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1 Introduction

Let G be a semisimple algebraic group defined over Q, Ko, C G(RR) be a maximal compact
subgroup and S = G(R)/Kx be the corresponding symmetric space. If I' C G(Q) is an
arithmetic subgroup then every representation (p, M) of G defines, in a natural way, a
sheaf M on the locally symmetric space Sp = I'\S. Since S is contractible, the locally
symmetric space Sr is homotopic to the Eilenberg—MacLane space K (I, 1) for I', hence
one has the isomorphism

H*(T, M) = H*(Sr, M), (1)

for details see Chapter 7 of [3]. Note that, throughout the paper, we use H*® to represent
the full cohomology group, namely, H*(I', M) = @&,H4(I", M). On the other hand, let St
denote the Borel-Serre compactification of Sr, then the inclusion i : Sp — Sr, which is
a homotopy equivalence, induces a canonical isomorphism in the cohomology

H*(Sr, ix(M)) = H*(Sr, M), )

where i, denotes the direct image functor defined by i. On the other hand, let 3Sp = Sr \Sr
andj : 3Sr — St be the closed embedding. Then, the following exact sequence of sheaves

0 = (M) = i(M) > (M) — 0
gives rise to a long exact sequence of cohomology groups associated to Sr,
-+ — HY(Sr, M) — HY(Sp, M) 5> H1(3Sp, M) — - .

The cohomology group H%(dSr, M) will be called the boundary cohomology of T" with
coefficients in M. Then, the Eisenstein cohomology of T with coefficients in M, denoted
by Hgi (St M), is defined to be the image of the map r in the following exact sequence

~ ~ ~

0 — H/(Sp, M) - H(Sp, M) - H}, (Sr, M) — 0,
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where H!q(Sr, ./\7) is the kernel of the restriction map r.

The study of Eisenstein cohomology was initiated by Harder [6], and he discovered that
Eisenstein cohomology is fundamentally related to several important topics in number
theory, e.g., special values of L-functions, extension of motives, to simply mention a few.
See Harder’s ICM report [8] for more details on the relation of Eisenstein cohomology with
other topics. The interested reader is also referred to [10] for recent advances on the sub-
ject. Although lots of work have been done, our understanding of Eisenstein cohomology
is still far from complete.

Let Gy be the Chevalley group defined over Z of type G,. The main purpose of this
article is to determine the boundary and Eisenstein cohomology of the arithmetic group
G»(Z) with coefficients in any finite dimensional highest weight representation M of Go.
Let us now state the main results obtained in this article.

+ Theorem 9, where the boundary cohomology with coefficients in every finite dimen-
sional highest weight representation is described.

+ Theorem 10, where the Eisenstein cohomology with coefficients in every finite dimen-
sional highest weight representation is described.

1.1 Related results

The Eisenstein cohomology of arithmetic subgroups of G2(Q) with trivial coefficients has
been previously studied in [13]. The basic setting of this article is more restrictive, that
is, we only consider the cohomology of G»(Z), but we provide complete results for the
boundary and Eisenstein cohomology of G3(Z) with coefficients in any finite dimensional
highest weight representation.

On the other hand, it is worthwhile to mention the article [1], where the boundary and
Eisenstein cohomology of SL3(Z) with coefficients in any finite dimensional highest weight
representation is determined by using Euler characteristic. Unfortunately, their method,
being elementary but tricky, does not work here in the case of Go(Z) for dimensional

reasons.

1.2 Methodology

Let us first discuss the computation of the boundary cohomology. The Borel-Serre bound-
ary dSr is a finite union of the boundary components parametrized by certain conjugacy
classes of parabolic subgroups. Then, the cohomology of dSr can be computed by using a
spectral sequence whose first page consists of the cohomology of each boundary compo-
nent, which will be computed by using the classical results of the cohomology of GL(Z)
and the theorem of Kostant.

For the computation of Eisenstein cohomology, we follow closely the work of Harder in
[9]. In particular, our method is constructive and involves the theory of Eisenstein series,
intertwining operators, (g, K»)-cohomology and L-functions. Indeed, it is well known
that the Eisenstein cohomology Hp, (Sr, /\7) spans a maximal isotropic subspace of the
boundary cohomology H*(3Sr, M) with respect to the Poincaré duality. In particular, we
know that dim Hp, (Sr, M) is exactly half of dim H*(dSr, M). Hence, we are done if we

manage to construct enough classes in Hg, (Sr, M. Starting from cohomology classes

is
in H*(dSr, M), we can construct cohomology classes in H*(Sr, M) by evaluating the

corresponding Eisenstein series at the special point, and then we get non-trivial Eisenstein
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cohomology classes by restricting these classes back to the boundary. Subtlety appears
when the corresponding Eisenstein series is not holomorphic at the special point, or
equivalently, the corresponding L-function is not holomorphic at the special point. We
establish our results by further exploring the Hecke action and Poincaré duality, as well
as a detailed study of the corresponding (g, Koo )-cohomology.

1.3 Overview of the article

We quickly summarize the content of each section of the article. In Sect. 2, we review
the basic structure of the group G, and the highest weight representations. In Sect. 3 we
compute the cohomology of each boundary components, and in Sect. 4 we compute the
boundary cohomology. In Sect. 5, we achieve our main goal by determining the Eisenstein
cohomology of G3(Z) for every finite dimensional highest weight representation.

2 Preliminaries

This section quickly reviews the basic properties of G, and familiarize the reader with the
notations to be used throughout the article. We discuss the corresponding locally sym-
metric space, Weyl group, the associated spectral sequence and Kostant representatives
of the standard parabolic subgroups.

2.1 Structure theory
Let Gy be the Chevalley group defined over Z of type G, and & be the corresponding
root system. Let us fix a maximal Q-split torus T and a Borel subgroup B that contains
T. The set of simple roots associated to B is denoted by A = {«1, aa} with «; and «y the
short and long simple roots, respectively. The Weyl group W of ® is isomorphic to the
dihedral group De. The fundamental weights associated to this root system are given by
y1 = 201 + ag and y» = 301 + 2a9.

Let g denote the Lie algebra g, and t C g be the Lie subalgebra associated to T. Let
® = ®1 U &~ be the corresponding root system. We know that

O = {o, a9, a1 + 9, 20 + g, 301 + o, 307 + 202}

Finally, we write p = 3 g+ & = 501 + 30ta.

Recall that a Q-parabolic subgroup is called standard if it contains the Borel subgroup B.
Let {Py, Py, Py} be the set of standard Q-parabolic subgroups, where P; (resp. Py) denotes
the maximal Q-parabolic subgroup corresponding to the simple roots o (resp. az) and
Po = B. Thus,

P =U_q, DtDyea+ Up and p2 =U_4, Dt Dyep+ Uas

where p; denotes the Lie algebra of P; and u, denotes the root space corresponding to
a. Note that the minimal Q-parabolic Py is simply the group P; N Py. Therefore, the
corresponding Levi quotients are given by

My = G2

m’

M1 = GLZ and Mg = GL2.

Let us choose and fix a maximal compact subgroup Ko, C Ga(R). It is well known that
it can be identified with SO4(RR). From now on throughout the article, let S = G2(R)/Koo,
I" be the arithmetic group G»(Z) and Sp = I'\S.
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2.2 T'-conjugacy classes of Q-parabolic subgroups

In this subsection, we determine the I'-conjugacy classes of Q-parabolic subgroups
Po(Ga, G2(Z)), which should be well known. But as we don’t know of a proper refer-
ence, a proof is given below.

Lemma 1 Pg(Ga, G2(Z)) = {Po, P, P2}.

Proof We have to show that for each standard parabolic P, Ga(Z) acts transitively on
G2 /P(Q). Since G, is semisimple algebraic group split over Q, by strong approximation,
we have

G2 (Q [ [ G2(Z) = Galhy),
p

which implies that G2(Q)/G2(Z) = Ga(Ay)/ ]_[p G2(Zy). Moreover, as Q is of class number
1, we have

P [ [P(z,) = P@y).
p

According to the Iwasawa decomposition for p-adic groups, P(Q,)G2(Zy) = G2(Qp).
Consequently, we have

PQ) [ ] G2(Z,) = GalAy).
p

Hence P(Q) acts transitively on G2(Q)/G2(Z), which implies G3(Z) acts transitively on
G2(Q)/P(Q).

On the other hand, we have the following sequence of Galois cohomology,
1 PQ — G2Q) — G2/P(Q — H'(QP) » H(Q G) — ---.

Note that P is the semi-direct product of its unipotent radical and its Levi subgroup,
which is isomorphic to either G2, or GL,. According to Hilbert’s Theorem 90 (see, e.g.
[21, Chapter III]), we have H1(Q, P) = 1. Thus, Go/P(Q) = G»(Q)/P(Q), from which the
lemma follows. ]

2.3 Irreducible representations

The fundamental weights associated to ®* are given by y; = 201 +ap and y» = 301 +2ato.
Thus, irreducible finite dimensional representations of Gy are determined by their highest
weights, which in this case are the linear functionals of the form m; y; + mgyy, with my, my
nonnegative integers. For any A = my; + mays, we set M, to be the representation
defined over QQ with highest weight A.

