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Abstract. This manuscript concerns the existence, uniqueness, Ulam’s Hyer (UH) stability, and total control-
lability results for the Hilfer fractional switched impulsive systems in the finite-dimensional spaces. Mainly, this
manuscript can be divided into three parts. In the first part, we examine the existence of a unique solution. In
the second part, we establish the UH stability results, and in the third segment, we study the total controllability
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results.
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1. Introduction

There are many physical phenomena of science and
engineering, for example, control theory, neural net-
works, population dynamics, mechanical systems and
biological systems in which the states of the system
change rapidly at some moments by some external ef-
fects, these changes are called the impulsive effects in
the system. Recently, differential equations with im-
pulsive effects have attracted significant attention be-
cause of huge applications in different areas of engi-
neering and science, for example, networked control
systems, ecology, population dynamics, biotechnology
and so on [1, 2]. In the literature, the impulsive systems
are comprehensively characterized into two classes; the
first is the instantaneous impulsive systems where the
sudden changes occur in the system for a small portion
of time, for example in shocks, natural disasters and
heart pulsate [3, 4, 5]. Second is the non-instantaneous
impulsive systems where the length of such unexpected
changes continues throughout a little timespan. For fur-
ther study on non-instantaneous impulses, one can go
through [6, 7, 8, 9, 10, 11].

The theory of fractional differential equations is

an advanced and more generalized version of dif-
ferential equation theory. Over the most recent
twenty years, fractional calculus has attracted nu-
merous physicists, engineers, mathematicians and no-
table contributions have been made to both applica-
tions and theory of fractional differential equations
[12, 13]. However, the applications of fractional cal-
culus and their outcomes vary as much as the defi-
nitions of fractional derivatives and integrals such as
Riesz-Caputo, Grunwald-Letnikov, Caputo, Riemann-
Liouville, Caputo-Fabrizio, Hadamard, Weyl, Chen,
and so on. For the fundamental study of fractional
systems, one can go through [14, 15, 16] and refer-
ences therein. More recently, Hilfer [17] introduced
a new fractional derivative by including both Caputo
fractional derivative and Riemann-Liouville knows as
Hilfer fractional derivative. This definition made a
significant challenge to its realization but soon it dis-
covered its way into many applications of engineer-
ing and science, for example, mechanical engineering
and thermal science. In the last few years, many au-
thors considered the Hilfer fractional differential equa-
tions and investigated many results such as the exis-
tence of solutions, data dependency and stability results
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[18, 19, 20, 21, 22, 23, 24].
The concept of controllability was given by Kalman

in 1960 and soon became an active area of examina-
tion by various researchers. Many problems of con-
trol theory, for example, stabilizability, optimal control
and pole-assignment problems may be examined un-
der the assumption that the system is controllable. The
concept of controllability denotes the ability to move
the state of the dynamical control system from an ini-
tial state to the desired final state by using a suitable
control function. Recently, the issue of controllabil-
ity for different kinds of dynamical systems of an in-
teger as well as fractional order has been broadly in-
vestigated by numerous researchers, for instance please
see [25, 26, 27, 28, 29, 30, 31, 32] and the references
cited therein. Furthermore, in [33], the author consid-
ered Hilfer fractional differential equations and investi-
gated the controllability results by applying the Mönch
fixed point method, semigroup theory and measures of
noncompactness. In [34], the authors investigated the
controllability results of Hilfer fractional neutral dif-
ferential systems by using the fixed point theorem and
measures of noncompactness. In [35], the authors in-
vestigated the existence and approximate controllabil-
ity results for Hilfer fractional differential equations. In
[36], the authors studied the approximate controllabil-
ity of semilinear Hilfer fractional differential inclusions
with instantaneous impulses by applying the fixed point
method, multivalued analysis and semigroup theory. In
[37], the authors established the controllability results
of Hilfer fractional dynamic inclusions with the nonlo-
cal and non-instantaneous impulsive conditions by ap-
plying the semigroup theory, fixed point method and
multivalued analysis.

On the other side, various systems encountered in
practice involve a coupling between continuous dynam-
ics and discrete events. Dynamic systems in which
these two types of dynamics coincide and cooperate are
generally called hybrid dynamical systems. Switched
systems represent a class of hybrid dynamical systems.
A switched system is a dynamic system consisting of
a family of continuous-time subsystems along with a
switching rule that determines the switching among
subsystems. Mathematically, these subsystems are gen-
erally described by a collection of differential equa-
tions or differences indexed. For instance, the following
phenomena give rise to switching behavior: dynamics
of a vehicle changing unexpectedly because of wheels
bolting and opening on ice; airplane entering, intersec-
tion and leaving an air traffic control area; biological
cells developing and separating; a thermostat turning
the heat on and off; a valve or a power switch open-
ing and closing [38, 39]. In the last few years, con-
trollability results of switched dynamical systems with

and without impulses have been examined by numer-
ous authors, see for example [40, 41, 42] and the ref-
erences cited therein. However, the above mentioned
results cannot be easily extended to the case of Hil-
fer fractional switched dynamical systems with non-
instantaneous impulses.

In practicality, there is no impulse that happens in-
stantaneously rather it is non-instantaneous howsoever
the season of the event is little. For example, in many
biological real problems, the introduction of a drug
or a vaccine in the bloodstream is a gradual process,
since it starts abruptly but remains active for a finite
time interval, then one is forced to consider the drug
or vaccine as a non-instantaneous impulse [6, 10]; in
the model of dam pollution, the main cause of dam pol-
lution is the polluted river enters the dam which takes
some time to reach the middle region of the dam. Since
the introduction of the river water into the dam and
the consequent absorption of the dam water are grad-
ual and continuous processes so that non-instantaneous
impulses take place [22]. Henceforth, it is beneficial
to concentrate on a class of differential equations with
non-instantaneous impulses. Motivated by the above
facts, in this manuscript, we study the existence of a
unique solution and UH type stability analysis of Hil-
fer fractional switched differential equation with the
non-instantaneous impulsive condition of the following
form:

Dϱ,ϑ
ϑ+i

y(t) = Λσ(t)y(t) + Pσ(t) (t, y(t)) , t ∈ (ϑi, ti+1],

i = 0, 1, . . . , ȷ,
y(t) = Gσ(t)(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, (1.1)

I1−ϖ
0+ y(0) = y0, I1−ϖ

ϑi
+ y(ϑ+i ) = Gσ(t)(ϑi, y(t−i ))

and for the controllability results, we consider the fol-
lowing switched impulsive system:

Dϱ,ϑ
ϑ+i

y(t) = Λσ(t)y(t) + Cσ(t)v(t) + Pσ(t) (t, y(t)) ,

t ∈ (ϑi, ti+1], i = 0, 1, . . . , ȷ,
y(t) = Gσ(t)(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, (1.2)

I1−ϖ
0+ y(0) = y0, I1−ϖ

ϑi
+ y(ϑ+i ) = Gσ(t)(ϑi, y(t−i )),

where Dϱ,ϑ
ϑ+i

denotes the left-sided Hilfer fractional
derivative with lower limit at ϑi of the type ϱ ∈ [0, 1]
and order ϑ ∈ (0, 1). ϖ = ϱ+ϑ− ϱϑ. y ∈ Rn is the state
variable, I = [0,T ],T > 0. ϑi and ti satisfy the relation
0 = t0 = ϑ0 < t1 < ϑ1 < t2 < . . . < ϑ ȷ < t ȷ+1 = T ,
y(t+i ) = limh→0+ y(ti + h) and y(t−i ) = limh→0+ y(ti − h)
denote the right and left limit of y(t) at t = ti respec-
tively, Λσ(t) and Cσ(t) are some matrices of order n × n
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and n × m respectively, v ∈ Rm is the control function,
Pσ(t) and Gσ(t) are some given functions.

