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Abstract
Let 𝐾 be a multiquadratic extension of ℚ and let Cl+(𝐾)
be its narrow class group. Recently, the authors (Koy-
mans and Pagano, Int. Math. Res. Not. 2022 (2022), no.
4, 2772–2823) gave a bound for |Cl+(𝐾)[2]| only in terms
of the degree of 𝐾 and the number of ramifying primes.
In the present work we show that this bound is sharp in
a wide number of cases. Furthermore, we extend this to
ray class groups.

MSC 2020
11R29 (primary)

1 INTRODUCTION

The class group is one of the most fundamental invariants of a number field 𝐾. Providing non-
trivial upper bounds for the 𝑙-torsion of class groups in terms of the discriminantΔ𝐾∕ℚ of a general
number field 𝐾 has been an active area of research with connections to elliptic curves and dio-
phantine approximation [1–3, 6, 9–11, 14, 15].
For extensions𝐾∕ℚ of degree a power of a prime 𝑙muchmore is known. For instance, for 𝑙 = 2

and 𝐾∕ℚ a quadratic extension, Gauss [4] showed that

dim𝔽2
Cl+(𝐾)[2] = 𝜔(Δ𝐾∕ℚ) − 1.

Here Cl+(𝐾) denotes the narrow class group of the field 𝐾 and 𝜔(𝑎) denotes the number of
prime factors of a non-zero integer 𝑎. Recently, the authors [7] generalized Gauss’ result to mul-
tiquadratic fields. More specifically, we obtained the following result, which is Theorem 1.1 of [7].
Call a vector (𝑎1, … , 𝑎𝑛) ∈ ℤ𝑛

⩾2
acceptable if the 𝑎𝑖 are squarefree, pairwise coprime and only have

prime factors congruent to 1 modulo 4.
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Theorem 1.1. Let 𝑛 be a positive integer and let (𝑎1, … , 𝑎𝑛) ∈ ℤ𝑛
⩾2
be acceptable. Then we have

dim𝔽2
Cl+(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))[2] ⩽ 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1.

A similar upper bound has subsequently been established by Klüners andWang in [5, Theorem
2.1] for extensions 𝐾∕ℚ of degree a power of 𝑙. However, when specialized to the multiquadratic
fields considered above, their bound in the worst-case scenario is twice as large as the one in
Theorem 1.1. This work is devoted to showing that the bound in Theorem 1.1 is sharp for every
𝑛 ∈ ℤ⩾1.
An acceptable vector (𝑎1, … , 𝑎𝑛) is said to be maximal in case the inequality of Theorem 1.1 is

an equality. Among other things, we have given a recursive characterization of maximal vectors
(see [7, Theorem 1.2]), which we reproduce here. Write 𝜋𝑆 for the projection on the coordinates
in 𝑆, write𝐻+

2
(𝐾) for the maximal multiquadratic unramified (at all finite places) extension of 𝐾,

and write [𝑛] ∶= {1, … , 𝑛}.

Theorem 1.2. Let 𝑛 be a positive integer and let (𝑎1, … , 𝑎𝑛) be an acceptable vector. Then the fol-
lowing are equivalent.

(a) The vector (𝑎1, … , 𝑎𝑛) is maximal, that is,

dim𝔽2
Cl+(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1.

(b) For every 𝑗 ∈ [𝑛], the vector 𝜋[𝑛]−{𝑗}(𝑎1, … , 𝑎𝑛) is maximal and every prime divisor 𝑝 of 𝑎𝑗 splits
completely in𝐻+

2
(ℚ({

√
𝑎𝑚}𝑚∈[𝑛]−{𝑗})).

(c) For every 𝑗 ∈ [𝑛], the vector 𝜋[𝑛]−{𝑗}(𝑎1, … , 𝑎𝑛) is maximal and for every prime divisor 𝑝
of 𝑎𝑗 , one (or equivalently any) prime above 𝑝 in the field ℚ({

√
𝑎𝑚}𝑚∈[𝑛]−{𝑗}) belongs to

2Cl+(ℚ({
√
𝑎𝑚}𝑚∈[𝑛]−{𝑗})).

In particular, Theorem 1.2 recovers the equality of Gauss’ theorem for 𝑛 = 1 as a special case.
It is then natural to ask whether for every positive integer 𝑛, one can find maximal vectors of
dimension 𝑛. As the reader can sense from the characterization given in Theorem 1.2, it is not at
all obvious how to do this. A naive inductive approach based on the Chebotarev density theorem
runs into severe difficulties, since one needs to simultaneously guarantee splitting of a prime 𝑝 in
a field 𝐾𝑞 depending on 𝑞 and of 𝑞 in a field 𝐾𝑝 depending on 𝑝.
To circumvent this problem, we use combinatorial ideas from [12], which we explain here from

first principles in order tomake the presentwork self-contained (see Section 2). Ourmain theorem
shows that one can find maximal vectors (𝑎1, … , 𝑎𝑛) for every 𝑛. Moreover, for any fixed 𝑛, we
show that Theorem 1.1 is sharp for a wide number of choices of (𝜔(𝑎1), … , 𝜔(𝑎𝑛)). More precisely,
we establish the following.

Theorem 1.3.

(a) Take 𝑛 ∈ ℤ>3 and take (𝑘1, … , 𝑘𝑛) ∈ ℤ⩾1 × (2 ⋅ ℤ⩾1)
𝑛−1. Then there are infinitely many accept-

able vectors (𝑎1, … , 𝑎𝑛) with 𝜔(𝑎𝑖) = 𝑘𝑖 for each 𝑖 ∈ [𝑛] and

dim𝔽2
Cl+(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1.

(b) Take (𝑘1, 𝑘2, 𝑘3) ∈ ℤ3
⩾1
. Then there are infinitely many acceptable vectors (𝑎1, 𝑎2, 𝑎3) with

𝜔(𝑎𝑖) = 𝑘𝑖 for each 𝑖 ∈ {1, 2, 3} and

dim𝔽2
Cl+(ℚ(

√
𝑎1,

√
𝑎2,

√
𝑎3))[2] = 𝜔(𝑎1𝑎2𝑎3) ⋅ 4 − 7.
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We speculate that the condition (𝑘1, … , 𝑘𝑛) ∈ ℤ⩾1 × (2 ⋅ ℤ⩾1)
𝑛−1 can also be removed for 𝑛 > 3,

but this seems to be out of reach with the techniques employed in this work. We next turn our
attention to ray class groups. First of all, let us notice that the 2-torsion of the ordinary class group
of a number field 𝐾 cannot be larger than the 2-torsion of the narrow class group of 𝐾. Hence the
upper bound in Theorem 1.1 is also an upper bound for |Cl(ℚ(√𝑎1, … ,

√
𝑎𝑛))[2]|. Less obvious is

whether also this bound is sharp.
Similarly, fix an integer 𝑐, which we take in this paper to be a squarefree product of primes

congruent to 1 modulo 4 (see the end of this introduction for some motivation on this assump-
tion). Recall that the ray class group Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐) is by definition the quotient of the free

abelian group on the set of prime ideals ofℚ(
√
𝑎1, … ,

√
𝑎𝑛) coprime to 𝑐 by the group of principal

fractional ideals that admit a generator 𝛼 congruent to 1 modulo 𝑐. From the definition one sees
that Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐) fits into an exact sequence

0 →
(ℚ(

√
𝑎1,…,

√
𝑎𝑛)

∕𝑐)∗

∗

ℚ(
√
𝑎1,…,

√
𝑎𝑛)

→ Cl(ℚ(
√
𝑎1, … ,

√
𝑎𝑛), 𝑐) → Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛)) → 0,

which we will call the ray class group sequence.
Then one obtains from Theorem 1.1 and the ray class group sequence

dim𝔽2
Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐)[2] ⩽ 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1 + 2𝑛 ⋅ 𝜔(𝑐),

where the bound can be reached only if all the prime divisors of 𝑐 split completely in
ℚ(

√
𝑎1, … ,

√
𝑎𝑛). It is, once more, not obvious whether this bound is sharp. Our next theorem

settles these questions.

Theorem 1.4. Take 𝑛 ∈ ℤ⩾1 and take (𝑘1, … , 𝑘𝑛) ∈ (2 ⋅ ℤ⩾1)
𝑛. Let 𝑐 be a squarefree positive integer

divisible only by primes congruent to 1 modulo 4. Then there are infinitely many acceptable vectors
(𝑎1, … , 𝑎𝑛) with 𝜔(𝑎𝑖) = 𝑘𝑖 for each 𝑖 ∈ [𝑛] and

dim𝔽2
Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐)[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1 + 2𝑛 ⋅ 𝜔(𝑐).

As a corollary of Theorem 1.4 we obtain the following result on unit groups.

Corollary 1.5. Let 𝑛 ∈ ℤ⩾1. Let 𝑐 be a squarefree positive integer with all factors congruent to 1mod-
ulo 4. Then there exist infinitely many acceptable vectors (𝑎1, … , 𝑎𝑛) such that all prime divisors of 𝑐
split completely in ℚ(

√
𝑎1, … ,

√
𝑎𝑛) and the unit group ∗

ℚ(
√
𝑎1,…,

√
𝑎𝑛)

reduced modulo 𝑐 is entirely

contained in the group (
ℚ(

√
𝑎1,…,

√
𝑎𝑛)

𝑐ℚ(
√
𝑎1,…,

√
𝑎𝑛)

)∗2

.

We remark that, in the context of Corollary 1.5, it is no real loss of generality to demand that
all the prime divisors of 𝑐 are 1 modulo 4. Indeed, we are aiming to construct multiquadratic
extensions splitting completely at all prime divisors of 𝑐 and whose unit group consists entirely
of squares modulo 𝑐. This then in particular applies to −1, which is then a square in 𝔽𝑙 for every
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𝑙 ∣ 𝑐 so that 𝑙 ≡ 1 mod 4. We similarly remark that the bound for the ordinary class group in Theo-
rem 1.4 (i.e., the case 𝑐 = 1) is not sharp, whenever one of the 𝑎𝑖 is divisible by a prime congruent
to 3 modulo 4.