2.4 Kostant representatives

It is known that the Weyl group W = W(®) is the dihedral group D¢ given by 12
elements. They are listed in the first column of Table 1 and described in the second
column as a product of simple reflections s; and sy, associated to the simple roots «; and
ay, respectively. Then, we have

s1(a1) = —ay, s1(ag) =301 +a2  and  sa(e1) = o) + @9, s2(a2) = —ao. (3)

In the third column we make a note of their lengths, and in the last column we describe
the element w- A = w(X+ p) — p, where the pair (a, b) denotes the element ac; + bay € t*.
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Table 1 The Weyl Group of G,

Label w 2w) WA

Wi 1 0 (2mq +3my, my +2m;)

Wa 5 1 (my +3my —1, my +2m;)

W3 59 1 (2my +3my, my4+my —1)

Wy 515 2 (m —4, m +my—1)

Ws 5281 2 (M 4+3my—1,my;—2)

Weg 515281 3 (—m1 —6, My — 2)

w7y 525182 3 (m1 —4, —my — 4)

Wg 51525152 4 (—my — 3my —9, —my — 4)

Wg 52515251 4 (—my —6, —my — my — 5)

W10 5152515251 5 (—Zﬂ’h —3my; =10, —my —my — 5)
W11 5251525152 5 (—my — 3my =9, —my —2my — 6)
W12 515251528152 6 (—Zrm —3my — 10, —my — 2my — 6)

The Weyl group acts naturally on the set of roots. For each i € {0, 1, 2}, let A(u;) denote
the set consisting of every root whose corresponding root space is contained in the Lie
algebra 1; of the unipotent radical of P;. The set of Weyl representatives W' < W
associated to the parabolic subgroup P; (see [12]) is defined by

W= 1{weW:w(@ ) not c Aw)}.
Clearly WP0 = W and, by using the table, one can see that

P
WL = {1, s1, 5182, $15251, S1525152, 5152515251} (4)

P
W2 = (1, 59, 5281, 525152, S2515251, 5251525152} . (5)

2.4.1 Kostant representatives for minimal parabolic Pg
w1 = miy1 + myy2

= (=m1 = 2)y1 + (m1 + ma + D)y

= (m1 +3ma +3)y1 + (=mz — 2)y2

= (—my — 3my — 5)y1 + (m1 + 2my + 2)y2

= (2my + 3my +4)y1 + (—my —my — 3)yn

= (=2my — 3my — 6)y1 + (m1 + 2ma + 2)yn

<A

Wy - A
A
A
A
A

w7 - A = (2my + 3my + Yy + (—m — 2my — 4y,
A
A
A
A
A

w3 -
Wy -
ws -

Weg -

= (=2m1 — 3my — 6)y1 + (m1 + my + 1)y
= (m1 + 3my + 3)y1 + (—m1 — 2my — 4)yy

wg -
wg -

(—=m1 — 3my — 5)y1 + moyo

Wio
wi- A =myr + (—m1 —my — 3y

w12 - A = (=m1 = 2)y1 + (—m3 — 2)y2

2.4.2 Kostant representatives for maximal parabolic P4
Here, we take

21
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1 3 1
M = — = —— d M = -
14 52 2J/1+V2 and  « S

WA= mzyMl + (2my + 3mp)c™M

wo - A = (m1 + my + 1)y™M + (my + 3my — 1™
wy - & = (my + 2my + 2)y™M 4 () — 4)cM

we - A = (my1 + 2my + 2)y™M + (—mp — 6)c™M

wg - A = (my + my + 1))/Ml + (—my1 — 3my — 9)/(Ml

wio - A = moy™Ml + (=2m; — 3my — 10)™

2.4.3 Kostant representatives for maximal parabolic P»
Here, we take

1 1 1
M = - = —_ - d M = - .
2011 "1 2)’2 an K 2)’2

wi - A = myy™M2 + (my 4 2mp)e™?

v

ws - A = (my + 3ma + 3)y™M2 4+ (m1 + my — 1)ic™2
ws - A = (2my + 3my + 4)y™M2 + (my — 2)™M2

wy - A = (2m1 + 3my + 4)y™M2 + (—my — 4)cM2

wo - A = (m1 + 3ma + 3)yM?2 + (—my — my — 5)M2

win - A = my™ + (—my — 2my — )™

For i = 1, 2, we also write
w A = a;(, w)y™Mi+ b, wieMi. (6)
The symmetry of the coefficients can be explained by the following lemma.

Lemma 2 Let P be a parabolic subgroup of Go with Levi subgroup M, Ap be the central
torus of M and Sp be the unique maximal torus of the semisimple part of M contained in
T. Let Np denote the unipotent radical of P in Gy and wg, (resp. wa) be the longest Weyl
element in W (resp. Wa). Then, the following are true.

(a) The map w + W' := wywwg, defines an involution on WY and £(w) + ¢(w') =
dim Np.

(b) WA+ p)—pla, =wh + p) — plap

() WA+ p)—pls, + W+ p) = pls, = —2pls,.

Proof The proof is the same as in Schwermer [20, Section 4.2] by noticing the fact that
the Weyl group W is self-dual, namely wg, = —1. ]

2.5 Boundary of the Borel-Serre compactification

Let Pg(G, I') be the equivalence class of parabolic subgroups defined over Q, where two
parabolic subgroups are equivalent if and only if they are conjugate under action of I". In
general, the boundary of the Borel—Serre compactification dSr = Sr \ Sr is a finite union
of the boundary components dp for P € Pgy(G,T'), i.e.

ISk = U p, 7)

PePg(G,T)
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where
dp = (' NP(R)\P(R)/(P(R) N Koo)-
This decomposition (7) determines a spectral sequence in cohomology abutting to the
cohomology of the boundary
= P HUop M) = H(0Sr, M) (8)
prk(P)=p+1
where prk(P) denotes the parabolic rank of P (the dimension of the maximal Q-split torus
in the center of the Levi quotient M of P).
In our case, as the Q-rank of G is 2, this spectral sequence is simplified to a long exact
sequence (of Mayer—Vietoris) in cohomology of the following form

o= HA@Sr, My) — HI(3p, My) @ H(9p,, My) — H(0pyy M) > -+ (9)

by noticing Lemma 1. We will use this long exact sequence to describe the cohomology
of the boundary of the Borel-Serre compactification.

2.6 The theorem of Kostant
Let P = MN be the decomposition into its Levi subgroup M and unipotent radical N.
Then, dp is a fiber bundle over

M = (' N M(R)\M(R)/(M(R) N Koo)
with fibers isomorphic to Nt := (I' N N(R))\N(R). Hence, we have

H*(dp, M) = H*(SY%, H* (N, M),
here we use H*(NT, M) to denote the corresponding sheaf by abuse of notation. By the
theorem of Nomizu [15], we know

H*(Np, M) = H*(n, My).
By the theorem of Kostant [12], we get

Hq(nr M)L) = @ Nw-)u

weWP:t(w)=q

where N,,., denotes the irreducible representation of M with highest weight w - A. In
conclusion, we get

Hi(op, M) = @ HI "™ (Y, V).

wew?P
Note that, when there is no ambiguity, we also use the old notation M,,.; to denote ,,.;.

2.7 Cohomological dimension
For any discrete group H, set the virtual cohomological dimension of H, denoted as vedH,
to be

vedH = min{cdH' : [H : H'] < o0},
where cdH' refers to the cohomological dimension of H'. Now, using the compactification

they had introduced, Borel and Serre showed in [2] that for any semisimple group G and
its arithmetic subgroup H:

vedH = dim G — dim K — rankgG,

where K is the maximal compact subgroup of G(R). In particular, dim Gy = 14,
dim SO4(R) = 6 and rankgGa = 2, thus we have vedGa(Z) = 6. As a consequence,

~

H1(Sp, M) = 0 for all ¢ > 6 for any coefficient system M of T
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Remark 3 It is interesting to note that, for any Q-split semisimple group G, we have
vcdG(Z) = dim N = max £(w),
wew

where N is the unipotent radical of any Borel subgroup and ¢(w) is the length of w. Indeed,
the first equality follows from the Iwasawa decomposition, while the second one follows
from theory of Weyl groups. Note that this does not hold in general. For example: when
G is Q-anisotropic, vedG(Z) equals to dim G — dim K, which is not the maximal length of
Weyl elements.

3 Cohomology of the boundary components

The cohomology of the boundary is obtained by using a spectral sequence whose terms are
expressed by the cohomology of the faces associated to each standard parabolic subgroup.
In this section, we establish, for each standard parabolic P and irreducible representation
M, of the Levi subgroup M C P with highest weight v, a condition to be satisfied in order
to have non-trivial cohomology H*(SM, M.,). Here, M, is the sheaf on SM given by M,,.

