Many features of NM-R physiology and habitat
might contribute to the low cancer incidence, such as unique metabolic
adaptations and hypoxia tolerance [8–10]. Recently, it has been shown that
transformed NM-R cells can form tumours in mice [11], suggesting that non-
cell autonomous mechanisms might eliminate tumorigenic cells before their
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spread in NM-Rs. Thus, the NM-R shows promise as an
animal model to study the role of the immune system in
cancer and ageing. NM-Rs are eusocial mammals that live
in large colonies (on average 40–70 individuals), dominated
by the queen, who is normally the only breeding female
[12–14]. In our laboratory, we have kept NM-R breeding colo-
nies for more than 10 years. Over the last 4 years we have
been monitoring the health status and mortality of our
NM-Rs, which rarely die in captivity. Indeed, we observed
only one major cause of death, which was following fights
with rivals during attempts to replace the breeding queen.
Often, injured animals have unhealed infected wounds and
have to be euthanized. In vivo experiments have shown that
NM-Rs did not survive viral infections due to coronavirus
or herpes simplex virus [15,16]. Single-cell-RNA sequencing
analysis of the spleen and the peripheral blood of young
adults showed that NM-Rs have a high myeloid to lymphoid
cell ratio, but appear to lack classic NK cells [17]. These obser-
vations suggest that the NM-R immune system may differ
significantly from that of conventional laboratory rodents.

In adulthood, secondary lymphoid organs like the spleen
and lymph nodes participate in immune homeostasis. In
humans and rodents, extramedullary haematopoiesis takes
place in the spleen to support adult bonemarrow haematopoi-
esis under stress conditions [18,19]. In addition, the spleen can
also supply cells that stimulate cancer progression in mouse
tumour models [20,21]. Hence, depending on the context, the
spleen may support haematopoiesis, prevent the growth of
cancer cells or facilitate the development of tumours in mice.
In NM-R little is known about the structure and function of
the spleen in normal physiological and pathological con-
ditions. Here we investigated the role of the spleen in healthy
NM-Rs using molecular profiling and anatomical analysis.

We show that the size of the spleen varies markedly
between healthy NM-Rs, with higher-ranked animals dis-
playing a larger spleen with pro-inflammatory features.
NM-Rs with enlarged spleens did not show immature
myeloid cells in the peripheral blood as observed in injured
NM-Rs with wounds. In all healthy NM-Rs splenic and per-
ipheral blood cell frequency showed an increased myeloid to
lymphoid ratio, low bone marrow cellularity and extramedul-
lary haematopoiesis taking place in the spleen with increased
erythropoiesis, megakaryopoiesis and myelopoiesis, but
reduced B lymphoid lineage compared to mice. B and T lym-
phocytes were found in secondary sites such as the lymph
nodes, gut lymphoid sites and in the thymus, but the latter
showed an unexpectedly reduced size in young adults. Our
data suggest that, unlike other rodent species, the NM-R
spleen is a major site of adult haematopoiesis under normal
physiological conditions. However, the reduction in B lym-
phoid lineage suggests that NM-R immune system relies
mainly on innate immune response with a more restricted
adaptive immune response.
2. Results
2.1. Variable spleen size in NM-Rs
In order to study the structure and function of the NM-R
spleen, we collected data from NM-R spleens over the last
4 years from a group of randomly sampled healthy animals
(n = 34) aged between 1.3 and 5 years old, excluding breeding
males and queens. Surprisingly, we observed that spleen
mass and length varied considerably across healthy NM-Rs
(figure 1a). Spleen size expressed as percentage of body
mass (%BM) in C57BL/6N mice (n = 40, aged between 1
and 5 months) was on average 0.32% versus 0.26% in
NM-Rs (n = 34). However, spleen size was much more vari-
able in NM-Rs with healthy animals displaying very large
or very small spleens (figure 1a). We divided the NM-Rs
into two groups based on spleen size frequency distribution
that showed a dip at around 0.25% of BM (electronic sup-
plementary material, figure S1A). We classified NM-Rs
according to spleen size, in the categories of small spleens
(ssNM-R: %BM≤ 0.26%) and large spleens (lsNM-R: %
BM> 0.26%) (figure 1b). The mean spleen mass was 0.18%
for ssNM-Rs and 0.35% for lsNM-Rs and the latter showed
spleen masses similar to those of mice (figure 1b). Since the
liver and the spleen can both be sites of extramedullary hae-
matopoiesis and could become enlarged during infection or
inflammation in rodents [18,19,22], we also measured liver
mass (expressed as %BM) in the same NM-R cohort. Mean
liver mass was slightly smaller in ssNM-Rs compared to
NM-Rs with large spleens (figure 1c). NM-R livers (combined
ssNM-R and lsNM-R) were significantly smaller compared to
mice (figure 1c), but the liver size-frequency distribution
showed a normal distribution in contrast to the spleen size-
frequency distribution (electronic supplementary material,
figure S1A, S1B). In NM-Rs the spleen size increased with
age, while the liver mass was not affected by age (electronic
supplementary material, figure S1C, S1E). In mice both
organs decreased in size with age (electronic supplementary
material, figure S1D, S1F). The mean age of ssNM-Rs was
29.7 ± 2.3 months versus 36.3 ± 2.9 months for lsNM-Rs
which was not significantly different (unpaired t-test:
p = 0.084). Spleen size was independent of sex in NM-Rs
whereas female mice showed larger spleens compared to
males (electronic supplementary material, figure S1G). Thus,
the dynamics of spleen growth in young adult NM-Rs differed
considerably from that of age-matched mice. Among the 34
NM-Rs, 29 were taken from three distinct colonies (named A,
B andC),mean spleenmasswas not different between colonies
(electronic supplementary material, figure S1H).
2.2. Splenomegaly in lsNM-Rs is not associated with
signs of infection

We next asked whether NM-Rs with enlarged spleens showed
signs of ongoing illness or infection, as is the case for other
rodents. Enlarged spleen (splenomegaly) may result from
extramedullary haematopoiesis in the spleen and liver of
individuals suffering from anaemia, neoplasia or myeloid
hyperplasia in response to an infection or inflammation. Over
a four-year period we collected the spleen and liver from
seven sick NM-Rs. Among them, six animals were wounded
from fighting and three of these animals had macroscopically
infected wounds. These six animals served as positive controls
for infection-associated splenomegaly (cohort named fight or
NM-R fighters). One remaining animal showed signs of sick-
ness, but of unknown cause. The injured NM-Rs that had
engaged in fights showed the largest spleens (mean = 0.69%
of BM) (figure 1d). The spleen size of NM-R fighters was
twice the size of healthy NM-Rs (combined, mean = 0.26% of
BM) or of the lsNM-R (mean = 0.35%) (figure 1b,d), indicating
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Figure 1. Variable spleen size in NM-Rs. (a) Representative images of NM-R small (ssNM-R) and large (lsNM-R) spleens compared to mouse spleens. Scale bar =
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Unpaired t test: p value * < 0.05, ** < 0.01 and **** < 0.0001.
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that splenomegaly does occur in NM-Rs following infection.
There was no indication of enlarged livers in sick NM-Rs
regardless of illness type (figure 1e).