The switching signal σ : I 7→ {0, 1, . . . , ȷ} is as-
sumed to be known. It only changes its values at
switching times ti. That is to say,

σ(t) = i, ti ≤ t < ti+1, i = 0, 1, . . . , ȷ.

Therefore, by applying the above switching law in
switched systems (1.1) and (1.2), we get the following
systems

Dϱ,ϑ
ϑ+i

y(t) = Λiy(t) + Pi (t, y(t)) , t ∈ (ϑi, ti+1],

i = 0, 1, . . . , ȷ,
y(t) = Gi(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, (1.3)

I1−ϖ
0+ y(0) = y0, I1−ϖ

ϑi
+ y(ϑ+i ) = Gi(ϑi, y(t−i ))

and

Dϱ,ϑ
ϑ+i

y(t) = Λiy(t) + Civ(t) + Pi (t, y(t)) , t ∈ (ϑi, ti+1],

i = 0, 1, . . . , ȷ,
y(t) = Gi(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, (1.4)

I1−ϖ
0+ y(0) = y0, I1−ϖ

ϑi
+ y(ϑ+i ) = Gi(ϑi, y(t−i )),

respectively. From now onwards, we will study the
switched impulsive systems (1.3) and (1.4).

The main contributions can be highlighted as fol-
lows.

• We consider a class of switched Hilfer dynamic
equation with non-instantaneous impulses.

• We investigate the existence of unique solution
and Ulam’s Hyer stability results for the consid-
ered system.

• Also, we studied the controllability results by in-
troducing a new class of control function which
control the system at the final time of the interval
as well as at each of the impulse points, i.e., we
studied the total controllability results.

• We used the fractional calculus, Mittag-Leffler
function and fixed point theorem to study these
results.

• Two simulated examples are given to illustrate
the obtained analytical results.

The rest of the paper is formulated as follows: In
Section 2., we give some basic definitions, notations
and important lemmas. In Section 3. and Section 4., we
examine the existence of a unique solution and UH sta-
bility analysis of the system (1.3), respectively. Section
5., is devoted to the study of the controllability results
for the system (1.4). In the last Section 6., we give an
example to show validity of the theoretical results.

2. Preliminaries and Definitions

Below we introduce some basic definitions, notations,
lemmas and important results which are often used
throughout the manuscript. Let Rn be the space of
n−dimensional column vectors y = col(y1, y2, . . . , yn)
with a norm ∥ · ∥. C(I,Rn) denotes the Banach space
of all continuous functions P : I → Rn with the norm
∥P∥ = supt∈I ∥P(t)∥.

We define the Banach space of all piecewise con-
tinuous functions PC1−ϖ(I,Rn) = {y : (t − ti)1−ϖy(t) ∈
C((ti, ti+1],Rn), i = 0, 1, . . . , ȷ and there exists y(t−i ) and
y(t+i ), i = 1, 2, . . . , ȷ, with y(t−i ) = y(ti)} with the norm
∥y∥PC1−ϖ = supt∈[a,b](t − a)1−ϖ∥y(t)∥.

Definition 1 [15] Let f : [a,∞) → R be a function.
Then, the fractional Riemann-Liouville integral of f of
order p > 0 with lower limit a is given by

Ip
a+ f (t) =

1
Γ(p)

∫ t

a
(t − ς)p−1 f (ς)dς, t > a,

provided R.H.S of the above equation is point-wise de-
fined on [a,∞). Here, Γ(·) denotes the usual Gamma
function.

Definition 2 [15] Let f : [a,∞) → R be a function.
Then, the fractional Riemann-Liouville derivative of f
of order p > 0 is defined by

Dp
a+ f (t) =

1
Γ(n − p)

dn

dtn

∫ t

a
(t − ς)n−1−p f (ς)dς, t > a,

where n − 1 < p < n.

Definition 3 [15] Let f : [a,∞) → R be a function.
Then, the Caputo fractional derivative of f of order p >
0 is defined by

cDp
a+ f (t) = Dp

a+

 f (t) −
n−1∑
k=0

tk

k!
f (k)(0)

 , t > a

where n − 1 < p < n.

Definition 4 [17] Let f : [a,∞) → R be a func-
tion. Then, the generalized Riemann-Liouville frac-
tional derivative (or Hilfer derivative) of f with the type
0 ≤ ϱ ≤ 1 and order 0 < ϑ < 1 with lower limit a is
defined by

Dϱ,ϑa+ f (t) = (Iϱ(1−ϑ)
a+

d
dt

(I(1−ϖ)
a+ f ))(t), ϖ = ϱ + ϑ − ϱϑ,

provided that the expression on the R.H.S. exists.
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Definition 5 [15] The Mittag-Leffler function is de-
fined as

Eϱ,ϑ(z) =
∞∑

k=0

zk

Γ(kϱ + ϑ)
, z ∈ C, ϱ, ϑ > 0.

Also, the Laplace transform of Mittag-Leffler func-
tion is given by

L{tϱ−1Eϱ,ϑ(±atϱ)}(s) =
sϱ−ϑ

sϱ ∓ a
.

Definition 6 [15] The Mittag-Leffler function for a ma-
trix Λ of order n × n is defined as

Eϱ,ϑ(Λ) =
∞∑

k=0

Λk

Γ(kϱ + ϑ)
, z ∈ C, ϱ, ϑ > 0.

Also, the Laplace transform of matrix valued
Mittag-Leffler function is given by

L{tϱ−1Eϱ,ϑ(±Λtϱ)}(s) =
sϱ−ϑ

sϱ ∓ Λ
.

For the further study on fractional calculus, one can
go through the books [14, 15].

Lemma 1 Let Λ be a n × n matrix and P ∈ C(I,Rn)
be a function. Then, the solution of the following Hilfer
fractional system

Dϱ,ϑ0+ y(t) = Λy(t) + P (t) , t ∈ (0,T ],

I1−ϖ
0+ y(0) = y0, ϖ = ϱ + ϑ − ϱϑ, (2.5)

is

y(t) = tϖ−1Eϑ,ϖ(Λtϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ(t − ς)ϑ)P(ς)dς

for all t ∈ (0,T ].

Proof: The above system (2.5) is equivalent to the
following equation

y(t) =
y0

Γ(ϖ)
tϖ−1 +

1
Γ(ϑ)

∫ t

0
(t − ς)ϑ−1Λy(ς)dς

+
1
Γ(ϑ)

∫ t

0
(t − ς)ϑ−1P(ς)dς.

Now, by applying the Laplace transform in the above
equation on both sides, we get

ŷ(s) =
1
λϖ

y0 +
1
λϑ
Λŷ(s) +

1
λϑ
P̂(s).

Now, apply the inverse Laplace transform in the above
equation on both sides, we get

y(t) = tϖ−1Eϑ,ϖ(Λtϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ(t − ς)ϑ)P(ς)dς

for all t ∈ (0,T ]. ■
In the next definition, by using the Lemma 1, we

give the solution of the switched impulsive system
(1.3).

Definition 7 A function y ∈ PC1−ϖ(I,Rn) is a solution
of the system (1.3), if y satisfies

(i) I1−ϖ
0+ y(0) = y0 and I1−ϖ

ϑi
+ y(ϑ+i ) = Gi(ϑi, y(t−i )),

(ii) y(t) = Gi(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ

and

y(t) = tϖ−1Eϑ,ϖ(Λ0tϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, y(ς))dς

for all t ∈ (0, t1] and

y(t) = (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Pi(ς, y(ς))dς

for all t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ.

