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Abstract

In this article, Eisenstein cohomology of the arithmetic group G2(Z) with coefficients in
any finite dimensional highest weight irreducible representation has been determined.
This is accomplished by studying the cohomology of the boundary of the Borel–Serre
compactification.
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1 Introduction
Let G be a semisimple algebraic group defined overQ, K∞ ⊂ G(R) be a maximal compact
subgroup and S = G(R)/K∞ be the corresponding symmetric space. If � ⊂ G(Q) is an
arithmetic subgroup then every representation (ρ,M) of G defines, in a natural way, a
sheaf ˜M on the locally symmetric space S� = �\S. Since S is contractible, the locally
symmetric space S� is homotopic to the Eilenberg–MacLane space K (�, 1) for �, hence
one has the isomorphism

H•(�,M) ∼= H•(S� , ˜M), (1)

for details see Chapter 7 of [3]. Note that, throughout the paper, we use H• to represent
the full cohomology group, namely,H•(�,M) = ⊕qHq(�,M). On the other hand, let S�

denote the Borel–Serre compactification of S� , then the inclusion i : S� ↪→ S� , which is
a homotopy equivalence, induces a canonical isomorphism in the cohomology

H•(S� , i∗( ˜M)) ∼= H•(S� , ˜M), (2)

where i∗ denotes the direct image functor definedby i.On the other hand, let ∂S� = S�\S�

and j : ∂S� → S� be the closed embedding. Then, the following exact sequence of sheaves

0 → i!( ˜M) → i∗( ˜M) → j∗( ˜M) → 0

gives rise to a long exact sequence of cohomology groups associated to S� ,

· · · → Hq
c (S� , ˜M) → Hq(S� , ˜M) r−→ Hq(∂S� , ˜M) → · · · .

The cohomology group Hq(∂S� , ˜M) will be called the boundary cohomology of � with
coefficients in M. Then, the Eisenstein cohomology of � with coefficients in M, denoted
by Hq

Eis(S� , ˜M), is defined to be the image of the map r in the following exact sequence

0 → Hq
! (S� , ˜M) → Hq(S� , ˜M) r−→ Hq

Eis(S� , ˜M) → 0,
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where Hq
! (S� , ˜M) is the kernel of the restriction map r.

The study of Eisenstein cohomology was initiated by Harder [6], and he discovered that
Eisenstein cohomology is fundamentally related to several important topics in number
theory, e.g., special values of L-functions, extension of motives, to simply mention a few.
SeeHarder’s ICMreport [8] formore details on the relation of Eisenstein cohomologywith
other topics. The interested reader is also referred to [10] for recent advances on the sub-
ject. Although lots of work have been done, our understanding of Eisenstein cohomology
is still far from complete.
Let G2 be the Chevalley group defined over Z of type G2. The main purpose of this

article is to determine the boundary and Eisenstein cohomology of the arithmetic group
G2(Z) with coefficients in any finite dimensional highest weight representationM of G2.
Let us now state the main results obtained in this article.

• Theorem 9, where the boundary cohomology with coefficients in every finite dimen-
sional highest weight representation is described.

• Theorem10,where the Eisenstein cohomologywith coefficients in every finite dimen-
sional highest weight representation is described.

1.1 Related results

The Eisenstein cohomology of arithmetic subgroups ofG2(Q) with trivial coefficients has
been previously studied in [13]. The basic setting of this article is more restrictive, that
is, we only consider the cohomology of G2(Z), but we provide complete results for the
boundary and Eisenstein cohomology ofG2(Z) with coefficients in any finite dimensional
highest weight representation.
On the other hand, it is worthwhile to mention the article [1], where the boundary and

Eisenstein cohomology of SL3(Z) with coefficients in any finite dimensional highestweight
representation is determined by using Euler characteristic. Unfortunately, their method,
being elementary but tricky, does not work here in the case of G2(Z) for dimensional
reasons.

1.2 Methodology

Let us first discuss the computation of the boundary cohomology. TheBorel–Serre bound-
ary ∂S� is a finite union of the boundary components parametrized by certain conjugacy
classes of parabolic subgroups. Then, the cohomology of ∂S� can be computed by using a
spectral sequence whose first page consists of the cohomology of each boundary compo-
nent, which will be computed by using the classical results of the cohomology of GL2(Z)
and the theorem of Kostant.
For the computation of Eisenstein cohomology, we follow closely the work of Harder in

[9]. In particular, our method is constructive and involves the theory of Eisenstein series,
intertwining operators, (g, K∞)-cohomology and L-functions. Indeed, it is well known
that the Eisenstein cohomology H•

Eis(S� , ˜M) spans a maximal isotropic subspace of the
boundary cohomologyH•(∂S� , ˜M) with respect to the Poincaré duality. In particular, we
know that dimH•

Eis(S� , ˜M) is exactly half of dimH•(∂S� , ˜M). Hence, we are done if we
manage to construct enough classes in H•

Eis(S� , ˜M). Starting from cohomology classes
in H•(∂S� , ˜M), we can construct cohomology classes in H•(S� , ˜M) by evaluating the
corresponding Eisenstein series at the special point, and thenwe get non-trivial Eisenstein



Bajpai, Guan Res Math Sci            (2022) 9:21 Page 3 of 30    21 

cohomology classes by restricting these classes back to the boundary. Subtlety appears
when the corresponding Eisenstein series is not holomorphic at the special point, or
equivalently, the corresponding L-function is not holomorphic at the special point. We
establish our results by further exploring the Hecke action and Poincaré duality, as well
as a detailed study of the corresponding (g, K∞)-cohomology.

1.3 Overview of the article

We quickly summarize the content of each section of the article. In Sect. 2, we review
the basic structure of the group G2 and the highest weight representations. In Sect. 3 we
compute the cohomology of each boundary components, and in Sect. 4 we compute the
boundary cohomology. In Sect. 5, we achieve our main goal by determining the Eisenstein
cohomology of G2(Z) for every finite dimensional highest weight representation.

2 Preliminaries
This section quickly reviews the basic properties ofG2 and familiarize the reader with the
notations to be used throughout the article. We discuss the corresponding locally sym-
metric space, Weyl group, the associated spectral sequence and Kostant representatives
of the standard parabolic subgroups.

2.1 Structure theory

Let G2 be the Chevalley group defined over Z of type G2 and � be the corresponding
root system. Let us fix a maximal Q-split torus T and a Borel subgroup B that contains
T. The set of simple roots associated to B is denoted by � = {α1,α2} with α1 and α2 the
short and long simple roots, respectively. The Weyl group W of � is isomorphic to the
dihedral group D6. The fundamental weights associated to this root system are given by
γ1 = 2α1 + α2 and γ2 = 3α1 + 2α2.
Let g denote the Lie algebra g2 and t ⊂ g be the Lie subalgebra associated to T. Let

� = �+ ∪ �− be the corresponding root system. We know that

�+ = {α1,α2,α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}.

Finally, we write ρ = 1
2

∑

α∈�+ α = 5α1 + 3α2.
Recall that aQ-parabolic subgroup is called standard if it contains the Borel subgroup B.

Let {P0,P1,P2} be the set of standardQ-parabolic subgroups, where P1 (resp. P2) denotes
the maximal Q-parabolic subgroup corresponding to the simple roots α1 (resp. α2) and
P0 = B. Thus,

p1 = u−α2 ⊕ t ⊕α∈�+ uα , and p2 = u−α1 ⊕ t ⊕α∈�+ uα ,

where pi denotes the Lie algebra of Pi and uα denotes the root space corresponding to
α. Note that the minimal Q-parabolic P0 is simply the group P1 ∩ P2. Therefore, the
corresponding Levi quotients are given by

M0 = G
2
m, M1 = GL2 and M2 = GL2.

Let us choose and fix a maximal compact subgroup K∞ ⊂ G2(R). It is well known that
it can be identified with SO4(R). From now on throughout the article, let S = G2(R)/K∞,
� be the arithmetic group G2(Z) and S� = �\S.
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2.2 �-conjugacy classes ofQ-parabolic subgroups

In this subsection, we determine the �-conjugacy classes of Q-parabolic subgroups
PQ(G2, G2(Z)), which should be well known. But as we don’t know of a proper refer-
ence, a proof is given below.

Lemma 1 PQ(G2, G2(Z)) = {P0,P1,P2}.
Proof We have to show that for each standard parabolic P, G2(Z) acts transitively on
G2/P(Q). Since G2 is semisimple algebraic group split over Q, by strong approximation,
we have

G2(Q)
∏

p
G2(Zp) = G2(Af ),

which implies thatG2(Q)/G2(Z) = G2(Af )/
∏

p G2(Zp).Moreover, asQ is of class number
1, we have

P(Q)
∏

p
P(Zp) = P(Qp).

According to the Iwasawa decomposition for p-adic groups, P(Qp)G2(Zp) = G2(Qp).
Consequently, we have

P(Q)
∏

p
G2(Zp) = G2(Af ).

Hence P(Q) acts transitively on G2(Q)/G2(Z), which implies G2(Z) acts transitively on
G2(Q)/P(Q).
On the other hand, we have the following sequence of Galois cohomology,

1 → P(Q) → G2(Q) → G2/P(Q) → H1(Q,P) → H1(Q, G2) → · · · .
Note that P is the semi-direct product of its unipotent radical and its Levi subgroup,
which is isomorphic to either G2

m or GL2. According to Hilbert’s Theorem 90 (see, e.g.
[21, Chapter III]), we have H1(Q,P) = 1. Thus, G2/P(Q) = G2(Q)/P(Q), from which the
lemma follows. ��

2.3 Irreducible representations

The fundamental weights associated to�+ are given by γ1 = 2α1+α2 and γ2 = 3α1+2α2.
Thus, irreducible finite dimensional representations ofG2 are determined by their highest
weights, which in this case are the linear functionals of the formm1γ1+m2γ2 withm1, m2
nonnegative integers. For any λ = m1γ1 + m2γ2, we set Mλ to be the representation
defined over Q with highest weight λ.

2.4 Kostant representatives

It is known that the Weyl group W = W(�) is the dihedral group D6 given by 12
elements. They are listed in the first column of Table 1 and described in the second
column as a product of simple reflections s1 and s2, associated to the simple roots α1 and
α2, respectively. Then, we have

s1(α1) = −α1, s1(α2) = 3α1 + α2 and s2(α1) = α1 + α2, s2(α2) = −α2. (3)

In the third column we make a note of their lengths, and in the last column we describe
the elementw ·λ = w(λ+ρ)−ρ, where the pair (a, b) denotes the element aα1+bα2 ∈ t∗.
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Table 1 The Weyl Group of G2
Label w �(w) w · λ

w1 1 0 (2m1 + 3m2 , m1 + 2m2)

w2 s1 1 (m1 + 3m2 − 1, m1 + 2m2)

w3 s2 1 (2m1 + 3m2 , m1 + m2 − 1)

w4 s1s2 2 (m1 − 4, m1 + m2 − 1)

w5 s2s1 2 (m1 + 3m2 − 1, m2 − 2)

w6 s1s2s1 3 (−m1 − 6, m2 − 2)

w7 s2s1s2 3 (m1 − 4, −m2 − 4)

w8 s1s2s1s2 4 (−m1 − 3m2 − 9, −m2 − 4)

w9 s2s1s2s1 4 (−m1 − 6, −m1 − m2 − 5)

w10 s1s2s1s2s1 5 (−2m1 − 3m2 − 10, −m1 − m2 − 5)

w11 s2s1s2s1s2 5 (−m1 − 3m2 − 9, −m1 − 2m2 − 6)

w12 s1s2s1s2s1s2 6 (−2m1 − 3m2 − 10, −m1 − 2m2 − 6)

TheWeyl group acts naturally on the set of roots. For each i ∈ {0, 1, 2}, let �(ui) denote
the set consisting of every root whose corresponding root space is contained in the Lie
algebra ui of the unipotent radical of Pi. The set of Weyl representatives WPi ⊂ W
associated to the parabolic subgroup Pi (see [12]) is defined by

WPi = {

w ∈ W : w(�−) ∩ �+ ⊂ �(ui)
}

.