2 ADDITIVE SYSTEMS

For completeness we include a self-contained proof of [12, Proposition 3.1]; we claimno originality
in this section.
We let 𝑋1,… , 𝑋𝑑 be arbitrary non-empty finite sets and put 𝑋 ∶= 𝑋1 ×⋯ × 𝑋𝑑. In our appli-

cation the sets 𝑋𝑖 will consist of acceptable integers 𝑎𝑖 with 𝜔(𝑎𝑖) = 𝑘𝑖∕2. A cube 𝐶 is a product
set 𝑌1 ×⋯ × 𝑌𝑑 with 𝑌𝑖 ⊆ 𝑋𝑖 and |𝑌𝑖| = 2; in our application we can think of 𝐶 as an acceptable
vector (𝑎1, … , 𝑎𝑑)with 𝜔(𝑎𝑖) = 𝑘𝑖 . It is here that wemake essential use of 𝑘𝑖 being even. As we see
in our next section, we need to find cubes 𝐶 satisfying certain bilinear conditions. The aim of our
next definition is to encapsulate this in an abstract framework.
We write 𝑋2

𝑖
for the set 𝑋𝑖 × 𝑋𝑖 . For 𝑆 ⊆ [𝑑] and 𝑖 ∈ [𝑑], 𝜋𝑖 denotes the natural projection from∏

𝑖∈𝑆 𝑋
2
𝑖
×
∏

𝑖∈[𝑑]−𝑆 𝑋𝑖 to 𝑋2
𝑖
if 𝑖 ∈ 𝑆 and to 𝑋𝑖 if 𝑖 ∈ [𝑑] − 𝑆, while pr1 and pr2 denote the natural

projections from 𝑋2
𝑖
to its two factors.

Definition 2.1. Let 𝑋1,… , 𝑋𝑑 be arbitrary non-empty finite sets and put 𝑋 ∶= 𝑋1 ×⋯ × 𝑋𝑑. An
additive system 𝔄 on 𝑋 is a family of tuples (𝐶𝑆, 𝐶acc

𝑆
, 𝐹𝑆, 𝐴𝑆)𝑆⊆[𝑑], indexed by subsets 𝑆 ⊆ [𝑑],

satisfying the following properties:

∙ 𝐶acc
𝑆

⊆ 𝐶𝑆 ⊆
∏

𝑖∈𝑆 𝑋
2
𝑖
×
∏

𝑖∈[𝑑]−𝑆 𝑋𝑖 are sets,𝐹𝑆 ∶ 𝐶𝑆 → 𝐴𝑆 is amap, and𝐴𝑆 is a finite 𝔽2-vector
space;

∙ we have that

𝐶acc
𝑆

∶= {𝑥 ∈ 𝐶𝑆 ∶ 𝐹𝑆(𝑥) = 0}

and, for 𝑆 ≠ ∅

𝐶𝑆 ∶=

{
𝑥 ∈

∏
𝑖∈𝑆

𝑋2
𝑖
×

∏
𝑖∈[𝑑]−𝑆

𝑋𝑖 ∶ for all 𝑗 ∈ 𝑆 and all 𝑦 ∈
∏

𝑖∈𝑆−{𝑗}

𝑋2
𝑖
×

∏
𝑖∈[𝑑]−(𝑆−{𝑗})

𝑋𝑖

satisfying 𝜋𝑘(𝑥) = 𝜋𝑘(𝑦) for 𝑘 ∈ [𝑑] − {𝑗} and 𝜋𝑗(𝑦) ∈ {pr1(𝜋𝑗(𝑥)), pr2(𝜋𝑗(𝑥))},

we have 𝑦 ∈ 𝐶acc
𝑆−{𝑗}

}
;

∙ suppose that 𝑥1, 𝑥2, 𝑥3 ∈ 𝐶𝑆 and suppose that there exists 𝑗 ∈ 𝑆 such that

𝜋𝑘(𝑥1) = 𝜋𝑘(𝑥2) = 𝜋𝑘(𝑥3) for all 𝑘 ∈ [𝑑] − {𝑗}

and

𝜋𝑗(𝑥1) = (𝑎, 𝑏), 𝜋𝑗(𝑥2) = (𝑏, 𝑐), 𝜋𝑗(𝑥3) = (𝑎, 𝑐) for some 𝑎, 𝑏, 𝑐 ∈ 𝑋𝑗.

Then we have

𝐹𝑆(𝑥1) + 𝐹𝑆(𝑥2) = 𝐹𝑆(𝑥3). (2.1)
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Note that we do not quite work with cubes in the above definition, but instead with elements of
𝑋1 × 𝑋1 ×⋯ × 𝑋𝑑 × 𝑋𝑑. The major difference is that we have also included elements with equal
coordinates. Thiswill be very convenient in the proof of our next counting result for𝐶acc

𝑆
. Later, we

shall need to remove such elements, but it is not hard to show that they contribute a vanishingly
small proportion.

Proposition 2.2. Let 𝑋1,… , 𝑋𝑑 be arbitrary non-empty finite sets and put 𝑋 ∶= 𝑋1 ×⋯ × 𝑋𝑑 . Let
𝔄 be an additive system on 𝑋 such that |𝐴𝑆| ⩽ 𝑁 for all 𝑆 ⊆ [𝑑] and write 𝛿 for the density of 𝐶acc

∅
in 𝑋. Then we have that

|𝐶acc
[𝑑]

|∏
𝑖∈[𝑑] |𝑋2

𝑖
| ⩾ 𝛿2

𝑑
⋅𝑁−3𝑑 .

Proof. We proceed by induction on 𝑑 with the case 𝑑 = 0 being trivial (recall that the empty carte-
sian product is by definition the set of cardinality 1 containing the empty tuple). Fix an element

𝑥 ∈
∏

𝑖∈[𝑑−1]

𝑋2
𝑖
.

Define

𝑉(𝑥) ∶= {(𝑥, 𝑎) ∈ 𝐶acc
[𝑑−1]

∶ 𝑎 ∈ 𝑋𝑑}, 𝑊(𝑥) ∶= {(𝑥, (𝑎, 𝑏)) ∈ 𝐶acc
[𝑑]

∶ (𝑎, 𝑏) ∈ 𝑋2
𝑑
}.

By definition of an additive system, we see that𝑊(𝑥) naturally injects in 𝑉(𝑥) × 𝑉(𝑥). From now
on we shall identify𝑊(𝑥) with its image in 𝑉(𝑥) × 𝑉(𝑥). We claim that𝑊(𝑥) defines an equiva-
lence relation on 𝑉(𝑥).
If we apply Equation (2.1) with 𝑎 = 𝑏 = 𝑐, we conclude that for all 𝑆 ⊆ [𝑑 − 1], all 𝑦 ∈∏
𝑖∈𝑆 𝑋

2
𝑖
×
∏

𝑖∈[𝑑−1]−𝑆 𝑋𝑖 and all 𝑎 ∈ 𝑋𝑑

𝐹𝑆∪{𝑑}(𝑦, (𝑎, 𝑎)) = 0.

From this, it follows quickly that𝑊(𝑥) is reflexive. Applying Equation (2.1) with 𝑎 = 𝑐, we then
get

𝐹𝑆∪{𝑑}(𝑦, (𝑎, 𝑏)) + 𝐹𝑆∪{𝑑}(𝑦, (𝑏, 𝑎)) = 𝐹𝑆∪{𝑑}(𝑦, (𝑎, 𝑎)) = 0,

so that𝑊(𝑥) is symmetric. Finally, Equation (2.1) with 𝑎, 𝑏, and 𝑐 arbitrary implies the transitivity
of𝑊(𝑥), which establishes the claim.
Our next step is to estimate the number of equivalence classes. To do so, take (𝑥, 𝑎), (𝑥, 𝑏) ∈

𝑉(𝑥) and {𝑑} ⊆ 𝑆 ⊆ [𝑑]. Then we write (𝑥, 𝑎) ∼𝑆 (𝑥, 𝑏) if (𝑥, 𝑎) ∼𝑆′ (𝑥, 𝑏) for all {𝑑} ⊆ 𝑆′ ⊊ 𝑆 and

𝐹𝑆(𝑦, (𝑎, 𝑏))) = 0

for all 𝑦 ∈
∏

𝑖∈𝑆−{𝑑} 𝑋
2
𝑖
×
∏

𝑖∈[𝑑−1]−𝑆 𝑋𝑖 satisfying 𝜋𝑖(𝑦) = 𝜋𝑖(𝑥) for 𝑖 ∈ 𝑆 − {𝑑} and 𝜋𝑖(𝑦) ∈

{pr1(𝜋𝑖(𝑥)), pr2(𝜋𝑖(𝑥))} for 𝑖 ∈ [𝑑 − 1] − 𝑆. Note that the equivalence relation ∼[𝑑] is precisely
𝑊(𝑥).
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To upper bound the number of equivalence classes, take a collection of points (𝑥, 𝑎𝑖) ∈ 𝑉(𝑥)

such that (𝑥, 𝑎𝑖) ∼𝑆 (𝑥, 𝑎𝑗) for all strict subsets 𝑆 of [𝑑]. Suppose that among this collection there
are 𝑅 equivalence classes for ∼[𝑑], with representatives (𝑥, 𝑏1), … , (𝑥, 𝑏𝑅). Then we see that the
map

(𝑥, 𝑏𝑖) ↦ 𝐹[𝑑](𝑥, (𝑏1, 𝑏𝑖))

is injective and hence we conclude that 𝑅 ⩽ 𝑁. Therefore we conclude that the total number of
equivalence classes is at most

𝑁 ⋅ 𝐵,

where 𝐵 is the number of equivalence classes for the intersection of all the equivalence relations
∼𝑆 , where 𝑆 runs among all strict subsets of [𝑑]. We can now iterate the above reasoning on each
such 𝑆, where we have to run over all the 2𝑑−|𝑆| choices of 𝑦, tracking at each step how many
additional classes one obtains when passing from ∩𝑆′⊊𝑆(∼𝑆′) to 𝑆. In this manner we see that the
total number of equivalence classes for ∼[𝑑] is bounded by

∏
{𝑑}⊆𝑆⊆[𝑑]

𝑁2𝑑−|𝑆| ⩽
𝑑−1∏
𝑖=0

𝑁(
𝑑−1
𝑖 )2

𝑖

= 𝑁3𝑑−1 .