In rodents and humans, increased numbers of immature
myeloid progenitors and monocytes in peripheral blood are
indicators of infection [23,24]. Since little is known about
the blood cells of NM-R, we first examined bone marrow
cells from healthy NM-Rs, the primary site of haematopoiesis
in which haematopoietic stem cells generate all immune cells
including erythroid, myeloid and lymphoid lineages. NM-R
femurs were paler in colour than mouse femurs, suggesting
lower haemoglobin and erythrocyte numbers (figure 2a).
Cytospins of bone marrow cells that were not subjected
to erythrocyte lysis indicated that all cell types of the ery-
throid lineage including mature erythrocytes, reticulocytes,
orthochromatic erythrocytes and erythroblasts are present
in the bone marrow of the NM-R (figure 2b). In addition,
all known haematopoietic cell types found in mouse bone
marrow were also present in the NM-R including myeloid
and lymphoid lineages (figure 2b). Surprisingly, in NM-Rs
the immature neutrophils (also called band neutrophils)
are stab-cell-shaped, similar to those of humans [24], while
characteristic ring-shaped neutrophils of the mouse and rat
were not found (figure 2b). Furthermore, the cell number
was 3 times lower in NM-R femur compared to mouse
femur (7.3 × 106 in NM-R versus 25 × 106 in mouse,
figure 2c). Bone marrow haematopoietic cells differentiate
and are found in the peripheral blood from where they can
be further characterized. We, therefore, analysed 23 NM-R
blood samples from healthy animals (n = 11 from ssNM-Rs
and n = 12 from lsNM-Rs) using an automated blood counter
and mouse blood as reference (electronic supplementary
material, figure S2A–S2E). We found similar total white
blood cell counts in both species (electronic supplementary
material, figure S2A), but the frequency of the various cell
populations was altered with an increased neutrophil/
lymphoid ratio and a higher number of monocytes in the
peripheral blood of NM-Rs (electronic supplementary
material, figure S2B–S2D). The eosinophil count was only
modestly increased (electronic supplementary material,
figure S2E). These blood counts were similar in NM-Rs
with small and large spleens, with ssNM-Rs showing slightly
lower white blood cell counts (electronic supplementary
material, figure S2A). Thus, our data indicate that the bone
marrow of NM-Rs can give rise to all cell types described
in mice and humans, but the distribution of the haematopoie-
tic cells in peripheral blood was more similar to that of
humans with increased circulating myeloid cells at the
expense of circulating lymphocytes.

These data suggested that lsNM-Rs with enlarged spleens
are healthy. To verify this, we examined in detail monocytes
and immature neutrophil populations in the peripheral blood
of animals with infection or inflammation (NM-R fighters)
and compared them to those from lsNM-Rs. Analysis of
May–Grünwald stained blood smears from 19 NM-R healthy
animals (n = 8 ssNM-Rs and n = 11 lsNM-Rs) confirmed
blood counter data (figure 2d–h; electronic supplementary
material, figure S2B–S2E). Interestingly, blood smears from
NM-R fighters (n = 5) showed dramatic increases in the
monocyte population and a reduction in lymphocytes
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compared to all NM-R cohorts (figure 2e,g). In addition, 53%
of the white blood cells were immature neutrophils (band
neutrophils) and 13% were segmented neutrophils (mature
stage) in the peripheral blood of the NM-R fighters, indicat-
ing an active immune response against infection or
inflammation (figure 2i). By contrast, almost exclusively
mature neutrophils (segmented neutrophils: 33 to 41% of
white blood cells versus≤ 1% of immature neutrophils) were
found in healthy NM-Rs (ssNM-R and lsNM-R) (figure 2i).
Our results clearly demonstrate that NM-Rs with apparent
splenomegaly do not show myeloid hyperplasia like injured
NM-Rs.
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2.3. Increased myeloid and reduced lymphoid lineages
in NM-R spleen

The differences in spleen size found in healthy NM-R cohorts
might reflect specific cell type hyperplasia between both
cohorts. To address this, we applied global gene expression
profiling to investigate molecular differences between small
and large NM-R spleens compared to the mouse. We also
compared RNAseq data from mouse spleens with NM-R in
order to reveal whether NM-R and mouse spleen share mol-
ecular signatures. Global comparison of transcriptomes
(including transcripts from 12 946 genes) indicated major
differences between the two species and high similarity
between ssNM-R and lsNM-R (figure 3a). Principal com-
ponent analysis and Venn diagram analysis also showed
clear species differences and only loose clustering of large
and small NM-R spleens (electronic supplementary material,
figure S3A,B). Differential gene expression analyses of the
three groups showed 4869 and 4873 upregulated genes and
4737 and 4713 downregulated genes in ssNM-R and lsNM-
R, respectively, compared to mice (figure 3b,c). In ssNM-R
spleens just 16 genes were differentially upregulated and
41 were downregulated compared to lsNM-R spleens
(figure 3b). Comparing NM-R with mouse spleen the
RNAseq data revealed a dramatic reduction in the expression
of B cell markers (such as Cd19, Cd79a and Cd79b), and of
dendritic cell markers such as Itgax (coding for CD11c), but
there was an increase in the expression of myeloid markers
such as Itgam (coding for CD11b) and a modest increase
in monocytic/macrophage gene expression (Cd14) (electronic
supplementary material, figures S3C and S3D, and table S1).
To infer immune cell type abundance in the spleen from the
bulk RNAseq data digital cytometry using CIBERSORT
analysis was performed [25]. Since no pre-defined signatures
exist for immune cell subsets of NM-Rs, mouse gene
expression signatures for the cell subsets were used [25,26].
The analysis predicted that 53 ± 3% of myeloid cells (31.8 ±
4.6% granulocytes, 10 ± 1% monocytes and 11 ± 4% macro-
phages), 48 ± 3% of lymphoid cells (10 ± 4% B cells, 2 ± 1%
plasma cells, 7 ± 2% activated NK cells and 29 ± 3% T cells)
are present in NM-R spleens regardless of size (figure 3d;
electronic supplementary material, figure S3E). This shift
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toward myeloid cells was highly consistent with recently
published single-cell RNAseq profiling data from the NM-R
[17]. In addition, our functional analysis using gene set
enrichment analysis (GSEA) highlighted a significant under-
representation of gene sets implicated in B cells homeostasis,
regulation and proliferation (electronic supplementary
material, tables S2 and S3). Of note, the percentage of total
T-cells was similar in both species, but in NM-Rs the T-cell
subset distribution differed from that of mice, including the
presence of gamma-delta T-cells and Th1 cells (electronic
supplementary material, figure S3E, left panel). A significant
change in the expression of T cell-associated gene sets by
GSEA was found (electronic supplementary material,
tables S2–S4). Thus, the data suggested that lymphopoiesis
and myelopoiesis are differently regulated in adult NM-Rs
compared to mice, predicting a special role for the spleen in
this species.