ClearlyWP0 = W and, by using the table, one can see that

WP1 = {1, s1, s1s2, s1s2s1, s1s2s1s2, s1s2s1s2s1} (4)

WP2 = {1, s2, s2s1, s2s1s2, s2s1s2s1, s2s1s2s1s2} . (5)

2.4.1 Kostant representatives for minimal parabolic P0

w1 · λ = m1γ1 + m2γ2

w2 · λ = (−m1 − 2)γ1 + (m1 + m2 + 1)γ2
w3 · λ = (m1 + 3m2 + 3)γ1 + (−m2 − 2)γ2
w4 · λ = (−m1 − 3m2 − 5)γ1 + (m1 + 2m2 + 2)γ2
w5 · λ = (2m1 + 3m2 + 4)γ1 + (−m1 − m2 − 3)γ2
w6 · λ = (−2m1 − 3m2 − 6)γ1 + (m1 + 2m2 + 2)γ2
w7 · λ = (2m1 + 3m2 + 4)γ1 + (−m1 − 2m2 − 4)γ2
w8 · λ = (−2m1 − 3m2 − 6)γ1 + (m1 + m2 + 1)γ2
w9 · λ = (m1 + 3m2 + 3)γ1 + (−m1 − 2m2 − 4)γ2
w10 · λ = (−m1 − 3m2 − 5)γ1 + m2γ2

w11 · λ = m1γ1 + (−m1 − m2 − 3)γ2
w12 · λ = (−m1 − 2)γ1 + (−m2 − 2)γ2

2.4.2 Kostant representatives for maximal parabolic P1
Here, we take
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γM1 = 1
2
α2 = −3

2
γ1 + γ2 and κM1 = 1

2
γ1

w1 · λ = m2γ
M1 + (2m1 + 3m2)κM1

w2 · λ = (m1 + m2 + 1)γM1 + (m1 + 3m2 − 1)κM1

w4 · λ = (m1 + 2m2 + 2)γM1 + (m1 − 4)κM1

w6 · λ = (m1 + 2m2 + 2)γM1 + (−m1 − 6)κM1

w8 · λ = (m1 + m2 + 1)γM1 + (−m1 − 3m2 − 9)κM1

w10 · λ = m2γ
M1 + (−2m1 − 3m2 − 10)κM1

2.4.3 Kostant representatives for maximal parabolic P2
Here, we take

γM2 = 1
2
α1 = γ1 − 1

2
γ2 and κM2 = 1

2
γ2.

w1 · λ = m1γ
M2 + (m1 + 2m2)κM2

w3 · λ = (m1 + 3m2 + 3)γM2 + (m1 + m2 − 1)κM2

w5 · λ = (2m1 + 3m2 + 4)γM2 + (m2 − 2)κM2

w7 · λ = (2m1 + 3m2 + 4)γM2 + (−m2 − 4)κM2

w9 · λ = (m1 + 3m2 + 3)γM2 + (−m1 − m2 − 5)κM2

w11 · λ = m1γ
M2 + (−m1 − 2m2 − 6)κM2

For i = 1, 2, we also write

w · λ = ai(λ, w)γMi + bi(λ, w)κMi . (6)

The symmetry of the coefficients can be explained by the following lemma.

Lemma 2 Let P be a parabolic subgroup of G2 with Levi subgroup M, AP be the central
torus of M and SP be the unique maximal torus of the semisimple part of M contained in
T. Let NP denote the unipotent radical of P in G2 and wG2 (resp. wM) be the longest Weyl
element inW (resp.WM). Then, the following are true.

(a) The map w → w′ := wMwwG2 defines an involution on WP and �(w) + �(w′) =
dimNP.

(b) w′(λ + ρ) − ρ|AP = w(λ + ρ) − ρ|AP .
(c) w′(λ + ρ) − ρ|SP + w′(λ + ρ) − ρ|SP = −2ρ|SP .

Proof The proof is the same as in Schwermer [20, Section 4.2] by noticing the fact that
the Weyl groupW is self-dual, namely wG2 = −1. ��

2.5 Boundary of the Borel–Serre compactification

Let PQ(G,�) be the equivalence class of parabolic subgroups defined over Q, where two
parabolic subgroups are equivalent if and only if they are conjugate under action of �. In
general, the boundary of the Borel–Serre compactification ∂S� = S� \ S� is a finite union
of the boundary components ∂P for P ∈ PQ(G,�), i.e.

∂S� =
⋃

P∈PQ(G,�)
∂P, (7)
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where

∂P = (� ∩ P(R))\P(R)/(P(R) ∩ K∞).

This decomposition (7) determines a spectral sequence in cohomology abutting to the
cohomology of the boundary

Ep,q
1 =

⊕

prk(P)=p+1
Hq(∂P, ˜Mλ) ⇒ Hp+q(∂S� , ˜Mλ) (8)

where prk(P) denotes the parabolic rank of P (the dimension of the maximalQ-split torus
in the center of the Levi quotient M of P).
In our case, as the Q-rank of G is 2, this spectral sequence is simplified to a long exact

sequence (of Mayer–Vietoris) in cohomology of the following form

· · · → Hq(∂S� , ˜Mλ) → Hq(∂P1 , ˜Mλ) ⊕ Hq(∂P2 , ˜Mλ) → Hq(∂P0 , ˜Mλ) → · · · (9)

by noticing Lemma 1. We will use this long exact sequence to describe the cohomology
of the boundary of the Borel–Serre compactification.

2.6 The theorem of Kostant

Let P = MN be the decomposition into its Levi subgroup M and unipotent radical N.
Then, ∂P is a fiber bundle over

SM� = (� ∩ M(R))\M(R)/(M(R) ∩ K∞)

with fibers isomorphic to N� := (� ∩ N(R))\N(R). Hence, we have

H•(∂P, ˜Mλ) = H•(SM� , H•(N� , ˜Mλ)),

here we use H•(N� , ˜Mλ) to denote the corresponding sheaf by abuse of notation. By the
theorem of Nomizu [15], we know

H•(N� , ˜Mλ) = H•(n,Mλ).

By the theorem of Kostant [12], we get

Hq(n,Mλ) =
⊕

w∈WP:�(w)=q

Nw·λ,

where Nw·λ denotes the irreducible representation of M with highest weight w · λ. In
conclusion, we get

Hq(∂P, ˜Mλ) =
⊕

w∈WP

Hq−�(w)(SM� , ˜Nw·λ).

Note that, when there is no ambiguity, we also use the old notationMw·λ to denoteNw·λ.

2.7 Cohomological dimension

For any discrete groupH , set the virtual cohomological dimension ofH , denoted as vcdH ,
to be

vcdH = min{cdH ′ : [H : H ′] < ∞},
where cdH ′ refers to the cohomological dimension ofH ′. Now, using the compactification
they had introduced, Borel and Serre showed in [2] that for any semisimple group G and
its arithmetic subgroup H :

vcdH = dimG − dimK − rankQG,

where K is the maximal compact subgroup of G(R). In particular, dimG2 = 14,
dim SO4(R) = 6 and rankQG2 = 2, thus we have vcdG2(Z) = 6. As a consequence,
Hq(S� , ˜M) = 0 for all q > 6 for any coefficient systemM of �.
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Remark 3 It is interesting to note that, for any Q-split semisimple group G, we have

vcdG(Z) = dimN = max
w∈W �(w),

where N is the unipotent radical of any Borel subgroup and �(w) is the length ofw. Indeed,
the first equality follows from the Iwasawa decomposition, while the second one follows
from theory of Weyl groups. Note that this does not hold in general. For example: when
G isQ-anisotropic, vcdG(Z) equals to dimG−dimK , which is not the maximal length of
Weyl elements.

3 Cohomology of the boundary components
The cohomology of the boundary is obtained by using a spectral sequencewhose terms are
expressed by the cohomology of the faces associated to each standard parabolic subgroup.
In this section, we establish, for each standard parabolic P and irreducible representation
Mν of the Levi subgroupM ⊂ P with highest weight ν, a condition to be satisfied in order
to have non-trivial cohomology H•(SM� , ˜Mν). Here, ˜Mν is the sheaf on SM� given byMν .

3.1 Minimal parabolic subgroup

We analyze the parity condition imposed to the face associated to the minimal parabolic
∂P0 . As mentioned, the Levi subgroup of P0 is the two-dimensional torus M0 ∼= G

2
m. The

elements lying in � := M0(Z) ∩ K∞ must act trivially on the representationMν in order
to have nonzero cohomology. By using this fact, one can deduce the following

Lemma 4 Let ν be given by m′
1γ1 +m′

2γ2. If m
′
1 or m

′
2 is odd then the corresponding local

system ˜Mν on SM0
� is cohomologically trivial, that is H•(SM0

� , ˜Mν) = 0.

Proof According to [10, Prop 4.3], we have H•(SM0
� , ˜Mν) = H•(˜SM0

� , ˜Mν)�, where ˜SM0
�

denotes the locally symmetric spaces associated to M0. As ˜SM0
� is simply a point, all the

higher cohomology vanishes. It is clear that � ∼= (Z/2Z)2 and for each ξ ∈ � the action
on M is given by ν(ξ ) ∈ {−1, 1}. Thus, if there exists ξ ∈ � with ν(ξ ) = −1, then
H0(SM0

� , ˜Mν) = 0. On the other hand, since γ1, γ2 forms an integral basis for X∗(M0) :=
Hom(M0,Gm), there exists ξ ∈ � with ν(ξ ) = −1 ifm′

1 orm
′
2 is odd. This completes the

proof. ��

Note that every ν will be of the form w · λ for w ∈ W . We denote byW0 the set of Weyl
elements w such that w · λ do not satisfy the condition of Lemma 4.

Remark 5 For notational convenience, we simply use ∂i to denote the boundary face ∂Pi
associated to the parabolic subgroup Pi and the arithmetic group � for i ∈ {0, 1, 2}.