3.1 Minimal parabolic subgroup

We analyze the parity condition imposed to the face associated to the minimal parabolic
dp,- As mentioned, the Levi subgroup of Py is the two-dimensional torus My = G2,. The
elements lying in E := Mo (Z) N K must act trivially on the representation M, in order
to have nonzero cohomology. By using this fact, one can deduce the following

Lemma 4 Let v be given by my1 + myy. If m; or m} is odd tﬁfn the corresponding local
system M, on SIIYIO is cohomologically trivial, that is H '(Sll\-/lo, M) =0.

Proof According to [10, Prop 4.3], we have H'(SIIYIO, M) =fi-1'(SIIYIO, M,)E, where SIIYIO
denotes the locally symmetric spaces associated to My. As S?AO is simply a point, all the
higher cohomology vanishes. It is clear that & = (Z/27)? and for each £ € E the action
on M is given by v(§) € {—1,1}. Thus, if there exists £ € E with v(§) = —1, then
H 0(SMO, MU) = 0. On the other hand, since y1, y» forms an integral basis for X*(Mp) :=
Hom(Mo, Gr), there exists £ € E with v(§) = —1if m] or m, is odd. This completes the
proof. o

Note that every v will be of the form w - A for w € WW. We denote by W' the set of Weyl
elements w such that w - A do not satisfy the condition of Lemma 4.

Remark 5 For notational convenience, we simply use 9; to denote the boundary face dp,
associated to the parabolic subgroup P; and the arithmetic group I' for i € {0, 1, 2}.

3.1.1 Cohomology groups of 3y
In this case H‘I(SII\HAO, M,.2) = 0 for every ¢ > 1. The Weyl group WP = W and the
lengths of its elements are between 0 and 6 as shown in Table 1 above. Thus,

Hi(@o, My) = @ HT (S, M)
wewro
= P HGE" M),

weWwPo:¢(w)=q
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Therefore, for 0 < g < 6,

H(0, M;) = HO( M)

H' (80, M;) = H"(sF MWZ 2) @ HO(SYO, My, 1)

H?(80, M3) = HO(SP°, M) @ HO(SPO, Mg

H3(80, M3) = HO(S{, M) @ HO(SPO, Miy,.)

H*(80, M3) = HO(SY, Miug.0) @ HO(SP®, Miy..)

H5(30, M;) = °(sM° Moungs) ® HOSY®, Moy, 1)
H°(S

HO(3, M) = T Mo, Mupn)

and for every g > 7, the cohomology groups H4(dy, M) = 0.

3.2 Maximal parabolic subgroups

In this section, we study the parity conditions for the maximal parabolics. Let i € {1, 2},
then M; = GL; and in this setting, Koo N M;(R) = O3(R) is the orthogonal group and
I'm; = GL2(Z). Therefore,

SP' = GLy(Z)\GL2(R)/O(2)R”

We also consider the following double cover of SIIYH,

~

SH = GLo(Z)\GLa(R)/SO2)RX,

which is isomorphic to the locally symmetric space associated to M;.
Let i be 1 or 2. Recall from (6) that, for w € WP, w - & = a;(A, w)yMi + b; (%, w)xM

Lemma 6 Ifa;(%, w) is odd, or equivalently, b;(\, w) is odd as they are congruent modulo
2, we have H'(SIIYI", /’\\/ldw.k) = 0. Moreover, if a;(,, w) = 0 and b;(), w)/2 is odd, then
H.(SII\‘/[i: MW»A) =0.

Proof The proof here follows the proof of Lemma 4 closely. According to [10, Prop 4.3],
we have H'(Sllyh, /\A/TW.)\) = H'(Sll\-/[‘, MW.A)EI', where E; = M;(Z) N K. Note that M; can
be identified with GLj, and Ko, N M;(R) equals to O, (R), hence E; can be identified as
-1 0 ™M~
GLy(Z) N Oz(R). For the element ( 0 1) € E,, the action on H'(Sll\—/[‘, M,) is given
by (—1)%®*"), hence we get the first conclusion. On the other hand, consider the element
-10 M O~
01 € &, whose action on H'(SIIYI‘, M,) is given by (=1)2i*M)/2 when a; (A, w) = 0.

This completes the proof. O

Note that, as a representation of M; = GLy(i = 1, 2),

bi(hw)—a;(},w)

My = Sym”‘(k MY @ Deti, (10)

where V' denotes the standard representation of GLy. Let B C M; be a standard Borel
subgroup and N be its unipotent radical with n its Lie algebra. Then for i = 1, 2, we have
the following exact sequence,
HO(SE®, HO(n, Myy3)) <> HE(SRY M) — HY ST, Muys)
— HOSYO, H(n, Myy).
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Here, by abuse of notation, we use H O(m, My,.;) and Hl(n, M,,.,) to denote the corre-
sponding sheaves. In view of Lemma 4 and (10), we get

HOSMO, Hi(m M) =0, if 2 ™) ;”i(A’ ") _ 0(mod 2),
HO(SMO, HO(n, M,,..)) = 0, if bi0 w) ;‘”(A’ ") _ 1 (mod 2).

Consequently, we have

) ) (A, —a;(A,
B, My = HUS, My, i P80 g nog ), )
HASM, My = HASM, My, i P80 og )

This fact will be extensively used in the next section for the computation of boundary

cohomology.
Throughout the paper, we set

Smta = HNGLy(Z), Sym™ V) = HNGLy(Z), Sym™V ® Det). (13)

It is well known that H®(GLy(Z), M) = HC'MSP(GLZ(Z), M) for finite dimensional repre-
sentation M, hence it is safe to replace “!” by “cusp” in (13). Consequently, by Eichler—
Shimura isomorphism, the space S,,+2 can be identified with the space of holomorphic
cusp forms of weight m + 2.

Remark 7 For notational convenience, in what follows we will denote the set of Weyl
elements for which H ’(SII:Ai, M) #0by W'

In the following subsections, we make note of the cohomology groups associated to
the boundary components 91 and 92 which will be used in the computations involved to
determine the boundary cohomology in the next section.

3.2.1 Cohomology of 9,

In this case, the Levi M; is isomorphic to GLy and therefore Hq(Sll\a/h, MW.A) = 0 for
every ¢ > 2. The set WP1 = {wy, wo, wy, ws, wg, wig} where the length of elements are,
respectively, 0, 1, 2, 3,4, 5. Thus,

H(, M) = € HI'(SY, M)
wewr1
= HI(SM, My) @ HIHSY, Miy,) @ HI72(SM, Moyy) (14)
®HI3(SY, Muyga) & HTH(SE, Muga) ® HT (S, M)
Therefore, for 0 < g < 6,

H3, My) = HO(SP, M)
H'(3, My) = HY(SP, M) @ HOSY, My, 1)
H(01, M) = HY(SM, My,2) @ HO(SYY, My, 1)
H3(81, Mj) = HY(SY, Miy,) @ HOSY, Miyg.r)
H* (01, M) = H'(SM, Myyga) @ HO(SY, Mg )
H®(91, Mj) = HY(SP, Mugs) @ HOSE, Mupyga)
HO(91, M;) = HY(S", Mugr)

and for every g > 7, the cohomology groups H4(d;, M,) =o.
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3.2.2 Cohomology of 3,

In this case, the Levi My is isomorphic to GL; as well and therefore H' q(SMz, MW.A) =0
for every g > 2. The Weyl group WP = {wy, ws, ws, wy, wo, w11} where the length of
elements are, respectively, 0, 1, 2, 3,4, 5. Thus,

H(3p, My) = @ HT (S, M)
weWP2
= HI(S™M2, My) @ HT (S, Miyy) @ HI7XSY2, M)
@ HI3(SM2, M,y,0) @ HITHSY2, M) @ HIP(SM2, My, ).
(15)
Therefore, for 0 < g < 6,
H 8, My) = HO(SY2, M)
HY (8, M;) = H'(SY2, M;) @ HO(SY2, M.z
H2 (9, M) = H'(S)2, Miyy.) @ HO(SYN2, Miys.z)
H3 (99, My) = HYSY2, Muyg) @ HOSE2, Moy, 1)
H*(00, M;) = ( 2, Mo, 1) ® HO(SY M2 Mion)
HP (99, My) = HY S, Mug) @ HOSY2, Moy, 1)
HO @y, My) = HYSY2, Moy, )
and for every g > 7, the cohomology groups H7(dy, M;) =o.

4 Boundary cohomology

In this section, we discuss the cohomology of the boundary by giving a complete descrip-
tion of the spectral sequence. The covering of the boundary of the Borel-Serre compact-
ification defines a spectral sequence in cohomology.

