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1 | INTRODUCTION

The class group is one of the most fundamental invariants of a number field K. Providing non-
trivial upper bounds for the I-torsion of class groups in terms of the discriminant A o, of a general
number field K has been an active area of research with connections to elliptic curves and dio-
phantine approximation [1-3, 6, 9-11, 14, 15].

For extensions K /Q of degree a power of a prime [ much more is known. For instance, for [ = 2
and K /Q a quadratic extension, Gauss [4] showed that

dimg, CI*(K)[2] = w(Ag /q) — 1.

Here CI*(K) denotes the narrow class group of the field K and w(a) denotes the number of
prime factors of a non-zero integer a. Recently, the authors [7] generalized Gauss’ result to mul-
tiquadratic fields. More specifically, we obtained the following result, which is Theorem 1.1 of [7].
Call avector (ay, ..., a,) € Zgz acceptable if the q; are squarefree, pairwise coprime and only have
prime factors congruent to 1 modulo 4.
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Theorem 1.1. Let n be a positive integer and let (a4, ..., a,) € Zﬁz be acceptable. Then we have
dim[FZCl‘L(@(\/a e vVa2] <w(ag - ..-a,) 2" =2 41

A similar upper bound has subsequently been established by Kliiners and Wang in [5, Theorem
2.1] for extensions K /Q of degree a power of . However, when specialized to the multiquadratic
fields considered above, their bound in the worst-case scenario is twice as large as the one in
Theorem 1.1. This work is devoted to showing that the bound in Theorem 1.1 is sharp for every
neZzs,.

An acceptable vector (ay, ..., a,) is said to be maximal in case the inequality of Theorem 1.1 is
an equality. Among other things, we have given a recursive characterization of maximal vectors
(see [7, Theorem 1.2]), which we reproduce here. Write 7 for the projection on the coordinates
in S, write H 2+ (K) for the maximal multiquadratic unramified (at all finite places) extension of K,
and write [n] :={1,...,n}.

Theorem 1.2. Let n be a positive integer and let (a4, ..., a,) be an acceptable vector. Then the fol-
lowing are equivalent.

(a) Thevector(ay, ..., a,) is maximal, that is,

dim[FZCl+(Q(\/a_, cova2l =wlay - .- ay) - 27 =20+ 1

(b) Forevery j € [n], thevector 7rj,,)_¢;(ay, ..., a,) is maximal and every prime divisor p of a; splits
completely in Hy (Q({\/@y}mepn)—():

(c) For every j € [n], the vector m,)_g(ay,...,a,) is maximal and for every prime divisor p
of cij, one (or equivalently any) prime above p in the field Q({\/ay}pmeln)—(j) belongs to
2C1 (Q({\/ am}me[n]—{j}))-

In particular, Theorem 1.2 recovers the equality of Gauss’ theorem for n = 1 as a special case.
It is then natural to ask whether for every positive integer n, one can find maximal vectors of
dimension n. As the reader can sense from the characterization given in Theorem 1.2, it is not at
all obvious how to do this. A naive inductive approach based on the Chebotarev density theorem
runs into severe difficulties, since one needs to simultaneously guarantee splitting of a prime p in
a field K, depending on g and of g in a field K, depending on p.

To circumvent this problem, we use combinatorial ideas from [12], which we explain here from
first principles in order to make the present work self-contained (see Section 2). Our main theorem
shows that one can find maximal vectors (a,, ..., a,) for every n. Moreover, for any fixed n, we
show that Theorem 1.1 is sharp for a wide number of choices of (w(a; ), ..., w(a,,)). More precisely,
we establish the following.

Theorem 1.3.

(a) Taken € Z. 5 and take (ky,...,k,) € Z51 X (2- Z5,)""'. Then there are infinitely many accept-
ablevectors (a,, ..., a,) with w(a;) = k; foreach i € [n] and

dimg CI*(Q(y/ay, .., \/a)[2] = w(a - ...- @) - 2" = 2" + 1.

(b) Take (ky,k,,k;) € Z;. Then there are infinitely many acceptable vectors (a,, a,,a;) with
w(a;) = k; foreachi € {1,2,3} and

dimg CI*(Q(+/ay, /a5, 1/a3))[2] = w(a;a,a5) - 4 = 7.
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We speculate that the condition (ky, ..., k,) € Z,; X (2 - Z,,)"~! can also be removed for n > 3,
but this seems to be out of reach with the techniques employed in this work. We next turn our
attention to ray class groups. First of all, let us notice that the 2-torsion of the ordinary class group
of a number field K cannot be larger than the 2-torsion of the narrow class group of K. Hence the
upper bound in Theorem 1.1 is also an upper bound for |Cl(@(\/a_ s s \/a_n))[z] |. Less obvious is
whether also this bound is sharp.

Similarly, fix an integer ¢, which we take in this paper to be a squarefree product of primes
congruent to 1 modulo 4 (see the end of this introduction for some motivation on this assump-
tion). Recall that the ray class group CI(Q( \/a s ey \/a_n), c) is by definition the quotient of the free
abelian group on the set of prime ideals of Q(\/a_ s \/a_n) coprime to ¢ by the group of principal
fractional ideals that admit a generator « congruent to 1 modulo c. From the definition one sees
that Cl(@(\/a_ s \/a_n), ¢) fits into an exact sequence

((9 Ay yens a, o
0 @(;/_ V) - ClQ(y/ay, ..., \/a,),¢) = ClQH/aj, ..., \/a,)) = 0,
Q@7 /a7)

which we will call the ray class group sequence.
Then one obtains from Theorem 1.1 and the ray class group sequence

dimFZCI(Q(\/a_, coVa), 02l Sw(ay - a,) - 2" = 2"+ 142" w(e),

where the bound can be reached only if all the prime divisors of ¢ split completely in
Q(4/ay, ..., 4/a,). It is, once more, not obvious whether this bound is sharp. Our next theorem
settles these questions.

Theorem 1.4. Taken € Z, and take (ky, ..., k,) € (2 - Z,,)". Let c be a squarefree positive integer
divisible only by primes congruent to 1 modulo 4. Then there are infinitely many acceptable vectors
(ay,...,a,) with w(a;) = k; foreach i € [n] and

dim[FZCl(Q(\/a v V@), 02l = w(ay - - ay) - 27 =27+ 142" - w(c).
As a corollary of Theorem 1.4 we obtain the following result on unit groups.