The following assumptions are required to establish
the main results:

(Z1): The maps Pi : Ti × R
n → Rn,Ti = [ϑi, ti+1], i =

0, 1, . . . , ȷ, are continuous. Also, there exists a
number LP > 0 such that

∥Pi(t, y1) − Pi(t, y2)∥ ≤ LP∥y1 − y1∥

for all y1, y2 ∈ R
n and t ∈ Ti.

(Z2): The maps Gi : Ji × R
n → Rn, Ji = [ti, ϑi], i =

1, 2, . . . , ȷ, are continuous. Also, there exists a
number LG > 0 such that

∥Gi(t, y1) − Gi(t, y2)∥ ≤ LG∥y1 − y2∥

for all y1, y2 ∈ R
n and t ∈ Ji.

We set
c1 = maxi=0,1,..., ȷ supt∈I ∥Eϑ,ϖ(Λitϑ)∥; c2 =

maxi=0,1,..., ȷ supt∈I ∥Eϑ,ϑ(Λi(T − t)ϑ)∥; supt∈I ∥Pi(t, 0)∥ ≤
MP; supt∈I ∥Gi(t, 0)∥ ≤ MG; N0 = c1∥y0∥ +

c2MPtϑ+1−ϖ
1

ϑ
; Ni = c1MG +

c2MPtϑ+1−ϖ
i+1

ϑ
, i =

1, 2, . . . , ȷ; Q0 = tϑ1 c2LPB(ϖ,ϑ); Qi = c1LGtϖ−1
i+1 +

tϑi+1c2LPB(ϖ,ϑ), i = 1, 2, . . . , ȷ.

(Z3): LΞ1 < 1, where LΞ1 = max{max0≤i≤ ȷQi, LG}.
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3. Existence Result

In this section, we establish the existence of a unique
solution for the system (1.3) by using the Banach fixed
point theorem.
Theorem 1 If the assumptions (Z1), (Z2) and (Z3) ful-
filled. Then, the system (1.3) has a unique solution.

Proof: For a positive constant δ1, we define a subset
D1 ⊆ PC1−ϖ(I,Rn) such that

D1 = {y ∈ PC1−ϖ(I,Rn) : ∥y∥PC1−ϖ ≤ δ1},

where

δ1 = max
(
max
0≤i≤ ȷ

Ni

1 − Qi
,

(ϑi − ti)1−ϖMG
1 − LG

)
.

Define an operator Ξ1 : D1 → D1 as

(Ξ1y)(t) = tϖ−1Eϑ,ϖ(Λ0tϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, y(ς))dς,

∀ t ∈ (0, t1],
(Ξ1y)(t) = Gi(t, y(t−i )), ∀ t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ,

(Ξ1y)(t) = (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Pi(ς, y(ς))dς,

∀ t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ.

For the better readability, we split the proof into the
following two steps:
Step 1: We shall show that Ξ1 maps D1 into D1. For
any t ∈ (0, t1] and y ∈ D1,

t1−ϖ∥(Ξ1y)(t)∥

≤ ∥Eϑ,ϖ(Λ0tϑ)y0∥

+ t1−ϖ
∫ t

0
(t − ς)ϑ−1∥Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, y(ς))∥dς

≤ c1∥y0∥ + t1−ϖc2LP

∫ t

0
(t − ς)ϑ−1∥y(ς)∥dς

+ t1−ϖc2MP

∫ t

0
(t − ς)ϑ−1dς

≤ c1∥y0∥ + tϑc2LPB(ϖ,ϑ)δ1 +
c2MPtϑ+1−ϖ

ϑ
≤ N0 + Q0δ1 ≤ δ1, (3.6)

where we use∫ t

a
(t − ς)ϑ−1∥y(ς))∥dς

≤

(∫ t

a
(t − ς)ϑ−1(ς − a)ϖ−1dς

)
∥y∥PC1−ϖ

= (t − a)ϑ+ϖ−1B(ϖ,ϑ)∥y∥PC1−ϖ

and B(·, ·) denotes the usual beta function. Now, for any
y ∈ D1 and t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ,

(t − ti)1−ϖ∥(Ξ1y)(t)∥ ≤ (t − ti)1−ϖ∥Gi(t, y(t−i ))∥

≤ LGδ1 + (ϑi − ti)1−ϖMG
≤ δ1. (3.7)

Similarly, for any y ∈ D1 and t ∈ (ϑi, ti+1], i =
1, 2, . . . , ȷ,

(t − ϑi)1−ϖ∥(Ξ1y)(t)∥
≤ c1∥Gi(ϑi, y(t−i ))∥

+ (t − ϑi)1−ϖc2LP

∫ t

ϑi

(t − ς)ϑ−1∥y(ς))∥dς

+ (t − ϑi)1−ϖc2MP

∫ t

ϑi

(t − ς)ϑ−1dς

≤ c1MG + c1LG(t − ϑi)ϖ−1δ1 + (t − ϑi)ϑc2LPB(ϖ,ϑ)δ1

+
c2MP(t − ϑi)ϑ+1−ϖ

ϑ
≤ Ni + Qiδ1 ≤ δ1. (3.8)

Now, using the inequalities (3.6), (3.7) and (3.8), we
get,

∥Ξ1y∥PC1−ϖ ≤ δ1, ∀ t ∈ I.

Hence, Ξ1 mapsD1 intoD1.
Step 2: Here, we show that Ξ1 is a strict contracting
operator. Now, for any y, z ∈ D1 and t ∈ (0, t1],

t1−ϖ∥(Ξ1y)(t) − (Ξ1z)(t)∥

≤ t1−ϖ
∫ t

0
(t − ς)ϑ−1∥Eϑ,ϑ(Λ0(t − ς)ϑ)(P0(ς, y(ς))

− P0(ς, z(ς)))∥dς

≤ t1−ϖc2LP

∫ t

0
(t − ς)ϑ−1∥y(ς) − z(ς)∥dς

≤ tϑc2LPB(ϖ,ϑ)∥y − z∥PC1−ϖ

≤ Q0∥y − z∥PC1−ϖ . (3.9)

Also, for any y, z ∈ D1 and t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ,

(t − ti)1−ϖ∥(Ξ1y)(t) − (Ξ1z)(t)∥

≤ (t − ti)1−ϖ∥Gi(t, y(t−i )) − Gi(t, z(t−i ))∥
≤ LG∥y − z∥PC1−ϖ . (3.10)

Similarly, for any y, z ∈ D1 and t ∈ (ϑi, ti+1], i =
1, 2, . . . , ȷ,

(t − ϑi)1−ϖ∥(Ξ1y)(t) − (Ξ1z)(t)∥

≤ ∥Eϑ,ϖ(Λi(t − ϑi)ϑ)∥∥Gi(ϑi, y(t−i )) − Gi(ϑi, z(t−i ))∥
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+ (t − ϑi)1−ϖ
∫ t

ϑi

(t − ς)ϑ−1∥Eϑ,ϑ(Λi(t − ς)ϑ)∥

× ∥Pi(ς, y(ς)) − Pi(ς, z(ς))∥dς
≤ c1LG∥y(t−i ) − z(t−i )∥

+ c2LP(t − ϑi)1−ϖ
∫ t

ϑi

(t − ς)ϑ−1∥Eϑ,ϑ(Λi(t − ς)ϑ)∥

× ∥y(ς)) − z(ς)∥dς

≤ c1LG(t − ϑi)ϖ−1∥y − z∥PC1−ϖ

+ c2LP(t − ϑi)ϑB(ϖ,ϑ)∥y − z∥PC1−ϖ

≤ Qi∥y − z∥PC1−ϖ . (3.11)

Therefore, by using the inequalities (3.9), (3.10) and
(3.11), we get

∥Ξ1y − Ξ1z∥PC1−ϖ ≤ LΞ1∥y − z∥PC1−ϖ , ∀ t ∈ I.