Ef’q = @ H4(0p, MA) = Hp+q(asr, MA)
prk(P)=(p+1)

and the nonzero terms of E’f’q are for
P9 e{in0<i<1,0<n<6}. (16)

More precisely,

2
V! = P H 0, M)

i=1
—@[ @ qu Sr‘ ;ka):|
= wewPi
E}? = HY(3p, M;)
= P HUSY, M) (17)

weWwPo:t(w)=¢

Since Gg is of rank two, the spectral sequence has only two columns namelyE?’q, Ei’q and
to study the boundary cohomology, the task reduces to analyzing the following morphisms

0,
dq

E¥ 2, g (18)
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where d?’q is the differential map and the higher differentials vanish. One has
EJ? .= Ker(dy?) and Ey7:= Coker(dy?).

In addition, due to being in a rank 2 situation, the spectral sequence degenerates in

degree 2. Therefore, we can use the fact that
0— Ey7' — HY(3Sp, M) — EY? — 0 . (19)

In what follows, we have to treat nine different cases separately, namely when m; (resp.
my) is zero, nonzero even, and odd. This is due to the parity conditions established in
Sect. 3 which has major influence on the cohomology.

4.1 Case 1: m; = 0 and m; = O (trivial coefficient system)
Following Lemma 4 and Lemma 6 from Sect. 3, we get

—0 —1 —
W' = {wi, we, wz, wia}, W ={wpwswes} and W = {wy, ws, wy}.

By using (17), we record the values of E?’q and Ell’q for the distinct values of g below.
Note that following (16) we know that for g > 7, E} = 0 fori = 1, 2.

HO(SIP‘/II, Me-k) (5) HO(SIIY[ZJ M&A), q= 0
HYSEY, M) @ HYSY?, Muga), g =3

Hl(si\‘/h:ﬂws-x) @Hl(SII\‘/IZ’ MVWT)»)’ q=>4

0, otherwise
and
HO(SYO, M,..,), g=0
HOSY, M) @ HOSE, My,), g =3
EY = . 1)
HOSYY, Muyya), q="6
0, otherwise

We now make a thorough analysis of (18) to get the complete description of the spaces
Eg’q and E;’q which will give us the cohomology H9(dSr, M;). We begin with g = 0.

4.1.1 Atthelevelq =0

Observe that the short exact sequence (19) reduces to
0 — H°(@Sr, M;) — EY° — 0

To compute ES’O, consider the differential d?’o : E?’O — Ell’o. Following (20) and (21),
we have d?’o : Q ® Q — Q and we know that the differential d?’o is surjective (see [6]).
Therefore

Eg’o = Ker(d?’o) =Q and Eé’o = Coker(d?’o) =0. (22)

Hence, we get

H°@Sr, M;) = Q.
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4.1.2 Atthelevelq =1
Following (22), in this case, our short exact sequence (19) reduces to

0 — H'(3Sr, M) — EX' — 0

and we need to compute Eg’l. Consider the differential d?’l : E?’l — Ei’l and follow-

ing (20) and (21), we observe that d?’l is map between zero spaces. Therefore, we obtain
Eg’l =0 and E21’1 =0.
As a result, we get
Hl(asr, ka) =0.
4.1.3 Atthelevelq = 2
Following the similar process as in level g = 1, we get
EX*=0 and E}*=0. (23)
This results into
H*(3Sr, M;) = 0.
4.1.4 Atthelevelq =3
Following (23), in this case, the short exact sequence (19) reduces to
0 — H3(3Sr, M;) — EX* — 0

and we need to compute Eg’g. In view of (12), consider the differential d?’s : E?’g — Ei’g
and following (20) and (21), we have

E® = HS{", My, 2) @ H (S, My, ), and

Im(d)?) = Hi (S, Miy,) @ HEg(SY2, Mus.) = Q& Q.
Therefore,

EY*=0 and E}®=0. (24)
This gives us

H3(3Sr, M) = 0.
4.1.5 Atthelevelq = 4
Following (24), in this case, the short exact sequence (19) reduces to

0 — H*@3Sr, M;) — EX* — 0

and we need to compute Eg’4. Consider the differential d?A : E?A —> Ell’4 and
following (20) and (21), we have EY* = HNSM, M,,..) @ H(SY2, M,,.). Since
Im(d>*) = HLE (SY, Muygs) ® HL (SM2, My,.2) = {0} by (11). Therefore,

EY*=0 and E*=0. (25)
and we get

H4(aSr, MVA) =0.

21
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4.1.6 Atthelevelq =5
Following (25), in this case, the short exact sequence (19) reduces to

00— H4(8Sr, ./{/IVA) — ES’S —0 ,

and we need to compute Eg’5. Consider the differential d?’s : E?’E —> E11’5 and follow-
ing (20) and (21), we have d?’s : 0 —> 0. Therefore,

EX®=0 and E}°=0. (26)
and we get

HS(BSF, ./’\-/lv)L) =0.

4.1.7 Atthelevelq = 6
Following (26), in this case, the short exact sequence (19) reduces to

00— H6(85r, /\7;») — Eg’6 — 0 ,

and we need to compute Eg’6. Consider the differential d?’G : E?’6 — Ell’6 and follow-
ing (20) and (21), we have d?’6 : 0 —> Q. Therefore,

EX*=0 and E°=0Q. (27)
and we get

H6(35r, ka) =0.

4.1.8 Atthelevelq =7
Following (27), in this case, the short exact sequence (19) reduces to

0— Q— H’(dSr, M;) — EY” — 0 ,

and we need to compute Eg’7. Consider the differential d?’7 : E?’7 — Ei’7 and follow-
ing (20) and (21), we have d?’7 : 0 —> 0. Therefore,

Eg’7 =0 and E;’7 =0.
and we get
H’(3Sr, M;) = Q.

Hence, we can summarize the above discussion as follows :

Q ¢g=07

H7(3Sp, M) = .
(0Sr ») 0, otherwise

4.2 Case2:mq =0, m; # 0, m; even
Following Lemma 4 and Lemma 6 from Sect. 3, we get

—0 —1 —
W™ = {wy, we, wy, wiz}, W ={wy, wg, we, wio} and W = {wy, ws, wy}.

By using (17), we record the values of Ef’q and Ell’q for the distinct values of g below.
Note that following (16) we know that for g > 7, E;’q =0fori=1,2.

Z?(Sﬁ Me.), 7=0

(S, Ms), N g=1

% Hi(Sﬁl, Muys) @ H'(Sp%, Musa), - q =3 ,
HY(Sp, /\jwé.x) ®HNSE: My,n), g=4
HY(SY, Moy, q=6
0, otherwise
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and
HO(SYO, M..5), g=0
pha _ | HOSP Mugs) ® HOSP, M), q=3
! HO(SIIYIO: MW12~A)} q= 6
0, otherwise
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Having a thorough analysis of (18) as in previous section, we get the complete description

of the spaces Eg’q and E;’q which will give us the cohomology H%(3Sr, M) described as

follows :

H1(3Sr, My) =

Hgl(slﬁ/h; M) = Spiyi2,

Hgl(slﬁdl; M) ® H,I(Srf/[z; Mus ) = Somy+a ® Sz t6
HY(SH, Mugr) ® HL(SY?, Moy 3) = Somy+4 ® S3mp+60
Hgl(slr\‘/h: MWH)')L) = sz+2;

0,

Here, Si is defined as in (13). We conclude the above discussion as follows:

Hq(asr; M}») =

Sm2+2) q= 1,6
Somy+4 D S3my+60 4 =3, 4
0, otherwise

qg=1
q=3
q=4
q==6
otherwise

Remark 8 The deduction of boundary cohomology in remaining cases is completely anal-

ogous to the cases considered in Sects. 4.1 and 4.2. Hence, we simply state the final formulas
~ =0 1 —2

ofEf’q, Ell’q and H9(dSr, M, ), along with the Weyl representatives W', W and W for

all the remaining seven cases.

4.3 Case3:m; =0, m; odd

w°

0,9

Lq
El

H1(3Sr, My)

—1 —
(w1, wa, wo, w11}, W = {wo, wa, ws, wg} and W = {ws, wo, wi1}.