3.1.1 Cohomology groups of ∂0
In this case Hq(SM0

� , ˜Mw·λ) = 0 for every q ≥ 1. The Weyl group WP0 = W and the
lengths of its elements are between 0 and 6 as shown in Table 1 above. Thus,

Hq(∂0, ˜Mλ) =
⊕

w∈WP0

Hq−�(w)(SM0
� , ˜Mw·λ)

=
⊕

w∈WP0 :�(w)=q

H0(SM0
� , ˜Mw·λ) ,
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Therefore, for 0 ≤ q ≤ 6,

H0(∂0, ˜Mλ) = H0(SM0
� , ˜Mλ)

H1(∂0, ˜Mλ) = H0(SM0
� , ˜Mw2·λ) ⊕ H0(SM0

� , ˜Mw3·λ)
H2(∂0, ˜Mλ) = H0(SM0

� , ˜Mw4 ·λ) ⊕ H0(SM0
� , ˜Mw5·λ)

H3(∂0, ˜Mλ) = H0(SM0
� , ˜Mw6·λ) ⊕ H0(SM0

� , ˜Mw7·λ)
H4(∂0, ˜Mλ) = H0(SM0

� , ˜Mw8·λ) ⊕ H0(SM0
� , ˜Mw9·λ)

H5(∂0, ˜Mλ) = H0(SM0
� , ˜Mw10·λ) ⊕ H0(SM0

� , ˜Mw11·λ)
H6(∂0, ˜Mλ) = H0(SM0

� , ˜Mw12·λ)

and for every q ≥ 7, the cohomology groups Hq(∂0, ˜Mλ) = 0.

3.2 Maximal parabolic subgroups

In this section, we study the parity conditions for the maximal parabolics. Let i ∈ {1, 2},
then Mi ∼= GL2 and in this setting, K∞ ∩ Mi(R) = O2(R) is the orthogonal group and
�Mi = GL2(Z). Therefore,

SMi
� = GL2(Z)\GL2(R)/O(2)R×

>0 .

We also consider the following double cover of SMi
� ,

˜SMi
� = GL2(Z)\GL2(R)/SO(2)R×

>0,

which is isomorphic to the locally symmetric space associated to Mi.
Let i be 1 or 2. Recall from (6) that, for w ∈ WPi , w · λ = ai(λ, w)γMi + bi(λ, w)κMi .

Lemma 6 If ai(λ, w) is odd, or equivalently, bi(λ, w) is odd as they are congruent modulo
2, we have H•(SMi

� , ˜Mw·λ) = 0. Moreover, if ai(λ, w) = 0 and bi(λ, w)/2 is odd, then
H•(SMi

� , ˜Mw·λ) = 0.

Proof The proof here follows the proof of Lemma 4 closely. According to [10, Prop 4.3],
we have H•(SMi

� , ˜Mw·λ) = H•(˜SMi
� , ˜Mw·λ)�i , where �i = Mi(Z) ∩ K∞. Note that Mi can

be identified with GL2, and K∞ ∩ Mi(R) equals to O2(R), hence �i can be identified as

GL2(Z) ∩ O2(R). For the element
(

−1 0
0 −1

)

∈ �i, the action on H•(˜SMi
� , ˜Mν) is given

by (−1)ai(λ,w), hence we get the first conclusion. On the other hand, consider the element
(

−1 0
0 1

)

∈ �i, whose action on H•(˜SMi
� , ˜Mν) is given by (−1)bi(λ,w)/2 when ai(λ, w) = 0.

This completes the proof. ��

Note that, as a representation of Mi ∼= GL2(i = 1, 2),

Mw·λ ∼= Symai(λ,w)V ⊗ Det
bi (λ,w)−ai (λ,w)

2 , (10)

where V denotes the standard representation of GL2. Let B ⊂ Mi be a standard Borel
subgroup and N be its unipotent radical with n its Lie algebra. Then for i = 1, 2, we have
the following exact sequence,

H0(SM0
� , H0(n,Mw·λ)) ↪→ H1

c (S
Mi
� ,Mw·λ) → H1(SMi

� ,Mw·λ)
� H0(SM0

� , H1(n,Mw·λ)).
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Here, by abuse of notation, we use H0(n,Mw·λ) and H1(n,Mw·λ) to denote the corre-
sponding sheaves. In view of Lemma 4 and (10), we get

H0(SM0
� , H1(n,Mw·λ)) = 0, if

bi(λ, w) − ai(λ, w)
2

≡ 0 (mod 2),

H0(SM0
� , H0(n,Mw·λ)) = 0, if

bi(λ, w) − ai(λ, w)
2

≡ 1 (mod 2).

Consequently, we have

H1
! (S

Mi
� ,Mw·λ) = H1(SMi

� ,Mw·λ), if
bi(λ, w) − ai(λ, w)

2
≡ 0 (mod 2), (11)

H1
! (S

Mi
� ,Mw·λ) = H1

c (S
Mi
� ,Mw·λ), if

bi(λ, w) − ai(λ, w)
2

≡ 1 (mod 2). (12)

This fact will be extensively used in the next section for the computation of boundary
cohomology.
Throughout the paper, we set

Sm+2 = H1
! (GL2(Z), Sym

mV ) ∼= H1
! (GL2(Z), Sym

mV ⊗ Det). (13)

It is well known that H•
! (GL2(Z),M) = H•

cusp(GL2(Z),M) for finite dimensional repre-
sentation M, hence it is safe to replace “!′′ by “cusp′′ in (13). Consequently, by Eichler–
Shimura isomorphism, the space Sm+2 can be identified with the space of holomorphic
cusp forms of weightm + 2.

Remark 7 For notational convenience, in what follows we will denote the set of Weyl
elements for which H•(SMi

� , ˜Mw·λ) �= 0 byW i.

In the following subsections, we make note of the cohomology groups associated to
the boundary components ∂1 and ∂2 which will be used in the computations involved to
determine the boundary cohomology in the next section.

3.2.1 Cohomology of ∂1
In this case, the Levi M1 is isomorphic to GL2 and therefore Hq(SM1

� , ˜Mw·λ) = 0 for
every q ≥ 2. The set WP1 = {w1, w2, w4 , w6, w8, w10} where the length of elements are,
respectively, 0, 1, 2, 3, 4, 5. Thus,

Hq(∂1, ˜Mλ) =
⊕

w∈WP1

Hq−�(w)(SM1
� , ˜Mw·λ)

= Hq(SM1
� , ˜Mλ) ⊕ Hq−1(SM1

� , ˜Mw2·λ) ⊕ Hq−2(SM1 , ˜Mw4 ·λ) (14)

⊕Hq−3(SM1
� , ˜Mw6·λ) ⊕ Hq−4(SM1

� , ˜Mw8·λ) ⊕ Hq−5(SM1
� , ˜Mw10·λ) .

Therefore, for 0 ≤ q ≤ 6,

H0(∂1, ˜Mλ) = H0(SM1
� , ˜Mλ)

H1(∂1, ˜Mλ) = H1(SM1
� , ˜Mλ) ⊕ H0(SM1

� , ˜Mw2·λ)
H2(∂1, ˜Mλ) = H1(SM1

� , ˜Mw2·λ) ⊕ H0(SM1
� , ˜Mw4 ·λ)

H3(∂1, ˜Mλ) = H1(SM1
� , ˜Mw4 ·λ) ⊕ H0(SM1

� , ˜Mw6·λ)
H4(∂1, ˜Mλ) = H1(SM1

� , ˜Mw6·λ) ⊕ H0(SM1
� , ˜Mw8·λ)

H5(∂1, ˜Mλ) = H1(SM1
� , ˜Mw8·λ) ⊕ H0(SM1

� , ˜Mw10·λ)
H6(∂1, ˜Mλ) = H1(SM1

� , ˜Mw10·λ)

and for every q ≥ 7, the cohomology groups Hq(∂1, ˜Mλ) = 0.
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3.2.2 Cohomology of ∂2
In this case, the Levi M2 is isomorphic to GL2 as well and therefore Hq(SM2

� , ˜Mw·λ) = 0
for every q ≥ 2. The Weyl group W P2 = {w1, w3, w5, w7, w9, w11} where the length of
elements are, respectively, 0, 1, 2, 3, 4, 5. Thus,

Hq(∂2, ˜Mλ) =
⊕

w∈W P2

Hq−�(w)(SM2
� , ˜Mw·λ)

= Hq(SM2 , ˜Mλ) ⊕ Hq−1(SM2
� , ˜Mw3·λ) ⊕ Hq−2(SM2

� , ˜Mw5·λ)
⊕Hq−3(SM2

� , ˜Mw7·λ) ⊕ Hq−4(SM2
� , ˜Mw9·λ) ⊕ Hq−5(SM2

� , ˜Mw11·λ) .
(15)

Therefore, for 0 ≤ q ≤ 6,

H0(∂2, ˜Mλ) = H0(SM2
� , ˜Mλ)

H1(∂2, ˜Mλ) = H1(SM2
� , ˜Mλ) ⊕ H0(SM2

� , ˜Mw3·λ)
H2(∂2, ˜Mλ) = H1(SM2

� , ˜Mw3·λ) ⊕ H0(SM2
� , ˜Mw5·λ)

H3(∂2, ˜Mλ) = H1(SM2
� , ˜Mw5·λ) ⊕ H0(SM2

� , ˜Mw7·λ)
H4(∂2, ˜Mλ) = H1(SM2

� , ˜Mw7·λ) ⊕ H0(SM2
� , ˜Mw9·λ)

H5(∂2, ˜Mλ) = H1(SM2
� , ˜Mw9·λ) ⊕ H0(SM2

� , ˜Mw11·λ)
H6(∂2, ˜Mλ) = H1(SM2

� , ˜Mw11·λ)

and for every q ≥ 7, the cohomology groups Hq(∂2, ˜Mλ) = 0.

4 Boundary cohomology
In this section, we discuss the cohomology of the boundary by giving a complete descrip-
tion of the spectral sequence. The covering of the boundary of the Borel–Serre compact-
ification defines a spectral sequence in cohomology.

Ep,q
1 =

⊕

prk(P)=(p+1)
Hq(∂P, ˜Mλ) ⇒ Hp+q(∂S� , ˜Mλ)

and the nonzero terms of Ep,q
1 are for

(p, q) ∈ {

(i, n)|0 ≤ i ≤ 1, 0 ≤ n ≤ 6
}

. (16)

More precisely,

E0,q
1 =

2
⊕

i=1
Hq(∂i, ˜Mλ)

=
2

⊕

i=1

[

⊕

w∈WPi

Hq−�(w)(SMi
� , ˜Mw·λ)

]

,

E1,q
1 = Hq(∂0, ˜Mλ)

=
⊕

w∈WP0 :�(w)=q

H0(SM0
� , ˜Mw·λ) . (17)

SinceG2 is of rank two, the spectral sequence has only two columnsnamelyE0,q
1 , E1,q

1 and
to study the boundary cohomology, the task reduces to analyzing the followingmorphisms

E0,q
1

d0,q1−−→ E1,q
1 (18)



   21 Page 12 of 30 Bajpai, Guan Res Math Sci           (2022) 9:21 

where d0,q1 is the differential map and the higher differentials vanish. One has

E0,q
2 := Ker(d0,q1 ) and E1,q

2 := Coker(d0,q1 ) .

In addition, due to being in a rank 2 situation, the spectral sequence degenerates in
degree 2. Therefore, we can use the fact that

0 −→ E1,q−1
2 −→ Hq(∂S� , ˜Mλ) −→ E0,q

2 −→ 0 . (19)

In what follows, we have to treat nine different cases separately, namely whenm1 (resp.
m2) is zero, nonzero even, and odd. This is due to the parity conditions established in
Sect. 3 which has major influence on the cohomology.

4.1 Case 1:m1 = 0 andm2 = 0 (trivial coefficient system)

Following Lemma 4 and Lemma 6 from Sect. 3, we get

W0 = {w1, w6, w7, w12} , W1 = {w1, w4 , w6} and W2 = {w1, w5, w7} .
By using (17), we record the values of E0,q

1 and E1,q
1 for the distinct values of q below.