Define

𝛿(𝑥) =
|𝑉(𝑥)||𝑋𝑑| .

Observe that 𝑉(𝑥) naturally injects in 𝑋𝑑 by projecting on the 𝑑th component. This allows us
to view 𝑉(𝑥) × 𝑉(𝑥) as a subset of 𝑋2

𝑑
. Then it follows that the density of 𝑉(𝑥) × 𝑉(𝑥) in 𝑋2

𝑑
is

𝛿(𝑥)2. Then Cauchy’s inequality and our bound for the total number of equivalence classes imply
that

|𝑊(𝑥)||𝑋2
𝑑
| ⩾

𝛿(𝑥)2

𝑁3𝑑−1
.

So far we have proven that

|𝐶acc
[𝑑]

|∏
𝑖∈[𝑑] |𝑋2

𝑖
| =

∑
𝑥∈

∏
𝑖∈[𝑑−1] 𝑋

2
𝑖
|𝑊(𝑥)|∏

𝑖∈[𝑑] |𝑋2
𝑖
| ⩾

1∏
𝑖∈[𝑑−1] |𝑋2

𝑖
| ⋅ ∑

𝑥∈
∏

𝑖∈[𝑑−1] 𝑋
2
𝑖

𝛿(𝑥)2

𝑁3𝑑−1
. (2.2)

Another application of Cauchy’s inequality shows that

∑
𝑥∈

∏
𝑖∈[𝑑−1] 𝑋

2
𝑖

𝛿(𝑥)2

𝑁3𝑑−1
⩾

(∑
𝑥∈

∏
𝑖∈[𝑑−1] 𝑋

2
𝑖
𝛿(𝑥)

)2
𝑁3𝑑−1 ⋅

∏
𝑖∈[𝑑−1] |𝑋2

𝑖
| . (2.3)
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The average of 𝛿(𝑥) over all choices of 𝑥 equals the density of 𝐶acc
[𝑑−1]

in 𝑋𝑑 ×
∏

𝑖∈[𝑑−1] 𝑋
2
𝑖
, which

gives the equality

⎛⎜⎜⎝
∑

𝑥∈
∏

𝑖∈[𝑑−1] 𝑋
2
𝑖

𝛿(𝑥)
⎞⎟⎟⎠
2

=
∏

𝑖∈[𝑑−1]

|𝑋𝑖|4 ⋅(
∑

𝑎∈𝑋𝑑
|{𝑧 ∈ 𝐶acc

[𝑑−1]
∶ 𝜋𝑑(𝑧) = 𝑎}||𝑋𝑑| ⋅∏𝑖∈[𝑑−1] |𝑋2

𝑖
|

)2

. (2.4)

For each 𝑎 ∈ 𝑋𝑑, consider the additive system 𝔄𝑎 on 𝑋1 ×⋯ × 𝑋𝑑−1 obtained from the additive
system𝔄 in the statement of the proposition and 𝑎 in the natural way. The induction hypothesis
applied to each𝔄𝑎 yields

|{𝑧 ∈ 𝐶acc
[𝑑−1]

∶ 𝜋𝑑(𝑧) = 𝑎}|∏
𝑖∈[𝑑−1] |𝑋2

𝑖
| ⩾ 𝛿2

𝑑−1

𝑎 ⋅𝑁−3𝑑−1 , (2.5)

where 𝛿𝑎 is the density of {𝜋[𝑑−1](𝑧′) ∶ 𝑧′ ∈ 𝐶acc
∅

, 𝜋𝑑(𝑧
′) = 𝑎} in

∏
𝑖∈[𝑑−1] 𝑋𝑖 . Since 𝑑 ⩾ 1, the gen-

eralized mean inequality (with 2𝑑−1 ⩾ 1) shows that

⎛⎜⎜⎝
∑

𝑎∈𝑋𝑑
𝛿2

𝑑−1

𝑎|𝑋𝑑|
⎞⎟⎟⎠
2

⩾

(∑
𝑎∈𝑋𝑑

𝛿𝑎|𝑋𝑑|
)2𝑑

= 𝛿2
𝑑
. (2.6)

We deduce from Equations (2.2)–(2.6) that

|𝐶acc
[𝑑]

|∏
𝑖∈[𝑑] |𝑋2

𝑖
| ⩾ 𝛿2

𝑑

𝑁3𝑑−1
⋅𝑁−2⋅3𝑑−1 = 𝛿2

𝑑
⋅𝑁−3𝑑

as desired. □

3 THE CATEGORY OF EXPANSION GROUPS

In this section we summarize the main results from [7] that we will use in Section 4. We start by
introducing 𝑛-expansion groups. For themotivation behind our next definition andDefinition 3.3,
see Proposition 4.1.

Definition 3.1. Write 𝑒𝑖 for the 𝑖th standard basis vector of 𝔽𝑛2 . An 𝑛-expansion group is a triple
(𝐺, 𝜑, (g1, … , g𝑛)) satisfying the following properties:

(i) 𝐺 is a group, g𝑖 ∈ 𝐺 for all 𝑖 ∈ [𝑛] and 𝜑 ∶ 𝐺 → 𝔽𝑛
2
is a group homomorphism such that

𝜑(g𝑖) = 𝑒𝑖 for all 𝑖 ∈ [𝑛];
(ii) ker(𝜑) is a vector space over 𝔽2;
(iii) we have [𝐺, 𝐺] = ker(𝜑);
(iv) we have g2

𝑖
= id for all 𝑖 ∈ [𝑛].

We define a morphism 𝑓 between two 𝑛-expansion groups (𝐺, 𝜑, (g1, … , g𝑛)) and
(𝐺′, 𝜑′, (g ′

1
, … , g ′𝑛)) to be a group homomorphism 𝑓 ∶ 𝐺 → 𝐺′ satisfying 𝑓(g𝑖) = g ′

𝑖
for all
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𝑖 ∈ [𝑛]. Let 𝑛 be the category of 𝑛-expansion groups, which contains as objects 𝑛-expansion
groups up to isomorphism and morphisms as defined above.
We will now explicitly construct the categorical product of two expansion groups following [7,

Definition 3.12]. Define g ′′
𝑖
be the element (g𝑖 , g ′𝑖 ) of 𝐺 × 𝐺′ and let 𝐺′′ be the group generated by

the g ′′
𝑖
. Furthermore, let 𝜑′′ ∶ 𝐺′′ → 𝔽𝑛

2
be given by

𝜑′′(g , g ′) ∶= 𝜑(g).

We remark that 𝜑′′(g , g ′) = 𝜑′(g ′). Then it follows that the triple (𝐺′′, 𝜑′′, (g ′′
1
, … , g ′′𝑛 )) is an

𝑛-expansion group, see [7, Proposition 3.13]. There are natural projection morphisms 𝜋1, 𝜋2
to, respectively, (𝐺, 𝜑, (g1, … , g𝑛)) and (𝐺′, 𝜑′, (g ′

1
, … , g ′𝑛)). Then a routine verification shows

that (𝐺′′, 𝜑′′, (g ′′
1
, … , g ′′𝑛 )) (together with 𝜋1 and 𝜋2) is the product of (𝐺, 𝜑, (g1, … , g𝑛)) and

(𝐺′, 𝜑′, (g ′
1
, … , g ′𝑛)) in the category of 𝑛-expansion groups.

Theorem 3.2. Let (𝐺, 𝜑, (g1, … , g𝑛)) ∈ Ob(𝑛). Then 𝐺 is a finite 2-group with

|𝐺| ⩽ 2𝑛2
𝑛−1−2𝑛+𝑛+1.

Furthermore, {g1, … , g𝑛} is a generating set for 𝐺.
Let (𝐺′, 𝜑′, (g ′

1
, … , g ′𝑛)) ∈ Ob(𝑛). Then we have

|Hom((𝐺, 𝜑, (g1, … , g𝑛)), (𝐺
′, 𝜑′, (g ′1, … , g ′𝑛)))| ⩽ 1.

If there exists a morphism 𝑓 between (𝐺, 𝜑, (g1, … , g𝑛)) and (𝐺′, 𝜑′, (g ′
1
, … , g ′𝑛)), then the map 𝑓 is a

surjective group homomorphism satisfying 𝑓(g𝑖) = g ′
𝑖
and 𝜑 = 𝜑′◦𝑓.

Moreover, |Ob(𝑛)| < ∞. The category 𝑛 has all finite products and an initial object.

Proof. For the first part, we cite [7, Proposition 3.9]. Since {g1, … , g𝑛} is a generating set for 𝐺, it is
clear that

|Hom((𝐺, 𝜑, (g1, … , g𝑛)), (𝐺
′, 𝜑′, (g ′1, … , g ′𝑛)))| ⩽ 1.