HY(sY! L Y Muy) @ HY(SY?, My i), q=2
Hl(s L M), q=3
HYSY?, M) N N q=14
(s s M) @ H SP™ Mugn) @ HOSY, M), =5
HYSE?, My, 1), q==6
0, otherwise
HO( r‘ ’ sz 2) = Q g=1
HO(SF ,/Vlm 2) = q=2
HO(SF ’MWQ 2) g@: q=4
HOSY, My ) Q. q=5
0, otherwise
Hl( L ,MwZA)GBHI(S 2, Mg i) ® Q= Spy3 ® S3mpr5 @ Q. g =2
H, (5 W4 2) = Somyta q=3
H, (S Mw6 2) = S2m2+4, q=4
Hl( r Ing A)@Hl(s Zr/\/lW9 ANeQ= Sm2+3$53m2+5 eQ q=>5
0, otherwise

21
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4.4 Case4:mq #0evenandm; =0

—0 —1 —2
W' = {w,ws, w7, wia}, W ={wi,wy,ws} and W = {wy, ws, wy, wi1}.
HOSM, M), _ q=0
<le M) @ HY(SY?, M), g=1
EO;‘I — Hl( MW4)\-)®H1(SF :MW5A) q=3
! Hl(sr ’MW6)L)®H1(SI‘ ;MW7A) q=4
Hl(sr ’Mwn)»): q:6
0, otherwise
HO(SA#“, My=q ~ q=0
b _ HO(S v ’MWG DOHUSM, M, ) =Q g=3
! HOSY, M) = Q q="6
0, otherwise
H (Y MA) = Sim+2 g=1
- v (S W4 A)@Hl(sr 2’ MW5 A) m1+4 @52m1+6’ q= 3
Hq(asl'" M)») = y ( r : w6 A)@Hl(sr ) wy- A) —Sm1+4 @52m1+6: q:4'
M2
( r w11 A) = Sm1+2: q= 6
0, otherwise

4.5 Case 5: m(# 0) even, my(# 0) even

0

W’ = (w1, we wr, w1z}, W' = {wi, wa, we, wio}  and
W = {wi, ws, wy, w1}
HY(SP, M) @ HY(SY2, M), q=1
, (s s Muya) @ Hl(s}“% Muys2) a=3
BV = HUS, Mg @ HUSE, Myya), q=4
(I"Mwlok)@Hl(r ern)») q==56
0, otherwise
HO(SY, M) = @ q=0
g = JHOSE M) @ HOSE, Mura) 2@ =3
HOSE, My,0) = Q q==6
0, otherwise
HA (s %)@H}(S%, M) ® Q= Spy12 ® Sy +2 @ Q q=1
" l ( Mlm 1) @ Hl(sr‘ ’ Mws 2) = Sy +2my+4 D Somy +3my+6s q=3
HY(3Sr, M;) = | H; (S s Mug.r) ®H! (Sr , MW7 2) = Sy romyta © Som43myrer 4 =4
Hl(r erloA)eaHl(r eru)»)@Q sz+2@sm1+2@(@) q==6
0, otherwise

4.6 Case 6: mq(s# 0) even, m; odd

—1
W™ = {wy, wa, wo, w11}, W = {wn, wa, we, wg}

—
and W —{wl, w3, Wo, Wi1}.

HY(SP2, M), qg=1
(S sz A)®H1(Sr ;MW3A) q=2
0 (SF ’ %w;; )») q= 3
B = (le Mg, a=4
(S ng A)®H1(Sr s M), q=5
( MWH )») q= 6
0, otherwise
HOSE, M), q=1
) HO(SE, M), q=2
BT =1 HOS™, M), q=4
HOSY, My ) =Q  q=5
0, otherwise
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HI(3Sr, M,) =

4.7 Case7:mq odd,

W’ =

049 _
E" =

Lg _
EY =

HI(3Sp, M;) =

4.8 Case 8: mq odd,

09 _
EM =

Lg _
E" =

HI(3Sp, My) =

4.9 Case 9:m; odd,

my; =0

—
{ws, ws, wg, wig}, W~ =

m3(# 0) even

—1
{ws, ws, wg, wig}, W =

(=]
w2
e
2
N
d
MR IPa

(
( ~

. (s?“z, Mopg.1) =
(S MW7 A)
(
A

r - Mwlo A)

m, odd

ng )»)EBH (S]" )ng)\)
Sm1+2;

ceCee

r ],M:A) = Smp+25  —
Sy M M) @ HYHSE? Muvsn) = Spntmy+3 D Sy +3my+50

Hll( 2 Ml) m1+2;
Hll(s sz A)@H (Sr )MW3 A)
Hll (S MW4 )L) Sm1+2m2+4;
H} (5 Mw6 = 5m1+2m2+4,
(
sy

{ws, ws, w7, wo}

{w1, wa, wg, wio}

= {ws, ws, w7, wo}.

Il
S N S N

q
q
q
q
q

q==6

otherwise

q=>5
otherwise

LS IS IO
Il
N

Somy+3my+6
S2m1+3m2+6r
S MW3 A)@H (Sr )ng A)

Sm2+2;

and Wl =

S +my+3 D© Sy +3ma+5

Sy +my+3 D Sy +3my+5

Page 17 0f30 217

qg=1
q=2
q=3
q==4
q=>5
q==6
otherwise

{wa, wg, wio}.

Hl( L s Miy) @ HY (P, Moy i), q=2
(SI‘ %, Mws ") qg=3

Hl([‘:MW7A)r q:5

HY S, Muga) @ HOSY, Muga) @ HUSE™, Muys), a=5

Hl(sr‘ ’Mwlok) q==56

0, otherwise

HOSP, Mus) 2@ q=1

HO(SI‘ °, MW5~)») =Q q=2

HOSY, Mug ) ZQ  q=4

HOSY, M) 2Q  g=5

0, otherwise

Hll( r ;sz A)®H (Sr ;MW3 A)GBQ Sm;+3®sm1+5 69@;

Hgl (SM Mws )L) = 52m1+6:

H[I(SM MW7 )») 52m1+6;

Hll( r JMWg A)EBHl(Sr zMW9A)®Q Sm1+3®5m1+5 EBQ;

0,

S +my+3 D© Sy +3ma+5

q=2
q=3
q==4
q=>5

otherwise

qg=1
q=2
q=3
q==4
q=>5
q==6

otherwise

By checking the parity conditions for standard parabolics, following Lemmas 4 and 6, we
see that W' = ¢ for i = 0, 1, 2. This simply implies that
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H1(3Sr, My) =0,
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vq.

4.10 A summary of the boundary cohomology of G>(Z)

We now end this section by summarizing the results obtained about the boundary coho-

mology above in the form of following theorem which will be our base for further explo-

ration on Eisenstein cohomology in Sect. 5.

Theorem 9 The boundary cohomology of the locally symmetric space Sy of the arithmetic

group I := Gy(Z) with respect to the coefficients in any highest weight representation M,

with A = mi\1 + maAy, is described as follows.

(1) Casel:m; =0 = my.
H(3Sr, M;) =

(2) Case2:my =0, my(#
H1(3Sr, M) =

3)

HY(3Sr, M) =

(4)

Case 4 : m1(# 0) even,

H1(3Sp, M;) =

Q} q = 0: 7

0, otherwise

0) even.

sz-‘,—Z) q = 11 6
SZm2+4 @D 53m2+6: q=34
0, otherwise

Case 3 :my; =0, my odd.

sz+3 @ 53m2+5 @ Q} q = 2; 5

(5) Case 5 : mi(# 0) even,
H(dSr, M;) =

(6) Case 6: my(# 0) even,

H1(3Sr, My) =

Case 7 : m1 odd, my =

H1(3Sp, M;) =

52m2+4u q= 3,4

0, otherwise
my = 0.

Sm1+21 q= 1,6

Sm1+4 ©® 52m1+6: q = 3; 4

0, otherwise
my(# 0) even.

Sm2+2 @ SWI1+2 b Q} q= 16

Sm1+2m2+4 @ 52m1+3m2+6, q = 3) 4

0, otherwise
my odd.

SWI1+2; q = 1; 6

Sy +my+3 D Sy +3my+5 4 =25

Sy +2ma+4o q=734

0, otherwise
0.

Sm1+3@Sm1+5®Q) q=25
q=34
otherwise

Somi+6

0}
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(8) Case 8 : my odd, my(# 0) even.
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Sm2+2; q — 1, 6
H1(dSr, MVA) _ Simy+mo+3 D Smy+3mots5 4 =25

52m1+3m2+6, q= 3,4
0 otherwise

(9) Case 9:my odd, my odd.

H1(3Sr, M;) =0, Vq.

5 Eisenstein cohomology

In this section, by using the information obtained about the boundary cohomology of
I' := Ga(Z), we will determine the Eisenstein cohomology with coefficients in M. Let us
recall that, at any degree g, the Eisenstein cohomology HZiS(Sr, M,) s, by definition, the

image of the restriction map r : H4(Sr, MVA) — H1(3Sr, M,).

5.1 Main result on the Eisenstein cohomology of G,(Z)

The following is one of the main results of this article that gives both the dimension of the
Eisenstein cohomology together with its sources—the corresponding parabolic subgroups.
is (Sr, ./T/l/)h) is
defined over QQ as M » is defined over Q. But in the theorem stated below, we will consider

Indeed, it is clear from the definition that the Eisenstein cohomology H}

HEp, (Sr, M » ® C) instead in certain cases. The reason is that, our method yields a basis
of Hp, (Sr, M ® C), but since the method is transcendental, the basis we get is not
necessarily defined over Q. Let ¥; be the canonical basis of normalized eigenfunctions of
Si.Fori = 1,2, weset k;(A, w) = a;(A, w) + 2, where a;(), w) is the constant defined in (6).
Then by the Eichler—Shimura isomorphism, for i = 1, 2, we have

HYSE, My, ®0) = @ HNSE, Muwa @ O),
VEZk; (3,w)

where the C-vector spaces H!1 (Sll\«/[i, ./F\;l/wm ® C)(y) are of dimension 1. Set
Vi =¥ € S : L(1/2,nY) # 0},
Theorem 10 (1) Case 1:m; = 0 = m».