Note that following (16) we know that for q ≥ 7, Ei,q
1 = 0 for i = 1, 2.

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM1
� , ˜Me·λ) ⊕ H0(SM2

� , ˜Me·λ), q = 0

H1(SM1
� , ˜Mw4 ·λ) ⊕ H1(SM2

� , ˜Mw5·λ), q = 3

H1(SM1
� , ˜Mw6·λ) ⊕ H1(SM2

� , ˜Mw7·λ), q = 4

0, otherwise

, (20)

and

E1,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM0
� , ˜Me·λ), q = 0

H0(SM0
� , ˜Mw6·λ) ⊕ H0(SM0

� , ˜Mw7·λ), q = 3

H0(SM0
� , ˜Mw12·λ), q = 6

0, otherwise

. (21)

We now make a thorough analysis of (18) to get the complete description of the spaces
E0,q
2 and E1,q

2 which will give us the cohomology Hq(∂S� , ˜Mλ). We begin with q = 0.

4.1.1 At the level q = 0

Observe that the short exact sequence (19) reduces to

0 −→ H0(∂S� , ˜Mλ) −→ E0,0
2 −→ 0 .

To compute E0,0
2 , consider the differential d0,01 : E0,0

1 → E1,0
1 . Following (20) and (21),

we have d0,01 : Q ⊕ Q −→ Q and we know that the differential d0,01 is surjective (see [6]).
Therefore

E0,0
2 := Ker(d0,01 ) = Q and E1,0

2 := Coker(d0,01 ) = 0. (22)

Hence, we get

H0(∂S� , ˜Mλ) = Q .
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4.1.2 At the level q = 1

Following (22), in this case, our short exact sequence (19) reduces to

0 −→ H1(∂S� , ˜Mλ) −→ E0,1
2 −→ 0 ,

and we need to compute E0,1
2 . Consider the differential d0,11 : E0,1

1 −→ E1,1
1 and follow-

ing (20) and (21), we observe that d0,11 is map between zero spaces. Therefore, we obtain

E0,1
2 = 0 and E1,1

2 = 0 .

As a result, we get

H1(∂S� , ˜Mλ) = 0 .

4.1.3 At the level q = 2

Following the similar process as in level q = 1, we get

E0,2
2 = 0 and E1,2

2 = 0 . (23)

This results into

H2(∂S� , ˜Mλ) = 0 .

4.1.4 At the level q = 3

Following (23), in this case, the short exact sequence (19) reduces to

0 −→ H3(∂S� , ˜Mλ) −→ E0,3
2 −→ 0 ,

and we need to compute E0,3
2 . In view of (12), consider the differential d0,31 : E0,3

1 −→ E1,3
1

and following (20) and (21), we have

E0,3
2 = H1

! (S
M1
� , ˜Mw4 ·λ) ⊕ H1

! (S
M2
� , ˜Mw5·λ), and

Im(d0,31 ) = H1
Eis(S

M1
� , ˜Mw4 ·λ) ⊕ H1

Eis(S
M2
� , ˜Mw5·λ) ∼= Q ⊕ Q .

Therefore,

E0,3
2 = 0 and E1,3

2 = 0 . (24)

This gives us

H3(∂S� , ˜Mλ) = 0 .

4.1.5 At the level q = 4

Following (24), in this case, the short exact sequence (19) reduces to

0 −→ H4(∂S� , ˜Mλ) −→ E0,4
2 −→ 0 ,

and we need to compute E0,4
2 . Consider the differential d0,41 : E0,4

1 −→ E1,4
1 and

following (20) and (21), we have E0,4
2 = H1

! (S
M1
� , ˜Mw6·λ) ⊕ H1

! (S
M2
� , ˜Mw7·λ). Since

Im(d0,41 ) = H1
Eis(S

M1
� , ˜Mw6·λ) ⊕ H1

Eis(S
M2
� , ˜Mw7·λ) = {0} by (11). Therefore,

E0,4
2 = 0 and E1,4

2 = 0 . (25)

and we get

H4(∂S� , ˜Mλ) = 0 .
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4.1.6 At the level q = 5

Following (25), in this case, the short exact sequence (19) reduces to

0 −→ H4(∂S� , ˜Mλ) −→ E0,5
2 −→ 0 ,

and we need to compute E0,5
2 . Consider the differential d0,51 : E0,5

1 −→ E1,5
1 and follow-

ing (20) and (21), we have d0,51 : 0 −→ 0. Therefore,

E0,5
2 = 0 and E1,5

2 = 0 . (26)

and we get

H5(∂S� , ˜Mλ) = 0 .

4.1.7 At the level q = 6

Following (26), in this case, the short exact sequence (19) reduces to

0 −→ H6(∂S� , ˜Mλ) −→ E0,6
2 −→ 0 ,

and we need to compute E0,6
2 . Consider the differential d0,61 : E0,6

1 −→ E1,6
1 and follow-

ing (20) and (21), we have d0,61 : 0 −→ Q. Therefore,

E0,6
2 = 0 and E1,6

2 = Q . (27)

and we get

H6(∂S� , ˜Mλ) = 0 .

4.1.8 At the level q = 7

Following (27), in this case, the short exact sequence (19) reduces to

0 −→ Q −→ H7(∂S� , ˜Mλ) −→ E0,7
2 −→ 0 ,

and we need to compute E0,7
2 . Consider the differential d0,71 : E0,7

1 −→ E1,7
1 and follow-

ing (20) and (21), we have d0,71 : 0 −→ 0. Therefore,

E0,7
2 = 0 and E1,7

2 = 0 .

and we get

H7(∂S� , ˜Mλ) = Q .

Hence, we can summarize the above discussion as follows :

Hq(∂S� , ˜Mλ) =
{

Q, q = 0, 7
0, otherwise

.

4.2 Case 2:m1 = 0,m2 �= 0,m2 even

Following Lemma 4 and Lemma 6 from Sect. 3, we get

W0 = {w1, w6, w7, w12} , W1 = {w1, w4 , w6, w10} and W2 = {w1, w5, w7} .
By using (17), we record the values of E0,q

1 and E1,q
1 for the distinct values of q below.

Note that following (16) we know that for q ≥ 7, Ei,q
1 = 0 for i = 1, 2.

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM2
� , ˜Me·λ), q = 0

H1(SM1
� , ˜Mλ), q = 1

H1(SM1
� , ˜Mw4 ·λ) ⊕ H1(SM2

� , ˜Mw5·λ), q = 3
H1(SM1

� , ˜Mw6·λ) ⊕ H1(SM2
� , ˜Mw7·λ), q = 4

H1(SM1
� , ˜Mw10·λ) , q = 6

0, otherwise

,
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and

E1,q
1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

H0(SM0
� , ˜Me·λ), q = 0

H0(SM0
� , ˜Mw6·λ) ⊕ H0(SM0

� , ˜Mw7·λ), q = 3
H0(SM0

� , ˜Mw12·λ), q = 6
0, otherwise

.

Having a thoroughanalysis of (18) as inprevious section,weget the completedescription
of the spaces E0,q

2 and E1,q
2 which will give us the cohomology Hq(∂S� , ˜Mλ) described as

follows :

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M1
� , ˜Mλ) ∼= Sm2+2, q = 1

H1
! (S

M1
� , ˜Mw4 ·λ) ⊕ H1

! (S
M2
� , ˜Mw5·λ) ∼= S2m2+4 ⊕ S3m2+6, q = 3

H1
! (S

M1
� , ˜Mw6·λ) ⊕ H1

! (S
M2
� , ˜Mw7·λ) ∼= S2m2+4 ⊕ S3m2+6, q = 4

H1
! (S

M1
� , ˜Mw10·λ) ∼= Sm2+2, q = 6

0, otherwise

.

Here, Sk is defined as in (13). We conclude the above discussion as follows:

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm2+2, q = 1, 6
S2m2+4 ⊕ S3m2+6, q = 3, 4
0, otherwise

.

Remark 8 The deduction of boundary cohomology in remaining cases is completely anal-
ogous to the cases considered inSects. 4.1 and4.2.Hence,we simply state thefinal formulas
of E0,q

1 , E1,q
1 and Hq(∂S� , ˜Mλ), along with the Weyl representatives W0,W1 and W2 for

all the remaining seven cases.

4.3 Case 3:m1 = 0,m2 odd

W0 = {w1, w4 , w9, w11}, W1 = {w2, w4 , w6, w8} and W2 = {w3, w9, w11}.

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1(SM1
� , ˜Mw2·λ) ⊕ H1(SM2

� , ˜Mw3·λ), q = 2
H1(SM1

� , ˜Mw4 ·λ), q = 3
H1(SM2

� , ˜Mw6·λ), q = 4
H1(SM1

� , ˜Mw8·λ) ⊕ H1(SM2
� , ˜Mw9·λ) ⊕ H0(SM2

� , ˜Mw11·λ), q = 5
H1(SM2

� , ˜Mw11·λ), q = 6
0, otherwise

,

E1,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM0
� , ˜Mw2·λ) ∼= Q, q = 1

H0(SM0
� , ˜Mw4 ·λ) ∼= Q, q = 2

H0(SM0
� , ˜Mw9·λ) ∼= Q, q = 4

H0(SM0
� , ˜Mw11·λ) ∼= Q, q = 5

0, otherwise

.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M1
� , ˜Mw2·λ) ⊕ H1

! (S
M2
� , ˜Mw3·λ) ⊕ Q ∼= Sm2+3 ⊕ S3m2+5 ⊕ Q, q = 2

H1
! (S

M1
� , ˜Mw4 ·λ) ∼= S2m2+4 , q = 3

H1
! (S

M2
� , ˜Mw6·λ) ∼= S2m2+4 , q = 4

H1
! (S

M1
� , ˜Mw8·λ) ⊕ H1

! (S
M2
� , ˜Mw9·λ) ⊕ Q ∼= Sm2+3 ⊕ S3m2+5 ⊕ Q, q = 5

0, otherwise

.
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4.4 Case 4:m1 �= 0 even andm2 = 0

W0 = {w1, w6, w7, w12}, W1 = {w1, w4 , w6} and W2 = {w1, w5, w7, w11}.

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM1
� , ˜Mλ), q = 0

H1(SM1
� , ˜Mλ) ⊕ H1(SM2

� , ˜Mλ), q = 1
H1(SM1

� , ˜Mw4 ·λ) ⊕ H1(SM2
� , ˜Mw5·λ), q = 3

H1(SM1
� , ˜Mw6·λ) ⊕ H1(SM2

� , ˜Mw7·λ), q = 4
H1(SM2

� , ˜Mw11·λ), q = 6
0, otherwise

,

E1,q
1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H0(SM0
� , ˜Mλ) ∼= Q, q = 0

H0(SM0
� , ˜Mw6·λ) ⊕ H0(SM0

� , ˜Mw7·λ) ∼= Q, q = 3
H0(SM0

� , ˜Mw12·λ) ∼= Q, q = 6
0, otherwise

.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M2
� , ˜Mλ) ∼= Sm1+2, q = 1

H1
! (S

M1
� , ˜Mw4 ·λ) ⊕ H1

! (S
M2
� , ˜Mw5·λ) ∼= Sm1+4 ⊕ S2m1+6, q = 3

H1
! (S

M1
� , ˜Mw6·λ) ⊕ H1

! (S
M2
� , ˜Mw7·λ) ∼= Sm1+4 ⊕ S2m1+6, q = 4

H1
! (S

M2
� , ˜Mw11·λ) ∼= Sm1+2, q = 6

0, otherwise

.