2.4. The NM-R spleen has unique structural features
The spleen is composed of two functionally and morphologi-
cally distinct compartments, the white pulp and the red pulp.
The white pulp contains most of the lymphocytes and
initiates the immune responses to blood-born antigens
while the red pulp is a blood filter that removes foreign
material and damaged or senescent erythrocytes, and is a sto-
rage site for iron, erythrocytes and platelets [27]. We
predicted that the loss of 30–40% of splenic lymphocytes
and the 50% increase in myeloid cells would impact the struc-
ture and function of the spleen. Indeed, histological analysis
of NM-R spleens showed a strongly reduced white pulp
volume and an increase in trabeculae abundance that was
independent of spleen size (figure 4a–c). We wondered
whether these structural peculiarities were observed in
other African mole-rat species. We had access to spleens
from two other Bathyergidae species the Natal and Highveld
mole-rats (Cryptomys hottentotus natalensis and Cryptomys hot-
tentotus pretoriae) [28,29] that are related to NM-Rs but are not
eusocial mammals (electronic supplementary material, figure
S4A). The structure of the NM-R spleen did not resemble that
of spleens from Natal and Highveld mole-rats, which were
both very similar to the mouse and rat (figure 4a; electronic
supplementary material, figure S4B–D). The increased trabe-
culae density in NM-R spleens was accompanied by a small
increase in the expression of the Col3a1 gene (coding for
Type III collagen) a reticulin fibrin component and by a 5-
fold increase in the RNA level of α-SMA (encoded by Acta2
gene) (figure 4d,e). These two genes may be associated with
the fibrous trabeculae that act as a pump to filter blood.

The white pulp consists of three sub-compartments: the
periarteriolar lymphoid sheath (the T cell zone), the follicles
and the marginal zone [27]. In NM-R spleens the follicles
were very small and reduced in number compared to
mouse spleen (figure 4a–c) and were surrounded by a very
thin marginal zone (figure 4f,g). The marginal zone is
where the blood is filtered from pathogens and is organized
in layers with the marginal zone macrophages, the reticular
fibroblasts and marginal zone B cells all facing the red
pulp. The marginal sinus with its sinus lining endothelial
cells and an inner ring of marginal zone metallophilic macro-
phages separate the marginal zone from the periarteriolar
lymphoid sheath and follicles (figure 4j ) [30]. Iron staining
labelled red pulp macrophages in mice that are localized to
the red pulp (figure 4h). In NM-Rs iron-stained macrophages
were foundnot only in the red pulp but also close to the follicles
(figure 4i), suggesting a microarchitectural change of the
marginal zone. These anatomical changes were reflected in
our RNAseq data that showed decreased Marco expression
(10-fold compared to mouse), a marker of marginal zone
macrophages (figure 4k), suggesting reduced abundance or
loss of marginal zone macrophages. By contrast, there was a
3-fold increase in the expression ofmarginal zonemetallophilic
macrophage and sinus lining markers (Siglec1 and Madcam1,
respectively) compared to mice (figure 4l and m). The
expression of marginal zone B cell receptors (S1pr1, S1pr3,
Cxcr5) involved inmarginal zoneB cellmigration to the follicles
were also decreased probably due to the reduced abundance of
marginal zone B-cells (figure 4n and o). Taken together, the low
number of marginal zone B cells and marginal zone macro-
phages could explain the altered morphology of the NM-R
marginal zone. This microarchitectural change of the marginal
zone might contribute to impaired adaptive immunity, in par-
ticular the proper binding and clearance of blood-borne
pathogens. In addition, we found that enlarged spleens
of lsNM-Rs did not show signs of pathology associated
splenomegaly (figure 4c).
2.5. Increased splenic granulocytes at the expense of
the lymphoid compartment

The formation andmaintenance of follicles in lymphoid tissues
such as the spleen are regulated by chemokines and their cog-
nate receptors expressed by stromal cells to generate a
microenvironment necessary for B and T cell homing to the fol-
licles [31]. The expression levels of chemokine genes (Cxcl13
and Ccl19) and their respective receptors (Cxcr5 and Ccr7)
were decreased in NM-R spleen compared to mice (figure 4o,
electronic supplementary material, table S1). Using the T cell
marker CD3e we could show that in NM-Rs T-cells were
mainly present in the red pulp, but in much smaller numbers
than in mice (figure 5a,b). In both species, western blot analysis
showed higher expression of CD3e in thymus (site of
T lymphopoiesis) compared to spleen, while no expression
was found in the liver, a non-immunological organ (figure 5e
and electronic supplementary material, figure S10A). Further-
more, CD3e expression was lower in NM-R spleens
regardless of their size compared to mouse (figure 5f and elec-
tronic supplementarymaterial, figure S10B). Unfortunately, we
could not confirm the decrease in B cells inNM-R spleens using
immunostaining because of the lack of NM-R specific reagents,
but H&E staining rarely showed the presence of follicles and
germinal centres, both structures harbouring B cells. These
data suggest that splenic adaptive immune responses may
rely mainly on T cells in the NM-R.

Our transcriptomic analysis also predicted increased
myeloidpopulations inparticularof granulocytes inNM-Rcom-
pared tomouse (31.8 ± 4.6% versus 1.8 ± 0.5% total granulocytes
including 29.2 ± 4.6% versus 1.4 ± 0.4% neutrophils, and 2.3 ±
1.3% versus 0.4 ± 0.3% eosinophils in NM-R (n= 6) versus
mouse (n = 3), respectively) (figure 3d). This was supported
by immunohistochemistry and western blot analyses using an
antibody directed against myeloperoxidase (MPO) a marker of
pre-and mature granulocytes. We also found higher protein
levels of MPO in the splenic red pulp of NM-Rs compared to
mice (figure 5c,d,g and electronic supplementary material,
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figure S10C). The expression levels ofMpoand3othermarkers of
granulocytes, Ltf (granules of neutrophil granulocytes), Mmp9
and Cebpe (major transcription factor of neutrophil lineage)
were increased in NM-R spleens, demonstrating that NM-Rs
have more splenic granulocytes than mice independent of size
(figure 5h). Of note, the RNA level of the common marker of
myeloid cells, Itgam (coding for CD11b) was also increased
(figure 5i). In summary, our data suggest that NM-Rs have
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Figure 5. The granulocyte population is increased in NM-R spleen. (a,b) Immunostaining of the splenic T-cells with CD3e antibody and of the splenic granulocytes
with myeloperoxidase (MPO) antibody (c,d) in NM-R and mouse. (e) Protein expression of CD3e in various tissues of NM-R and mouse: Sp: spleen, Th: thymus,
Li: liver. ( f ) CD3e (T-cells marker) protein expression in three spleens of mice, lsNM-Rs and ssNM-Rs. (g) MPO (granulocyte marker) protein expression in three
spleens of mice, lsNM-Rs and ssNM-Rs. (h) Increase in normalized RNA expression levels of granulocyte markers (Mpo, Ltf, Mmp9 and Cebpe) and (i) myeloid marker
(Itgam) in NM-R spleens in comparison to mouse spleens. β-actin expression was used as loading control in (e,f,g). F: follicles, PALS: periarteriolar lymphoid sheath,
RP: red pulp. Data in (h) and (i) are based on RNAseq and bars represent mean ± s.e.m. One-way ANOVA with Tukey’s post hoc test for multiple comparisons:
p value * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001. Scale bars = 50 µm.