Q 4q=0

HZ (S, M) = .
is(Srs M) 0, otherwise

(2) Case2:my =0, my(# 0) even.

_ Somy+4 ® S3my+er g =4
Hgis(SF; M)\.) = Sm2+2) q= 6

0, otherwise

(3) Case3:my =0, my odd.
Somy+4 qg=+4

Hgis(sr’ M)L) = SSm2+5 D Sm2+3 (&) Q, q = 5
0, otherwise

21
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(4) Case 4 :mi(# 0) even, my = Q.

~ Sm1+4 D S2m1+6, q= 4
Hgis(SFJ Ml) = Sm1+2) q= 6

0, otherwise

(5) Case 5 : my(#£ 0) even, my(# 0) even.

~ Sm1+2m2+4 @ SZm1+3m2+6; q = 4
HE (St Mo) = { Sipr2 ® Sy 12 © Q q==6
0, otherwise

(6) Case 6: my(# 0) even, my odd.

Sm1+2m2+4: q= 4
~ S S , =5
Hgis(sr, M,) = my+ma+3 D Smy+3my+5 q
Sm1+2’ q= 6
0, otherwise

(7) Case 7:m odd, my = 0.
@ H'GY Mya®O®y), q=3

VEVom, +6

~ HYSM M, @ C)(y), q=4
Hgis(sl“, M)\. ® (C) = wf)%nl#»ﬁ ! ( r b )(Ip) 1

Sm1+3 b Sm1+5 (&) C, q= 5

0, otherwise

(8) Case 8: my odd, my(# 0) even.

52m1+3m2+61 q= 4
~ S S : =5
Hgis(sr, M)L) _ m1+ma+3 @ m1+3ma+5. q
SWI2+2’ q==6
0, otherwise

(9) Case 9:my odd, my odd.

HE(Sr, M) =0,  vq.

Now, the proof of Theorem 10 will occupy the rest of the paper, and will follow in several
steps. The proof closely follows the strategy developed in [9] (see also [13], [17] and [18]).
Since our method is transcendental, we will consider the module M 1 ® C, from now on
we will simply write it as M AC-

5.2 General strategy
We now briefly describe the strategy which will be carried out in detail in the rest of
this section. As mentioned above, our approach relies on the fact that the Eisenstein
cohomology spans a maximal isotropic subspace of the boundary cohomology with respect
to the Poincaré dual pairing (see Theorem 11). Indeed, certain cohomology classes are
constructed using the theory of Eisenstein series, so we are done if the cohomology classes
thus constructed spans a maximal isotropic subspace.

More precisely, let w be a harmonic differential form that represents certain cohomology
class in the component H,q (9;, M 1)@ = 0,1, 2) of the boundary cohomology. By mim-
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icking the construction of Eisenstein series, we get a family of differential forms E(w, 0)
on Sp, where 0 is a certain special parameter, to be discussed in Sect. 5.4. If E(w, 6) is
holomorphic at a certain 6, we get a non-trivial harmonic form E(w, 6,,) that represents
a certain cohomology class in H4(Sr, M »,C)- By restricting the harmonic form back to
the boundary, we get a non-trivial Eisenstein cohomology class in Hgl.s(asr, M »,C)- This
geometric formulation is closely related to the theory of (g, K~ )-cohomology and the clas-
sical Eisenstein series. In particular, the restriction of the cohomology class E(w, 6,,) to
the boundary can be computed using the constant term of Eisenstein series. On the other
hand, if the differential form E(w, 0) has a simple pole at 6, (or along some hyperplane that
contains 6,,), by taking residue, we still get a differential form E'(w, 6,,), whose restriction
to the boundary also gives a certain Eisenstein cohomology class.

The study of Eisenstein cohomology is basically divided into two parts. In the first
part, we study the Eisenstein cohomology classes that come from maximal boundary
components, that is, those constructed from the cohomology classes in H(9;, M »,c) with
i = 1, 2. In the second part, we study the Eisenstein cohomology classes that come from
the minimal boundary component, that is, those constructed from the cohomology classes
in H; (3, M, ).

5.3 Poincaré duality
For simplicity, we write

H(Sr, Mic) = H} (31, Mic) ® H(3,, M,c),

According to the Manin—Drinfeld principle [14], the Hecke eigenvalues associated
to the space H,q(BSr, ./\F;l,;»,(c) are different from those associated to the remaining
part of H(dSr, MA,@). Hence, there is a canonical Hecke equivariant section from
H,q(BSr, /\FZ)L,C) to H7(dSr, /\FZ;L,C). In particular, we can safely regard H,q(BSr, /Cll)h,(c) asa
subspace of H1(dSr, MA,C). Moreover, we set

H/ (St Mi,¢) = Hp, (St My,c) N HY(3Sr, M;,c).

We shall need the following theorem from [10, Proposition 6.1].

Theorem 11 Under the Poincaré dual pairing -, -)
HA(3Sr, My, c)xH~1(3Sr, My,c) > C H(3Sr, Mj,c) x H/~*(@Sr, My,c) > C,

we have
~ - — - - .
HE (St Myc) = Hp ' (S, Moo)t H (St Myc) = H, .2 (St Mot

In particular, the Eisenstein cohomology is a maximal isotropic subspace of the boundary
cohomology under the Poincaré duality.

Let A (resp. Ay) be the ring of adeles (resp. finite adeles) of Q and Ky = ]_[p Ga(Zp). Tt
is clear that the Poincaré dual pairings are Hecke equivariant, hence Theorem 11 can be
further refined by considering the Hecke action. Let 7119 be the spherical Hecke algebra
of Go. Now let i = 1, 2. The inner cohomology H(9;, M}, c), considered as a 'HKf module,
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can be decomposed as

f@0 M) = @ HTUSH M)

wewPi

B P m@HT ) my K w0 € M) (p).

wewPi n:noo®nf

Here, 7 denotes a cuspidal automorphic representation of M;(A) with unramified 7y and
mo() denotes the multiplicity of . A cohomology class in H?(d;, M, c) is said to be
of type (7, w) if it comes from the summand H W) (my, KM, 700 @ Mys,0)(rtr) in the
above decomposition.

Now let $1, B2 € H'(9; /\F;l},(c) be the cohomology classes of type (1, w1) and (772, wy),
respectively. Recall that the Poincaré dual pairing is also Hk, equivariant, hence if 77,7 #
7o, or equivalently, 71 # my by strong multiplicity one, then (1, f2) = 0. On the
other hand, for dimensional reasons, (81, B2) # 0 only when €(w1) + £(wy) = 5, which is
equivalent to saying that w is mapped to wy under the involution introduced in Lemma 2.
In conclusion, we get the following lemma.

Lemma 12 Leti = 1,2 and p1, p2 € H(9; MA,C) be cohomology classes of type (1, wy)
and (7o, wy), respectively. Then, (B1, B2) is nonzero only if 11 = 7y and wy = w’2.

Let WEi = {(w e WP : £(w) = £(w)}). In view of this lemma, we may regroup
Hp(9;, M »,c) using the Weyl elements w € WE" as follows:

H 0 Mo = @ @ H 0 Mo, w),

wew?i ¥ E€Xk6.w)
with
HY @ Mo, o) () ), w) = BN, Mo, 0)())9)
oH, (S, Mo )'9)
where 7V denotes the automorphic representation associated to the Hecke eigenform 1.

By the multiplicity one theorem, dim H, 1H(W)( /ﬁw A, (c)((n )Kf) = 1 for any (nfw, w).

Hence, by combining Theorem 11 and Lemma 12, we get

Proposition 13 The Eisenstein cohomology H,,'Eis(asr, M 2,C) decomposes as
Hpi(Srs Mi,c) = Hipy (01, M) @ Hipi (92, M),

where

Heg@ M) = @ @B Hiu0s Mio) ()Y, w)

wewbi VEZk0.m)
with H ', (3;, M A,C)((nf‘/’)l(f", w) equals

either  H" (S, My, o)) or HITNSE, M o)(Gr))9).
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5.4 Eisenstein forms

Let w € Q2%(0;, M )@ =0, 1,2) be a differential form on the boundary component 9; and
® € Q*(p,\S, M;}C) be the pull-back of w along the projection of I'p\S = 9; x Ap, to the
first factor. For any 6 € b; := ap, ® C, set

wg =& x a’P e QX(Tp,\S, My, ),
where p; := plp; Then we define the corresponding Eisenstein form as

E@0) = Y wyoyeQ S, M)
y€l/Tp;

It is well known that the series E(w, 6) converges in certain region and admits an analytic
continuation to a meromorphic function on b;.