Furthermore, it is also clear that 𝑓 is surjective and that 𝜑 = 𝜑′◦𝑓.
From the fact that |𝐺| ⩽ 2𝑛2

𝑛−1−2𝑛+𝑛+1, it follows immediately that |Ob(𝑛)| < ∞. Then since,
as explained right above the statement of the present Theorem, 𝑛 has all finite products, the
product over all objects is an initial object. □

For us it will be important to describe the initial object of 𝑛 more explicitly. Let 𝐹𝑛 be the free
group on the set {𝑥1, … , 𝑥𝑛}. Consider the quotient group

𝑛 ∶=
𝐹𝑛
𝑁
,

where𝑁 is the smallest normal subgroup of 𝐹𝑛 containing {𝑥2𝑖 }𝑖∈[𝑛] and the square of any element
in the commutator subgroup [𝐹𝑛, 𝐹𝑛]. Denote by 𝜑 the unique homomorphism from 𝑛 to 𝔽𝑛

2
sending (the class of) each 𝑥𝑖 to 𝑒𝑖 . Then the triple

([𝑛]) ∶= (𝑛, 𝜑, (g1, … , g𝑛))
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is an 𝑛-expansion group and is the initial object of 𝑛, see [7, Proposition 3.10]. Here g𝑖 denotes
the class of 𝑥𝑖 in 𝑛. Instead of appealing to [7, Proposition 3.10], one can also use Theorem 3.2
to show that ([𝑛]) is the initial object of 𝑛. Indeed, since the kernel of the natural surjective
group homomorphism from 𝐹𝑛 to an arbitrary 𝑛-expansion group 𝐺 contains 𝑁, ([𝑛]) admits a
morphism to every expansion group 𝐺. Hence ([𝑛]) is the initial object by Theorem 3.2.
Let (𝑘1, … , 𝑘𝑛) ∈ ℤ𝑛

⩾1
. Consider the vector space 𝔽𝑘1

2
×⋯ × 𝔽

𝑘𝑛
2
and write 𝜋(𝑘1,…,𝑘𝑛) ∶ 𝔽

𝑘1
2
×⋯ ×

𝔽
𝑘𝑛
2

→ 𝔽𝑛
2
for the surjective homomorphism obtained by summing each block of 𝑘𝑖 coordinates

for all 𝑖 ∈ [𝑛].

Definition 3.3. We call a 𝑘1 +⋯ + 𝑘𝑛-expansion group (𝐺, 𝜑, (g1, … , g𝑘1+⋯+𝑘𝑛
)) a [(𝑘1, … , 𝑘𝑛)]-

expansion group in case 𝜑−1(ker(𝜋(𝑘1,…,𝑘𝑛))) is a 𝔽2-vector space.

The resulting category (𝑘1,…,𝑘𝑛) is a full subcategory of 𝑘1+⋯+𝑘𝑛
and has all finite products and

an initial object. The initial object is explicitly constructed in the text preceding [7, Theorem 3.20].
We now summarize that construction for the convenience of the reader. Let 𝑥 ∈ [𝑘1 +⋯ + 𝑘𝑛]

and suppose that 𝑥 is in the 𝑖th block, that is,

𝑘1 +⋯ + 𝑘𝑖−1 < 𝑥 ⩽ 𝑘1 +⋯ + 𝑘𝑖.

Then, as we explain below, we have a unique, surjective homomorphism

𝜑𝑥 ∶ 𝑘1+⋯+𝑘𝑛
→ 𝔽2[𝔽

[𝑛]−{𝑖}
2

]⋊ 𝔽
[𝑛]−{𝑖}
2

of abstract groups extending the following assignment:

g𝑗 ↦

⎧⎪⎨⎪⎩
(0, 𝑒ℎ) if 𝑗 ∈ [𝑘1 +⋯ + 𝑘𝑛] is in the ℎth block with ℎ ≠ 𝑖

(1 ⋅ id, 0) if 𝑗 = 𝑥

(0, 0) otherwise.

Herewe view 𝔽
[𝑛]−{𝑖}
2

as the free 𝔽2-vector space over [𝑛] − {𝑖} and 𝑒ℎ is the corresponding standard
basis vector.
The initial object ̃(𝑘1,…,𝑘𝑛) in (𝑘1,…,𝑘𝑛) is then explicitly given by the quotient of 𝑘1+⋯+𝑘𝑛

by the
intersection of ker(𝜑𝑥) as 𝑥 varies in [𝑘1 +⋯ + 𝑘𝑛], where we make ̃(𝑘1,…,𝑘𝑛) in a [(𝑘1, … , 𝑘𝑛)]-
expansion group by taking the same map 𝜑 and the same generators g𝑗 as for ([𝑘1 +⋯ + 𝑘𝑛]).
We refer the reader to [7, Theorem 3.20] for the complete proof of this fact, while in the next
paragraph we summarize the salient features of the argument, which will clarify the claim made
above about 𝜑𝑥 and the fact that the map naturally factors through ̃(𝑘1,…,𝑘𝑛)

.
Wenowdescribe the group ̃(𝑘1,…,𝑘𝑛) in(𝑘1,…,𝑘𝑛) as a quotient of𝑘1+⋯+𝑘𝑛

. In order tomake sure
that ker(𝜋(𝑘1,…,𝑘𝑛)) is a 𝔽2-vector space, we need to add to𝑁 the following relations. Define𝑁′ to be
the smallest normal subgroup of𝐹𝑘1+⋯+𝑘𝑛

containing the set𝑁 and𝑅, whichwenowdescribe. For
ℎ1, ℎ2 in the 𝑖1th block and ℎ3, ℎ4 in the 𝑖2th block, we have that [𝑥ℎ1𝑥ℎ2 , 𝑥ℎ3𝑥ℎ4], (𝑥ℎ1𝑥ℎ2)

2, and
(𝑥ℎ3𝑥ℎ4)

2 are all in 𝑅. Furthermore, [𝑥ℎ1𝑥ℎ2 , 𝑐] is in 𝑅 for any element 𝑐 ∈ [𝐹𝑘1+⋯+𝑘𝑛
, 𝐹𝑘1+⋯+𝑘𝑛

].
Having described 𝑅 and therefore 𝑁′, one can then show that

𝑘1+⋯+𝑘𝑛

𝑁′
= ̃(𝑘1,…,𝑘𝑛)

.
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Let us now show that the assignment 𝜑𝑥 defines a homomorphism

𝜑𝑥 ∶ 𝑘1+⋯+𝑘𝑛
→ 𝔽2[𝔽

[𝑛]−{𝑖}
2

]⋊ 𝔽
[𝑛]−{𝑖}
2

,

which factors through ̃(𝑘1,…,𝑘𝑛)
. But indeed, when 𝜑𝑥 is viewed as a homomorphism from

𝐹𝑘1+⋯+𝑘𝑛
, it factors through 𝑁′, because it vanishes on each of the elements of the set 𝑅.

In the next section it will be convenient to describe explicitly the homomorphisms 𝜑𝑥, which
is done in [7, Section 3.3] summarized now. If 𝐴 is a set, we write 𝔽𝐴

2
for the free 𝔽2-vector space

on 𝐴.

Definition 3.4. Let 𝐺 be a profinite group and let 𝐴 ⊆ Hom(𝐺, 𝔽2) be a finite, linearly indepen-
dent set with |𝐴| ⩾ 2 and 𝜒0 ∈ 𝐴. An expansion map for 𝐺 with support 𝐴 and pointer 𝜒0 is a
continuous group homomorphism

𝜓 ∶ 𝐺 → 𝔽2[𝔽
𝐴−{𝜒0}

2
]⋊ 𝔽

𝐴−{𝜒0}

2
,

satisfying the following two properties:

∙ for every 𝜒 ∈ 𝐴 − {𝜒0}, we have 𝜋𝜒◦𝜓 = 𝜒, where 𝜋𝜒 is the projection on the coordinate of 𝜒
in 𝔽

𝐴−{𝜒0}

2
;

∙ we have 𝜒◦𝜓 = 𝜒0, where 𝜒 is the unique non-trivial character of 𝔽2[𝔽
𝐴−{𝜒0}

2
]⋊ 𝔽

𝐴−{𝜒0}

2
that

sends the subgroup {0}⋊ 𝔽
𝐴−{𝜒0}

2
to 0.

We shall need further understanding of expansion maps, and to this end we recall some more
material from [7, Section 3.3]. Write 𝑆 = 𝐴 − {𝜒0} and 𝑛 = |𝑆|. Let 𝑒𝑖 be the 𝑖th basis vector of 𝔽𝑆2 ,
which we can naturally view as an element of 𝔽2[𝔽𝑆2]. There is a ring isomorphism

𝔽2[𝔽
𝑆
2] ≅ 𝔽2[𝑡1, … , 𝑡𝑛]∕(𝑡

2
1, … , 𝑡2𝑛)

by sending 𝑡𝑖 to 1 ⋅ id + 1 ⋅ 𝑒𝑖 . Under this isomorphism, the action of 𝑒𝑖 ∈ 𝔽𝑆
2

on
𝔽2[𝑡1, … , 𝑡𝑛]∕(𝑡

2
1
, … , 𝑡2𝑛) becomes multiplication by 1 + 𝑡𝑖 . If 𝜓 is an expansion map, then

projection on the monomials 𝑡𝑆′ ∶=
∏

𝑖∈𝑆′ 𝑡𝑖 gives a system of 1-cochains

𝜑𝑆′(𝜓) ∶ 𝐺 → 𝔽2

for each 𝑆′ ⊆ 𝑆. These 1-cochains satisfy the recursive equation

𝜑𝑆′(𝜎𝜏) − 𝜑𝑆′(𝜎) − 𝜑𝑆′(𝜏) =
∑

∅≠𝑇⊆𝑆′

𝜒𝑇(𝜎)𝜑𝑆′−𝑇(𝜏) (3.1)

with 𝜑∅ = 𝜒0 and 𝜒𝑇 =
∏

𝜒∈𝑇 𝜒, where the product is taken in 𝔽2. Reversely, a system of 1-
cochains satisfying Equation (3.1) naturally gives rise to an expansion map.

4 PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3. The work is divided in two parts. In Subsection 4.1 we will
use the theoretical results from Section 3, we prove Proposition 4.5, and we recall a version of
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Rédei reciprocity, Theorem 4.6, that will be used later. With these tools in hand, we give the proof
of Theorem 1.3 in Subsection 4.2.