Hence, from assumption (Z3), Ξ1 is a contracting oper-
ator.

Thus, by collecting the step 1 and step 2, one can
easily see that the operator Ξ1 fulfilled all the require-
ments of Banach contraction principle. Henceforth,
system (1.3) has a unique solution. ■

4. Ulam’s Hyer Stability

This section is devoted to the examination of UH sta-
bility of the switched system (1.3).

For ϵ > 0, consider the following inequality
∥Dϱ,ϑ
ϑ+i

z(t) − Λiz(t) − Pi (t, z(t)) ∥ ≤ ϵ, t ∈ (ϑi, ti+1],

i = 0, 1, . . . , ȷ,
∥z(t) − Gi(t, z(t−i ))∥ ≤ ϵ, t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ,

(4.12)

Definition 8 [5]. Equation (1.3) is UH stable if there
exists a positive constant H(LP,LG) such that for ϵ > 0
and for any solution z of inequality (4.12), there exists
a unique solution y of system (1.3) satisfies

∥z(t) − y(t)∥ ≤ H(LP,LG)ϵ, ∀ t ∈ I.

Definition 9 [5]. Equation (1.3) is Generalized UH
stable if there exist H(LP,LG) ∈ C(R+,R+),H(LP,LG)(0) =
0 such that for any solution z of inequalities (4.12),
there exists a unique solution y of system (1.3) satisfies

∥z(t) − y(t)∥ ≤ H(LP,LG)(ϵ), ∀ t ∈ I.

Remark 1 Definition 8 =⇒ Definition 9.

Remark 2 A function z ∈ PC1−ϖ(I,Rn) is a solution
of inequality (4.12) iff there is a sequence Gi, i =
1, 2, . . . , ȷ and G ∈ PC1−ϖ(I,Rn) such that

(a) ∥G(t)∥ ≤ ϵ,∀ t ∈ (ϑi, ti+1], i = 0, 1, . . . , ȷ and
∥Gi∥ ≤ ϵ, ∀ i = 1, 2, . . . , ȷ.

(b) Dϱ,ϑ
ϑ+i

z(t) = Λiz(t)+Pi (t, z(t))+G(t), t ∈ (ϑi, ti+1],
i = 0, 1, . . . , ȷ.

(c) z(t) = Gi(t, z(t−i ))+Gi, t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ.

From the above remark, we get
Dϱ,ϑ
ϑ+i

z(t) = Λiz(t) + Pi (t, z(t)) + G(t), t ∈ (ϑi, ti+1],

i = 0, 1, . . . , ȷ,
z(t) = Gi(t, z(t−i )) + Gi, t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ.

From Definition 7, the solution z with I1−ϖ
0+ z(0) = y0,

I1−ϖ
ϑi
+ z(ϑ+i ) = Gi(ϑi, z(t−i )) + Gi of the above system is

defined as

z(t) = tϖ−1Eϑ,ϖ(Λ0tϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)(P0(ς, z(ς))

+ G(ς))dς, ∀ t ∈ (0, t1],
z(t) = Gi(t, z(t−i )) + Gi, t ∈ (ti, si], i = 1, 2, . . . , ȷ,

z(t) = (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)(Gi(ϑi, z(t−i )) + Gi)

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)(Pi(ς, z(ς))

+ G(ς))dς, ∀ t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ.

Therefore, for any t ∈ (0, t1],∥∥∥∥∥z(t) − tϖ−1Eϑ,ϖ(Λ0tϑ)y0

−

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, z(ς))dς

∥∥∥∥∥
≤

∥∥∥∥∥ ∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)G(ς)dς

∥∥∥∥∥ ≤ c2tϑ1 ϵ
ϑ
.

Also, for any t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ,∥∥∥∥∥z(t) − (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, z(t−i ))

−

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Pi(ς, z(ς))dς
∥∥∥∥∥

≤ ∥(t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi∥

+

∥∥∥∥∥ ∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)G(ς)dς
∥∥∥∥∥

≤ c1(ti+1 − ϑi)ϖ−1ϵ +
c2tϑi+1ϵ

ϑ
.

Similarly, for t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, we get ∥z(t) −
Gi(t, z(t−i ))∥ ≤ ϵ.
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Theorem 2 If the assumptions (Z1), (Z2) and (Z3) ful-
filled. Then, the system (1.3) is UH stable.

Proof: Let z ∈ PC1−ϖ(I,Rn) be the solution of in-
equality (4.12) and y ∈ PC1−ϖ(I,Rn) be a unique so-
lution of the system (1.3). Then, from Definition 7,
we have I1−ϖ

0+ y(0) = y0, I1−ϖ
ϑi
+ y(ϑ+i ) = Gi(ϑi, y(t−i )),

y(t) = Gi(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ and

y(t) = tϖ−1Eϑ,ϖ(Λ0tϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, y(ς))dς

for all t ∈ (0, t1] and

y(t) = (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Pi(ς, y(ς))dς

for all t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ.
Now, for any t ∈ (0, t1], we have

t1−ϖ∥z(t) − y(t)∥

≤ t1−ϖ
∥∥∥∥∥z(t) − tϖ−1Eϑ,ϖ(Λ0tϑ)y0

−

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, z(ς))dς

∥∥∥∥∥
+ t1−ϖ

∥∥∥∥∥ ∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)(P0(ς, z(ς))

− P0(ς, y(ς))dς
∥∥∥∥∥

≤
c2t1+ϑ−ϖ

1 ϵ

ϑ
+ t1−ϖLPc2

∫ t

0
(t − ς)ϑ−1∥z(ς) − y(ς)∥dς

≤
c2t1+ϑ−ϖ

1 ϵ

ϑ
+ Q0∥z − y∥PC1−ϖ . (4.13)

Also, for any t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ, we have

(t − ϑi)1−ϖ∥z(t) − y(t)∥

≤ (t − ϑi)1−ϖ
∥∥∥∥∥z(t)

− (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))

−

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Pi(ς, y(ς))dς
∥∥∥∥∥

≤ c1ϵ +
c2t1+ϑ−ϖ

i+1 ϵ

ϑ
+ ∥Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, z(t−i ))

− Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))∥

+ (t − ϑi)1−ϖ∥

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)

× (Pi(ς, z(ς)) − Pi(ς, y(ς)))dς∥

≤ c1ϵ +
c2t1+ϑ−ϖ

i+1 ϵ

ϑ
+ Qi∥z − y∥PC1−ϖ . (4.14)

Similarly, for any t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, we have

(t − ti)1−ϖ∥z(t) − y(t)∥ = (t − ti)1−ϖ∥z(t) − Gi(t, y(t−i ))∥

≤ t1−ϖ
i+1 ϵ + LG∥z − y∥PC1−ϖ .