Figure 4. (Continued.) NM-R spleen shows a reduced white pulp compartment and a thin marginal zone. (a–c) H&E staining of the spleen of ssNM-R (b) and lsNM-
R (c) in comparison to mouse (a). Note the increase in red pulp/white pulp ratio with reduced number and size of follicles (F) and increased number of trabeculae (T,
arrow) in NM-R spleens. (d–e) Increase in normalized RNA expression levels of Col3a1 (d ) and of Acta2 (e) in NM-R spleens compared to mouse. ( f–g) H&E staining
of mouse ( f ) and NM-R (g) spleen showing the presence of follicles (F) with a thinner marginal zone (MZ) in NM-R compared to mouse. (h–i) Iron staining of
mouse (h) and NM-R (i) spleen showing stained macrophages (blue iron staining, arrowhead) close to the follicle in NM-R but not in mouse marginal zone. MZ:
marginal zone (black or white line), RP: red pulp, marginal sinus (arrow in f–h). ( j ) Schematic representation of the mouse marginal zone and its cell types with
their expression markers. (k–o) Normalized RNA expression levels of Marco (MZ macrophage marker) (k), of Siglec1 (MZ metallophilic macrophage marker) (l ), of
Madcam1 (sinus lining cells marker) (m), of markers of MZ B cells (S1pr1, S1pr3) (n) and of chemokine-chemokine receptors involved in the lymphocytes migration
into the white pulp (Cxcl13, Cxcr5 and Ccr7) (o). One-way ANOVA with Tukey’s post hoc test for multiple comparisons: p value *<0.05, **<0.01 and ****<0.0001.
Data is based on RNAseq and bars represent mean ± s.e.m. Scale bar = 100 µm (a–c) and 20 µm ( f–i).
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enhanced antimicrobial innate immunity, but their adaptive
immunity might be less efficient compared to mice.
2.6. Lymphocytes locate to peripheral blood and
lymphoid tissues in NM-Rs

Gene expression profiling and histological analysis consistently
showed that NM-Rs have almost 50% fewer splenic resident
lymphocytes compared to other rodents. This unique
immunological feature might have major consequences for
adaptive immunity unless compensatory lymphopoiesis
occurs in the bone marrow or other secondary lymphoid
organs. Lymphocytes were found in bone marrow cytospins
and in peripheral blood, but at much lower frequencies than in
mice (figure 2). By contrast to other bone marrow haematopoie-
tic progenitors that undergo several differentiation stages before
egression andmaturation, T-lymphocyte progenitors migrate to
the thymus to differentiate into naive T-cells that can migrate to
the blood and secondary lymphoid organs. Intriguingly, in
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young adultNM-Rs the thoracic thymuswas often embedded in
brown adipose tissue (electronic supplementarymaterial, figure
S5A and S5B bottom) and the thoracic thymus/bodymass ratio
was considerably lower in NM-Rs compared to young C57BL/
6Nmice that do not yet show thymus involution (electronic sup-
plementary material, figure S5B top). Histology of the thoracic
thymus revealed a clear cortex and medulla (electronic sup-
plementary material, figure S5C) in which the naive T
lymphocyte marker CD3e was highly expressed in both mice
and NM-Rs (electronic supplementary material, figure S5D).
The NM-R thoracic thymus contains CD3e+ T cells, but its
small sizepromptedus to search forother sites of lymphopoiesis.

Lymphocytes (T and B cells) are also found in lymph
nodes. We next analysed NM-R axillary lymph nodes that
are 2–4 millimetres in length, similar to those of mice (elec-
tronic supplementary material, figure S6A top panel).
Lymph nodes are structurally organized in B and T cell
areas, a process regulated by cytokine signalling (electronic
supplementary material, figure S6A, bottom panel). Histo-
logically, B cell and T cell areas were easily identified in
axillary and mesenteric lymph nodes of NM-Rs and B cell
areas possessed germinal centres (electronic supplementary
material, figure S6B). T cell areas showed high expression
of CD3e (electronic supplementary material, figure S6C).

Since half of the lymphocytes are located in the mucosa-
associated lymphoid tissue in mice, we next focused on
lymphoid nodules of the small intestine including among
others Peyer’s patches [32]. Peyer’s patches are visible to
the naked eye in mouse small intestine but were rarely
apparent in NM-R gut (electronic supplementary material,
figure S6D,E). In addition, the small intestine of NM-Rs
was only a third of the length of that in the mouse, however,
the length of the colon was similar (electronic supplemen-
tary material, figure S6D,F–G). Histological analysis of the
NM-R small intestine showed lymphoid nodules with a
morphology atypical for Peyer’s patches, but these follicles
displayed B cell areas with germinal centres containing apop-
totic cells and T cell areas expressing CD3e in both NM-Rs
and mice (electronic supplementary material, figure S6H,I).
In general, we found that NM-Rs and mice have similar
lymph nodes with well-structured B and T cell areas, but
unlike in mice, the NM-R small intestine did not appear
to have typical Peyer’s patches, even in injured animals
(electronic supplementary material, figure S6E).
2.7. Increased extramedullary erythropoiesis is likely not
a cause of splenomegaly

The unique structural features of the NM-R spleen could not
account for the hyperplasic phenotype of the spleen found in
the lsNM-R cohort. In mice, splenomegaly can be observed
under erythropoietic stress such as hypoxia [33,34]. Since
hypoxia is a normal environmental condition for NM-Rs
we hypothesized that extramedullary erythropoiesis might
occur naturally in NM-R spleen, but more actively in lsNM-
R spleens. RNAseq analysis and GSEA highlighted a signifi-
cant enrichment in erythroid gene subsets (electronic
supplementary material, figure S7A, S7B), including markers
of early erythroid progenitors such as Tal1 (erythroid differ-
entiation factor), Tfrc (coding for CD71), Hoxa9 (a marker of
pro-erythroblast and basophilic erythroblast) and markers
of erythroid precursor proliferation or survival such as
EpoR (the Epo receptor), Gata1 and Bcl2l1 (coding for Bcl-
XL) [35–38] (figure 6a). Thus, early erythroid progenitors
appeared more abundant in NM-R spleen compared to
mice, regardless of spleen size. Histological analysis revealed
erythroid cells in mouse and NM-R spleens often organized
in erythroid blood islands (figure 6b). Immature erythrocytes
(enucleated red blood cells also called orthochromatic eryth-
roblasts, see the schematic representation of the erythroid
lineage in figure 6c, top panel) were present in the peripheral
blood of NM-Rs (figure 6c, bottom panel), but not in healthy
mice. In addition, mature erythrocytes (RBC) were larger in
NM-Rs as indicated by a higher mean corpuscular volume
(MCV), but contained less haemoglobin (HGB) and were
less abundant in peripheral blood compared to mice
(figure 6d ). However, the haematocrit (HCT) was not differ-
ent between mouse and NM-R (figure 6d ). Altogether our
results showed that extramedullary erythropoiesis occurs in
the spleen of both ssNM-Rs and lsNM-Rs, but cannot account
for splenomegaly in lsNM-Rs.