Corollary1.5. Letn € Z,. Let ¢ be a squarefree positive integer with all factors congruent to 1 mod-
ulo 4. Then there exist infinitely many acceptable vectors (ay, ... , a,,) such that all prime divisors of ¢

split completely in @(\/a_ , > /a,) and the unit group (9@( ) reduced modulo c is entirely

contained in the group

We remark that, in the context of Corollary 1.5, it is no real loss of generality to demand that
all the prime divisors of ¢ are 1 modulo 4. Indeed, we are aiming to construct multiquadratic
extensions splitting completely at all prime divisors of ¢ and whose unit group consists entirely
of squares modulo c. This then in particular applies to —1, which is then a square in F; for every



240 | KOYMANS AND PAGANO

l'| csothat! =1 mod 4. We similarly remark that the bound for the ordinary class group in Theo-
rem 1.4 (i.e., the case ¢ = 1) is not sharp, whenever one of the q; is divisible by a prime congruent
to 3 modulo 4.

2 | ADDITIVE SYSTEMS

For completeness we include a self-contained proof of [12, Proposition 3.1]; we claim no originality
in this section.

We let X, ..., X, be arbitrary non-empty finite sets and put X :=X; X -+ X X;. In our appli-
cation the sets X; will consist of acceptable integers a; with w(a;) = k; /2. A cube C is a product
setY,; X .- XY, withY; C X; and |Y;| = 2; in our application we can think of C as an acceptable
vector (ay, ..., ag) with w(a;) = k;. Itis here that we make essential use of k; being even. As we see
in our next section, we need to find cubes C satisfying certain bilinear conditions. The aim of our
next definition is to encapsulate this in an abstract framework.

We write X 12 for the set X; X X;. For S C [d] and i € [d], 7; denotes the natural projection from
[Tics X7 X [Ticpa)—s X to X} if i € S and to X; if i € [d] — S, while pr; and pr, denote the natural
projections from X 12 to its two factors.

Definition 2.1. Let X, ..., X be arbitrary non-empty finite sets and put X :=X; X -+ X X;. An
additive system 2 on X is a family of tuples (Cj, C;CC,F S’AS)Sg[d]’ indexed by subsets S C [d],
satisfying the following properties:

© CECCs Cies X7 X [licja)-s X aresets, Fg : Cg — Agisamap, and Ag is a finite F,-vector
space;
* we have that

Ce™ i={x € Cg : F4(x) = 0}
and, for S # @
CS:={xGHXi2>< HXi: forallje Sandally € H Xl.zx H X;
ieS ie[d]-S ieS—{j} ield]-(S-{j})

satisfying 7, (x) = 7 (y) for k € [d] —{j} and 7;(y) € {pr,(7;(x)), pr,(7;(x))},

acc .
we have y € CS_{J.}} ;

* suppose that x;, x,, x3 € Cg and suppose that there exists j € S such that
(%) = m(x,) = m (x3) for all k € [d] — {j}
and
ﬂj(xl) = (a,b), n'j(xz) = (b,0), 7rj(x3) = (a,c) for some a,b,c € X;.
Then we have

Fg(x1) + Fg(x,) = Fs(x3). (CAY)
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Note that we do not quite work with cubes in the above definition, but instead with elements of
X X X X - X X3 X X,. The major difference is that we have also included elements with equal
coordinates. This will be very convenient in the proof of our next counting result for CZ*°. Later, we
shall need to remove such elements, but it is not hard to show that they contribute a vanishingly
small proportion.

Proposition 2.2. Let X, ..., X, be arbitrary non-empty finite sets and put X :=X; X --- X X. Let
2 be an additive system on X such that |Ag| < N for all S C [d] and write § for the density of CSCC
in X. Then we have that

acc
IC[d] > 2d . N—3d
[Ticja) 1X71

Proof. We proceed by induction on d with the case d = 0 being trivial (recall that the empty carte-
sian product is by definition the set of cardinality 1 containing the empty tuple). Fix an element

X € H Xl.z.
]

ield-1

Define

V(x) :={(x,a) € Cfgilj taeXy, W) :={(x(a,b))e Cfgjc :(a,b) € X;}.
By definition of an additive system, we see that W(x) naturally injects in V(x) X V(x). From now
on we shall identify W(x) with its image in V(x) X V(x). We claim that W(x) defines an equiva-
lence relation on V(x).

If we apply Equation (2.1) with a = b = ¢, we conclude that for all SC[d—-1], all y €
[Tics X7 X Tligra-11-s X; and all a € X4

FSU{d}(y9 (ay a)) = O

From this, it follows quickly that W(x) is reflexive. Applying Equation (2.1) with a = ¢, we then
get

FSU{d}(yr (a5 b)) + FSu{d}(y, (ba a)) = FSU{d}(y’ (aa a)) = 0:

so that W(x) is symmetric. Finally, Equation (2.1) with a, b, and c arbitrary implies the transitivity
of W(x), which establishes the claim.

Our next step is to estimate the number of equivalence classes. To do so, take (x, a), (x,b) €
V(x)and{d} C S C [d]. Then we write (x, a) ~g (x,b) if (x,a) ~¢ (x,b) forall{d} C S’ ¢ Sand

Fs5(y,(a,b))) =0

for all y € Hies_{d}Xl.2 X Hie[d—l]—SXi satisfying 7;(y) = 7;(x) for i € S—{d} and 7;(y) €
{pr; (7;(x)), pry(7;(x))} for i € [d — 1] — S. Note that the equivalence relation ~4 is precisely
W(x).
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To upper bound the number of equivalence classes, take a collection of points (x, a;) € V(x)
such that (x, a;) ~¢ (x, a;) for all strict subsets S of [d]. Suppose that among this collection there
are R equivalence classes for ~4, with representatives (x, b,), ..., (x, bg). Then we see that the
map

(x, b;) = Figy(x, (by, b))

is injective and hence we conclude that R < N. Therefore we conclude that the total number of
equivalence classes is at most

N - B,

where B is the number of equivalence classes for the intersection of all the equivalence relations
~g, where S runs among all strict subsets of [d]. We can now iterate the above reasoning on each
such S, where we have to run over all the 2¢-15! choices of y, tracking at each step how many
additional classes one obtains when passing from Ng/cg(~g ) to S. In this manner we see that the
total number of equivalence classes for ~[4 is bounded by

d-1
d—|S| dfl)zi 3d-1
NN = N
{d}cScld] i=0

Define

14¢3]

o) = .
=X

Observe that V(x) naturally injects in X; by projecting on the dth component. This allows us
to view V(x) X V(x) as a subset of Xﬁ. Then it follows that the density of V(x) X V(x) in X é is
5(x)?. Then Cauchy’s inequality and our bound for the total number of equivalence classes imply
that