4.5 Case 5:m1( �= 0) even,m2( �= 0) even

W0 = {w1, w6, w7, w12} , W1 = {w1, w4 , w6, w10} and

W2 = {w1, w5, w7, w11} .

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H1(SM1
� , ˜Mλ) ⊕ H1(SM2

� , ˜Mλ), q = 1
H1(SM1

� , ˜Mw4 ·λ) ⊕ H1(SM2
� , ˜Mw5·λ), q = 3

H1(SM1
� , ˜Mw6·λ) ⊕ H1(SM2

� , ˜Mw7·λ), q = 4
H1(SM1

� , ˜Mw10·λ) ⊕ H1(SM2
� , ˜Mw11·λ), q = 6

0, otherwise

,

E1,q
1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H0(SM0
� , ˜Mλ) ∼= Q, q = 0

H0(SM0
� , ˜Mw6·λ) ⊕ H0(SM0

� , ˜Mw7·λ) ∼= Q, q = 3
H0(SM0

� , ˜Mw12·λ) ∼= Q, q = 6
0, otherwise

.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M1
� , ˜Mλ) ⊕ H1

! (S
M2
� , ˜Mλ) ⊕ Q ∼= Sm2+2 ⊕ Sm1+2 ⊕ Q, q = 1

H1
! (S

M1
� , ˜Mw4 ·λ) ⊕ H1

! (S
M2
� , ˜Mw5·λ) ∼= Sm1+2m2+4 ⊕ S2m1+3m2+6, q = 3

H1
! (S

M1
� , ˜Mw6·λ) ⊕ H1

! (S
M2
� , ˜Mw7·λ) ∼= Sm1+2m2+4 ⊕ S2m1+3m2+6, q = 4

H1
! (S

M1
� , ˜Mw10·λ) ⊕ H1

! (S
M2
� , ˜Mw11·λ) ⊕ Q ∼= Sm2+2 ⊕ Sm1+2 ⊕ Q, q = 6

0, otherwise

.

4.6 Case 6:m1( �= 0) even,m2 odd

W0 = {w2, w4 , w9, w11} , W1 = {w2, w4 , w6, w8}
and W2 = {w1, w3, w9, w11} .

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1(SM2
� , ˜Mλ), q = 1

H1(SM1
� , ˜Mw2·λ) ⊕ H1(SM2

� , ˜Mw3·λ), q = 2
H1(SM1

� , ˜Mw4 ·λ), q = 3
H1(SM1

� , ˜Mw6·λ), q = 4
H1(SM1

� , ˜Mw8·λ) ⊕ H1(SM2
� , ˜Mw9·λ), q = 5

H1(SM2
� , ˜Mw11·λ), q = 6

0, otherwise

,

E1,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM0
� , ˜Mw2·λ), q = 1

H0(SM0
� , ˜Mw4 ·λ), q = 2

H0(SM0
� , ˜Mw9·λ), q = 4

H0(SM0
� , ˜Mw11·λ) ∼= Q, q = 5

0, otherwise

.
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Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M2
� , ˜Mλ) ∼= Sm1+2, q = 1

H1
! (S

M1
� , ˜Mw2·λ) ⊕ H1

! (S
M2
� , ˜Mw3·λ) ∼= Sm1+m2+3 ⊕ Sm1+3m2+5, q = 2

H1
! (S

M1
� , ˜Mw4 ·λ) ∼= Sm1+2m2+4 , q = 3

H1
! (S

M1
� , ˜Mw6·λ) ∼= Sm1+2m2+4 , q = 4

H1
! (S

M1
� , ˜Mw8·λ) ⊕ H1

! (S
M2
� , ˜Mw9·λ) ∼= Sm1+m2+3 ⊕ Sm1+3m2+5, q = 5

H1
! (S

M2
� , ˜Mw11·λ) ∼= Sm1+2, q = 6

0, otherwise

.

4.7 Case 7:m1 odd,m2 = 0

W0 = {w3, w5, w8, w10} , W2 = {w3, w5, w7, w9} and W1 = {w2, w8, w10} .

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1(SM1
� , ˜Mw2·λ) ⊕ H1(SM2

� , ˜Mw3·λ), q = 2
H1(SM2

� , ˜Mw5·λ), q = 3
H1(SM2

� , ˜Mw7·λ), q = 5
H1(SM1

� , ˜Mw8·λ) ⊕ H0(SM1
� , ˜Mw10·λ) ⊕ H1(SM2

� , ˜Mw9·λ), q = 5
H1(SM1

� , ˜Mw10·λ), q = 6
0, otherwise

,

E1,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM0
� , ˜Mw3·λ) ∼= Q, q = 1

H0(SM0
� , ˜Mw5·λ) ∼= Q, q = 2

H0(SM0
� , ˜Mw8·λ) ∼= Q, q = 4

H0(SM0
� , ˜Mw10·λ) ∼= Q, q = 5

0, otherwise

.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M1
� , ˜Mw2·λ) ⊕ H1

! (S
M2
� , ˜Mw3·λ) ⊕ Q ∼= Sm1+3 ⊕ Sm1+5 ⊕ Q, q = 2

H1
! (S

M2
� , ˜Mw5·λ) ∼= S2m1+6, q = 3

H1
! (S

M2
� , ˜Mw7·λ) ∼= S2m1+6, q = 4

H1
! (S

M1
� , ˜Mw8·λ) ⊕ H1

! (S
M2
� , ˜Mw9·λ) ⊕ Q ∼= Sm1+3 ⊕ Sm1+5 ⊕ Q, q = 5

0, otherwise

.

4.8 Case 8:m1 odd,m2( �= 0) even

W0 = {w3, w5, w8, w10} , W1 = {w1, w2, w8, w10}
and W2 = {w3, w5, w7, w9} .

E0,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1(SM1
� , ˜Mλ), q = 1

H1(SM1
� , ˜Mw2·λ) ⊕ H1(SM2

� , ˜Mw3·λ), q = 2
H1(SM2

� , ˜Mw5·λ), q = 3
H1(SM2

� , ˜Mw7·λ), q = 4
H1(SM1

� , ˜Mw8·λ) ⊕ H1(SM2
� , ˜Mw9·λ), q = 5

H1(SM1
� , ˜Mw10·λ), q = 6

0, otherwise

,

E1,q
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H0(SM0
� , ˜Mw3·λ) ∼= Q, q = 1

H0(SM0
� , ˜Mw5·λ) ∼= Q, q = 2

H0(SM0
� , ˜Mw8·λ) ∼= Q, q = 4

H0(SM0
� , ˜Mw10·λ) ∼= Q, q = 5

0, otherwise

.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1
! (S

M1
� , ˜Mλ) ∼= Sm2+2, q = 1

H1
! (S

M1
� , ˜Mw2·λ) ⊕ H1

! (S
M2
� , ˜Mw3·λ) ∼= Sm1+m2+3 ⊕ Sm1+3m2+5, q = 2

H1
! (S

M2
� , ˜Mw5·λ) ∼= S2m1+3m2+6, q = 3

H1
! (S

M2
� , ˜Mw7·λ) ∼= S2m1+3m2+6, q = 4

H1
! (S

M1
� , ˜Mw8·λ) ⊕ H1

! (S
M2
� , ˜Mw9·λ) ∼= Sm1+m2+3 ⊕ Sm1+3m2+5, q = 5

H1
! (S

M1
� , ˜Mw10·λ) ∼= Sm2+2, q = 6

0, otherwise

.

4.9 Case 9:m1 odd,m2 odd

By checking the parity conditions for standard parabolics, following Lemmas 4 and 6, we
see thatW i = ∅ for i = 0, 1, 2. This simply implies that
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Hq(∂S� , ˜Mλ) = 0 , ∀q .

4.10 A summary of the boundary cohomology of G2(Z)

We now end this section by summarizing the results obtained about the boundary coho-
mology above in the form of following theorem which will be our base for further explo-
ration on Eisenstein cohomology in Sect. 5.

Theorem 9 The boundary cohomology of the locally symmetric space S� of the arithmetic
group � := G2(Z) with respect to the coefficients in any highest weight representationMλ,
with λ = m1λ1 + m2λ2, is described as follows.

(1) Case 1 : m1 = 0 = m2.

Hq(∂S� , ˜Mλ) =
{

Q, q = 0, 7
0, otherwise

.

(2) Case 2 : m1 = 0, m2(�= 0) even.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm2+2, q = 1, 6
S2m2+4 ⊕ S3m2+6, q = 3, 4
0, otherwise

.

(3) Case 3 : m1 = 0 , m2 odd.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm2+3 ⊕ S3m2+5 ⊕ Q, q = 2, 5
S2m2+4 , q = 3, 4
0, otherwise

.

(4) Case 4 : m1(�= 0) even, m2 = 0.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm1+2, q = 1, 6
Sm1+4 ⊕ S2m1+6, q = 3, 4
0, otherwise

.

(5) Case 5 : m1(�= 0) even, m2(�= 0) even.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm2+2 ⊕ Sm1+2 ⊕ Q, q = 1, 6
Sm1+2m2+4 ⊕ S2m1+3m2+6, q = 3, 4
0, otherwise

.

(6) Case 6 : m1(�= 0) even, m2 odd.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Sm1+2, q = 1, 6
Sm1+m2+3 ⊕ Sm1+3m2+5, q = 2, 5
Sm1+2m2+4 , q = 3, 4
0, otherwise

.

(7) Case 7 : m1 odd, m2 = 0.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm1+3 ⊕ Sm1+5 ⊕ Q, q = 2, 5
S2m1+6, q = 3, 4
0, otherwise

.
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(8) Case 8 : m1 odd, m2(�= 0) even.

Hq(∂S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Sm2+2, q = 1, 6
Sm1+m2+3 ⊕ Sm1+3m2+5, q = 2, 5
S2m1+3m2+6, q = 3, 4
0, otherwise

.

(9) Case 9 : m1 odd, m2 odd.

Hq(∂S� , ˜Mλ) = 0 , ∀q .

5 Eisenstein cohomology
In this section, by using the information obtained about the boundary cohomology of
� := G2(Z), we will determine the Eisenstein cohomology with coefficients inMλ. Let us
recall that, at any degree q, the Eisenstein cohomology Hq

Eis(S� , ˜Mλ) is, by definition, the
image of the restriction map r : Hq(S� , ˜Mλ) −→ Hq(∂S� , ˜Mλ).