4.1 Preparations

First we will show how expansion groups naturally occur in the study of class groups. By a char-
acter 𝜒 of a field 𝐾 we mean a continuous group homomorphism 𝜒 ∶ 𝐺𝐾 → 𝔽2, where 𝐺𝐾 is
by definition the Galois group Gal(𝐾sep∕𝐾) with 𝐾sep a fixed choice of a separable closure of 𝐾.
Denote by 𝜒𝑎 the character corresponding to ℚ(

√
𝑎). Take an acceptable vector (𝑎1, … , 𝑎𝑛) and

write 𝑘𝑖 ∶= 𝜔(𝑎𝑖). Then we see that for all 𝑖 ∈ [𝑛] and for all primes 𝑝 dividing 𝑎𝑖 , the prime 𝑝 has
ramification degree 2 in𝐻+

2
(ℚ(

√
𝑎1, … ,

√
𝑎𝑛)). In particular any inertia subgroup at 𝑝 has size 2.

So every inertia subgroup has exactly one non-trivial element, and by a choice of inertia at 𝑝 we
mean the choice of such an involution in Gal(𝐻+

2
(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))∕ℚ). Now write

𝑎𝑖 ∶= 𝑝ℎ𝑖+1 ⋅ … ⋅ 𝑝ℎ𝑖+𝑘𝑖

with ℎ𝑖 ∶=
∑

1⩽𝑗⩽𝑖−1 𝑘𝑗 . In this way there is an obvious bijection between [𝑘1 +⋯ + 𝑘𝑛] and the
prime factors of 𝑎1 ⋅ … ⋅ 𝑎𝑛. The following proposition is the reason why [(𝑘1, … , 𝑘𝑛)]-expansion
groups play a central role in our work.

Proposition 4.1. Choose an inertia element 𝜎𝑗 at 𝑝𝑗 for every 𝑗 ∈ [𝑘1 +⋯ + 𝑘𝑛]. Then

(Gal(𝐻+
2
(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))∕ℚ), (𝜒𝑝1 , … , 𝜒𝑝𝑘1+⋯+𝑘𝑛

), (𝜎1, … , 𝜎𝑘1+⋯+𝑘𝑛
))

is a [(𝑘1, … , 𝑘𝑛)]-expansion group.

Proof. This is not hard to prove, but for the sake of brevity we refer to [7, Proposition 4.1]. □

The shape of Theorem 1.2 presents a striking resemblance with Definition 2.1. To make the
analogy more stringent one would like to turn the splitting conditions in part (𝑏) of Theorem 1.2
into an additive system: this is precisely the route we are going to follow. To do so we recall a
refinement of Theorem 1.2.

Theorem 4.2. Let 𝑛 be a positive integer and let (𝑎1, … , 𝑎𝑛) be an acceptable vector. Then the fol-
lowing are equivalent.

(a) The vector (𝑎1, … , 𝑎𝑛) is maximal, that is,

dim𝔽2
Cl+(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1.

(b) For every 𝑇 ⊊ [𝑛], every 𝑗 ∈ [𝑛] − 𝑇 and every prime 𝑝 ∣ 𝑎𝑗 , there exists an expansion map

𝜓𝑇,𝑝 ∶ Gal(𝐻+
2
(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))∕ℚ) → 𝔽2[𝔽

{𝜒𝑎ℎ
}ℎ∈𝑇

2
]⋊ 𝔽

{𝜒𝑎ℎ
}ℎ∈𝑇

2

with support {𝜒𝑎ℎ }ℎ∈𝑇 ∪ {𝜒𝑝} and pointer 𝜒𝑝 .
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Proof. Let us first prove that (𝑎) implies (𝑏). Recall thatGal(𝐻+
2
(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))∕ℚ) is naturally

a [(𝑘1, … , 𝑘𝑛)]-expansion group by Proposition 4.1, which we call . Since  is of maximal cardi-
nality, it follows from Theorem 3.2 that it must be canonically isomorphic to the initial object
̃(𝑘1,…,𝑘𝑛)

. Recall that we constructed ̃(𝑘1,…,𝑘𝑛) in Section 3 as the quotient of ([𝑘1 +⋯ + 𝑘𝑛]) by
the intersection of ker(𝜑𝑥), where

𝜑𝑥 ∶ 𝑘1+⋯+𝑘𝑛
→ 𝔽2[𝔽

[𝑛]−{𝑖}
2

]⋊ 𝔽
[𝑛]−{𝑖}
2

is also constructed in Section 3 for 𝑥 ∈ [𝑘1 +⋯ + 𝑘𝑛].
This induces a group homomorphism 𝜑𝑥 ∶ ̃(𝑘1,…,𝑘𝑛)

→ 𝔽2[𝔽
[𝑛]−{𝑖}
2

]⋊ 𝔽
[𝑛]−{𝑖}
2

, which are the
desired expansionmaps for |𝑇| = 𝑛 − 1. If |𝑇| < 𝑛 − 1, we also get the remaining expansionmaps,
since 𝔽2[𝔽𝑇

′

2
]⋊ 𝔽𝑇

′

2
is naturally a quotient of 𝔽2[𝔽𝑇2 ]⋊ 𝔽𝑇

2
for 𝑇′ ⊆ 𝑇.

Next we show that (𝑏) implies (𝑎). Recall again that Gal(𝐻+
2
(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))∕ℚ) is naturally

a [(𝑘1, … , 𝑘𝑛)]-expansion group by Proposition 4.1, which we call . By Theorem 3.2, we see that
 is a quotient of 𝑘1+⋯+𝑘𝑛

(as groups) and the expansion map 𝜓[𝑛]−{𝑖},𝑝 fits in a commutative
diagram (of groups)

where 𝑝 is the 𝑥th prime and 𝑥 is in the 𝑖th block. From this it is clear that the kernel (as
groups) of the unique surjection 𝑘1+⋯+𝑘𝑛

→  of (𝑘1 +⋯ + 𝑘𝑛)-expansion groups is contained
in the intersection of the ker(𝜑𝑥). Hence  is isomorphic to ̃(𝑘1,…,𝑘𝑛)

and therefore of maximal
cardinality. □

Let 𝑛 ∈ ℤ⩾1, let (𝑘1, … , 𝑘𝑛) ∈ ℤ⩾1 × (2 ⋅ ℤ⩾1)
𝑛−1 and let𝑀 ∈ ℤ⩾1. Take

𝑌 ∶= 𝑌1 ×⋯ × 𝑌𝑛

to be a product space, where each 𝑌𝑖 is a set of cardinality𝑀 consisting of acceptable squarefree
integers. We further require that any two distinct elements in ∪𝑛

𝑖=1
𝑌𝑖 are pairwise coprime and

that 𝜔(𝑧) = 𝑘𝑖
2
for each 𝑖 ∈ [𝑛] − {1} and 𝑧 ∈ 𝑌𝑖 , while 𝜔(𝑧) = 𝑘1 for 𝑧 ∈ 𝑌1. We call such a 𝑌 a

((𝑘1, … , 𝑘𝑛),𝑀)-space.
Let 𝑌 now be a ((𝑘1, … , 𝑘𝑛),𝑀)-space. We denote by 𝐾(𝑌) the multiquadratic number field

obtained by adding all the square roots of the prime divisors of the elements in ∪𝑛
𝑖=1

𝑌𝑖 to
ℚ. Observe again that for each prime 𝑝 ramifying in 𝐾(𝑌)∕ℚ, the inertia subgroups of 𝑝 in
Gal(𝐻+

2
(𝐾(𝑌))∕ℚ) are cyclic of size 2. For each such prime 𝑝 we fix a choice of such an iner-

tia element 𝜎𝑝. We will denote this choice by𝔊 ∶= {𝜎𝑝}𝑝∣
∏𝑛

𝑖=1(
∏

𝑦∈𝑌𝑖
𝑦) and refer to it as a choice of

inertia for 𝑌. Once each set 𝑌𝑖 is ordered, we see that this choice𝔊 turns Gal(𝐻+
2
(𝐾(𝑌))∕ℚ) into

a |𝑌1| +⋯ + |𝑌𝑛|-expansion group.
If 𝜓 is an expansion map for 𝐺ℚ, we define its field of definition to be 𝐿(𝜓) ∶= ℚ

ker(𝜓)
. In case

𝐺 is a Galois group and 𝜓 is an expansion map for 𝐺, we shall sometimes implicitly view 𝜓 as an
expansion map for 𝐺ℚ through the canonical projection 𝐺ℚ → 𝐺. In this way it also makes sense
to speak of the field of definition for expansion maps from a Galois group 𝐺.
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Proposition 4.3.

(a) Let 𝑌 be a ((𝑘1, … , 𝑘𝑛),𝑀)-space together with a choice of inertia 𝔊. Let 𝑆 ⊊ [𝑛] and let 𝑗 ∈
[𝑛] − 𝑆. Pick a divisor 𝑑 ≠ 1 of an element in 𝑌𝑗 and pick {𝑎𝑖}𝑖∈𝑆 with 𝑎𝑖 a product of elements
in 𝑌𝑖 for each 𝑖 ∈ 𝑆. Then there exists at most one expansion map

𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊) ∶ Gal(𝐻
+
2
(𝐾(𝑌))∕ℚ) → 𝔽2[𝔽

{𝜒𝑎𝑖
∶𝑖∈𝑆 and 𝜒𝑎𝑖

≠0}

2
]⋊ 𝔽

{𝜒𝑎𝑖
∶𝑖∈𝑆 and 𝜒𝑎𝑖

≠0}

2

with support {𝜒𝑎𝑖 ∶ 𝑖 ∈ 𝑆 and 𝜒𝑎𝑖 ≠ 0} ∪ {𝜒𝑑} and pointer 𝜒𝑑 such that

𝜑𝑇(𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊))(𝜎) = 0

for each ∅ ≠ 𝑇 ⊆ 𝑆 and each 𝜎 ∈ 𝔊.
(b) If 𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊) exists, then it factors through Gal(𝐻

+
2
(ℚ({

√
𝑎𝑖}𝑖∈𝑆,

√
𝑑))∕ℚ).