5.5 Constant terms and intertwining operators
To proceed, we consider the representation theoretic reformulation of the Eisenstein
forms. The complex of smooth forms Q*(Sr, M, c) can be computed as

Q*(Sr, My,c) = C*(g, Koo; CP(T\G2(R)) ® M;)
= C*(g, Koo; C®(G2(Q)\ G2 (A)) ® M)

Consequently, we have
H*(Sr, Mi,c) = H*(g, Koo; C¥(Ga(Q)\Ga(A)) @ M,)Nr

Now let P; be a standard parabolic, 7 = 7o ® 7y be an automorphic representation of
M;(A) and let 6 € b; be a parameter. For ¢y € V(0, ) := Indgfn ® CP*ri defined as

Indgfﬂ ® Cltri = {f € C®(Gy(A), Hy) : f(pg) = m(p)p’tPif(g) forallp e P,-(A)},
where H, is the representation space of 7, define the Eisenstein series as

EPi (9» , W@)(g) = Z Iﬁe()/g)
y€P;(Q\G2(Q)

For 6 from a certain region, the Eisenstein series defined above converges absolutely,
hence defines an intertwining operator

&g : V(0,m) — CT(G2(Q\G2(A)),

in this region. The Eisenstein series has a meromorphic continuation to b;, hence defines a
meromorphic continuation of the corresponding intertwining operator. When the Eisen-
stein series has a simple pole at 0, by taking the derivative, we get an intertwining operator

&y VO, 1) > CP(GAQ\G2(A)),

which is no longer an embedding in general. It is clear that, for a closed form o €
Q*(9;, M »,c) that represents certain cohomology class of type (7, w), the intertwining
operator & is holomorphic (resp. has a simple pole) at 6 if and only if the corresponding
Eisenstein form E(w, 0) is holomorphic (resp. has a simple pole) at 6.

To determine whether & is holomorphic at certain point or not, it suffices to study the
constant terms, which is a map

T+ CE@NGA) > CENRNGNS v [ Flugan,
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where N; is the unipotent radical of P;. First, we consider the case when the parabolic
subgroup is maximal. Let Q = MqNq be another standard parabolic subgroup. Then,
the constant term along Q is defined as

Eq(0,m, vn)(e) = [ E, 7, o) g)dn.
No(@)\Nq(4)
Since the maximal parabolic subgroups of Gy are self-conjugate, the constant term is
non-trivial only when Q = P;, where we have

EP,-(G’ T, vf@)(g) = 1/f9(g) + M(Q, T, WP,-)‘//O(g):

where wp, is the longest element in YW’ and M (6, 7, wp,) is a global intertwining operator
from V(6, ) to V(—6, m). The global intertwining operator M(6, &, wp,) is a product of
local intertwining operator

MO, 7, wp,) = A0, T0, wp,) ® A(0, s, wp,), where A(6, rp, wp;) = ®pA(0, 7y, wp,).

Note that if 7, is unramified, the induced representation V'(6, 7,) is also unramified.
Works of Langlands and Gindikin—Karpelevich, see for example [4], give a description of
the local intertwining operator on Ga(Z,)-invariant vectors. As a consequence, we have
the following description of the global intertwining operator.

Lemma 14 (1) Leti = 1and 6 = zy, € by. Then,
M(0, t, wp,) = c1(0, m)A(B, 700, wp,) ® A (6, 7f, wp,)

where A'(9, tg, wp,) is the intertwining operator from V (0, 7r) = ®,V (0, mp) to
V(—0, 7rf) that sends a normalized Kg-invariant vector in V (0, r¢) to a normalized
Ky-invariant vector in V (-0, y) and

L(z, Sym®r) £(22)

A = L Sy tz + 1) 29

(2) Leti=2and0 = zy, € by. Then,

M(GJ T, WPg) = CZ(H: 7[)14(9, Toos WPQ) ®A/(9) Tf, WPz)

where A’ (9, Tf, Wp,) is the intertwining operator from V (0, tr) to V (=0, i) that sends
a normalized Ky-invariant vector in V (0, y) to a normalized Ky-invariant vector in
V(—0, f) and

L(z ) (2z2) L(3z )

20T = L m te + D LGz + L) ”

Proof Recall that the factor of the intertwining operator for G is given by the adjoint
action of the L-group of the Levi component of the unipotent radical. For maximal
parabolic subgroup, the Levi is isomorphic to GLy. Hence, the L-group is isomorphic
to GLy(C). Let V = C? be the standard representation of GLy(C) of dimension 2. As
determined in [4], the adjoint action of GL3(C) on “nj and the adjoint action of GL,(C)
on Iny decompose as

Iy =SymPV @ (W) L A2V Iny =V @AV VA2V

Since 7 is unramified, the factor for P; is given by (28) and the factor for Py is given by (29).
O
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Now let i = 0. Here, we consider the special case when & = C is the trivial represen-
tation. For 0 = z1y1 + 222 € bg, set V(@) = V (6, C). Then, the constant term can be
computed as

Epy (0, ¥0)(@) = Y M(0, w)(n),

wew

where M(6, w) denotes a global intertwining functor from V() to V(w - 6). Again, the
global intertwining operator is a product of local intertwining operators

M, 7w, w) = A(0, T, W) ® A(O, i, w), where A(0, tp, w) = ®,A(0, 71y, ).

Lemma 15 Leti = 0and 6 = z1y1 + z2y». Then
M(6, 1w, w) = co(6, WA(B, oo, w) @ A'(0, 777, W)

where A'(6, 7tr, w) is the intertwining operator from V (0, ty) := ®,V (0, mp) to V(w - 0, 1r)
that sends a normalized Kg-invariant vector in V (0, 7tr) to a normalized K¢-invariant
vector in V(w - 0, ty) and

w6w =[] t(e )@ +1) + (o y2) (22 + 1) — 1)
; wed+ (o, y1)(z1 + 1) + (o, y2) (22 + 1))
wlae—ot

Proof This follows from direct computation, for a quick reference see [9, p. 159] and (7,
Section 1.2.4] for the details. O

5.6 The inner part of the Eisenstein cohomology
Now we are ready to determine the space H,’..(Sr, M »C). We begin with the following
lemma.

Lemma 16 Let A = myy; + may; and set Oiw = —w(k 4+ p)lp,(i = 1,2).

(1) The constant term c1(0, ) has a simple pole at in ifw=wg, m =0and L(1/2, )
is nonzero and is holomorphic at 0)1 ., Otherwise.

(2) The constant term cy(0, w) has a simple pole at Oiw ifw = wy;, my = 0 and
L(1/2, Sym®n) is nonzero and is holomorphic at Qﬁjw otherwise.

Proof Asp = yMi 4+ 5¢Mi we have

1
—w + p)le, = —E(ti(W, A) + 5)y1.
Note that for 0 = zy,

L(z, Symgn) £(22)
Lz + 1, Sym3r) ¢ 2z + 1)

O, )=

Since the automorphic representations 7 considered here are all unramified, the corre-
sponding central character is trivial, hence 7 is not monomial. Then, according to [11],
the L-function L(z, Sym>r) is entire. Hence, in view of Sect. 2.4, for c;(6, 7) to have pole
it is necessary to have w = wy, my = 0. The possible pole comes from the simple pole
of the zeta function at 2z = 1. But the simple pole may be canceled by a possible zero of
L(z, Sym3m) at z = 1/2. This shows the part (2).

Page 25 of 30
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Asp = yM2 4 3kM2 we have —w(A+p)le, = —%(t,»(w, A1)+ 3)ys. Note that, for 6 = zy»,

6, 7) = L(z ) ’(2z) L(3z )
A = e+ L) 2+ D IBz+ L)

It is well known that L(z, w) appearing here are holomorphic and nonzero at z when

Mz > 1. Hence in view of Sect. 2.4, for ¢ (6, ) to have pole, it is necessary to have w = wg,
m; = 0. The possible pole comes from the simple pole of the zeta function at 2z = 1. But
the simple pole may be canceled by a possible zero of L(z, ) at z = 1/2. This shows the
part (1). O

We shall need the following theorem.

Theorem 17 Leti = 1,2, w be a cuspidal automorphic representation of M;(A) and w €
WE’ﬂ Let B € H!HZ(W)(B,-, ./F\/le,c) be a cohomology class of type (w, w) and v € Q2*(9;, ./ﬁ)\)
be a closed harmonic form that represents p.

(1) Ifthe Eisenstein series E(w, 0) is holomorphic at in, then E(w, Gi,w) € Q*(Sr, ./\7;,(:)
is a closed form such that the restriction of its cohomology class to the boundary
r([E(w, Qi,w)]) € HIIH(W)(Bi, J\A/T;L,(c) is non-trivial and of type (7, w).

(2) If the Eisenstein series E(w,0) has a simple pole at Gilw, then the residue
E'(w, in) e Q*(Sr, M AC) is a closed form such that its restriction to the bound-

ary r([E' (o, Oiw)]) € H!1+€(W/)(8i, /’\\/IJ;\,C) is non-trivial and of type (7, w').