Wl 86

2 = d-1"
1X; N3
So far we have proven that
acc
Gl _ Zsellgay WO y R g
[iega X1 [licia) 171 Mieta—1 X7 e e N

Another application of Cauchy’s inequality shows that

§(x)? <erHie[d—1]Xi2 5(x))2

>
Z 3d71 =z 3d71 . 2 :
x€[Tiea—1 X} N N [licga—1 X7

(2.3)
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The average of 6(x) over all choices of x equals the density of Cf‘gill in Xy X [licia-1 X?, which
gives the equality

Laex, 2 € Gty © a(2) = i )2 (2.4)
1Xal - Tligpa—n) 1X71

> 5(x>2: I1 |Xi|4-<

x€[ligja-11 X} i€ld-1]

For each a € X, consider the additive system 2, on X; X --- X X;_; obtained from the additive
system 2 in the statement of the proposition and a in the natural way. The induction hypothesis
applied to each 2, yields

l{z € Cf‘;il] t wy(2) = a}|

[Micja— 1X71

> 8 N, (2.5)

where §,, is the density of {z;_1;(z) : 2’ € Cys mq(z') = a}in [];ciq_y) X;- Since d > 1, the gen-
eralized mean inequality (with 2¢-1 > 1) shows that

3 524! 2 3 5 2¢
e ><—aexd a) =52 (2.6)

| Xl | Xl

We deduce from Equations (2.2)-(2.6) that
acc
IClal 5%
[Ticiay 1IX71~ N3

.N_2‘3d—1 _ 52d .N_3d

as desired. O

3 | THE CATEGORY OF EXPANSION GROUPS

In this section we summarize the main results from [7] that we will use in Section 4. We start by
introducing n-expansion groups. For the motivation behind our next definition and Definition 3.3,
see Proposition 4.1.

Definition 3.1. Write ¢; for the ith standard basis vector of . An n-expansion group is a triple
(G, 9,(gy,--» gy)) satistying the following properties:

(i) Gis a group, g; € G for all i € [n] and ¢ : G — F} is a group homomorphism such that
¢(g;) = ¢; foralli € [n];
(ii) ker(e) is a vector space over [F5;
(iii) we have [G, G] = ker(p);
(iv) we have g? = id forall i € [n].

We define a morphism f between two n-expansion groups (G,¢,(g;,...,9,)) and
(G, ¢',(g;>-->9,)) to be a group homomorphism f : G — G’ satisfying f(g;) = ¢/ for all
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i € [n]. Let C, be the category of n-expansion groups, which contains as objects n-expansion
groups up to isomorphism and morphisms as defined above.

We will now explicitly construct the categorical product of two expansion groups following [7,
Definition 3.12]. Define g/’ be the element (g;, g) of G X G” and let G” be the group generated by
the g”". Furthermore, let ¢” : G” — F/ be given by

?"(9,9") 1= p(g).

We remark that ¢” (g, ¢’) = ¢'(¢’). Then it follows that the triple (G”,¢",(g/’,...,))) is an
n-expansion group, see [7, Proposition 3.13]. There are natural projection morphisms 7, 7,
to, respectively, (G,,(g;,...,9,)) and (G',¢’,(g], ..., g,))- Then a routine verification shows
that (G”,¢",(g/, ..., g)))) (together with 7; and 7,) is the product of (G,¢,(g,...,g,)) and
(G',¢',(g;, ..., g)) in the category of n-expansion groups.

Theorem 3.2. Let (G, ¢,(9;, .-, 9,)) € Ob(C,). Then G is a finite 2-group with

IG| < on2" 1 =2"4n+1

Furthermore, {g,, ..., g,,} is a generating set for G.
Let (G',¢', (g, 9,)) € Ob(Cy,). Then we have

[Hom((G, @, (g1s - » 6,00 (G @ (gl e g D] < 1.

If there exists a morphism f between (G, ¢, (g1, .- » 9,)) and (G',¢', (g, ..., g,)), then the map f isa
surjective group homomorphism satisfying f(g;) = gl.’ and ¢ = ¢'of.
Moreover, |Ob(C,)| < co. The category C,, has all finite products and an initial object.

Proof. For the first part, we cite [7, Proposition 3.9]. Since {g,, ..., g, } is a generating set for G, it is
clear that

|H0m((Ga §0, (gl, L) gn))’ (G,a go,’ (g{y AR} g:,)))| < 1.

Furthermore, it is also clear that f is surjective and that ¢ = ¢’of.

From the fact that |G| < 22" ~2"+1+1 it follows immediately that |Ob(C,)| < co. Then since,
as explained right above the statement of the present Theorem, C, has all finite products, the
product over all objects is an initial object. O

For us it will be important to describe the initial object of C,, more explicitly. Let F,, be the free
group on the set {x,, ..., x,,}. Consider the quotient group

Cn :=W",

where N is the smallest normal subgroup of F,, containing {xl.z}ie[n 1 and the square of any element
in the commutator subgroup [F,, F,,]. Denote by ¢ the unique homomorphism from G, to F}
sending (the class of) each x; to e;. Then the triple

g([l’l]) = (gn’ P, (gl’ e gn))
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is an n-expansion group and is the initial object of C,,, see [7, Proposition 3.10]. Here g; denotes
the class of x; in G,,. Instead of appealing to [7, Proposition 3.10], one can also use Theorem 3.2
to show that G([n]) is the initial object of C,. Indeed, since the kernel of the natural surjective
group homomorphism from F, to an arbitrary n-expansion group G contains N, G([n]) admits a
morphism to every expansion group G. Hence G([n]) is the initial object by Theorem 3.2.

[FIZ{" — [ for the surjective homomorphism obtained by summing each block of k; coordinates
foralli € [n].

Definition 3.3. We call a k; + --- + k,,-expansion group (G, ¢, (¢g;, ..., gkl+"'+kn)) al(k,....k,)]-

.....