2.8. Iron homeostasis is not a cause of splenomegaly
in lsNM-R

Thus, NM-Rs probably adapted erythropoiesis to their
unusual environmental conditions. The expression levels of
several known hypoxia-induced genes (EpoR, Tfrc, Tfr2,
Furin) were increased compared to the mouse (figure 6a;
electronic supplementary material, figure S7A and table S1),
but GSEA analysis did not highlight significant changes in
hypoxia-regulated gene subsets (electronic supplementary
material, tables S2 and S3). In humans and mice erythropoi-
esis is not only regulated by oxygen availability, but also
depends on intracellular iron levels. Indeed, genetic defects
in iron or haemoglobin metabolism can lead to splenomegaly
in mice [39,40]. Iron staining was found as expected in red
pulp macrophages, cells responsible for efficient phagocytosis
of red blood cells and storage of iron [41]. The overall iron
accumulation was similar in NM-R spleens independent of
their size compared to mouse (figure 6e). Intriguingly, we
found that the overall GSEA red pulp macrophage gene
subset was significantly increased in NM-R compared to
the mouse (electronic supplementary material, figure S7C,
and table S4), but RNA levels of SpiC, Adgre1 (coding for
F4/80) and Cd68, classical phenotypic markers of mouse
red pulp macrophages [42], were strongly decreased in both
small and large NM-R spleens (electronic supplementary
material, figure S7D). Lastly, our GSEA analyses showed no
significant changes in gene subsets implicated in iron and
haem homeostasis (figure 6f; electronic supplementary
material, tables S1–S3). As a consequence, our data suggest
that naturally occurring splenomegaly was not due to
defective iron homeostasis.

2.9. Extramedullary megakaryopoiesis does not account
for splenomegaly

The erythroid lineage shares a common progenitor with
megakaryocytes, the so-called megakaryocyte-erythroid
progenitors (MEP) which give rise to erythroid and megakar-
yocyte lineages in bone marrow (electronic supplementary
material, figure S8A). We hypothesized that extramedullary
megakaryopoiesis might also occur in the NM-R spleen.



mouse lsNM-R

mou
se

ssN
M

-R
 

lsN
M

-R
0

2000

4000

6000

8000

10000

no
rm

al
iz

ed
 e

xp
re

ss
io

n 

EpoR

****
****

mou
se

ssN
M

-R
 

lsN
M

-R
0

1000

2000

3000

4000

Bcl2l1

**
**

mou
se

ssN
M

-R
 

lsN
M

-R
0

2000

4000

6000

8000

Gata1

***
***

mou
se

ssN
M

-R
 

lsN
M

-R
0

100

200

300

400

Hoxa9

*
*

mou
se

ssN
M

-R
 

lsN
M

-R
0

5000

10000

15000

20000

25 000

no
rm

al
iz

ed
 e

xp
re

ss
io

n 

Tal1

**
**

mou
se

ssN
M

-R
 

lsN
M

-R
0

10000

20000

30000

40000

Tfrc

*
*

mouse ssNM-R lsNM-R

F

F

F

F

F

RP

RP

F

RP
RP

*

F

*

*

*

proerythroblast

basophilic
erythroblast

polychromatic
erythroblast

orthochromatic
erythroblast

reticulocyte

erythrocyte

Cd163

Hmox1

Hmox2

Ppox

Fech

Cpox

Hp

Hpx

haem homeostasis genesiron homeostasis genes

Epas1
Hif3a
Slc40a1
Tfrc
Tfr2
Aco1
Furin
Hif1a
Slc11a1
Prf1
Hfe
Mon1a
Fth1
Bmp6

ex
pr

es
si

on

−1

−2

2

0

1

lsNM-R
ssNM-R

MM

mou
se

ssN
M

-R
 

lsN
M

-R
0

5

10

RBC
***

***

mou
se

ssN
M

-R
 

lsN
M

-R
0

40

50

60

70

M
C

V
 (

fl
)

MCV

****
****

mou
se

ssN
M

-R
 

lsN
M

-R
0

20

40

60

(%
)

HCT

mou
se

ssN
M

-R
 

lsN
M

-R
0

5

10

15

20

g/
dl

HGB
**

*

(a)

(c)

(f)

(e)

(d)

(b)

1
06 /

l

Figure 6. Extramedullary erythropoiesis and iron homeostasis do not explain the hyperplasic spleen of lsNM-Rs. (a) Normalized RNA expression levels of
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RNAseq analysis indicated that expression of many mega-
karyocyte and platelet genes are upregulated in NM-Rs
compared to mice independent of spleen size (electronic
supplementary material, figure S8B). Megakaryocyte differ-
entiation occurs in several steps from MEP to activated
megakaryocytes that release platelets into the peripheral
blood [43] (electronic supplementary material, figure S8A).
The RNA levels of marker genes of MEP and early megakar-
yocytes (Cd34, Gfi1b, Fli1, Itga2b), terminal differentiation
genes (Nfe2, Tubb1) and platelets (Gp1bb, Itgb3, Cd63) were
all elevated in NM-R spleens compared to that of mice (elec-
tronic supplementary material, figure S8B). Histological
analysis also showed a significant increase in the number of
megakaryocytes per unit area in lsNM-Rs compared to the
rat spleen and a slight increase in megakaryocyte number
in NM-R (combined) compared to those of the mouse and
rat (electronic supplementary material, figure S8C,D).
Surprisingly, blood counts indicated that platelets were less
abundant in the peripheral blood of all NM-R cohorts
compared to mice (electronic supplementary material, figure
S8E), but NM-R platelet size was larger as shown by mean
platelet volume (electronic supplementary material, figure
S8F). Blood smear analysis showed the presence of immature
and mature platelets in NM-R peripheral blood, whereas only
mature platelets were observed in mice (electronic supplemen-
tary material, figure S8G). Intriguingly, the expression levels of
regulatory genes of megakaryocyte terminal differentiation
(Ccl5, Il1a and Igf1) were reduced compared to the mouse
(electronic supplementary material, figure S8H). Taken
together our data suggest that megakaryocytic differentiation
occurs efficiently in NM-Rs, but the terminal differentia-
tion step(s) might be regulated differently. The presence of
immature platelets in peripheral blood of NM-Rs might
reflect a thrombocytopenia-like phenotype as observed in
thrombocytopenia or inherited diseases in humans [44].
2.10. Hyperplasic spleens are associated with higher
rank