Proof. As we explained above, Proposition 4.1 implies that the group Gal(𝐻+
2
(𝐾(𝑌))∕ℚ) equipped

with 𝔊 becomes a |𝑌1| +⋯ + |𝑌𝑛|-expansion group. In particular this implies that 𝔊 gener-
ates Gal(𝐻+

2
(𝐾(𝑌))∕ℚ) by Theorem 3.2. This gives part (𝑎) immediately, since the requirement

𝜑𝑇(𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊))(𝜎) = 0 for each ∅ ≠ 𝑇 ⊆ 𝑆 determines the image of 𝜎 under 𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊).
To obtain part (𝑏) we start by noticing that 𝐿(𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊)) is an abelian extension of

ℚ({
√
𝑎𝑖}𝑖∈𝑆,

√
𝑑). We only need to guarantee that it is unramified at all finite places. For this it

is enough to notice that for each prime 𝑞 not dividing 𝑎𝑖 nor 𝑑 one has that

𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊)(𝜎𝑞) = id

precisely due to our requirement that 𝜑𝑇(𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊))(𝜎𝑞) = 0 for each ∅ ≠ 𝑇 ⊆ 𝑆. □

In case there is an expansion map

𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊) ∶ Gal(𝐻
+
2
(𝐾(𝑌))∕ℚ) → 𝔽2[𝔽

{𝜒𝑎𝑖
∶𝑖∈𝑆 and 𝜒𝑎𝑖

≠0}

2
]⋊ 𝔽

{𝜒𝑎𝑖
∶𝑖∈𝑆 and 𝜒𝑎𝑖

≠0}

2

as in Proposition 4.3, we will simply say that 𝜓(𝑎𝑖)𝑖∈𝑆;𝑑(𝔊) exists. Note that Theorem 1.2 implies
that amaximal vector (𝑎1, … , 𝑎𝑛)must be strongly quadratically consistent, that is, we have (

𝑝

𝑞
) = 1

for every distinct 𝑖, 𝑗 ∈ [𝑛] and every two primes 𝑝 ∣ 𝑎𝑖, 𝑞 ∣ 𝑎𝑗 . We call a ((𝑘1, … , 𝑘𝑛),𝑀)-space 𝑌
quadratically consistent in case each of its vectors are strongly quadratically consistent.
For convenience we introduce the following notation. Let 𝑆 ⊆ [𝑛] and let 𝑈 ⊆ [𝑛] − 𝑆. Let

𝑥 ∈
∏
𝑖∈𝑆

𝑌2
𝑖
×
∏
𝑗∈𝑈

𝑌𝑗,

then we write

𝑐(𝑥) ∶= ((pr1(𝜋𝑖(𝑥))pr2(𝜋𝑖(𝑥)))𝑖∈𝑆, (𝜋𝑗(𝑥))𝑗∈𝑈)

for the vector obtained by multiplying out the double entries of 𝑥 and leaving unchanged the
single entries of 𝑥.
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Theorem 4.4. Let 𝑌 be a quadratically consistent ((𝑘1, … , 𝑘𝑛),𝑀)-space, together with a choice of
inertia𝔊. Let 𝑆 ⊊ [𝑛] and let 𝑗 ∈ [𝑛] − 𝑆. Pick a divisor 𝑑 ≠ 1 of an element in𝑌𝑗 . Pick furthermore
𝑈 ⊆ [𝑛] − 𝑆 − {𝑗}. Let 𝑎 be an element of

∏
𝑖∈𝑆 𝑌

2
𝑖
×
∏

𝑢∈𝑈 𝑌𝑢. Then the following are equivalent.

(a) The map 𝜓𝑐(𝑎);𝑑(𝔊) exists.
(b) For each ℎ ∈ 𝑆 ∪ 𝑈 the map 𝜓𝜋𝑆∪𝑈−{ℎ}(𝑐(𝑎));𝑑(𝔊) exists and every prime ramifying in ℚ(

√
𝑥)∕ℚ

splits completely in the field of definition of 𝜓𝜋𝑆∪𝑈−{ℎ}(𝑐(𝑎));𝑑(𝔊), where 𝑥 equals 𝜋ℎ(𝑎) for ℎ ∈ 𝑈

and pr1(𝜋ℎ(𝑎))pr2(𝜋ℎ(𝑎)) for ℎ ∈ 𝑆.

Proof. We first show that (𝑎) implies (𝑏). So suppose that𝜓𝑐(𝑎);𝑑(𝔊) exists andwrite𝜑𝑇(𝜓𝑐(𝑎);𝑑(𝔊))
for the corresponding 1-cochains, where ∅ ⊊ 𝑇 ⊆ 𝑆 ∪ 𝑈. Also set 𝜑∅ = 𝜒𝑑. Take any ℎ ∈ 𝑆 ∪ 𝑈.
Then we see that {𝜑𝑇(𝜓𝑐(𝑎);𝑑(𝔊))}∅⊊𝑇⊆𝑆∪𝑈−{ℎ} together with 𝜑∅ = 𝜒𝑑 is a system of 1-cochains sat-
isfying Equation (3.1), hence 𝜓𝜋𝑆∪𝑈−{ℎ}(𝑐(𝑎));𝑑(𝔊) exists. Furthermore, we see that

𝜑𝑆∪𝑈(𝜓𝑐(𝑎);𝑑(𝔊))(𝜎𝜏) − 𝜑𝑆∪𝑈(𝜓𝑐(𝑎);𝑑(𝔊))(𝜎) − 𝜑𝑆∪𝑈(𝜓𝑐(𝑎);𝑑(𝔊))(𝜏)

equals

𝜃(𝜎, 𝜏) ∶=
∑

∅⊊𝑇⊆𝑆∪𝑈

𝜒𝑇(𝜎)𝜑𝑆∪𝑈−𝑇(𝜓𝑐(𝑎);𝑑(𝔊))(𝜏),

where𝜒𝑇 is the product of the characters𝜒𝑖 with 𝑖 ∈ 𝑇, where𝜒𝑖 equals𝜒pr1(𝜋𝑖(𝑎))pr2(𝜋𝑖(𝑎)) for 𝑖 ∈ 𝑆

and 𝜒𝜋𝑖(𝑎) for 𝑖 ∈ 𝑈. It follows that 𝜃(𝜎, 𝜏) is trivial when inflated to𝐻2(𝐺ℚ, 𝔽2). In particular, it is
locally trivial everywhere. Using that 𝑌 is quadratically consistent, this implies that every prime
ramifying in 𝐿(𝜒ℎ)∕ℚ splits completely in the field of definition of 𝜓𝜋𝑆∪𝑈−{ℎ}(𝑐(𝑎));𝑑(𝔊).
Indeed, take such a prime 𝑝 ramifying in 𝐿(𝜒ℎ)∕ℚ. We see that, locally at 𝑝, all the terms

appearing in the definition of 𝜃 corresponding to a subset 𝑇 different from {ℎ} vanish. Hence the
expression reduces to the product 𝜒ℎ(𝜎)𝜑𝑆∪𝑈−{ℎ}(𝜓𝑐(𝑎);𝑑(𝔊))(𝜏). Recalling that 𝑝 is unramified in
𝜑𝑆∪𝑈−{ℎ}(𝜓𝑐(𝑎);𝑑(𝔊)), the desired conclusion readily follows.
To show that (𝑏) implies (𝑎), take for every subset ∅ ⊊ 𝑇 ⊊ 𝑆 ∪ 𝑈 a map 𝜑𝑆∪𝑈−𝑇 that equals

𝜑𝑆∪𝑈−𝑇(𝜓𝜋𝑆∪𝑈−{ℎ}(𝑐(𝑎));𝑑(𝔊)) for all ℎ ∈ 𝑇. Define 𝜑∅ = 𝜒𝑑 and consider

𝜃(𝜎, 𝜏) ∶=
∑

∅⊊𝑇⊆𝑆∪𝑈

𝜒𝑇(𝜎)𝜑𝑆∪𝑈−𝑇(𝜏). (4.1)

Using Equation (3.1), one sees that 𝜃 is a 2-cocycle. By assumption its class in𝐻2(𝐺ℚ, 𝔽2) is locally
trivial at all the places that ramify in some 𝐿(𝜒ℎ)∕ℚ. Furthermore, 𝜃 is clearly locally trivial at
all other odd places. Since the 𝜒ℎ are real, we see that 𝜃 is also locally trivial at infinity. Then it
follows from Hilbert reciprocity that 𝜃 is locally trivial everywhere, hence trivial in𝐻2(𝐺ℚ, 𝔽2) by
class field theory. This gives a map 𝜑𝑆∪𝑈 ∶ 𝐺ℚ → 𝔽2 satisfying

𝜑𝑆∪𝑈(𝜎𝜏) − 𝜑𝑆∪𝑈(𝜎) − 𝜑𝑆∪𝑈(𝜏) = 𝜃(𝜎, 𝜏).