.....

an initial object. The initial object is explicitly constructed in the text preceding [7, Theorem 3.20].
We now summarize that construction for the convenience of the reader. Let x € [k; + -+ + k,,]
and suppose that x is in the ith block, that is,

ki +- 4k <x<k +-+k,.
Then, as we explain below, we have a unique, surjective homomorphism
Px * Gy, = [Fz[[an]_{i}] b [FLnHi}
of abstract groups extending the following assignment:

(0,¢e) if j € [k; + -+ + k] is in the hth block with h # i
g9~ 1-id,0) ifj=x
(0,0) otherwise.

[n]—{i}

Here we view F

basis vector.

as the free [F,-vector space over [n] — {i} and ¢, is the corresponding standard

..........

.....

expansion group by taking the same map ¢ and the same generators g; as for G([k; + -+ + k).
We refer the reader to [7, Theorem 3.20] for the complete proof of this fact, while in the next
paragraph we summarize the salient features of the argument, which will clarify the claim made
above about ¢, and the fact that the map naturally factors through G(kl ..... k)

..........

.....

the smallest normal subgroup of Fy ..., containing the set N and R, which we now describe. For
hy, hy in the i; th block and hs, hy in the i)th block, we have that [x;, xp, , X, xp, |, (X5, xhz)z, and
(X xp, )? are all in R. Furthermore, [Xp, Xp,,clis in R for any element ¢ € [Fy .4y, Fi 4oqi, |-
Having described R and therefore N’, one can then show that

gk1+...+kn =
N = Yk
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Let us now show that the assignment ¢, defines a homomorphism

o, : gk1+---+kn N [Fz[[an]_{l}] q [F[zn]_{l}’

.....

Fk1 +otky it factors through N/, because it vanishes on each of the elements of the set R.

In the next section it will be convenient to describe explicitly the homomorphisms ¢,, which
is done in [7, Section 3.3] summarized now. If A is a set, we write [Fg‘ for the free [F,-vector space
on A.

Definition 3.4. Let G be a profinite group and let A C Hom(G, F,) be a finite, linearly indepen-
dent set with |A| > 2 and y, € A. An expansion map for G with support A and pointer y, is a
continuous group homomorphism

A— A—
l/) -G > [FZ[[Fz {)(0}] >< [F2 {XO},

satisfying the following two properties:

* for every y € A —{x,}, we have 7, 0y = x, where 7, is the projection on the coordinate of y

in IFA_{XO};
2
* we have Yoy = x,, where Y is the unique non-trivial character of [F2[[F;1_{X°}] X [F‘;_{X”} that

A=k ¢4 0,

sends the subgroup {0} X F,

We shall need further understanding of expansion maps, and to this end we recall some more
material from [7, Section 3.3]. Write S = A — {),} and n = |S|. Let ¢; be the ith basis vector of F3,
which we can naturally view as an element of [FZ[[Fg]. There is a ring isomorphism

FIFS] 2 Fylty, o, b1/, £2)
by sending f; to 1-id+1-e;. Under this isomorphism, the action of eie[Fg on

Folty, sty 1/ (82, .0, tfl) becomes multiplication by 1+4¢;. If ¥ is an expansion map, then
projection on the monomials tg := [];cq t; gives a system of 1-cochains

ps(P) : G > F,

for each S’ C S. These 1-cochains satisfy the recursive equation

ps/(07) — 95(9) — 5 (7) = Z Xr(9)s7(7) (€AY
@#TCS’

with ¢4 = xo and y = erT X, where the product is taken in F,. Reversely, a system of 1-
cochains satisfying Equation (3.1) naturally gives rise to an expansion map.

4 | PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3. The work is divided in two parts. In Subsection 4.1 we will
use the theoretical results from Section 3, we prove Proposition 4.5, and we recall a version of
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Rédei reciprocity, Theorem 4.6, that will be used later. With these tools in hand, we give the proof
of Theorem 1.3 in Subsection 4.2.

4.1 | Preparations

First we will show how expansion groups naturally occur in the study of class groups. By a char-
acter y of a field K we mean a continuous group homomorphism y : Gx — F,, where Gy is
by definition the Galois group Gal(K*°P /K) with K*°P a fixed choice of a separable closure of K.
Denote by y, the character corresponding to @(\/E). Take an acceptable vector (a,, ..., a,) and
write k; := w(a;). Then we see that for all i € [n] and for all primes p dividing a;, the prime p has
ramification degree 2 in H 2+ (Q(\/a_ sy \/a_n)). In particular any inertia subgroup at p has size 2.
So every inertia subgroup has exactly one non-trivial element, and by a choice of inertia at p we
mean the choice of such an involution in Gal(i{ ; (@(\/a_l s \/a_n)) /Q). Now write

A; *= Ppi41 " " Phy+k;
with h; 1= 3, ;1 k;. In this way there is an obvious bijection between [k, + --- + k, ] and the

prime factors of a - ... - a,,. The following proposition is the reason why [(k,, ..., k,,)]-expansion
groups play a central role in our work.

Proposition 4.1. Choose an inertia element o at p; for every j € [ky + -+ + k,]. Then
(Gal(H;(@(\/a_, s \/a_n))/@), (Xp,» - Xy, ), (015 s O tk,)
isa[(ky,...,k,)]-expansion group.
Proof. This is not hard to prove, but for the sake of brevity we refer to [7, Proposition 4.1]. [l
The shape of Theorem 1.2 presents a striking resemblance with Definition 2.1. To make the
analogy more stringent one would like to turn the splitting conditions in part (b) of Theorem 1.2

into an additive system: this is precisely the route we are going to follow. To do so we recall a
refinement of Theorem 1.2.

Theorem 4.2. Let n be a positive integer and let (ay, ..., a,,) be an acceptable vector. Then the fol-
lowing are equivalent.

(a) Thevector(ay,...,a,) is maximal, that is,
dim[F2Cl+(Q(\/a e Va)2] =w(ay - .- ay) -2 =20 41,
(b) ForeveryT G [n], every j € [n] — T and every prime p | a;, there exists an expansion map
. + {Xah dner {Xah tner
Yrp ¢ Gal(H (Q(y/ay, ..., 1/a,))/Q) = F,[F; IXF,

with support {)(ah tner U {x,} and pointer x .
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Proof. Let us first prove that (a) implies (b). Recall that Gal(H (Q(y/ay, ... , \/a,,))/Q) is naturally
a [(ky, ..., k,)]-expansion group by Proposition 4.1, which we call G. Since G is of maximal cardi-
nality, it follows from Theorem 3.2 that it must be canonically isomorphic to the initial object

..........

the intersection of ker(¢, ), where
Pr t Crpposr, = Fol P00 g P

is also constructed in Section 3 for x € [k; + -+ + k,,].
desired expansion mapsfor |T| =n—1.If|T| < n —1, we also get the remaining expansion maps,
since [Fz[[Fgl] X [Fg’ is naturally a quotient of F,[F? ] x F] for T C T.