We detected a small set of differentially expressed genes
between NM-Rs with large and small spleens (41 upregu-
lated genes and 16 downregulated) (figure 3b; electronic
supplementary material, figure S9). Prediction of immune
cell distribution using CIBERSORT analysis showed a specific
difference in the apparent incidence of the M0 macrophage
subtype (2.8 ± 1.5% in ssNM-R versus 10.4 ± 3.4% in
lsNM-R) (figure 7a). Furthermore, GSEA highlighted signi-
ficant increases in hallmark gene subsets such as
inflammatory response, granulocytes, naive T- and B-cell
pathways, and the Ltf-high-neutrophil subset in lsNM-R
compared to ssNM-R (figure 7b,c). These findings suggested
that NM-Rs with larger spleens are better equipped for
defence against pathogens. Indeed, larger spleen size might
confer a survival advantage for NM-Rs. NM-Rs are eusocial
mammals with a structural hierarchy with the queen and
her consorts occupying the highest rank [12]. We modified
a ranking index of animals in a colony with the highest
ranking set to 1 for the queen and the lowest to 0 for sub-
ordinate [13,45]. The ranking index of 24 healthy NM-Rs
(12 ssNM-R, 12 lsNM-R) used in this study had been deter-
mined (figure 7d ). Strikingly, most of the animals (75%)
with a small spleen were found to have the lowest rank
(figure 7d ). By contrast, many more of the animals with
large spleens belonged to the higher ranks (figure 7d ). We
found a significant positive correlation between ranking
index and spleen mass (%BM) when combining all healthy
cohorts (ssNM-R, lsNM-R) (figure 7e). By contrast, the liver
mass (%BM) was poorly correlated with the ranking index
in the combined healthy cohort (figure 7f ). There was a sig-
nificant correlation between rank and BM (figure 7g), but
the age of the animals was a poor predictor of ranking
or BM (figure 7h,i). Our data identify rank as being predic-
tive of spleen size in healthy animals with large spleens
probably conferring an immunological advantage over
lower-ranked animals.
3. Discussion
An enlarged spleen may indicate that the immune system is
reacting to infection or inflammation in rodents [18,19]. In
our survey of the immune system of NM-Rs we found an unu-
sual variation in spleen size in apparently healthy individuals.
Healthy animals with enlarged spleens showed similar white
blood cell composition and splenic structural features to ani-
mals with small spleens. By contrast, NM-Rs suffering from
wound infection displayed enlarged spleens with accompany-
ing signs of immune activation like increased blood
monocytes and increased numbers of immature neutrophils
(figure 2g,i). Interestingly, the spleens of injured animals
were on average larger than those of lsNM-Rs, but this was
not statistically different (figure 1d ). We could show that in
healthy animals both small and enlarged spleens were associ-
ated with enhanced erythropoiesis, megakaryopoiesis and
myeloid hyperplasia when compared with mice (figures 5
and 6; electronic supplementarymaterial, figure S8). However,
we detected significant molecular differences between small
and enlarged spleens of healthy NM-Rs, with large spleens
harbouring larger numbers of an LPS-responsive granulocyte
population (also called Ltf-high-neutrophil), recently
described in NM-Rs [17]. Intriguingly, the molecular profile
of larger spleens suggested a pre-activated state that might
prepare the animal to better fight infection. One unique feature
of NM-R colonies is that they display a hierarchical structure,
with the highest-ranked members most likely to be or become
breeders [12]. Indeed, it has also been shown that higher-
ranked NM-Rs such as breeders show longer lifespans com-
pared to lower-ranked individuals [4] as well as better
survival rates following viral infection compared to non-bree-
ders [15]. Furthermore, higher-ranked individuals are often
tasked with colony defence, hence these individuals have a
higher risk of coming into contact with intruders which may
carry pathogens [12]. Body mass is positively correlated with
rank in NM-Rs [13,45], and here we extend this finding by
showing that spleen size also positively correlates with the
rank of animals. Interestingly, the size of other organs like
the liver showed no correlation with the animal’s rank.
We propose that NM-Rs with enlarged spleens may have a
survival advantage over lower-ranked animals. The immuno-
logical repertoire of animals with large spleens may help them
to better fight infection, or could even confer cancer resistance.
Thus, we have shown a remarkable plasticity in the immune
system of NM-Rs that may be regulated through social inter-
action. When members of the colony get sick, social
distancing, as practised by some species [46], may not be
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Figure 7. Hyperplasic spleens in lsNM-R are associated with higher rank. (a) Relative fraction of immune cells predicted by CIBERSORT in ssNM-R and lsNM-R
spleens (n = 3 per cohort). NK: natural killer cell. (b) Heatmap representation of leading edge inflammatory response genes for ssNM-R and lsNM-R spleens ident-
ified by hallmark GSEA analysis. (c) GSEA of transcriptomic data from ssNM-R and lsNM-R spleens (n = 3 per cohort). NES, normalized enrichment score; pval, p
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feasible. Thus, tuning of immune competence in higher-
ranked NM-Rs may be a novel strategy in the animal kingdom
to deal with the challenge of infection in a tightly knit colony.
The factors that drive spleen plasticity remain to be deter-
mined. Social hierarchies have been previously shown to
influence the immune cell repertoire and functions in rhesus
macaques and humans [47,48]. Interestingly, proinflammatory
and antibacterial phenotypes were shown in low-status indi-
viduals and antiviral phenotype in high-status individuals.
Our findings suggest that social status might alter the
immune system differently in NM-Rs compared to macaque
and humans. It might be argued that stress hormones like glu-
cocorticoidmay be higher in lower-ranked individuals a factor
known to be immunosuppressive. However, the available lit-
erature suggests that the levels of such hormones are not
higher in lower-ranked individuals, but are actually boosted
in individuals isolated from the colony [49].

We also compared the anatomical and molecular proper-
ties of the NM-R spleen to those of other rodents including
mice, rats and two other social members of the Bathyergidae
family to which NM-Rs belong [29]. Our analysis showed
that among these rodents only the NM-R spleen display a
dramatic decrease in white pulp/red pulp ratio [17,50] and
a unique microarchitecture of the marginal zone (reduced
marginal zone B cells and marginal zone macrophage popu-
lations) which might indicate that the clearance of blood-
borne pathogens may be altered compared to other species.
This phenotype might partially explain why NM-Rs readily
succumb to herpes or coronavirus virus infections [15,16].
We also show that lymphopoiesis in NM-Rs is maintained
since lymphocytes were found in peripheral blood, lymph
nodes, mucosa-associated lymphoid tissues in the gut and
the thymus, which all expressed CD3+ T cells. The thoracic
thymus of NM-Rs was much smaller than those of mice at
different ages. Cervical thymus could contribute to T cell
maturation as observed in NM-Rs and other mammals
[16,51,52]. It is well known that intrinsic and extrinsic factors
such as cytokines and chemokines are involved in T and B
cell migration and homing [31,53]. Our present data show
that RNA levels of such factors (S1pr1, S1pr3, Cxcl13, Cxcr5,
Ccr7, Lta, Nkx2-3 and Ctsb) were reduced in NM-R spleens
(electronic supplementary material, table S1). The mechan-
isms of tissue homing specificity observed in NM-R and the
factors involved in this process remain to be determined.