We claim that there exists a quadratic character 𝜒 ∶ 𝐺ℚ → 𝔽2 such that 𝜑𝑆∪𝑈 + 𝜒 factors through
Gal(𝐻+

2
(𝐾(𝑌))∕ℚ). First we observe that 𝜑𝑆∪𝑈 is a quadratic character of 𝐾(𝑌). Indeed, from

Equation (4.1) we see that 𝜃(𝜎, 𝜏) = 0 for all 𝜎 ∈ 𝐺ℚ that restrict to the identity in Gal(𝐾(𝑌)∕ℚ).
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It remains to prove that 𝜑𝑆∪𝑈 can be made an unramified character of 𝐾(𝑌) by twisting with a
character 𝜒.
Define the field𝐸 to be the compositumof𝐾(𝑌)with all𝐿(𝜓𝜋𝑆∪𝑈−{ℎ}(𝑐(𝑎));𝑑(𝔊)) asℎ runs through

𝑆 ∪ 𝑈. Then𝐸 is an unramified (at all finite places), abelian extension of𝐾(𝑌) of exponent 2. Since
𝜃(𝜎, 𝜏) ∈ 𝐻2(Gal(𝐸∕ℚ), 𝔽2), it follows that 𝜑𝑆∪𝑈 gives a central 𝔽2-extension 𝐹 of 𝐸. Let 𝑝 be an
odd place that is unramified in 𝐸, but suppose that it ramifies in 𝐹. Then twisting by 𝜒𝑝 removes
the ramification at𝑝. Furthermore, 2 is unramified in𝐸, and if 2 ramifies in𝐹, thenwe can remove
the ramification at 2 by twisting with 𝜒−1 and 𝜒2.
Now consider the resulting extension 𝐹′, which has the property that 𝐹′∕ℚ can only ramify

at places that are already ramified in 𝐸∕ℚ. Hence a place 𝑝 ramifying in 𝐹′∕ℚ must be odd and
ramify in one of the 𝐿(𝜒ℎ)∕ℚ. Now we compute

𝜃(𝜎𝑝, 𝜎𝑝) = 0,

which implies that any lift of 𝜎𝑝 has order 2 in Gal(𝐹′∕ℚ). Since 𝑝 is tame, it must be that 𝐹′∕𝐸

is unramified at 𝑝. We conclude there exists a character 𝜒 such that 𝜑𝑆∪𝑈 + 𝜒 factors through
Gal(𝐻+

2
(𝐾(𝑌))∕ℚ). Further twisting by characters 𝜒𝑝 with 𝑝 ramifying in 𝐾(𝑌) ensures that the

resulting map vanishes at all 𝜎 ∈ 𝔊. □

In order to prove part (a) of Theorem 1.3, we aim to combine Theorem 4.2 and Theorem 4.4with
Proposition 2.2. An import stepping stone is to guarantee equation (2.1) for the various cochains
𝜑𝑆(𝜓𝑇,𝑝) attached to an expansionmap 𝜓𝑇,𝑝. We now explain what this means and how to achieve
this.

Proposition 4.5. Let 𝑌 be a ((𝑘1, … , 𝑘𝑛),𝑀)-space together with a choice of inertia𝔊. Let 𝑆 ⊊ [𝑛],
and let 𝑗 ∈ [𝑛] − 𝑆 and 𝑖0 ∈ 𝑆. Pick a divisor 𝑑 ≠ 1 of an element in 𝑌𝑗 . Let 𝑈 ⊆ [𝑛] − 𝑆 − {𝑗}. Let
𝑥1, 𝑥2, 𝑥3 be three elements of

∏
𝑖∈𝑆 𝑌

2
𝑖
×
∏

𝑢∈𝑈 𝑌𝑢 such that they coincide outside 𝑖0 and such that

pr1(𝜋𝑖0(𝑥1)) = pr2(𝜋𝑖0(𝑥3)), pr1(𝜋𝑖0(𝑥2)) = pr2(𝜋𝑖0(𝑥1)), pr1(𝜋𝑖0(𝑥3)) = pr2(𝜋𝑖0(𝑥2)).

Suppose that 𝜓𝑐(𝑥1);𝑑(𝔊) and 𝜓𝑐(𝑥2);𝑑(𝔊) exist. Then the map 𝜓𝑐(𝑥3);𝑑(𝔊) exists and

𝜑𝑇(𝜓𝑐(𝑥3);𝑑(𝔊)) = 𝜑𝑇(𝜓𝑐(𝑥1);𝑑(𝔊)) + 𝜑𝑇(𝜓𝑐(𝑥2);𝑑(𝔊))

for each ∅ ≠ 𝑇 ⊆ 𝑆.

Proof. This is now an immediate consequence of Proposition 4.3. Indeed, it follows fromEquation
(3.1) that the system of maps

{𝜑𝑇(𝜓(𝜋𝑖(𝑐(𝑥1)))𝑖∈𝑆;𝑑(𝔊)) + 𝜑𝑇(𝜓(𝜋𝑖(𝑐(𝑥2)))𝑖∈𝑆;𝑑(𝔊))}∅≠𝑇⊆𝑆

(together with 𝜑∅ = 𝜒𝑑) yields an expansionmap from the group Gal(𝐻+
2
(𝐾(𝑌))∕ℚ) to the group

𝔽2[𝔽
{𝜒𝜋𝑖(𝑐(𝑥3))

∶𝑖∈𝑆∪𝑈 and 𝜒𝜋𝑖(𝑐(𝑥3))
≠0}

2
]⋊ 𝔽

{𝜒𝜋𝑖(𝑐(𝑥3))
∶𝑖∈𝑆∪𝑈 and 𝜒𝜋𝑖(𝑐(𝑥3))

≠0}

2
.

Furthermore, the vanishing at all elements of 𝔊 follows by construction. This gives the desired
conclusion. □
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Finally, in order to obtain Theorem 1.3, part (𝑏), we recast here (a special case of) Rédei
reciprocity, rewritten in the language of expansion maps. Suppose that (𝑎1, 𝑎2, 𝑎3) is a strongly
quadratically consistent vector. Then there exists an expansion map 𝜓𝑎1;𝑎2 ∶ 𝐺ℚ → 𝔽2[𝔽2]⋊ 𝔽2.
Indeed, such an expansion map exists if and only if there exists a continuous map 𝜑 ∶ 𝐺ℚ → 𝔽2
satisfying

𝜑(𝜎𝜏) − 𝜑(𝜎) − 𝜑(𝜏) = 𝜒𝑎1(𝜎) ⋅ 𝜒𝑎2(𝜏),

which is clearly equivalent to 𝜒𝑎1 ∪ 𝜒𝑎2 being trivial in 𝐻
2(𝐺ℚ, 𝔽2). This last condition is in turn

equivalent to 𝜒𝑎1 ∪ 𝜒𝑎2 being locally trivial everywhere, which follows quickly from the assump-
tion that (𝑎1, 𝑎2, 𝑎3) is strongly quadratically consistent.
Furthermore, every prime divisor 𝑝 of 𝑎3 splits completely in ℚ(

√
𝑎1,

√
𝑎2)∕ℚ. Hence Frob(𝑝)

lands in the central subgroup Gal(𝐿(𝜓𝑎1;𝑎2)∕ℚ(
√
𝑎1,

√
𝑎2)), which can be canonically identified

with 𝔽2: here we recall that 𝐿(𝜓𝑎1;𝑎2) denotes the field of definition of an expansion map. In what
follows Frobenius symbols need to be interpreted as elements of 𝔽2.

Theorem 4.6. Let (𝑎1, 𝑎2, 𝑎3) be a strongly quadratically consistent vector. Let 𝜓𝑎1;𝑎2 ∶

Gal(𝐻+
2
(ℚ(

√
𝑎1,

√
𝑎2))∕ℚ) → 𝔽2[𝔽2]⋊ 𝔽2 and 𝜓𝑎1;𝑎3 ∶ Gal(𝐻

+
2
(ℚ(

√
𝑎1,

√
𝑎3))∕ℚ) → 𝔽2[𝔽2]⋊

𝔽2 be expansionmaps with supports, respectively, {𝜒𝑎1 , 𝜒𝑎2} and {𝜒𝑎1 , 𝜒𝑎3} and pointers, respectively,
𝜒𝑎2 and 𝜒𝑎3 . Then ∑

𝑝∣𝑎3

Frob𝐿(𝜓𝑎1;𝑎2 )∕ℚ(𝑝) =
∑
𝑝∣𝑎2

Frob𝐿(𝜓𝑎1;𝑎3 )∕ℚ(𝑝).

Proof. This is a special case of [8, Theorem 3.3]. □

Remark 4.7. Theorem 4.6 has recently been generalized by the authors to more general expansion
maps, see [8, Theorem 3.3]. It is natural to wonder if this reciprocity law allows one to generalize
the proof of Theorem 1.3 part (𝑏) to 𝑛 > 3. For every (𝑘1, … , 𝑘𝑛)we have been able to construct vec-
tors (𝑎1, … , 𝑎𝑛)with (𝜔(𝑎1), … , 𝜔(𝑎𝑛)) = (𝑘1, … , 𝑘𝑛) and |Cl+(ℚ(√𝑎1, … ,

√
𝑎𝑛))[2]| “large.” How-

ever, already for 𝑛 = 4, we have not been able to produce maximal vectors this way.

4.2 Proof of Theorem 1.3

Let us start with a proposition that immediately yields part (𝑏) and will be an important step for
part (𝑎).