5.1 Main result on the Eisenstein cohomology of G2(Z)

The following is one of the main results of this article that gives both the dimension of the
Eisenstein cohomology togetherwith its sources—the correspondingparabolic subgroups.
Indeed, it is clear from the definition that the Eisenstein cohomology H•

Eis(S� , ˜Mλ) is
defined overQ as ˜Mλ is defined overQ. But in the theorem stated below, we will consider
H•
Eis(S� , ˜Mλ ⊗ C) instead in certain cases. The reason is that, our method yields a basis

of H•
Eis(S� , ˜Mλ ⊗ C), but since the method is transcendental, the basis we get is not

necessarily defined overQ. Let �k be the canonical basis of normalized eigenfunctions of
Sk . For i = 1, 2, we set ki(λ, w) = ai(λ, w)+2, where ai(λ, w) is the constant defined in (6).
Then by the Eichler–Shimura isomorphism, for i = 1, 2, we have

H1
! (S

Mi
� , ˜Mw·λ ⊗ C) =

⊕

ψ∈�ki(λ,w)

H1
! (S

Mi
� , ˜Mw·λ ⊗ C)(ψ) ,

where the C-vector spaces H1
! (S

Mi
� , ˜Mw·λ ⊗ C)(ψ) are of dimension 1. Set

Yk = {ψ ∈ �k : L(1/2,πψ ) �= 0}.

Theorem 10 (1) Case 1 : m1 = 0 = m2.

Hq
Eis(S� , ˜Mλ) =

{

Q, q = 0
0, otherwise

.

(2) Case 2 : m1 = 0, m2(�= 0) even.

Hq
Eis(S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

S2m2+4 ⊕ S3m2+6, q = 4
Sm2+2, q = 6
0, otherwise

.

(3) Case 3 : m1 = 0 , m2 odd.

Hq
Eis(S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

S2m2+4 q = 4
S3m2+5 ⊕ Sm2+3 ⊕ Q, q = 5
0, otherwise

.
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(4) Case 4 : m1(�= 0) even, m2 = 0.

Hq
Eis(S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm1+4 ⊕ S2m1+6, q = 4
Sm1+2, q = 6
0, otherwise

.

(5) Case 5 : m1(�= 0) even, m2(�= 0) even.

Hq
Eis(S� , ˜Mλ) =

⎧

⎪

⎨

⎪

⎩

Sm1+2m2+4 ⊕ S2m1+3m2+6, q = 4
Sm2+2 ⊕ Sm1+2 ⊕ Q, q = 6
0, otherwise

.

(6) Case 6 : m1(�= 0) even, m2 odd.

Hq
Eis(S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Sm1+2m2+4 , q = 4
Sm1+m2+3 ⊕ Sm1+3m2+5, q = 5
Sm1+2, q = 6
0, otherwise

.

(7) Case 7 : m1 odd, m2 = 0.

Hq
Eis(S� , ˜Mλ ⊗ C) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⊕

ψ∈Y2m1+6

H1
! (S

Mi
� , ˜Mw·λ ⊗ C)(ψ), q = 3

⊕

ψ /∈Y2m1+6

H1
! (S

Mi
� , ˜Mw·λ ⊗ C)(ψ), q = 4

Sm1+3 ⊕ Sm1+5 ⊕ C, q = 5
0, otherwise

.

(8) Case 8 : m1 odd, m2(�= 0) even.

Hq
Eis(S� , ˜Mλ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S2m1+3m2+6, q = 4
Sm1+m2+3 ⊕ Sm1+3m2+5, q = 5
Sm2+2, q = 6
0, otherwise

.

(9) Case 9 : m1 odd, m2 odd.

Hq
Eis(S� , ˜Mλ) = 0, ∀q .

Now, the proof of Theorem 10will occupy the rest of the paper, andwill follow in several
steps. The proof closely follows the strategy developed in [9] (see also [13], [17] and [18]).
Since our method is transcendental, we will consider the module ˜Mλ ⊗ C, from now on
we will simply write it as ˜Mλ,C.

5.2 General strategy

We now briefly describe the strategy which will be carried out in detail in the rest of
this section. As mentioned above, our approach relies on the fact that the Eisenstein
cohomology spans amaximal isotropic subspaceof the boundary cohomologywith respect
to the Poincaré dual pairing (see Theorem 11). Indeed, certain cohomology classes are
constructed using the theory of Eisenstein series, so we are done if the cohomology classes
thus constructed spans a maximal isotropic subspace.
More precisely, letω be a harmonic differential form that represents certain cohomology

class in the component Hq
! (∂i, ˜Mλ,C)(i = 0, 1, 2) of the boundary cohomology. By mim-
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icking the construction of Eisenstein series, we get a family of differential forms E(ω, θ )
on S� , where θ is a certain special parameter, to be discussed in Sect. 5.4. If E(ω, θ ) is
holomorphic at a certain θω, we get a non-trivial harmonic form E(ω, θω) that represents
a certain cohomology class in Hq(S� , ˜Mλ,C). By restricting the harmonic form back to
the boundary, we get a non-trivial Eisenstein cohomology class in Hq

Eis(∂S� , ˜Mλ,C). This
geometric formulation is closely related to the theory of (g, K∞)-cohomology and the clas-
sical Eisenstein series. In particular, the restriction of the cohomology class E(ω, θω) to
the boundary can be computed using the constant term of Eisenstein series. On the other
hand, if the differential form E(ω, θ ) has a simple pole at θω (or along some hyperplane that
contains θω), by taking residue, we still get a differential form E′(ω, θω), whose restriction
to the boundary also gives a certain Eisenstein cohomology class.
The study of Eisenstein cohomology is basically divided into two parts. In the first

part, we study the Eisenstein cohomology classes that come from maximal boundary
components, that is, those constructed from the cohomology classes inH•

! (∂i, ˜Mλ,C) with
i = 1, 2. In the second part, we study the Eisenstein cohomology classes that come from
theminimal boundary component, that is, those constructed from the cohomology classes
in H•

! (∂0, ˜Mλ,C).

5.3 Poincaré duality

For simplicity, we write

Hq
! (∂S� , ˜Mλ,C) := Hq

! (∂1, ˜Mλ,C) ⊕ Hq
! (∂2, ˜Mλ,C),

According to the Manin–Drinfeld principle [14], the Hecke eigenvalues associated
to the space Hq

! (∂S� , ˜Mλ,C) are different from those associated to the remaining
part of Hq(∂S� , ˜Mλ,C). Hence, there is a canonical Hecke equivariant section from
Hq
! (∂S� , ˜Mλ,C) toHq(∂S� , ˜Mλ,C). In particular, we can safely regardHq

! (∂S� , ˜Mλ,C) as a
subspace of Hq(∂S� , ˜Mλ,C). Moreover, we set

Hq
!,Eis(S� , ˜Mλ,C) := Hq

Eis(S� , ˜Mλ,C) ∩ Hq
! (∂S� , ˜Mλ,C).

We shall need the following theorem from [10, Proposition 6.1].

Theorem 11 Under the Poincaré dual pairing 〈·, ·〉

Hq(∂S� , ˜Mλ,C)×H7−q(∂S� , ˜Mλ,C) → C, Hq
! (∂S� , ˜Mλ,C) × H7−q

! (∂S� , ˜Mλ,C) → C,

we have

Hq
Eis(S� , ˜Mλ,C) = H7−q

Eis (S� , ˜Mλ,C)⊥, Hq
!,Eis(S� , ˜Mλ,C) = H7−q

!,Eis (S� , ˜Mλ,C)⊥.

In particular, the Eisenstein cohomology is a maximal isotropic subspace of the boundary
cohomology under the Poincaré duality.

Let A (resp. Af ) be the ring of adeles (resp. finite adeles) of Q and Kf = ∏

p G2(Zp). It
is clear that the Poincaré dual pairings are Hecke equivariant, hence Theorem 11 can be
further refined by considering the Hecke action. Let HKf be the spherical Hecke algebra
ofG2. Now let i = 1, 2. The inner cohomologyH•

! (∂i, ˜Mλ,C), considered as aHKf module,
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can be decomposed as

H•
! (∂i, ˜Mλ,C) =

⊕

w∈WPi

H1+�(w)
! (SMi

� , ˜Mw·λ,C)

=
⊕

w∈WPi

⊕

π=π∞⊗πf

m0(π )H1+�(w)(mi, KMi∞ ,π∞ ⊗ Mw·λ,C)(πf ).

Here, π denotes a cuspidal automorphic representation of Mi(A) with unramified πf and
m0(π ) denotes the multiplicity of π . A cohomology class in H•

! (∂i, ˜Mλ,C) is said to be
of type (π , w) if it comes from the summand H1+�(w)(mi, KMi ,π∞ ⊗ Mw·λ,C)(πf ) in the
above decomposition.
Now let β1,β2 ∈ H•

! (∂i, ˜Mλ,C) be the cohomology classes of type (π1, w1) and (π2, w2),
respectively. Recall that the Poincaré dual pairing is alsoHKf equivariant, hence if π1,f �=
π2,f , or equivalently, π1 �= π2 by strong multiplicity one, then 〈β1,β2〉 = 0. On the
other hand, for dimensional reasons, 〈β1,β2〉 �= 0 only when �(w1) + �(w2) = 5, which is
equivalent to saying thatw1 is mapped tow2 under the involution introduced in Lemma 2.
In conclusion, we get the following lemma.

Lemma 12 Let i = 1, 2 and β1,β2 ∈ H•
! (∂i, ˜Mλ,C) be cohomology classes of type (π1, w1)

and (π2, w2), respectively. Then, 〈β1,β2〉 is nonzero only if π1 = π2 and w1 = w′
2.

Let WPi
> = {w ∈ WPi : �(w) ≥ �(w′)}. In view of this lemma, we may regroup

H•
! (∂i, ˜Mλ,C) using the Weyl elements w ∈ WPi

> as follows:

H•
! (∂i, ˜Mλ,C) =

⊕

w∈WPi
>

⊕

ψ∈�ki(λ,w)

H•
! (∂i, ˜Mλ,C)((πψ

f )Kf , w),

with

H•
! (∂i, ˜Mλ,C)((πψ

f )Kf , w) := H1+�(w′)
! (SMi

� , ˜Mw′·λ,C)((πψ

f )Kf )

⊕H1+�(w)
! (SMi

� , ˜Mw·λ,C)((πψ

f )Kf ),

where πψ denotes the automorphic representation associated to the Hecke eigenform ψ .
By the multiplicity one theorem, dimH1+�(w)

! (SMi
� , ˜Mw·λ,C)((πψ

f )Kf ) = 1 for any (πψ

f , w).
Hence, by combining Theorem 11 and Lemma 12, we get

Proposition 13 The Eisenstein cohomology H•
!,Eis(∂S� , ˜Mλ,C) decomposes as

H•
!,Eis(S� , ˜Mλ,C) = H•

!,Eis(∂1, ˜Mλ,C) ⊕ H•
!,Eis(∂2, ˜Mλ,C),

where

H•
!,Eis(∂i, ˜Mλ,C) =

⊕

w∈WPi
>

⊕

ψ∈�ki (λ,w)

H•
!,Eis(∂i, ˜Mλ,C)((πψ

f )Kf , w),

with H•
!,Eis(∂i, ˜Mλ,C)((πψ

f )Kf , w) equals

either H1+�(w′)
! (SMi

� , ˜Mw′·λ,C)((πψ

f )Kf ) or H1+�(w)
! (SMi

� , ˜Mw·λ,C)((πψ

f )Kf ).
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5.4 Eisenstein forms

Let ω ∈ �∗(∂i, ˜Mλ)(i = 0, 1, 2) be a differential form on the boundary component ∂i and
ω̃ ∈ �∗(�Pi\S, ˜Mλ,C) be the pull-back of ω along the projection of �P\S = ∂i ×APi to the
first factor. For any θ ∈ bi := a∗

Pi ⊗ C, set

ωθ = ω̃ × aθ+ρi ∈ �∗(�Pi\S, ˜Mλ,C),

where ρi := ρ|bi Then we define the corresponding Eisenstein form as

E(ω, θ ) =
∑

γ∈�/�Pi

ωθ ◦ γ ∈ �∗(S� , ˜Mλ,C).