We did not find reports describing viral or bacterial infec-
tions of NM-Rs in the wild [54–57], unlike their close relatives
of the genus Cryptomys and Bathyergus that harbour Bartonella
[58]. However, in captivity NM-Rs have been reported to be
susceptible to coronavirus infection [15] and in our own lab-
oratory we lost more than 55% of colony members (in colony
1: 20 out of 35 NM-Rs and in colony 2: 5 out of 8 NM-Rs)
within a few months because of an unknown viral infection.
Interestingly, in both laboratories after these mass die-off
events almost all queens survived. The relative susceptibility
of NM-Rs to viral infection may be due to a narrower
immune cell spectrum available to eliminate pathogens
with reductions in B cell lineages, dendritic cells, marginal
zone macrophages and canonical NK [17] (and our present
work). This is in contrast to observations of viral tolerance
in some long-lived bat species [59]. However, we found an
increase in gamma-Delta T cells (electronic supplementary
material, figure S3E), a special T lymphocyte subset known
to be at the border between evolutionary primitive innate
system and the adaptive immune system and involved in
the ‘first line of immune defence’ against viruses, bacteria
and fungi [60,61]. The presence of more neutrophils and a
LPS-responsive granulocyte population also support the
idea of enhanced antibacterial defences in NM-Rs. Intrigu-
ingly, in injured NM-Rs despite increased numbers of
immature neutrophils in peripheral blood indicating emer-
gency myelopoiesis in response to injury [23], the animals
did not recover, some even developed abscesses, suggesting
increased vulnerability to secondary infection.

We also show that adult haematopoiesis takes place inNM-
R spleen in addition to adult bone marrow haematopoiesis
under normal physiological conditions, and regardless of
spleen size. In rodents, extramedullary erythropoiesis is
observed in response to hypoxia [33,62]. Thus, the active hae-
matopoiesis in the spleen might reflect an adaptation of the
NM-R to compensate for hypoxic environments. Surprisingly,
despite the increase in splenic megakaryopoiesis a thrombocy-
topenia-like phenotype is observed in the peripheral blood of
NM-Rs with low platelet counts and the presence of immature
platelets. This could also be due to the hypoxic habitat of
NM-Rs since inmice hypoxia induces thrombocytopaenia [63].

Interestingly, the NM-R immune system displays more
similarities to humans than to that of other rodents with a
larger myeloid compartment in peripheral blood and spleen,
and insignificant splenic lymphopoiesis. Indeed, NM-R imma-
ture (stab-shapedneutrophils) andmature neutrophils found in
bone marrow and in peripheral blood resemble those of
humans [64]. Food, body size and physiology are factors
known to influence spleen development [65]. We also found
that thoracic thymus development was quite distinct in the
NM-R compared to mouse. Hormonal and endocrine status
can influence the development of the immune system [66]
and it should be noted in this context that all NM-Rs used in
this study were non-breeders and, therefore, reproductively
suppressed [45]. We, like others have found low RNA levels
of NK markers (Ncr1, Nkg7 and Gzma). Furthermore, Adgre1
expression (coding for F4/80), a known rapidly evolving
gene in monocytic/macrophage lineages [67] and a marker of
liver resident-macrophages and red pulp macrophages in
mice, was almost absent in the spleen and liver of NM-Rs (elec-
tronic supplementary material, figure S7D and data not
shown). This suggested that evolutionary pressure selected
against the expression of such genes in the NM-R. Indeed,
differences in phenotypic marker expression of immune cells
between NM-R and mice should be treated with caution.
Bone marrow macrophages of NM-R express the NK1.1 recep-
tor of NK cells and are activated by NK1-1 antibodies in vitro
[68]. We found low RNA levels of mouse classical red
pulp macrophage markers (F4/80, SpiC, Cd68) (electronic
supplementary material, figure S7D); however, GSEA and
histological analyses showed that macrophages are present in
the red pulp and they store iron (figures 4i and 6e; electronic
supplementary material, table S4). Whether these macro-
phages resemble mouse red pulp macrophages remains to
be determined. Interestingly, development and survival
factors characteristic of the murine red pulp macrophages
(Irf8, Irf4, Bach1) [42] were inversely expressed in NM-Rs
compared to mice (electronic supplementary material,
figure S7D and table S1). Unfortunately, we could not validate
our data obtained on B cells, dendrite cells and macrophages
due to a lack of specific reagents recognizing these immune
cells in the NM-R.
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Age-related changes of the immune system in humans
and mice are thought to be caused by reduced thymus
activity and chronic low-grade inflammation caused by
increased activity of the innate immune system [69]. Interest-
ingly, the composition of the NM-R spleen in healthy young
animals is reminiscent of that of aged mice, including
reduced abundance of marginal zone macrophages [70]. It
remains to be seen whether the NM-R immune system is
better equipped to prevent oncogenic events. Our obser-
vations of molecular and anatomical plasticity of the spleen
in healthy higher-ranked animals raise the intriguing possi-
bility that social success in this species may recruit the
immune system to promote longevity.

4. Material and methods
4.1. Animals
Thirty-four healthy non-reproductive naked mole-rats (aged
between 1.3 and 5 years; 18 males and 16 females) and 7 sick
NM-Rs (aged between 1.7 and 7 years) were housed at the
Max-Delbrück Center (MDC) in Berlin, Germany, in cages
connected by tunnels, which were contained within
a humidified incubator (50–60% humidity, 28–30°C), and
heated cables ran under at least one cage per colony to allow
for behavioural thermoregulation. Food (sweet potato,
banana, apple, and carrot) was available ad libitum [71].
NM-Rs were sacrificed by decapitation.

Adult non-reproductive Natal mole-rats (Cryptomys
hottentotus natalensis) and Highveld mole-rats (Cryptomys
hottentotus pretoriae) were housed at the Department of Zool-
ogy and Entomology, University of Pretoria, South Africa in
temperature-controlled rooms set at 25°C and a photoperiod
of 12 h light–dark cycle. The humidity in the rooms was
around 40–50%. mole-rats were fed on chopped vegetables
and fruit daily and cleaned weekly with fresh wood shavings
and paper towelling. All animals were humanly euthanized
by decapitation under EC014-17.

Forty mice (aged between 4 weeks and 5 months, males
and females) and 7 Sprague-Dawley rats (aged between 3
and 4.5 months, males and females) were fed ad libitum
with standard diet and water on a 12 h light–dark cycle at
22°C ± 2°C under 55% ± 10% humidity. Mice and rats were
housed in a pathogen-free facility at the MDC, Berlin,
Germany. All procedures and animals experiments were con-
ducted in compliance with protocols approved by the
institutional Animal Care and Use Committee Landesamt
für Gesundheit und Soziales Berlin (LAGeSo). Mice were
sacrificed by cervical dislocation. Rats were sacrificed by
decapitation with prior isoflurane anaesthesia. All efforts
were made to minimize animal suffering.