Next we show that (b) implies (a). Recall again that Gal(H;r (Q(y/ay, ..., 1/a,))/Q) is naturally
a [(ky, ..., k,)]-expansion group by Proposition 4.1, which we call G. By Theorem 3.2, we see that
G is a quotient of G ..., (as groups) and the expansion map ¥y, fits in a commutative
diagram (of groups)

—tit.p

gk1+"'+k"

L, >

Yinl-{i}.p

g ) } |F2[|F2[n]_{l}] N Fz["]_{i},

where p is the xth prime and x is in the ith block. From this it is clear that the kernel (as
groups) of the unique surjection Gy ..., — G of (k; + -+ + k,,)-expansion groups is contained

.....

cardinality. O
Letn € Z,,, let (ky,...,k,) € Z,; X (2-Z,,)" ' and let M € Z,,,. Take
Y =Y, X XY,

to be a product space, where each Y is a set of cardinality M consisting of acceptable squarefree
integers. We further require that any two distinct elements in U | Y; are pairwise coprime and

that w(z) = % for each i € [n] — {1} and z € Y;, while w(z) =k, forz € Y,. We callsucha Y a
((kq, ..., k), M)-space.

Let Y now be a ((k,, ..., k,), M)-space. We denote by K(Y) the multiquadratic number field
obtained by adding all the square roots of the prime divisors of the elements in U Y; to
Q. Observe again that for each prime p ramifying in K(Y)/Q, the inertia subgroups of p in
Gal(H2+ (K(Y))/Q) are cyclic of size 2. For each such prime p we fix a choice of such an iner-
tia element o,. We will denote this choice by & := {o,, }pll_[?:I(HyEYi ») and refer to it as a choice of

inertia for Y. Once each set Y; is ordered, we see that this choice ® turns Gal(H2+ (K(Y))/Q) into
a|Y,|+ .- +|Y,|-expansion group.
—k
If 1 is an expansion map for G, we define its field of definition to be L(3p) := Q er(z,b). In case
G is a Galois group and ¥ is an expansion map for G, we shall sometimes implicitly view 3 as an
expansion map for G, through the canonical projection Gy — G. In this way it also makes sense

to speak of the field of definition for expansion maps from a Galois group G.
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Proposition 4.3.

(a) Let Y be a ((ky,...,k,), M)-space together with a choice of inertia ®. Let S C [n] and let j €
[n] — S. Pick a divisor d # 1 of an element in Y ; and pick {a;};cg with a; a product of elements
inY,; foreach i € S. Then there exists at most one expansion map

{Xo; :1€S and x, #0} {Xa, i€S and y, #0}
Pla)es:d(®) Gal(H; (K(Y))/Q) - F,[F; M P ;

with support{x, : i € Sand x, # 0}U{xy} and pointer x, such that
1) e5:a (@) = 0

foreach@#T C Sandeacho € ©.
() Ifa),s:a(®) exists, then it factors through Gal(H (Q({+/a}ics» Vad) /.

Proof. Aswe explained above, Proposition 4.1 implies that the group Gal(H; (K(Y))/Q) equipped
with & becomes a |Y;| + -+ + |Y, |-expansion group. In particular this implies that ® gener-
ates Gal(H2+ (K(Y))/Q) by Theorem 3.2. This gives part (a) immediately, since the requirement
qu(lp(ai)ies;d((S))(G) = 0 for each # # T C S determines the image of o under lp(af)ies:d(&)'

To obtain part (b) we start by noticing that L(tp(ai)ies;d((ﬁ)) is an abelian extension of
Q({\/Ei}ies, \/E). We only need to guarantee that it is unramified at all finite places. For this it
is enough to notice that for each prime g not dividing a; nor d one has that

¢(ai)ies;d(®)(0q) =id
precisely due to our requirement that qu(z,b(ai)ies;d(S))(oq) =0foreach@#T C S. O

In case there is an expansion map

‘Lp(ai)ies;d((ﬁ) : Gal(H;(K(Y))/Q) 5 [FZ[IF{ZXQI :ies and )(ai;éo}] 5 [F{Z)(al_ :ies and Xa; #0}
as in Proposition 4.3, we will simply say that z,b(ai)ies;d((ﬁ) exists. Note that Theorem 1.2 implies
that a maximal vector (a,, ..., a,,) must be strongly quadratically consistent, that is, we have (I—’) =1
for every distinct i, j € [n] and every two primes p | a;,q | a;. We call a ((ky, ..., k,), M)-space Y
quadratically consistent in case each of its vectors are strongly quadratically consistent.

For convenience we introduce the following notation. Let S C [n] and let U C [n] — S. Let

xe[[vix]]v;

ies jeu
then we write
c(x) 1= ((pry (7;C)pry(7;(xX)));es, (7 (X)) jev)

for the vector obtained by multiplying out the double entries of x and leaving unchanged the
single entries of x.
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Theorem 4.4. Let Y be a quadratically consistent ((ky, ... , k), M)-space, together with a choice of
inertia ®. Let S G [n]and let j € [n] — S. Pick a divisor d # 1 of an element in Y ;. Pick furthermore
U C [n] =S —{j}. Leta bean element of [[;cs Y7 X [1,cp Y- Then the following are equivalent.

(a) The map P(q).q(®) exists.

(b) Foreach h € SUU the map z'bﬂsUu_{h;(C(a));d(&) exists and every prime ramifying in @(\/;) /Q
splits completely in the field of definition of . {h}(c(a));d((ﬁ), where x equals 7, (a) forh € U
and pr, (7, (a))pr,(mr,(a)) for h € S.