It is well known that the series E(ω, θ ) converges in certain region and admits an analytic
continuation to a meromorphic function on bi.

5.5 Constant terms and intertwining operators

To proceed, we consider the representation theoretic reformulation of the Eisenstein
forms. The complex of smooth forms �∗(S� , ˜Mλ,C) can be computed as

�∗(S� , ˜Mλ,C) = C∗(g, K∞;C∞(�\G2(R)) ⊗ Mλ)

= C∗(g, K∞;C∞(G2(Q)\G2(A)) ⊗ Mλ)Kf .

Consequently, we have

H•(S� , ˜Mλ,C) = H•(g, K∞;C∞(G2(Q)\G2(A)) ⊗ Mλ)Kf

Now let Pi be a standard parabolic, π = π∞ ⊗ πf be an automorphic representation of
Mi(A) and let θ ∈ bi be a parameter. For ψθ ∈ V (θ ,π ) := IndG2

Pi π ⊗ C
θ+ρi defined as

IndG2
Pi π ⊗ C

θ+ρi = {

f ∈ C∞(G2(A), Hπ ) : f (pg) = π (p)pθ+ρi f (g) for all p ∈ Pi(A)
}

,

where Hπ is the representation space of π , define the Eisenstein series as

EPi (θ ,π ,ψθ )(g) =
∑

γ∈Pi(Q)\G2(Q)
ψθ (γ g).

For θ from a certain region, the Eisenstein series defined above converges absolutely,
hence defines an intertwining operator

E θ : V (θ ,π ) → C∞(G2(Q)\G2(A)),

in this region. The Eisenstein series has ameromorphic continuation to bi, hence defines a
meromorphic continuation of the corresponding intertwining operator. When the Eisen-
stein series has a simple pole at θ , by taking the derivative, we get an intertwining operator

E ′
θ : V (θ ,π ) → C∞(G2(Q)\G2(A)),

which is no longer an embedding in general. It is clear that, for a closed form ω ∈
�∗(∂i, ˜Mλ,C) that represents certain cohomology class of type (π , w), the intertwining
operator E is holomorphic (resp. has a simple pole) at θ if and only if the corresponding
Eisenstein form E(ω, θ ) is holomorphic (resp. has a simple pole) at θ .
To determine whether E is holomorphic at certain point or not, it suffices to study the

constant terms, which is a map

CT : C∞(G(Q)\G(A)) → C∞(Ni(A)Pi(Q)\G(A)), f →
∫

Ni(Q)\Ni(A)
f (ng)dn,
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where Ni is the unipotent radical of Pi. First, we consider the case when the parabolic
subgroup is maximal. Let Q = MQNQ be another standard parabolic subgroup. Then,
the constant term along Q is defined as

EQ(θ ,π ,ψθ )(g) =
∫

NQ(Q)\NQ(A)
E(θ ,π ,ψθ )(ng)dn.

Since the maximal parabolic subgroups of G2 are self-conjugate, the constant term is
non-trivial only when Q = Pi, where we have

EPi (θ ,π ,ψθ )(g) = ψθ (g) + M(θ ,π , wPi )ψθ (g),

where wPi is the longest element inWPi andM(θ ,π , wPi ) is a global intertwining operator
from V (θ ,π ) to V (−θ ,π ). The global intertwining operator M(θ ,π , wPi ) is a product of
local intertwining operator

M(θ ,π , wPi ) = A(θ ,π∞, wPi ) ⊗ A(θ ,πf , wPi ), where A(θ ,πf , wPi ) = ⊗pA(θ ,πp, wPi ).

Note that if πp is unramified, the induced representation V (θ ,πp) is also unramified.
Works of Langlands and Gindikin–Karpelevich, see for example [4], give a description of
the local intertwining operator on G2(Zp)-invariant vectors. As a consequence, we have
the following description of the global intertwining operator.

Lemma 14 (1) Let i = 1 and θ = zγ1 ∈ b1. Then,

M(θ ,π , wP1) = c1(θ ,π )A(θ ,π∞, wP1) ⊗ A′(θ ,πf , wP1)

where A′(θ ,πf , wPi ) is the intertwining operator from V (θ ,πf ) := ⊗pV (θ ,πp) to
V (−θ ,πf ) that sends a normalized Kf -invariant vector in V (θ ,πf ) to a normalized
Kf -invariant vector in V (−θ ,πf ) and

c1(θ ,π ) = L(z, Sym3π )
L(z + 1, Sym3π )

ζ (2z)
ζ (2z + 1)

. (28)

(2) Let i = 2 and θ = zγ2 ∈ b2. Then,

M(θ ,π , wP2) = c2(θ ,π )A(θ ,π∞, wP2) ⊗ A′(θ ,πf , wP2)

where A′(θ ,πf , wP2) is the intertwining operator fromV (θ ,πf ) to V (−θ ,πf ) that sends
a normalized Kf -invariant vector in V (θ ,πf ) to a normalized Kf -invariant vector in
V (−θ ,πf ) and

c2(θ ,π ) = L(z,π )
L(z + 1,π )

ζ (2z)
ζ (2z + 1)

L(3z,π )
L(3z + 1,π )

. (29)

Proof Recall that the factor of the intertwining operator for G2 is given by the adjoint
action of the L-group of the Levi component of the unipotent radical. For maximal
parabolic subgroup, the Levi is isomorphic to GL2. Hence, the L-group is isomorphic
to GL2(C). Let V ∼= C

2 be the standard representation of GL2(C) of dimension 2. As
determined in [4], the adjoint action of GL2(C) on Ln1 and the adjoint action of GL2(C)
on Ln2 decompose as

Ln1 = Sym3V ⊗ (∧2V )−1 ⊕ ∧2V Ln2 = V ⊗ ∧2V ⊕ V ⊕ ∧2V.

Sinceπ is unramified, the factor for P1 is given by (28) and the factor for P2 is given by (29).
��
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Now let i = 0. Here, we consider the special case when π = C is the trivial represen-
tation. For θ = z1γ1 + z2γ2 ∈ b0, set V (θ ) = V (θ ,C). Then, the constant term can be
computed as

EP0(θ ,ψθ )(g) =
∑

w∈W
M(θ , w)(ψθ ),

where M(θ , w) denotes a global intertwining functor from V (θ ) to V (w · θ ). Again, the
global intertwining operator is a product of local intertwining operators

M(θ ,π , w) = A(θ ,π∞, w) ⊗ A(θ ,πf , w), where A(θ ,πf , w) = ⊗pA(θ ,πp, w).

Lemma 15 Let i = 0 and θ = z1γ1 + z2γ2. Then

M(θ ,π , w) = c0(θ , w)A(θ ,π∞, w) ⊗ A′(θ ,πf , w)

where A′(θ ,πf , w) is the intertwining operator from V (θ ,πf ) := ⊗pV (θ ,πp) to V (w · θ ,πf )
that sends a normalized Kf -invariant vector in V (θ ,πf ) to a normalized Kf -invariant
vector in V (w · θ ,πf ) and

c0(θ , w) =
∏

α∈�+
w−1α∈−�+

ζ (〈α, γ1〉(z1 + 1) + 〈α, γ2〉(z2 + 1) − 1)
ζ (〈α, γ1〉(z1 + 1) + 〈α, γ2〉(z2 + 1))

.

Proof This follows from direct computation, for a quick reference see [9, p. 159] and [7,
Section 1.2.4] for the details. ��

5.6 The inner part of the Eisenstein cohomology

Now we are ready to determine the space H•
!,Eis(S� , ˜Mλ,C). We begin with the following

lemma.

Lemma 16 Let λ = m1γ1 + m2γ2 and set θ iλ,w := −w(λ + ρ)|bi (i = 1, 2).

(1) The constant term c1(θ ,π ) has a simple pole at θ1λ,w if w = w6, m1 = 0 and L(1/2,π )
is nonzero and is holomorphic at θ1λ,w otherwise.

(2) The constant term c2(θ ,π ) has a simple pole at θ2λ,w if w = w7, m1 = 0 and
L(1/2, Sym3π ) is nonzero and is holomorphic at θ1λ,w otherwise.

Proof As ρ = γM1 + 5κM1, we have

−w(λ + ρ)|b1 = −1
2
(ti(w, λ) + 5)γ1.

Note that for θ = zγ1,

c2(θ ,π ) = L(z, Sym3π )
L(z + 1, Sym3π )

ζ (2z)
ζ (2z + 1)

.

Since the automorphic representations π considered here are all unramified, the corre-
sponding central character is trivial, hence π is not monomial. Then, according to [11],
the L-function L(z, Sym3π ) is entire. Hence, in view of Sect. 2.4, for c2(θ ,π ) to have pole
it is necessary to have w = w7, m2 = 0. The possible pole comes from the simple pole
of the zeta function at 2z = 1. But the simple pole may be canceled by a possible zero of
L(z, Sym3π ) at z = 1/2. This shows the part (2).
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As ρ = γM2 +3κM2, we have−w(λ+ρ)|b2 = − 1
2 (ti(w, λ)+3)γ2.Note that, for θ = zγ2,

c1(θ ,π ) = L(z,π )
L(z + 1,π )

ζ (2z)
ζ (2z + 1)

L(3z,π )
L(3z + 1,π )

.

It is well known that L(z,π ) appearing here are holomorphic and nonzero at z when
�z > 1. Hence in view of Sect. 2.4, for c1(θ ,π ) to have pole, it is necessary to havew = w6,
m1 = 0. The possible pole comes from the simple pole of the zeta function at 2z = 1. But
the simple pole may be canceled by a possible zero of L(z,π ) at z = 1/2. This shows the
part (1). ��
We shall need the following theorem.

Theorem 17 Let i = 1, 2, π be a cuspidal automorphic representation ofMi(A) and w ∈
WPi

> . Let β ∈ H1+�(w)
! (∂i, ˜Mλ,C) be a cohomology class of type (π , w) and ω ∈ �∗(∂i, ˜Mλ)

be a closed harmonic form that represents β .

(1) If the Eisenstein series E(ω, θ ) is holomorphic at θ iλ,w, then E(ω, θ iλ,w) ∈ �∗(S� , ˜Mλ,C)
is a closed form such that the restriction of its cohomology class to the boundary
r([E(ω, θ iλ,w)]) ∈ H1+�(w)

! (∂i, ˜Mλ,C) is non-trivial and of type (π , w).
(2) If the Eisenstein series E(ω, θ ) has a simple pole at θ iλ,w, then the residue

E′(ω, θ iλ,w) ∈ �∗(S� , ˜Mλ,C) is a closed form such that its restriction to the bound-
ary r([E′(ω, θ iλ,w)]) ∈ H1+�(w′)

! (∂i, ˜Mλ,C) is non-trivial and of type (π , w′).