(4.15)

Now, by using the inequalities (4.13), (4.14) and (4.15),
for all t ∈ I, we get

∥z − y∥PC1−ϖ ≤ t1−ϖ
i+1

1 + c1tϖ−1
i+1 +

c2tϑi+1

ϑ


+ LΞ1∥z − y∥PC1−ϖϵ,

which immediately gives

∥z − y∥PC1−ϖ ≤ H(LP,LG)ϵ,

where H(LP,LG) =
t1−ϖ
i+1

1 − LΞ1

1 + c1tϖ−1
i+1 +

c2tϑi+1

ϑ

. Hence,

the system (1.3) is UH stable. Furthermore, if we set
H(LP,LG)(ϵ) = H(LP,LG)ϵ, H(LP,LG)(0) = 0, then the sys-
tem (1.3) is GUH stable. ■

5. Controllability Results

In this segment, we establish the total controllability
results for the switched impulsive control system (1.4)
by applying the Banach contraction principle.

Definition 10 Switched control system (1.4) is control-
lable on [0,T ], if for every y0, yT ∈ R

n, there exists
a function v ∈ L2([0,T ],Rm) such that the solution of
(1.4) satisfies y(0) = y0 and y(T ) = yT .

Definition 11 Switched control system (1.4) is totally
controllable on [0,T ], if it is controllable on (0, t1] and
(ϑi, ti+1], i = 1, 2, . . . , ȷ, i.e., for every y0, yti+1

∈ Rn, i =
0, 1, . . . , ȷ, there exists a function v ∈ L2([0,T ],Rm)
such that the solution of (1.4) satisfies y(0) = y0 and
y(ti+1) = yti+1

, i = 0, 1, . . . , ȷ.

Remark 3 Definition 11 =⇒ Definition 10.

Definition 12 A function y ∈ PC1−ϖ(I,Rn) is a solu-
tion of the switched impulsive control system (1.4), if x
satisfies

(i) I1−ϖ
0+ y(0) = y0 and I1−ϖ

ϑi
+ y(ϑ+i ) = Gi(ϑi, y(t−i )),

(ii) y(t) = Gi(t, y(t−i )), t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ
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and

y(t) = tϖ−1Eϑ,ϖ(Λ0tϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, y(ς))dς

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)C0v(ς)dς (5.16)

for all t ∈ (0, t1],

y(t) = (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Pi(ς, y(ς))dς

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)Civ(ς)dς (5.17)

for all t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ.

Next, we define the controllability Grammian type
matrices as follows:

Z
ti+1
ϑi
=

∫ ti+1

ϑi

Eϑ,ϑ(Λi(ti+1 − ς)ϑ)CiC
∗
i

× Eϑ,ϑ(Λ∗i (ti+1 − ς)ϑ)dς, i = 0, 1, . . . , ȷ. (5.18)

(Z4): The matrices Zti+1
ϑi
, i = 0, 1, . . . , ȷ, defined by

(5.18) are invertible. Further, there exist some
positive constants Mi

Z
, i = 0, 1, . . . , ȷ, such that

∥(Zti+1
ϑi

)−1∥ ≤ Mi
Z

.
Also, there exists a positive constant MC such
that for i = 0, 1, . . . , ȷ, ∥Ci∥ ≤ MC.

We set
c3 = maxi=0,1,..., ȷ supt∈I(T − t)1−ϑ∥C∗i Eϑ,ϑ(Λ∗i (T −

t)ϑ)∥; Ki =
c2c3MCMi

Z
tϑi+1

ϑ
, i = 0, 1, . . . , ȷ; Mi = Ni +

Ki((ti+1)1−ϖ∥yti+1
∥+Ni); Ri = Qi(1+Ki), i = 0, 1, . . . , ȷ.

(Z5): LΞ2 < 1, where LΞ2 = max{max0≤i≤ ȷRi, LG}.

Lemma 2 If the assumptions (Z1), (Z2) and (Z4) ful-
filled. Then, the required control function for the system
(1.4) has an estimate ∥v(t)∥ ≤ M0

v ,∀ t ∈ (0, t1], where

M0
v = c3M0

Z

[
∥yt1∥ + c1tϖ−1

1 ∥y0∥ +
c2MPtϑ1
ϑ

+ c2LPtϑ+ϖ−1
1 B(ϖ,ϑ)∥y∥PC1−ϖ

]
.

Proof: For t ∈ (0, t1], define the control function as

v(t) = (t1 − t)1−ϑC∗0Eϑ,ϑ(Λ∗0(t1 − t)ϑ)(Zt1
0 )−1[yt1

−

∫ t1

0
(t1 − ς)ϑ−1Eϑ,ϑ(Λ0(t1 − ς)ϑ)P0(ς, y(ς))dς

− tϖ−1
1 Eϑ,ϖ(Λ0tϑ1 )y0]. (5.19)

Now, by putting t = t1 in the solution y(t) of the system
(1.4) on (0, t1], we get

y(t1)

= tϖ−1
1 Eϑ,ϖ(Λ0tϑ1 )y0

+

∫ t1

0
(t1 − ς)ϑ−1Eϑ,ϑ(Λ0(t1 − ς)ϑ)P0(ς, y(ς))dς

+

∫ t1

0
Eϑ,ϑ(Λ0(t1 − ς)ϑ)C0C

∗
0Eϑ,ϑ(Λ∗0(t1 − t)ϑ)

× (Zt1
0 )−1

[
yt1 − tϖ−1

1 Eϑ,ϖ(Λ0tϑ1 )y0

−

∫ t1

0
(t1 − τ)ϑ−1Eϑ,ϑ(Λ0(t1 − τ)ϑ)P0(τ, y(τ))dτ

]
dς

= tϖ−1
1 Eϑ,ϖ(Λ0tϑ1 )y0

+

∫ t1

0
(t1 − ς)ϑ−1Eϑ,ϑ(Λ0(t1 − ς)ϑ)P0(ς, y(ς))dς

+Z
t1
0 (Zt1

0 )−1
[
yt1 − tϖ−1

1 Eϑ,ϖ(Λ0tϑ1 )y0

−

∫ t1

0
(t1 − τ)ϑ−1Eϑ,ϑ(Λ0(t1 − τ)ϑ)P0(τ, y(τ))dτ

]
= yt1 .

Therefore, control function (5.19) is suitable for t ∈
(0, t1]. Furthermore,

∥v(t)∥ ≤ ∥(t1 − t)1−ϑC∗0Eϑ,ϑ(Λ∗0(t1 − t)ϑ)(Zt1
0 )−1∥

[
∥yt1∥

+

∫ t1

0
(t1 − ς)ϑ−1∥Eϑ,ϑ(Λ0(t1 − ς)ϑ)

× P0(ς, y(ς))∥dς + ∥tϖ−1
1 Eϑ,ϖ(Λ0tϑ1 )y0∥

]
≤ c3M0

Z

[
∥yt1∥ + c1tϖ−1

1 ∥y0∥

+ c2

∫ t1

0
(t1 − ς)ϑ−1∥P0(ς, y(ς))∥dς

]
≤ c3M0

Z

[
∥yt1∥ + c1tϖ−1

1 ∥y0∥ +
c2MPtϑ1
ϑ

+ c2LPtϑ+ϖ−1
1 B(ϖ,ϑ)∥y∥PC1−ϖ

]
= M0

v .