Proof. We first show that (a) implies (b). So suppose that ¥, 4).4(®) exists and write 7 (P(q).4(®))
for the corresponding 1-cochains, where §# € T C SU U. Also set oy = . Take any h € SUU.
Then we see that {pr(Pe(q).a(G)gcrcsou—gn together with gy = x4 is a system of 1-cochains sat-
isfying Equation (3.1), hence 9, {h}(c(a));d((s) exists. Furthermore, we see that

P50 Pe(aya(BNOT) = PsuuPe(aya (G = Psuve(a)a(G(@)

equals

60.7):= Y xr(@Psou—r@e(@a( @)@,

gcTCSUU

where yr is the product of the characters y; with i € T, where y; equals ;. (z.(a))pr,(r,(a)) fOri € S
and Xr(a) fori € U. It follows that 8(c, 7) is trivial when inflated to H 2(GQ, F,). In particular, it is
locally trivial everywhere. Using that Y is quadratically consistent, this implies that every prime
ramifying in L(;)/Q splits completely in the field of definition of {h}(c(a));d(®)-

Indeed, take such a prime p ramifying in L(y,)/Q. We see that, locally at p, all the terms
appearing in the definition of 0 corresponding to a subset T different from {h} vanish. Hence the
expression reduces to the product x,(6)syu—in(Pea):a(®))(7). Recalling that p is unramified in
Psuv—inPe(a).a(®)), the desired conclusion readily follows.

To show that (b) implies (a), take for every subset § C T € SU U a map ¢g y_r that equals
qoSUU_T(1pﬂSUU7{h}(c(a));d((Si)) for all h € T. Define ¢y = x4 and consider

60, 7) = Y xr(@)Psuy—r(1). (4.1)

gCTCSUU

Using Equation (3.1), one sees that 6 is a 2-cocycle. By assumption its class in H*(Gg, F,) is locally
trivial at all the places that ramify in some L(y;)/Q. Furthermore, 6 is clearly locally trivial at
all other odd places. Since the y; are real, we see that 8 is also locally trivial at infinity. Then it
follows from Hilbert reciprocity that 6 is locally trivial everywhere, hence trivial in H*(Gg, F,) by
class field theory. This gives a map ¢g,; : Gg — F, satisfying

Psuv(0T) — Psuu(0) — sy (t) = 6(0, 7).

We claim that there exists a quadratic character y : Gy — F, such that ¢g;; + x factors through
Gal(H2+ (K(Y))/Q). First we observe that ¢g ; is a quadratic character of K(Y). Indeed, from
Equation (4.1) we see that 8(c, 7) = 0 for all o € G, that restrict to the identity in Gal(K(Y)/Q).
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It remains to prove that ¢g ,;; can be made an unramified character of K(Y') by twisting with a
character y.

Define the field E to be the compositum of K(Y) with all L(t,bﬁSUU_ {h}(c(a));d(@)) as h runs through
S U U.Then E is an unramified (at all finite places), abelian extension of K(Y") of exponent 2. Since
6(c,7) € H*(Gal(E/Q),F,), it follows that ¢g ; gives a central F,-extension F of E. Let p be an
odd place that is unramified in E, but suppose that it ramifies in F. Then twisting by x, removes
the ramification at p. Furthermore, 2 is unramified in E, and if 2 ramifies in F, then we can remove
the ramification at 2 by twisting with y_; and y,.

Now consider the resulting extension F’, which has the property that F’/Q can only ramify
at places that are already ramified in E/Q. Hence a place p ramifying in F’ /Q must be odd and
ramify in one of the L();)/Q. Now we compute

G(UP,GP) =0,

which implies that any lift of o, has order 2 in Gal(F ' /Q). Since p is tame, it must be that F’ /E
is unramified at p. We conclude there exists a character y such that ¢ ;; + x factors through
Gal(H2+ (K(Y))/Q). Further twisting by characters y, with p ramifying in K(Y) ensures that the
resulting map vanishes atallo € ©. O

In order to prove part (a) of Theorem 1.3, we aim to combine Theorem 4.2 and Theorem 4.4 with
Proposition 2.2. An import stepping stone is to guarantee equation (2.1) for the various cochains
¢s(r p) attached to an expansion map ;. ,. We now explain what this means and how to achieve
this.

Proposition 4.5. LetY be a ((ky, ..., k,), M)-space together with a choice of inertia ®. Let S ¢ [n],

and let j € [n] — S and iy € S. Pick a divisor d # 1 of an element in Y;. LetU C [n] =S —{j}. Let
X1, X5, X3 be three elements of [ [, Yl.2 X [1uev Yy such that they coincide outside iy and such that

pr(e;, (x60) = pramy, (x)), pry(my, (x2)) = pra(y (61)), - pry(ey (x5)) = pry(my, (x,)).
Suppose that P, a(®) and . ,4(®) exist. Then the map . ,(®) exists and
Pr(Peiry)d(®) = r(er):a(®) + Pr(Peqr,),a(®))
foreach@#T CS.

Proof. This is now an immediate consequence of Proposition 4.3. Indeed, it follows from Equation
(3.1) that the system of maps

{01 Wi, co)ies:d(B)) + PrWir c(xy)))ies:d (GNpzres
(together with g = x,) yields an expansion map from the group Gal(H; (K(Y))/Q) to the group

[F{)(ﬂi (3 ieSuU and Xz (C(XS));EO}

X 1ieSuU and y, #0}
[Fz[ ; ] % [Fz 7i(c(x3)) mi(c(x3)) )

Furthermore, the vanishing at all elements of & follows by construction. This gives the desired
conclusion. m



252 | KOYMANS AND PAGANO

Finally, in order to obtain Theorem 1.3, part (b), we recast here (a special case of) Rédei
reciprocity, rewritten in the language of expansion maps. Suppose that (a;, a,, a;) is a strongly
quadratically consistent vector. Then there exists an expansion map ¥, .,, : Gg — F,[F,] X F,.
Indeed, such an expansion map exists if and only if there exists a continuous map ¢ : Gg — F,
satisfying

qD(O'T) - (P(O-) - (0(1') = )(al (U) . Xaz(f)’

which is clearly equivalent to x, U x,, being trivial in H 2(Gg, F,). This last condition is in turn
equivalent to y, U x,, being locally trivial everywhere, which follows quickly from the assump-
tion that (a,, a,, a;) is strongly quadratically consistent.

Furthermore, every prime divisor p of a; splits completely in @(\/a_l , \/a_z) /Q. Hence Frob(p)
lands in the central subgroup Gal(L(lpal;az)/ Q(\/a_ , \/a_z)), which can be canonically identified
with IF,: here we recall that L(,, .,, ) denotes the field of definition of an expansion map. In what
follows Frobenius symbols need to be interpreted as elements of .