Proof When the group G is ofQ-rank 1, the corresponding statements are proved in [5].
The same proof works when the cohomology classes come from the maximal boundary,
hence works for this theorem as well. We also refer [17] for details. ��
The subspace of H•

! (∂i, ˜Mλ,C) spanned by the cohomology classes of the form
r([E(ω, θ iλ,w)]) appearing in part (1) (resp. r([E′(ω, θ iλ,w)]) appearing in part (2)) of The-
orem 17 is denoted by H•

reg (∂i, ˜Mλ,C) (resp. H•
res(∂i, ˜Mλ,C)). Then, we have the natural

inclusion
⊕

i=1,2

(

H•
reg (∂i, ˜Mλ,C) ⊕ H•

res(∂i, ˜Mλ,C)
)

⊂ H•
!,Eis(S� , ˜Mλ,C). (30)

By combining Proposition 13, Lemma 16 and Theorem 17, the above inclusion (30) is
indeed an equality. Moreover, we conclude the following.

Proposition 18 Let λ = m1γ1 + m2γ2, w ∈ WPi
> (i = 1, 2) and ψ ∈ �ki(λ,w). Then

H•
!,Eis(∂1, ˜Mλ,C)((πψ

f )Kf , w) =
⎧

⎨

⎩

H1+�(w′)
! (SM1

� , ˜Mw′·λ,C)((πψ

f )Kf ) if
w=w6 ,m1=0,and

L(1/2,Sym3π )�=0.
H1+�(w)
! (SM1

� , ˜Mw·λ,C)((πψ

f )Kf ) otherwise.
(31)

H•
!,Eis(∂2, ˜Mλ,C)((πψ

f )Kf , w) =
⎧

⎨

⎩

H1+�(w′)
! (SM2

� , ˜Mw′·λ,C)((πψ

f )Kf ) if
w=w7 ,m2=0,and

L(1/2,π )�=0.
H1+�(w)
! (SM2

� , ˜Mw·λ,C)((πψ

f )Kf ) otherwise.
(32)

Now, we want to invoke the following result.

Lemma 19 Let π be a regular automorphic representation ofGL2 everywhere unramified
of weight k. Then, we have

(1) L(1/2,π ) = 0 if k = 2 (mod 4).
(2) L(1/2, Sym3π ) = 0.



Bajpai, Guan Res Math Sci            (2022) 9:21 Page 27 of 30    21 

Proof By the functional equation, it suffices to show that ε(1/2,π ) = −1. Since π is
unramified everywhere, ε(1/2,π ) = ε(1/2,π∞) = (−1)k/2. This completes the proof of
the first assertion.
For the second assertion, we use the following argument suggested by the referee.

Clearly, we have L(s,π ⊗π ⊗π ) = L(s, Sym3π )L(s,π )2. Consequently, we have ε(1/2,π ⊗
π⊗π ) = ε(1/2, Sym3π )ε(1/2,π )2. In viewof [16,Thm. 2],wehave ε(1/2,π⊗π⊗π ) = −1,
hence ε(1/2, Sym3π ) = −1. This implies that L(1/2, Sym3π ) = 0 as required. ��
Combining Proposition 18 and Lemma 19, we arrive at

Proposition 20 Let λ = m1γ1 + m2γ2, w ∈ WPi
> (i = 1, 2) and ψ ∈ �ki(λ,w). Then

H•
!,Eis(∂1, ˜Mλ,C)((πψ

f )Kf , w) = H1+�(w)
! (SM1

� , ˜Mw·λ,C)((πψ

f )Kf ) (33)

H•
!,Eis(∂2, ˜Mλ,C)((πψ

f )Kf , w) = H1+�(w)
! (SM2

� , ˜Mw·λ,C)((πψ

f )Kf ) (34)

Now, since the inclusion (30) is an equality, if we assume that H•(∂S� , ˜Mλ,C) ∼=
H•
! (∂S� , ˜Mλ,C), we find that H•

Eis(S� , ˜Mλ,C) ∼= H•
!,Eis(S� , ˜Mλ,C). Now, following Theo-

rem 9 we know that for the cases 2,4,6 and 8, H•(∂S� , ˜Mλ,C) ∼= H•
! (∂S� , ˜Mλ,C), and

therefore by combining the information achieved in Proposition 13 and Proposition 18
we have now determined H•

Eis(S� , ˜Mλ,C) for the cases 2,4,6 and 8 as described in Theo-
rem 10 and we describe these spaces explicitly in Sect. 5.8. Hence, we are left to treat the
cases 1, 3, 5 and 7 of Theorem 9.

5.7 The boundary part of the Eisenstein cohomology

In this section, we determine the Eisenstein cohomology classes that come from the
minimal boundary ∂0. As a consequence, we determine H•

Eis(S� , ˜Mλ,C) for all the cases
left. Throughout this subsection, we assume that H•(∂S� , ˜Mλ,C) �= H•

! (∂S� , ˜Mλ,C), or
equivalently, we are considering the cases 1, 3, 5 and 7 of Theorem 9.
Let β be a cohomology class in H6(˜∂0, ˜Mλ,C)1, and ω ∈ �6(˜∂0, ˜Mλ,C) be a closed

harmonic form that represents β . Recall that, as a module of the spherical Hecke algebra
of T, we have

H6(˜∂0, ˜Mλ,C) = H0(˜SM0
� , H6(N, ˜Mλ,C)) = C

−λ−2ρ .

The overall idea for the construction of the Eisenstein cohomology classes is the same
as before. If the Eisenstein form E(ω, θ ) is holomorphic at θλ := λ + ρ, then E(ω, θλ) ∈
�6(S� , ˜Mλ,C) is a closed form such that the restriction of its cohomology class to the
boundary is non-trivial, see [19, Theorem 7.2]. Otherwise, we need to take residues of
the Eisenstein form and compute their restriction to the boundary using the constant
term. As before, we denote the subspace of H•(∂S� , ˜Mλ,C) spanned by the Eisenstein
cohomology classes that come from the restriction of the Eisenstein forms (resp. residues
of the Eisenstein forms) by H•

B,reg (S� , ˜Mλ,C) (resp, H•
B,res(S� , ˜Mλ,C)).

For simplicity, set

H•
B,Eis(S� , ˜Mλ,C) = H•

B,reg (S� , ˜Mλ,C) ⊕ H•
B,res(S� , ˜Mλ,C).

Then we have the natural inclusion

H•
B,Eis(S� , ˜Mλ,C) ⊕ H•

!,Eis(S� , ˜Mλ,C) ⊂ H•
Eis(S� , ˜Mλ,C). (35)

1Here, ˜∂0 denotes the cover of ∂0 , which is easily seen to be isomorphic to the unipotent radical N.
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According to Theorem 11, the Eisenstein cohomology H•
Eis(S� , ˜Mλ,C) is a maximal

isotropic subspace of the boundary cohomology under the Poincaré duality. In partic-
ular,

dimH•
Eis(S� , ˜Mλ,C) = 1

2
dimH•(∂S� , ˜Mλ,C).

On the other hand, according to Theorem 9, we always have

dimH•(∂S� , ˜Mλ,C) − dimH•
! (∂S� , ˜Mλ,C) = 2,

for the cases studied in this subsection. Hence to determine H•
Eis(S� , ˜Mλ,C), it suffices to

fill H•
B,Eis(S� , ˜Mλ,C) with one non-trivial cohomology class.

The following proposition is the main result of this subsection

Proposition 21 Let the notations be as in Theorem 9.

(1) In case 1, we have H•
Eis(S� , ˜Mλ,C) = H0

B,res(S� , ˜Mλ,C) ∼= C.
(2) In case 3 and 7, we have H•

B,Eis(S� , ˜Mλ,C) = H5
B,res(S� , ˜Mλ,C) ∼= C.

(3) In case 5, we have H•
B,Eis(S� , ˜Mλ,C) = H6

B,reg (S� , ˜Mλ,C) ∼= C.

Proof The proof will be based on the computation of (g, K∞)-cohomology of certain
inducedmodules.Tobegin, let us startwith theproof of part (2).Without loss of generality,
we may assume that λ = m2γ2 for somem2 > 0.
Recall that

c0(θ , w) =
∏

α∈�+
w−1α∈−�+

ζ (〈α, γ1〉(z1 + 1) + 〈α, γ2〉(z2 + 1) − 1)
ζ (〈α, γ1〉(z1 + 1) + 〈α, γ2〉(z2 + 1))

.

Hence, in the case of w = w2(= s1) the constant term c0(θ , w) has a simple pole along
z1 = 0. Hence, the corresponding Eisenstein series has a simple pole along the line z1 = 0.
By taking the residue along the line z1 = 0, we get an intertwining operator

E ′ : IndG2
P0 C

−λ−ρ → C∞(G2(Q)\G2(A)).

Moreover, we have the following diagram.

IndG(A)P0(A)C
−λ−ρ C∞(G(Q)\G(A))

Jλ C∞(N(A)P0(Q)\G(A))

IndG(A)P0(A)C
−s1(λ+ρ)

E ′

A(−λ−ρ,s1)

ρ CTφ

Note that,

Jλ = IndG(A)P1(A)C
−s1(λ+ρ),

and the intertwining operator ρ is simply the induction of the intertwining operator

IndM1(A)
B(A) C

−λ−ρ −→ C
−s1(λ+ρ),

where B denotes the corresponding Borel subgroup of M1. Namely, ρ is the map

IndG(A)P1(A)Ind
M1(A)
B(A) C

−λ−ρ −→ IndG(A)P1(A)C
−s1(λ+ρ).



Bajpai, Guan Res Math Sci            (2022) 9:21 Page 29 of 30    21 

By taking the cohomology of the map φ, we get

H5(g, K∞, Jλ ⊗ Mλ)Kf
φ−→ H5(S� , ˜Mλ,C).

Moreover, the map φ fits into the following diagram.
H5(g, K∞, Jλ ⊗ Mλ)Kf H5(g, K∞, IndG(A)P0(A)C

−s1(λ+ρ) ⊗ Mλ)Kf

H5(S� , ˜Mλ,C) H5(∂S� , ˜Mλ,C) H0(SM0
� , ˜Mw11·λ,C)

A

φ ψ

r5 r′

According to the cohomology of the induced modules [3, Chapter III], the (g, K∞)
cohomology of Jλ ⊗Mλ, IndG(A)P0(A)C

−s1(λ+ρ), and the quotient module is trivial when q < 5
and

dimH5(g, K∞, Jλ ⊗ Mλ)Kf = dimH5(g, K∞, IndG(A)P0(A)C
−s1(λ+ρ) ⊗ Mλ)Kf = 1.

Hence, the map A is injective, and as both the source and the target has dimension 1, it is
an isomorphism. On the other hand, it is well known that the map ψ is an isomorphism.
Consequently, the map ψ ◦A is an isomorphism. This implies that both the map r′ ◦ r5 is
surjective. This completes the proof of part (2).
For the proof of part (1) and part (3), the same strategy applies and the proofs are

indeed easier. In part (1), the constant term, hence the Eisenstein series, has a double
pole at z1 = 0, z2 = 0. By taking successive residues, the Langlands quotient we get is
the constant representation, which provides non-trivial Eisenstein cohomology classes
H0
B,res(S� , ˜Mλ,C). While in case 5, the corresponding Eisenstein series is holomorphic at

the special point θλ. Hence, part (3) can be proved by just taking cohomology of the map
E , see [19] for more general cases. ��

5.8 Proof of Theorem 10

Now, by combining Proposition 20 with Proposition 21, Theorem 10 can be verified
through a case-by-case study. ��
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