Proof When the group G is of Q-rank 1, the corresponding statements are proved in [5].
The same proof works when the cohomology classes come from the maximal boundary,
hence works for this theorem as well. We also refer [17] for details. O

The subspace of Hp(9;, M »c) spanned by the cohomology classes of the form
r([E(w, Gi,w)]) appearing in part (1) (resp. r([E(w, Oiw)]) appearing in part (2)) of The-
orem 17 is denoted by H,'eg(ai, /\7)\,@) (resp. H, (9;, ﬂx,c)). Then, we have the natural
inclusion

D (Hrg 0 Ma0) © Hy(0 Mic)) € Higi(Sr Ma0). (30)
i=1,2
By combining Proposition 13, Lemma 16 and Theorem 17, the above inclusion (30) is

indeed an equality. Moreover, we conclude the following.

Proposition 18 Let A = myy; + moys, w € Wi‘(i =1,2) and € Zy,,w). Then

w=wg,m1=0,and

1+w) (M1 1 VU\K, .
~ H, , My, f f
Hypis (91, Mx,c)((ﬂfw)l(f, w=1 ., Gr i\:l wellme)) La/2symPmz0.  (31)
H, + (W)(Slll/h, Mwl,\,c)((ﬂfw)l(/') otherwise.
1+W) (M2 T 'Ne .. Ww=w7,my=0and
—~ H, Si2 My f f
H (02, Mx,c)((ﬂfw)l(f, W) =0 )(1\2 /,\:l W) s (32)
H, e (512 qu,c)((an)Kf) otherwise.

Now, we want to invoke the following result.

Lemma 19 Let i be a regular automorphic representation of GL, everywhere unramified
of weight k. Then, we have

(1) L(1/2, ) =0ifk =2 (mod 4).
(2) L(1/2, Sym3w) = 0.



Bajpai, Guan Res Math Sci (2022)9:21 Page 27 of 30 217

Proof By the functional equation, it suffices to show that €(1/2,7) = —1. Since x is
unramified everywhere, €(1/2, 7) = €(1/2, 1) = (—=1)K/2, This completes the proof of
the first assertion.

For the second assertion, we use the following argument suggested by the referee.
Clearly, we have L(s, 7 ® 7 ® ) = L(s, Sym3m)L(s, w)?. Consequently, we have €(1/2, 7 ®
7@m) = €(1/2, Sym3m)e(1/2, w)%. Inview of [16, Thm. 2], we have €(1/2, 1@ ®7) = —1,
hence €(1/2, Sym3m) = —1. This implies that L(1/2, Sym3m) = 0 as required. O

Combining Proposition 18 and Lemma 19, we arrive at
Proposition 20 Let . = myy; + mays, w € Wri (i=12)and y € Z,uw). Then
. v 1+¢ v
Hgio (01, Mo, o)) Y9, w) = B CUSE, My, 0)(Gr))9) (33)

Higis(02, Mo, o)) Y5, w) = HTCUSER, My, 0)((r))'9) (34)

Now, since the inclusion (30) is an equality, if we assume that H*(dSr, M AC) =
Hp (S, MA)C), we find that H7, (Sr, APZ)L,C) = H!"Eis(Sr, /Cll)h,(c). Now, following Theo-
rem 9 we know that for the cases 2,4,6 and 8, H*(dSr, MM;) = HP(9Sr, /WA,C), and
therefore by combining the information achieved in Proposition 13 and Proposition 18
we have now determined Hp, (Sr, M ) for the cases 2,4,6 and 8 as described in Theo-
rem 10 and we describe these spaces explicitly in Sect. 5.8. Hence, we are left to treat the
cases 1, 3, 5 and 7 of Theorem 9.

5.7 The boundary part of the Eisenstein cohomology
In this section, we determine the Eisenstein cohomology classes that come from the
minimal boundary dp. As a consequence, we determine Hp, (Sr, M ) for all the cases
left. Throughout this subsection, we assume that H*(dSr, M AC) # HP(0Sr, M A,C), or
equivalently, we are considering the cases 1, 3, 5 and 7 of Theorem 9.

Let B be a cohomology class in H6(é?), Mx,(c)l, and w € S26(8~0, AA/TA,C) be a closed
harmonic form that represents 8. Recall that, as a module of the spherical Hecke algebra
of T, we have

H® (o, My, c) = HO(SP™, HON, My ) = C2
The overall idea for the construction of the Eisenstein cohomology classes is the same
as before. If the Eisenstein form E(w, 8) is holomorphic at 8; := A + p, then E(w, 6,) €
QO(Sr, M »C) is a closed form such that the restriction of its cohomology class to the
boundary is non-trivial, see [19, Theorem 7.2]. Otherwise, we need to take residues of
the Eisenstein form and compute their restriction to the boundary using the constant
term. As before, we denote the subspace of H*(dSr, MA,C) spanned by the Eisenstein
cohomology classes that come from the restriction of the Eisenstein forms (resp. residues
of the Eisenstein forms) by Héreg(sr, /\7;\,@) (resp, Hy (St ./\7;‘,@)).
For simplicity, set

Hp 1 (Sr, Mi,c) = H, 0 (Sr, Mo,c) @ H3 0o (Sr, M),
Then we have the natural inclusion

Hp, 135(Sr Mi,c) @ Hyio (St Mi,c) € HE(Sr, My c). (35)

Here, o denotes the cover of dy, which is easily seen to be isomorphic to the unipotent radical N.
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According to Theorem 11, the Eisenstein cohomology H, (Sr, M;,c) is a maximal
isotropic subspace of the boundary cohomology under the Poincaré duality. In partic-

ular,
dim He, (Sr, Mj,c) = % dim H*(3Sr, M;,c).

On the other hand, according to Theorem 9, we always have
dim H*(3Sr, M;,c) — dim H(3Sp, M,,c) = 2,

for the cases studied in this subsection. Hence to determine Hp, (Sr, M ,C), it suffices to
fill Hg £, (Sr, M »,C) with one non-trivial cohomology class.
The following proposition is the main result of this subsection

Proposition 21 Let the notations be as in Theorem 9.

(1) In case 1, we have Hp, (Sr, M) = Hpy 2 es(ST Mi,c) =
(2) Incase 3 and 7, we have HEELs(SF’ M) = Hp, reS(Sr, Mx c) =

(3) Incase 5, we have Hy ¢, (Sr, Mic) = Hp ,eg(Sr, M;,c) =

Proof The proof will be based on the computation of (g, K )-cohomology of certain
induced modules. To begin, let us start with the proof of part (2). Without loss of generality,
we may assume that A = myy, for some my > 0.

Recall that
C{a, yi)(zi + 1) + (o, o)z + 1) — 1)
0, =
S | W e e oy
wlae—ot

Hence, in the case of w = wy(= s;1) the constant term co(6, w) has a simple pole along
z1 = 0. Hence, the corresponding Eisenstein series has a simple pole along the line z; = 0.
By taking the residue along the line z; = 0, we get an intertwining operator

&' Indp?C7 — C®(Ga(Q\Ga(A)).

Moreover, we have the following diagram.

Indg () C—+=7 » CO(G(Q)\G(A))

/ Jer

A( —ps1) C°°(N A)Po(Q\G(A))

G(A — )L+
IndPO(A)C s1( p)

Note that,
_ G(A) ~—s1(A+p)
])L = IndPl(A)C )
and the intertwining operator p is simply the induction of the intertwining operator

In dlg’&()‘&)(c r=p __, csi040),

where B denotes the corresponding Borel subgroup of M;. Namely, p is the map

Indg A”1 dﬁﬁ@’c N de‘A \C0+0),
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By taking the cohomology of the map ¢, we get

HO(g, Koo J ® M)XK % H(Sr, M),

Moreover, the map ¢ fits into the following diagram.

HO(g, Kooy J1 ® M3)S 4 HP (g Koor Indy ()10 @ M)
[+ Ly
~ 5 ~ , ~
Hs(Sr, MA,C) r—> HS(BSI‘, M)L,C) ;} HO(SMO, Mwn.)“(c)

According to the cohomology of the induced modules [3, Chapter III], the (g, Koo)
cohomology of J, ® M, Indgo(&@’sl(“p), and the quotient module is trivial when g < 5

and
dim H® (g, Koo, J5. ® M)/ = dim H® (g, Koo, Indj() C51040) @ M) = 1.

Hence, the map A is injective, and as both the source and the target has dimension 1, it is
an isomorphism. On the other hand, it is well known that the map v is an isomorphism.
Consequently, the map v o A is an isomorphism. This implies that both the map 7’ o r° is
surjective. This completes the proof of part (2).

For the proof of part (1) and part (3), the same strategy applies and the proofs are
indeed easier. In part (1), the constant term, hence the Eisenstein series, has a double
pole at z; = 0,z = 0. By taking successive residues, the Langlands quotient we get is
the constant representation, which provides non-trivial Eisenstein cohomology classes
HBQ,VBS
the special point 6,. Hence, part (3) can be proved by just taking cohomology of the map

(Sr, M »C). While in case 5, the corresponding Eisenstein series is holomorphic at
&, see [19] for more general cases. O

5.8 Proof of Theorem 10
Now, by combining Proposition 20 with Proposition 21, Theorem 10 can be verified
through a case-by-case study. ]
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