Theorem 4.6. Let (a;,a,,a3) be a strongly quadratically consistent vector. Let g ., :

Gal(H3 (Q(y/a1,1/a;))/Q) = F[F]1 X F, and 3, ., @ Gal(HS (Q(v/a;, 1/a3))/Q) — F,[F,] X
[, be expansion maps with supports, respectively, { Xay» Xaz} and{ Xay» )(a3} and pointers, respectively,
Xa, and .. Then

Z FrObL(¢a1;a2)/@(p) = Z FrObL(¢a1;a3)/@(p)'
plas pla,

Proof. This is a special case of [8, Theorem 3.3]. O

Remark 4.7. Theorem 4.6 has recently been generalized by the authors to more general expansion
maps, see [8, Theorem 3.3]. It is natural to wonder if this reciprocity law allows one to generalize
the proof of Theorem 1.3 part (b) ton > 3. For every (ky, ..., k,,) we have been able to construct vec-

tors (ay, ..., a,) with (w(ay), ..., w(a,)) = (k;, ..., k,) and |Cl+(Q(\/a_, /@ ))[2]] “large.” How-
ever, already for n = 4, we have not been able to produce maximal vectors this way.

4.2 | Proofof Theorem 1.3

Let us start with a proposition that immediately yields part (b) and will be an important step for
part (a).

Proposition 4.8. Let N and m be positive integers. Then there exists a product space
X =X XXX,

where the X; are disjoint sets of primes congruent to 1 modulo 4 with |X;| = N foreachi € [m] such
that

[]x
ieS

consists entirely of maximal vectors for every subset S C [m] with 1 < |S| < 3.
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Proof. We proceed by induction on m. For m = 1 the statement is trivial. Now suppose that the
statement is true for m, so that we have to prove it for m + 1. Pick a product set X; X --- X X,
guaranteed by the inductive hypothesis. Choose inertia elements & for the product set X; X -+ X
X,,» whichisnaturallya((1, 2, 2, ..., 2), N)-space. Consider the set Z of primes that split completely
in H2+ (K(X; X -+ X Xm))@(\/—_l)/ Q. Thanks to the Chebotarev density theorem, we see that Z is
an infinite set.

Pick any N-set X,, ., inside Z. Observe that X, is disjoint from each of the X; with i < m,
since these are all primes ramifying in H; (K(X; X -+ X X,,,))/Q. Next, since X, consists in par-
ticular of primes splitting in K(X; X -+ X X,,,)/Q, wesee that X; X .X; consists entirely of maximal
vectors for every distinct i; and i,. Hence for each 2-set {ij, i,} and every point (p,q) € X; XX, ,
we have an expansion map

zpp;q((g) : Gal(H;—(@(\/_y \/E))/Q) - IFZ[[FZ] b [FZ

with support {x,, x4} and pointer y,.

Thanks to our choice of X, ,;, we have that every x in X,,,,; splits completely in L(¥,.,(®))
whenever iy, i, < mare distinct. But then Theorem 4.6 yields that p splits completely in L(3.,(®))
and g splits completely in L(¥,..(®)). Therefore we deduce from Theorem 4.2 that for any 3-set
{s1,5,,83} € [m + 1] and any choice of x; € X ,fori € {1,2,3}, themap ), , .. (®)exists. Cycling
the 3 variables s;, s, 53 and using Theorem 4.2, we conclude that (x;, x,, X3) is maximal. 1

Proof of Theorem 1.3 part (b). By taking m = 3 and N arbitrary large, we see that Proposition 4.8
immediately implies part (b) of Theorem 1.3 for (ky, k5, k3) = (1,1, 1). The general case then fol-
lows from Proposition 4.5. Indeed, applying repeatedly Proposition 4.5 to the expansion maps
Py, xyx,(®) constructed at the end of the proof of Proposition 4.8, we see that if a,,a,, a; are
products of primes in, respectively, X , X, , X 53 then the map ¢a1,a2;q3((‘5) exists for each prime
divisor g; of a;. We can now apply this three times, cycling the three variables s;, s,, s;. Hence
Theorem 4.2 shows that (a,, a,, a;) is maximal, as desired. O

Proof of Theorem 1.3 part (a). Take n € Z, and (ky, ..., k,) € Z; X (2221)”_1. Fix furthermore
an auxiliary parameter M € Z.,. It follows from Proposition 4.5 and Proposition 4.8 that we can
construct a ((k,, ..., k,,), M)-space

Y =Y, X--XY,,

equipped with a choice of inertia @ such that for any 3-set{i;, i,, i3} C [n], any triple Wiy Yi,5 Vi) €
Y; XY; XY; and any prime divisor p | y;, we have that the map

wy,-l Yip ;P((sj)
exists. Fix such a ((ky, ..., k,,), M)-space Y. Also fix a point y; € Y, and put
Y = {yl}XYZ X...XYn.

We are going to construct an additive system on Y for the subsets S of [n] — {1}. We start by defining
subsets

cscvix I v;

ies jelnl-s
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forevery S C [n] — {1}. Let us first consider the case that |S| < n — 2. We define Cy by the property
that a € Cy if and only if for each 2-set {i, j} C [n] — S and for every prime divisor p | 7;(a), we
have that

Do e(@p(®)

exists. We next put Cj,,j_gy; to be the set of a in {y;} X Hzghgn Yi such that for any j € [n] — {1}
and any prime divisor p of 7; (c(a)) we have that

By c(@n:p(®)

exists and furthermore

Pty (e(@).pri(r;(@;p(B)

exists for all j € [n] — {1}, k € [2] and p dividing y;.
We now define the spaces Ag. Assume first that |S| < n — 3. We put Ag to be the space of formal
F,-linear combinations of 5-tuples

(xla x2, x3’ x4’ xS)’

where x,,x,,Xx; € [n] — S are pairwise distinct and x, € [ka], X5 € [kx3]. Instead for |S| € {n —
2,n — 1}, we set Ag = {0}.