4.2. Blood count, blood smear and bone marrow cell
cytospin staining

Blood was collected after decapitation of NM-Rs directly into
EDTA-containing tubes. Blood from mice was drawn via
cardiac puncture and immediately transferred into EDTA-
containing tubes. Blood cell counts were measured with an
automated veterinary haematological counter Scil Vet abc
(SCIL GmbH, Viernheim, Germany) or IDEXX ProCyte Dx
haematology analyser (IDEXX, Germany) with software opti-
mized for mouse blood parameters. May-Grünwald staining
of blood smears was performed according to the manufac-
turer protocol (Sigma, Germany) and the cell type counts of
the white blood cells were determined using a Leica DM
5000 B with a ×100 oil objective. At least 200 white blood
cells were analysed per animal.

For performing cytospin and determining femur
cellularity, bone marrow cells were flushed out from the
femur, mechanically dissociated and counted using a
TC20 automated cell counter (BioRad). For cytospin,
100 000 cells were centrifuged onto slides using a centrifuge
slide stainer (Wescor) and stained manually with May–
Grünwald staining.

4.3. Haematoxylin and eosin, iron staining, and
immunostaining

Spleen, thymus, lymph nodes and small intestine Swiss rolls
were rapidly collected, fixed overnight in 4% paraformalde-
hyde, embedded in paraffin, sectioned at 4 μm, and stained
with haematoxylin & eosin histological stain according to
the standard protocol. The histological detection of ferric
iron in the spleen was performed using an iron staining kit
(Abcam, cat. no. ab 150674).

For immunostaining, sections were deparaffinized and
submitted to antigen retrieval (citrate buffer pH 6) using a
microwave. After 2 washes with TBS-T (TBS with 0.05%
Tween 20), sections were blocked with TBS-T + 5% goat
serum for 30 min at room temperature and then incubated
with rabbit primary antibodies overnight at 4°C. Primary anti-
bodies were diluted in TBS-T + 1% goat serum. Sections were
then washed three times with TBS-T, subsequently incubated
with goat anti-rabbit-HRP (Jackson ImmunoResearch Labs,
cat# 111-035-003, RRID:AB_2313567) for 1 h at room tempera-
ture. The rabbit primary antibodies CD3e (1 : 200, Abcam, cat.
no. ab 5690, RRID:AB_305055) and MPO (1 : 500, Dako/Agi-
lent, cat. no. A0398, RRID:AB_2335676) were used. Dako-
EnVision + System-HRP (Dako, cat. no. K4002) was used for
immunodetection. Haematoxylin counter staining was per-
formed before mounting. All images were acquired using a
Leica DM 5000 B. To quantify the number of splenic megakar-
yocytes, four randomly chosen fields in red pulp were
photographed at 40× magnification for each animal and ana-
lysed using Item 5 software program (v. 5).

4.4. RNA preparation and RNA sequencing
Total RNA was isolated from three biological replicates
per species and per group using RNeasy extraction kit (Pro-
mega). RNA-seq libraries were prepared using the Truseq
Stranded total RNA kit (Illumina) and sequenced on the
Illumina NovaSeq 6000 platform according to the manufac-
turer’s instruction at Macrogen (Macrogen, Korea). Reads
were aligned tomm9 and hetGla2/hetGla Female_1.0, respect-
ively, using STAR aligner v. 2.5.3a. The aligned readswere then
transformed to raw count tables using htseq-count version
0.10.0. The raw and normalized data are deposited at Gene
Expression Omnibus (GEO, accession number GSE179350).

4.5. Transcriptomic analysis
Pre-processed RNA-seq data were imported in R (v. 3.5.1) for
downstream analysis. NM-R genes were annotated to Mus
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musculushomologue-associatedgene namesusing the biomaRt
package (v. 2.38.0) to allow merging of the mouse and NM-R
data sets. Genes were pre-filtered to remove those transcripts
not corresponding to gene symbols or not reaching read sums
higher than 10 across all samples. The DESeq2 package
(v. 1.22.2) served for normalization and differential expression
analysis. Differentially expressed genes were called using a
threshold of an adjusted p-value ( padj) < 0.05 after multiple-
testing correction (Benjamini–Hochberg). For global expression
analysis principal component analysis was done using pcaEx-
plorer (v. 2.8.1) based on the top 3000 variable genes and a
global distance matrix was generated using the Euclidean dis-
tance. Expression of gene sets was visualized using the
pheatmap package (v. 1.0.12), gene wise scaling and Pearson
correlation as distance measure for hierarchical clustering
where applicable. To perform gene set enrichment analysis
the fgsea package (v. 1.8) was used and pre-built, established
gene sets were applied (available on request) or custom gene
sets were generated from published data derived from NM-R
transcriptomes [17,72]. To assess the cellular composition
within the spleensbasedon thebulk transcripomedata,CIBER-
SORT analysis was performed using the web interface as
described by Newman et al. [25]. For this, mouse immune
gene expression signatures were used as presented by
Chen et al. [26].
4.6. Immunoblotting
Tissueswere lysedwith 8Murea andprotein analysed by SDS/
PAGE/protein blotting using rabbit antibody against CD3e
(Abcam, cat. no. ab 5690, RRID:AB_305055), rabbit antibody
against anti-human MPO (Dako/Agilent, cat. no. A0398,
RRID:AB_2335676), mouse β-actin (Sigma-Aldrich, cat. no.
A1978, RRID:AB_476692), horseradish peroxidase-conjugated
secondary antibodies (Jackson ImmunoResearch Labs, cat#
111-035-003, RRID:AB_2313567) and chemiluminescence detec-
tion (Thermo Fischer).

4.7. Hierarchy assessment and ranking index
Methods were as described in [13] and modified from [45]. In
brief, two NM-Rs were allowed to approach each other head
on in an artificial plastic tunnel. During these interactions the
more dominant individual will reliably climb over the subor-
dinate individual. Using a single-elimination strategy, with a
minimum of three trials for each pseudo-randomly selected
pairing of NM-Rs from a single colony, a ranking index (RI)
was calculated for each colony. RI = (number of wins)
divided by (the total number of behavioural trials). RI
values were normalized to the maximum value for each
colony and the following rankings were assigned based on
RI: rank 1, RI > 0.8, rank 2, RI > 0.6, rank 3, RI > 0.4, rank 4,
RI > 0.2, rank 5, RI < 0.2. The queen was assigned a rank of 1.

4.8. Statistical analysis
All data are expressed as mean ± s.e.m. Data were first tested
for normal distribution. For CIBERSORT analysis variation is
reported as ± standard deviation. Statistical tests performed
can be found in the Figure legends. Statistical analyses were
carried out using Prism 8 (GraphPad Prism, RRID:
SCR_002798) unless otherwise stated. p value < 0.05 was con-
sidered to be statistically significant.

Data accessibility. The raw and normalized data are deposited at Gene
Expression Omnibus (GEO, accession no. GSE179350).

The data are provided in electronic supplementary material [73].
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