■

Lemma 3 If the assumptions (Z1), (Z2) and (Z4) ful-
filled. Then, the required control function for the system
(1.4) has an estimate ∥v(t)∥ ≤ Mi

v, ∀ t ∈ (ϑi, ti+1], i =
1, 2, . . . , ȷ where

Mi
v = c3Mi

Z

[
∥yti+1
∥ + c1tϖ−1

i+1 LG∥y(t−i )∥ + c1tϖ−1
i+1 MG

+
c2MPtϑi+1

ϑ
+ c2LPtϑ+ϖ−1

i+1 B(ϖ,ϑ)∥y∥PC1−ϖ

]
.
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Proof: For t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ, define the
control function by

v(t) = (ti+1 − t)1−ϑC∗i Eϑ,ϑ(Λ∗i (ti+1 − t)ϑ)(Zti+1
ϑi

)−1
[
yti+1

− (ti+1 − ϑi)ϖ−1Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)Gi(ϑi, y(t−i ))

−

∫ ti+1

ϑi

(ti+1 − ς)ϑ−1Eϑ,ϑ(Λi(ti+1 − ς)ϑ)

× Pi(ς, y(ς))dς
]
. (5.20)

Now, by putting t = ti+1 in the solution y(t) of the sys-
tem (1.4) on (ϑi, ti+1], i = 1, 2, . . . , ȷ, we get

y(ti+1)

= (ti+1 − ϑi)ϖ−1Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ ti+1

ϑi

(ti+1 − ς)ϑ−1Eϑ,ϑ(Λi(ti+1 − ς)ϑ)Pi(ς, y(ς))dς

+

∫ ti+1

ϑi

Eϑ,ϑ(Λi(ti+1 − ς)ϑ)CiC
∗
i Eϑ,ϑ(Λ∗i (ti+1 − t)ϑ)

× (Zti+1
ϑi

)−1
[
yti+1
− (ti+1 − ϑi)ϖ−1Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)

× Gi(ϑi, y(t−i )) −
∫ ti+1

ϑi

(ti+1 − ς)ϑ−1Eϑ,ϑ(Λi(ti+1 − ς)ϑ)

× Pi(ς, y(ς))dς
]
dς

= (ti+1 − ϑi)ϖ−1Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ ti+1

ϑi

(ti+1 − ς)ϑ−1Eϑ,ϑ(Λi(ti+1 − ς)ϑ)Pi(ς, y(ς))dς

+Z
ti+1
ϑi

(Zti+1
ϑi

)−1
[
yti+1
− (ti+1 − ϑi)ϖ−1

× Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)Gi(ϑi, y(t−i ))

−

∫ ti+1

ϑi

(ti+1 − ς)ϑ−1Eϑ,ϑ(Λi(ti+1 − ς)ϑ)Pi(ς, y(ς))dς
]

= yti+1
.

Therefore, control function (5.20) is suitable for t ∈
(ϑi, ti+1], i = 1, 2, . . . , ȷ. Furthermore,

∥v(t)∥ ≤ ∥(ti+1 − t)1−ϑC∗i Eϑ,ϑ(Λ∗i (ti+1 − t)ϑ)(Zti+1
ϑi

)−1∥

×

[
∥yti+1
∥ + ∥(ti+1 − ϑi)ϖ−1Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)

× Gi(ϑi, y(t−i ))∥ +
∫ ti+1

ϑi

(ti+1 − ς)ϑ−1

× ∥Eϑ,ϑ(Λi(ti+1 − ς)ϑ)Pi(ς, y(ς))∥dς
]

≤ c3Mi
Z

[
∥yti+1
∥ + (ti+1 − ϑi)ϖ−1c1(LG∥y(t−i )∥ + MG)

+
c2MPtϑi+1

ϑ
+ c2LPtϑ+ϖ−1

i+1 B(ϖ,ϑ)∥y∥PC1−ϖ

]
≤ Mi

v.

■

Theorem 3 If the assumptions (Z1), (Z2), (Z4) and
(Z5) fulfilled. Then, the system (1.4) is totally control-
lable.

Proof: For a positive constant δ2, we define a subset
D2 ⊆ PC1−ϖ(I,Rn) such that

D2 = {y ∈ PC1−ϖ(I,Rn) : ∥y∥PC1−ϖ ≤ δ2},

where

δ2 = max
(
max
0≤i≤ ȷ

Mi

1 − Ri
,

(ϑi − ti)1−ϖMG
1 − LG

)
.

Define an operator Ξ2 : D2 → D2 as

(Ξ2y)(t) = tϖ−1Eϑ,ϖ(Λ0tϑ)y0

+

∫ t

0
(t − ς)ϑ−1Eϑ,ϑ(Λ0(t − ς)ϑ)

× (P0(ς, y(ς)) + C0v(ς))dς, ∀ t ∈ (0, t1],
(Ξ2y)(t) = Gi(t, y(t−i )), ∀ t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ,

(Ξ2y)(t) = (t − ϑi)ϖ−1Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))

+

∫ t

ϑi

(t − ς)ϑ−1Eϑ,ϑ(Λi(t − ς)ϑ)

× (Pi(ς, y(ς)) + Civ(ς))dς,
∀ t ∈ (ϑi, ti+1], i = 1, 2, . . . , ȷ.

For the better readability, we split the proof into the
following two steps:
Step 1: We show that Ξ2 maps D2 into D2. Now, for
any t ∈ (0, t1] and y ∈ D2, we have

t1−ϖ∥(Ξ2y)(t)∥

≤ c1∥y0∥ + t1−ϖc2MP

∫ t

0
(t − ς)ϑ−1dς

+ t1−ϖc2LP

∫ t

0
(t − ς)ϑ−1∥y(ς)∥dς

+ t1−ϖc2MC

∫ t

0
(t − ς)ϑ−1c3M0

Z

[
∥yt1∥ + c1tϖ−1

1 ∥y0∥

+
c2MPtϑ1
ϑ

+ c2LPtϑ+ϖ−1
1 B(ϖ,ϑ)∥y∥PC1−ϖ

]
dς
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≤ c1∥y0∥ + tϑc2LPB(ϖ,ϑ)δ2 +
c2MPtϑ+1−ϖ

ϑ

+
t1−ϖ+ϑc2c3MCM0

Z

ϑ

[
∥yt1∥ + c1tϖ−1

1 ∥y0∥

+
c2MPtϑ1
ϑ

+ c2LPtϑ+ϖ−1
1 B(ϖ,ϑ)δ2

]
≤ N0 + Q0δ2 + K0(t1−ϖ∥yt1∥ +N0 + Q0δ2)
≤ M0 + R0δ2 ≤ δ2. (5.21)

Now, for any y ∈ D2 and t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ, we
have

(t − ti)1−ϖ∥(Ξ2y)(t)∥ ≤ (t − ti)1−ϖ∥Gi(t, y(t−i ))∥

≤ LGδ2 + (ϑi − ti)1−ϖMG
≤ δ2. (5.22)

Similarly, for any y ∈ D2 and t ∈ (ϑi, ti+1], i =
1, 2, . . . , ȷ, we have

(t − ϑi)1−ϖ∥(Ξ2y)(t)∥

≤ ∥Eϑ,ϖ(Λi(t − ϑi)ϑ)Gi(ϑi, y(t−i ))∥

+ (t − ϑi)1−ϖ
∫ t

ϑi

(t − ς)ϑ−1∥Eϑ,ϑ(Λi(t − ς)ϑ)

× (Pi(ς, y(ς)) + Civ(ς))∥dς
≤ c1∥Gi(ϑi, y(t−i ))∥

+ (t − ϑi)1−ϖc2LP

∫ t

ϑi

(t − ς)ϑ−1∥y(ς))∥dς

+ (t − ϑi)1−ϖc2MP

∫ t

ϑi

(t − ς)ϑ−1dς

+ (t − ϑi)1−ϖc2c3MCMi
Z

∫ t

ϑi

(t − ς)ϑ−1
[
∥yti+1
∥

+ c1tϖ−1
i+1 LG∥y(t−i )∥ + c1tϖ−1

i+1 MG +
c2MPtϑi+1

ϑ

+ c2LPtϑ+ϖ−1
i+1 B(ϖ,ϑ)∥y∥PC1−ϖ

]
dς

≤ c1MG + c1LG(t − ϑi)ϖ−1δ2 + (t − ϑi)ϑc2LPB(ϖ,ϑ)δ2

+
c2MP(t − ϑi)ϑ+1−ϖ

ϑ
+

c2c3Mi
Z

MCtϑi+1

ϑ

×

(
(t − ϑi)1−ϖ∥yti+1

∥ + c1MG + c1LG(t − ϑi)1−ϖδ2

+ (t − ϑi)ϑc2LPB(ϖ,ϑ)δ2 +
c2MPtϑ+1−ϖ

i+1

ϑ

)
≤ Ni + Qiδ2 + Ki((t − ϑi)1−ϖ∥yti+1

∥ +Ni + Qiδ2)
≤ Mi + Riδ2 ≤ δ2. (5.23)

From the inequalities (5.21), (5.22) and (5.23), for t ∈ I,
we get

∥Ξ2y∥PC1−ϖ ≤ δ2.