Letusnowdefine Fg : Cg — Ag.Incase|S| > n — 3, we set Fg to be the trivial map. Henceforth
we assume that |S| < n — 3. Let (%, X5, X3, X4, X5) be a 5-tuple as above and a € Cj. Let px4(a) be
the x,th prime divisor of 7rx2(c(a)), by the natural ordering, and let sz(a) be the x5th prime
divisor of Ty, (c(a)). We have that the Frobenius of pxS(a) lands in the center of

GalL(®ry,, \(c(@)ipy, (@(©)/Q)
thanks to Theorem 4.4 and the definition of C. Observe that the center of
Folty, sty 1/(E3, s £2) XUFS

is cyclic of order 2 and generated by ¢; - ... - £,,. Hence to decide whether an element of the center is
trivial or not one may simply apply the 1-cochain ¢5u{x1}(¢nsu I )((Si)) to the central element.
X1hpxy(a

In other words the value
¢SU{X1}(¢7ZSU{X1}(c(a));px4 (a)(g))(FrOb(sz (a)))

is well defined and equals 0 if and only if p, (a) splits completely in the field of definition of
Vg, (@) (0)(®). With this preliminary in mind, we define Fg(a) to be the vector of Ag whose
X1 Py

(x1, X5, X3, X4, X5)-coordinate equals

¢Su{x1 }(lanU{xl }(c(a));px4 (a)(®))(Fr0b(px5 (a)))
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for each 5-tuple (x;, X,, X3, X4, X5) as described above. Finally, for each S C [n] — {1}, we put
acc ._ -1
Cg‘cc 1= F(0).
We now establish the following crucial fact.

Proposition 4.9. The 4-tuple {(Cg, C3*, Fs, Ag)}sc|n)—q; defined above is an additive system on Y.
Furthermore,

4] < 2m (i kP

foreach S C [n] —{1}.
Finally, for all a € Cy,,_y;; we have that the vector (;(c(a)));e[n] Y (e(ay O is a maximal vector of
dimension |{i € [n] : Xr(c(@) F 0}/.

Proof. Equation (2.1) is satisfied thanks to Proposition 4.5. The bound on |Ag| follows from
straightforward counting. The maximality claim is a consequence of Theorem 4.2 and Theo-
rem 4.4. [

We now finish the proof of Theorem 1.3, part (a). Write 2 for the additive system on Y guaran-
teed by Proposition 4.9. We apply Proposition 2.2 to the product space Y and the additive system

.....

such that there are at least

vectors a € {y;} X [[rqicp Yi2 in Cj_qy; (and therefore, by the last part of Proposition 4.9, with
(7i(c(a))ieln): .. («(@#0 Maximal). On the other hand, no more than (n—1) - M?"3 vectors a in

<1 <i<n Yl.2 are such that pr; (r;(a)) = pr,(7;(a)) for some i. It follows that there are at least

.....

vectors in Cp,j_g; With distinct coordinates. By the last part of Proposition 4.9, each of them gives
a maximal vector c(a) such that

w(r (@) = ky

for each i € [n]. Precisely 2"~! choices of a will give rise to the same vector when passing to c(a).
All in all, we have obtained at least

Clicy k) M2 _(p—1) - M3
on—1

distinct multiquadratic fields Q(4/a;, ..., 4/a,,) With (a4, ..., a,,) a maximal vector and with w(q;) =
k; for each i € [n]. For M going to infinity this quantity goes to infinity, which gives us the desired
conclusion. O
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5 | PROOF OF THEOREM 1.4 AND COROLLARY 1.5

In this section we give a proof of Theorem 1.4 and Corollary 1.5. We start by demonstrating that
Corollary 1.5 is a simple consequence of Theorem 1.4. Denote by K := Q(4/a,, ..., /a,) a field
satisfying the conclusion of Theorem 1.4. Recall that we have an exact sequence

Ok /o)
K

— CI(K,c) - CI(K) — 0.

00—

Ok /o)

To ease the notation, let us denote by A the group o
K

This gives the inequality
dimg, CI(K, 0)[2] < dimg, CI(K)[2] + dimg, A[2]
<w(a - -a,) 2" =2"+ 142" (o).
The second inequality can be an equality only if
dimg, CI(K)[2] = w(ay - ... - a,) - 2" = 2" +1,
and
dimy A[2] = 2" - w(c),

thanks to Theorem 1.1 (for the first equation) and simple counting (for the second equation).
Therefore we deduce from

dimg CI(K, o2l =w(a; - ...-a,)- 2" =2"4+142" - w(c)

that
dimg, CIK)[2] = w(ay - ... - @) - 2" = 2" +1
and
dim[FzA[Z] =2" . w(c). (5.1)
Observe that we have a surjection
. (Ok /o) A

— .
Therefore we deduce from Equation (5.1) that

Ok/o)* _ .

. A .
d ——2>d — =d Al2] =2"- . 5.2
1My, (Or /) Mg, 52 img A[2] w(c) (5.2)
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However, since all prime divisors of c are odd, direct counting gives the upper bound
(Og /)"
Fa (O [c)*2

with equality if and only if all the primes dividing ¢ split completely in K. It follows from Equations
(5.1)—(5.3) that

dim <2" - w(e) (5.3)

(Og /)" . . A
FZW =2"-w(c) = dimg A[2] = dlmmzﬁ,

whence ¢ is an isomorphism. Furthermore, all primes dividing c split completely in K.
On the other hand,

dim,

ker(p) = im(redc(K) : % - O /ey ),

(91*<2 (OK/C)*Z

where red,(K) is the natural reduction map modulo c. We conclude that the map red . (K) is trivial
as desired.

It remains to prove Theorem 1.4. To this end we switch to the setup of the proof of Theorem 1.3
and indicate the necessary modifications. First of all, we recall that the choice of y; was arbitrary,
so we are allowed to take y; := c. Now suppose that (c, a;, ..., a,) is a maximal vector such that
all expansion maps have totally real field of definition. Then we claim that

dimFZCI(@(\/a_, e V/@),0[2] = w(ay - .- a@y) - 2" = 2" 142" - (o).
Surely we have that
dimg, CI(Q(y/ay, ..., /@ ))[2] = w(a; - ... - a,) - 2" = 2" + 1.

But now observe that the collection of characters

is linearly independent and generates a subspace of

(/a5 /a7 V2]

linearly disjoint from

Cl@(y/ay, -, y/a)"[2]

by ramification considerations. This gives precisely the 2" -w(c) additional characters in
Cl(Q(y/ay, ..., /a,), c)V[2] and therefore yields

dimg CQ(+/ay, .., \/a,),0)[2] = w(a; - ...~ a,) - 212" 114+ 2™ w(c)

as desired.
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‘We still need to explain how one ensures that all expansion maps are totally real. First of all, we
indicate how Proposition 4.8 can be modified to ensure that all the maps gbyl;yz((ﬁ) are totally real.
In this case we use a more general version [13] of Rédei reciprocity, which includes —1 (taking
the role of the infinite place). Next one enlarges Ag to encode the splitting condition at infinity,
and the maps Fy are also extended accordingly. With these modifications in mind, one proceeds
exactly with the same argument as in Theorem 1.3.
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