Hence, Ξ2 mapsD2 intoD2.
Step 2: Here, we show that Ξ2 is a contracting operator.
For any y, z ∈ D2 and t ∈ (0, t1], we have

t1−ϖ∥(Ξ2y)(t) − (Ξ2z)(t)∥

≤ t1−ϖ
∫ t

0
(t − ς)ϑ−1∥Eϑ,ϑ(Λ0(t − ς)ϑ)P0(ς, y(ς))

− P0(ς, z(ς))∥dς + t1−ϖ
∫ t

0
(t − ς)ϑ−1

× ∥Eϑ,ϑ(Λ0(t − ς)ϑ)C0(t1 − ς)1−ϑC∗0Eϑ,ϑ(Λ∗0(t1 − ς)ϑ)

× ∥(Zt1
0 )−1

[ ∫ t1

0
(t1 − τ)ϑ−1∥Eϑ,ϑ(Λ0(t1 − τ)ϑ)∥

× ∥P0(τ, y(τ)) − P0(τ, z(τ))dτ
]
dς

≤ t1−ϖc2LP

∫ t

0
(t − ς)ϑ−1∥y(ς) − z(ς)∥dς

+ c2
2c3MCM0

Z
LPt1−ϖ

∫ t

0
(t − ς)ϑ−1

×

[ ∫ t1

0
(t1 − τ)ϑ−1∥y(τ) − z(τ)∥dτ

]
dς

≤ tϑc2LPB(ϖ,ϑ)∥y − z∥PC1−ϖ

+
c2

2c3MCM0
Z

LPtϑtϑ1 LPB(ϖ,ϑ)

ϑ
∥y − z∥PC1−ϖ

≤ Q0(1 + K0)∥y − z∥PC1−ϖ ≤ R0∥y − z∥PC1−ϖ . (5.24)

Also, for any y, z ∈ D2 and t ∈ (ti, ϑi], i = 1, 2, . . . , ȷ,
we have

(t − ti)1−ϖ∥(Ξ2y)(t) − (Ξ2z)(t)∥

≤ (t − ti)1−ϖ∥Gi(t, y(t−i )) − Gi(t, z(t−i ))∥
≤ LG∥y − z∥PC1−ϖ . (5.25)

Similarly, for any y, z ∈ D2 and t ∈ (ϑi, ti+1], i =
1, 2, . . . , ȷ, we have

(t − ϑi)1−ϖ∥(Ξ2y)(t) − (Ξ2z)(t)∥

≤ ∥Eϑ,ϖ(Λi(t − ϑi)ϑ)∥∥Gi(ϑi, y(t−i )) − Gi(ϑi, z(t−i ))∥

+ (t − ϑi)1−ϖ
∫ t

ϑi

(t − ς)ϑ−1∥Eϑ,ϑ(Λi(t − ς)ϑ)∥

× ∥Pi(ς, y(ς)) − Pi(ς, z(ς))∥dς

+ (t − ϑi)1−ϖ
∫ t

ϑi

(t − ς)ϑ−1∥Eϑ,ϑ(Λi(t − ς)ϑ)∥

× ∥Ci∥∥(ti+1 − ς)1−ϑC∗i Eϑ,ϑ(Λ∗i (ti+1 − ς)ϑ)∥

× ∥(Zti+1
ϑi

)−1∥

[
(ti+1 − ϑi)ϖ−1∥Eϑ,ϖ(Λi(ti+1 − ϑi)ϑ)∥

× ∥Gi(ϑi, y(t−i )) − Gi(ϑi, y(t−i ))∥
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+

∫ ti+1

ϑi

(ti+1 − τ)ϑ−1∥Eϑ,ϑ(Λi(ti+1 − τ)ϑ)∥

× ∥Pi(τ, y(τ)) − Pi(τ, z(τ))∥dτ
]
dς

≤ c1LG(ti+1 − ϑi)ϖ−1∥y − z∥PC1−ϖ

+ c2LP(t − ϑi)ϑB(ϖ,ϑ)∥y − z∥PC1−ϖ

+
c2c3Mi

Z
MCtϑi+1

ϑ

(
c1LG(ti+1 − ϑi)ϖ−1∥y − z∥PC1−ϖ

+ c2LP(ti+1 − ϑi)ϑB(ϖ,ϑ)∥y − z∥PC1−ϖ

)
≤ Qi∥y − z∥PC1−ϖ + KiQi∥y − z∥PC1−ϖ

≤ Ri∥y − z∥PC1−ϖ . (5.26)

Therefore, from the inequalities (5.24), (5.25) and
(5.26), for any t ∈ I, we have

∥Ξ2y − Ξ2z∥PC1−ϖ ≤ LΞ2∥y − z∥PC1−ϖ .

Hence, from assumption (Z5), Ξ2 is a contracting oper-
ator.

Therefore, from step 1 and step 2, one can see that
the operator Ξ2 fulfilled all the conditions of Banach
contraction principle. Hence, the system (1.4) is totally
controllable on I. ■

6. Examples

Example 1 We consider the following switched impul-
sive control system in the space R

D0.6,0.5
0+ y(t) = −0.3y(t) +

sin(y(t))
30e(t+1) + v(t), t ∈ (0, 0.4],

D0.6,0.5
0.5+ y(t) = −0.4y(t) +

cos(y(t))
2e(t2+4)

+ e2t + v(t),

t ∈ (0.5, 1], (6.27)

y(t) =
(t + 1)2 cos(y(0.4−))

25e(t+2) + et, t ∈ (0.4, 0.5],

I1−ϖ
0+ y(0) = 1, I1−ϖ

0.+ y(0.5+) =
(0.5 + 1)2 cos(y(0.4−))

25e(0.5+2) .

The system (6.27) can be written in the form of (1.4),
where Λ0 = −0.3, Λ1 = −0.4, C0 = 1, C1 = 1, t0 =
0, t1 = 0.4, ϑ1 = 0.5, t2 = T = 1, ȷ = 1, ϱ = 0.6, ϑ =
0.5, y0 = 1,

P0 =
sin(y(t))
30e(t+1) , P1 =

cos(y(t))
2e(t2+4)

+ e2t,

G1(t, y(t)) =
(t + 1)2 cos(y(t))

25e(t+2) + et.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

Time (t)

S
ta

te
 y

(t
)

 

 

State y(t)

Impulse y(t)

(a) State trajectory of the system (6.27) when
x(t1) = 2 and x(T ) = 2
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Figure 1: (a) shows the controlled trajectory of the sys-
tem (6.27), (b) shows the trajectory of the control func-
tion for the system (6.27)

We choose the final target points as y(t1) = 2 and
y(T ) = 2. Clearly, we can see that the conditions (Z1)
and (Z2) fulfilled. Also, one can easily calculate

Q0 = tϑ1 c2LPB(ϖ,ϑ) = 0.0087

Q1 = c1LGtϖ−1
2 + tϑ2 c2LPB(ϖ,ϑ) = 0.0176.

Thus, assumption (Z3) hold. Therefore, all the condi-
tions of Theorem 1 and 2 satisfied and hence the system
(6.27) has a HU stable unique solution. Furthermore, to
apply the Theorem 3, it remains to check the assump-
tions (Z4) and (Z5). After some calculations, we get

Z
t1
0 =

∫ t1

0
Eϑ,ϑ(Λ0(t1 − ς)ϑ)C0C

∗
0Eϑ,ϑ(Λ∗0(t1 − ς)ϑ)dς

= 0.0835,
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Z
t2
ϑ1
=

∫ t2

ϑ1

Eϑ,ϑ(Λ1(t2 − ς)ϑ)C1C
∗
1Eϑ,ϑ(Λ∗1(t2 − ς)ϑ)dς

= 0.0864

and

R0 = Q0(1 + K0) = 0.0309,R1 = Q1(1 + K1) = 0.0967.

Hence, LΞ2 = max{R0,R1, LG} = 0.0967 < 1. Thus, all
the assumptions of the Theorem 3 fulfilled. Hence, the
control system (6.27) is totally controllable on [0, 1].
The controlled state trajectory of the system (6.27) is
shown in the Figure 1a and the control function is
shown in the Figure 1b. Also, the CPU run time for
different time intervals is given in the Table 1.

Table 1: CPU time for different time intervals

Time step Intervals CPU time (sec)
0.01 [0, t1] 1.0096e+03
0.01 [t1, s1] 0.250
0.01 [s1, t2] 1.2301e+03

Example 2 We consider the following switched impul-
sive control system in the space R2

D0.8,0.3
0+ y1(t) = −0.1y1(t) + 0.2y2(t)

+
t3(5 + |y1(t)|)

90et+7(1 + |y1(t)|)
+

et

2
, t ∈ (0, 0.5],

D0.8,0.3
0+ y2(t) = 0.1y1(t) + 0.25y2(t) + v2(t)

+
sin(y2(t))

30(3 + 2t2)et+7 , t ∈ (0, 0.5],

D0.8,0.3
0.7+ y1(t) = 0.15y1(t) + 0.3y2(t) + v1(t)

+
(1 + t)2(7 + |y2(t)|)
85et+8(5 + |y2(t)|)

+ et2
, t ∈ (0.7, 1],

D0.8,0.3
0.7+ y2(t) = −0.5y2(t) + v2(t)

+
t2y1(t)
90et2+8

, t ∈ (0.7, 1], (6.28)

y1(t) =
t cos(y1(0.5−))
25(5 + t)et+8 + sin(t)et,

y2(t) =
sin(t)y2(0.5−)

50et+9 +
cos(t)
et+7 , t ∈ (0.5, 0.7],

I1−ϖ
0.7+ y1(0.7+) =

0.7 cos(y1(0.5−))
25(5 + 0.7)e0.7+8 + sin(0.7)e0.7,

I1−ϖ
0.7+ y2(0.7+) =

sin(0.7)y2(0.5−)
50e0.7+9 +

cos(0.7)
e0.7 ,

I1−ϖ
0+ y1(0) = 1, I1−ϖ

0+ y2(0) = 2,

The system (6.28) can be written in the form of (1.4),
where t0 = 0, t1 = 0.5, ϑ1 = 0.7, t2 = T = 1, ȷ =
1, ϱ = 0.8, ϑ = 0.3,

y(t) =
[

y1(t)
y2(t)

]
, y0 =

[
1
2

]
, Λ0 =

1
10

[
−1 2
1 2.5

]
,

Λ1 =
1

10

[
1.5 3
0 −5

]
, C0 =

[
0
1

]
, C1 =

[
1
1

]
,

v(t) =
[

v1(t)
v2(t)

]
,P0(t, y(t)) =

[
P01(t, y(t))
P02(t, y(t))

]
,

P1(t, y(t)) =
[
P11(t, y(t))
P12(t, y(t))

]
,

G1(t, y(t)) =
[
G11(t, y(t))
G21(t, y(t))

]
,

with

P01(t, y(t)) =
t3(5 + |y1(t)|)

90et+7(1 + |y1(t)|)
+

et

2
,

P02(t, y(t)) =
sin(y2(t))

30(3 + 2t2)et+7 ,

P11(t, y(t)) =
(1 + t)2(7 + |y2(t)|)
85et+8(5 + |y2(t)|)

+ et2
,

P11(t, y(t)) =
t2y1(t)
90et2+8

,

G11(t, y(t)) =
t cos(y1(t))

25(5 + t)et+8 + sin(t)et,

G21(t, y(t)) =
sin(t)y2(t)

50et+9 +
cos(t)

et .

We choose the final target points as y(t1) =
[

2
1

]
and

y(T ) =
[

1
2

]
. Clearly, we can see that the assumptions

(Z1) and (Z2) hold. Also, one can easily calculate

Q0 = tϑ1 c2LPB(ϖ,ϑ) = 1.9550 × 10−05

Q1 = c1LGtϖ−1
2 + tϑ2 c2LPB(ϖ,ϑ) = 2.6885 × 10−05.

Thus, assumption (Z3) hold. Therefore, all the condi-
tions of Theorem 1 and 2 satisfied and hence the system
(6.28) has a HU stable unique solution. Now, to apply
the Theorem 3, it remains to check the conditions (Z4)
and (Z5). After some calculations, we get

Z
t1
0 =

[
0.0054 0.0247
0.0247 0.1162

]
,Zt2
ϑ1
=

[
0.0701 0.0297
0.0297 0.0130

]
and

R0 = Q0(1 + K0) = 0.1423,R1 = Q1(1 + K1) = 0.1091.

Hence, LΞ2 = max{R0,R1, LG} = 0.1423 < 1. Thus,
all the assumptions of the Theorem 3 fulfilled. Hence,
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Figure 2: (a) shows the controlled trajectory of the sys-
tem (6.28), (b) shows the trajectory of the control func-
tion for the system (6.28)

the switched impulsive control system (6.28) is totally
controllable on [0, 1]. The controlled state trajectory
of the system (6.28) is shown in the Figure 2a and the
control function is shown in the Figure 2b. Also, the
CPU run time for different time intervals is given in the
Table 2.

Conclusion

In this article, we have successfully investigated the ex-
istence, uniqueness, UH stability, and total controllabil-
ity results of Hilfer fractional switched dynamical sys-
tem with non-instantaneous jump. More precisely, we
established the existence of a unique solution and UH
stability of the system (1.3) by using the Banach con-
traction principle, fractional calculus and Mittag Lef-

Table 2: CPU time for different time intervals

Time step Intervals CPU time (sec)
0.01 [0, t1] 1.3246e+03
0.01 [t1, s1] 0.5781
0.01 [s1, t2] 1.4069e+03

fler function. Further, some sufficient conditions are in-
vestigated to guarantee that system (1.4) is totally con-
trollable. Finally, we have presented some numerical
examples to validate the effectiveness of the obtained
analytical outcomes. The stochastic differential equa-
tions play an important role in many fields of science,
therefore, in the future, one can use the technique of
this manuscript to establish the controllability results
for the nonlinear Hilfer fractional switched impulsive
dynamic systems with stochastic effects.
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