Proposition 4.8. Let𝑁 and𝑚 be positive integers. Then there exists a product space

𝑋 ∶= 𝑋1 ×⋯ × 𝑋𝑚,

where the 𝑋𝑖 are disjoint sets of primes congruent to 1 modulo 4 with |𝑋𝑖| = 𝑁 for each 𝑖 ∈ [𝑚] such
that ∏

𝑖∈𝑆

𝑋𝑖

consists entirely of maximal vectors for every subset 𝑆 ⊆ [𝑚] with 1 ⩽ |𝑆| ⩽ 3.
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Proof. We proceed by induction on 𝑚. For 𝑚 = 1 the statement is trivial. Now suppose that the
statement is true for 𝑚, so that we have to prove it for 𝑚 + 1. Pick a product set 𝑋1 ×⋯ × 𝑋𝑚

guaranteed by the inductive hypothesis. Choose inertia elements𝔊 for the product set 𝑋1 ×⋯ ×

𝑋𝑚, which is naturally a ((1, 2, 2, … , 2), 𝑁)-space. Consider the set𝑍 of primes that split completely
in𝐻+

2
(𝐾(𝑋1 ×⋯ × 𝑋𝑚))ℚ(

√
−1)∕ℚ. Thanks to the Chebotarev density theorem, we see that 𝑍 is

an infinite set.
Pick any 𝑁-set 𝑋𝑚+1 inside 𝑍. Observe that 𝑋𝑚+1 is disjoint from each of the 𝑋𝑖 with 𝑖 ⩽ 𝑚,

since these are all primes ramifying in𝐻+
2
(𝐾(𝑋1 ×⋯ × 𝑋𝑚))∕ℚ. Next, since𝑋𝑚+1 consists in par-

ticular of primes splitting in𝐾(𝑋1 ×⋯ × 𝑋𝑚)∕ℚ, we see that𝑋𝑖1
× 𝑋𝑖2

consists entirely ofmaximal
vectors for every distinct 𝑖1 and 𝑖2. Hence for each 2-set {𝑖1, 𝑖2} and every point (𝑝, 𝑞) ∈ 𝑋𝑖1

× 𝑋𝑖2
,

we have an expansion map

𝜓𝑝;𝑞(𝔊) ∶ Gal(𝐻+
2
(ℚ(

√
𝑝,

√
𝑞))∕ℚ) → 𝔽2[𝔽2]⋊ 𝔽2

with support {𝜒𝑝, 𝜒𝑞} and pointer 𝜒𝑞.
Thanks to our choice of 𝑋𝑚+1, we have that every 𝑥 in 𝑋𝑚+1 splits completely in 𝐿(𝜓𝑝;𝑞(𝔊))

whenever 𝑖1, 𝑖2 ⩽ 𝑚 are distinct. But thenTheorem4.6 yields that𝑝 splits completely in𝐿(𝜓𝑞;𝑥(𝔊))
and 𝑞 splits completely in 𝐿(𝜓𝑝;𝑥(𝔊)). Therefore we deduce from Theorem 4.2 that for any 3-set
{𝑠1, 𝑠2, 𝑠3} ⊆ [𝑚 + 1] and any choice of𝑥𝑖 ∈ 𝑋𝑠𝑖

, for 𝑖 ∈ {1, 2, 3}, themap𝜓𝑥1,𝑥2;𝑥3(𝔊) exists. Cycling
the 3 variables 𝑠1, 𝑠2, 𝑠3 and using Theorem 4.2, we conclude that (𝑥1, 𝑥2, 𝑥3) is maximal. □

Proof of Theorem 1.3 part (b). By taking 𝑚 = 3 and 𝑁 arbitrary large, we see that Proposition 4.8
immediately implies part (𝑏) of Theorem 1.3 for (𝑘1, 𝑘2, 𝑘3) = (1, 1, 1). The general case then fol-
lows from Proposition 4.5. Indeed, applying repeatedly Proposition 4.5 to the expansion maps
𝜓𝑥1,𝑥2;𝑥3(𝔊) constructed at the end of the proof of Proposition 4.8, we see that if 𝑎1, 𝑎2, 𝑎3 are
products of primes in, respectively, 𝑋𝑠1

, 𝑋𝑠2
, 𝑋𝑠3

, then the map 𝜓𝑎1,𝑎2;𝑞3 (𝔊) exists for each prime
divisor 𝑞3 of 𝑎3. We can now apply this three times, cycling the three variables 𝑠1, 𝑠2, 𝑠3. Hence
Theorem 4.2 shows that (𝑎1, 𝑎2, 𝑎3) is maximal, as desired. □

Proof of Theorem 1.3 part (a). Take 𝑛 ∈ ℤ⩾4 and (𝑘1, … , 𝑘𝑛) ∈ ℤ⩾1 × (2ℤ⩾1)
𝑛−1. Fix furthermore

an auxiliary parameter𝑀 ∈ ℤ⩾1. It follows from Proposition 4.5 and Proposition 4.8 that we can
construct a ((𝑘1, … , 𝑘𝑛),𝑀)-space

𝑌 ∶= 𝑌1 ×⋯ × 𝑌𝑛,

equippedwith a choice of inertia𝔊 such that for any 3-set {𝑖1, 𝑖2, 𝑖3} ⊆ [𝑛], any triple (𝑦𝑖1 , 𝑦𝑖2 , 𝑦𝑖3 ) ∈
𝑌𝑖1

× 𝑌𝑖2
× 𝑌𝑖3

and any prime divisor 𝑝 ∣ 𝑦𝑖3 we have that the map

𝜓𝑦𝑖1 ,𝑦𝑖2 ;𝑝
(𝔊)

exists. Fix such a ((𝑘1, … , 𝑘𝑛),𝑀)-space 𝑌. Also fix a point 𝑦1 ∈ 𝑌1 and put

𝑌 ∶= {𝑦1} × 𝑌2 × … × 𝑌𝑛.

Weare going to construct an additive systemon𝑌 for the subsets𝑆 of [𝑛] − {1}.We start by defining
subsets

𝐶𝑆 ⊆
∏
𝑖∈𝑆

𝑌2
𝑖
×

∏
𝑗∈[𝑛]−𝑆

𝑌𝑗
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for every 𝑆 ⊆ [𝑛] − {1}. Let us first consider the case that |𝑆| ⩽ 𝑛 − 2. We define𝐶𝑆 by the property
that 𝑎 ∈ 𝐶𝑆 if and only if for each 2-set {𝑖, 𝑗} ⊆ [𝑛] − 𝑆 and for every prime divisor 𝑝 ∣ 𝜋𝑗(𝑎), we
have that

𝜓𝜋𝑆∪{𝑖}(𝑐(𝑎));𝑝(𝔊)

exists. We next put 𝐶[𝑛]−{1} to be the set of 𝑎 in {𝑦1} ×
∏

2⩽ℎ⩽𝑛 𝑌
2
ℎ
such that for any 𝑗 ∈ [𝑛] − {1}

and any prime divisor 𝑝 of 𝜋𝑗(𝑐(𝑎)) we have that

𝜓𝜋[𝑛]−{𝑗}(𝑐(𝑎));𝑝(𝔊)

exists and furthermore

𝜓𝜋[𝑛]−{1,𝑗}(𝑐(𝑎)),pr𝑘(𝜋𝑗(𝑎));𝑝(𝔊)

exists for all 𝑗 ∈ [𝑛] − {1}, 𝑘 ∈ [2] and 𝑝 dividing 𝑦1.
We now define the spaces𝐴𝑆 . Assume first that |𝑆| ⩽ 𝑛 − 3. We put𝐴𝑆 to be the space of formal

𝔽2-linear combinations of 5-tuples

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5),

where 𝑥1, 𝑥2, 𝑥3 ∈ [𝑛] − 𝑆 are pairwise distinct and 𝑥4 ∈ [𝑘𝑥2], 𝑥5 ∈ [𝑘𝑥3]. Instead for |𝑆| ∈ {𝑛 −

2, 𝑛 − 1}, we set 𝐴𝑆 = {0}.
Let us nowdefine𝐹𝑆 ∶ 𝐶𝑆 → 𝐴𝑆 . In case |𝑆| > 𝑛 − 3, we set𝐹𝑆 to be the trivialmap.Henceforth

we assume that |𝑆| ⩽ 𝑛 − 3. Let (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) be a 5-tuple as above and 𝑎 ∈ 𝐶𝑆 . Let 𝑝𝑥4(𝑎) be
the 𝑥4th prime divisor of 𝜋𝑥2(𝑐(𝑎)), by the natural ordering, and let 𝑝𝑥5(𝑎) be the 𝑥5th prime
divisor of 𝜋𝑥3(𝑐(𝑎)). We have that the Frobenius of 𝑝𝑥5(𝑎) lands in the center of

Gal(𝐿(𝜓𝜋𝑆∪{𝑥1}(𝑐(𝑎));𝑝𝑥4 (𝑎)(𝔊))∕ℚ)

thanks to Theorem 4.4 and the definition of 𝐶𝑆 . Observe that the center of

𝔽2[𝑡1, … , 𝑡𝑛]∕(𝑡
2
1, … , 𝑡2𝑛)⋊ 𝔽𝑛2

is cyclic of order 2 and generated by 𝑡1 ⋅ … ⋅ 𝑡𝑛. Hence to decide whether an element of the center is
trivial or not one may simply apply the 1-cochain 𝜑𝑆∪{𝑥1}(𝜓𝜋𝑆∪{𝑥1};𝑝𝑥4 (𝑎)

(𝔊)) to the central element.
In other words the value

𝜑𝑆∪{𝑥1}(𝜓𝜋𝑆∪{𝑥1}(𝑐(𝑎));𝑝𝑥4 (𝑎)
(𝔊))(Frob(𝑝𝑥5(𝑎)))

is well defined and equals 0 if and only if 𝑝𝑥5(𝑎) splits completely in the field of definition of
𝜓𝜋𝑆∪{𝑥1}(𝑐(𝑎));𝑝𝑥4 (𝑎)

(𝔊). With this preliminary inmind, we define𝐹𝑆(𝑎) to be the vector of𝐴𝑆 whose
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)-coordinate equals

𝜑𝑆∪{𝑥1}(𝜓𝜋𝑆∪{𝑥1}(𝑐(𝑎));𝑝𝑥4 (𝑎)
(𝔊))(Frob(𝑝𝑥5(𝑎)))
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for each 5-tuple (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) as described above. Finally, for each 𝑆 ⊆ [𝑛] − {1}, we put

𝐶acc
𝑆

∶= 𝐹−1
𝑆
(0).

We now establish the following crucial fact.

Proposition 4.9. The 4-tuple {(𝐶𝑆, 𝐶acc
𝑆

, 𝐹𝑆, 𝐴𝑆)}𝑆⊆[𝑛]−{1} defined above is an additive system on𝑌.
Furthermore,

|𝐴𝑆| ⩽ 2𝑛⋅(
∑𝑛

𝑖=1 𝑘𝑖)
2

for each 𝑆 ⊆ [𝑛] − {1}.
Finally, for all 𝑎 ∈ 𝐶[𝑛]−{1} we have that the vector (𝜋𝑖(𝑐(𝑎)))𝑖∈[𝑛]∶𝜒𝜋𝑖(𝑐(𝑎))≠0 is a maximal vector of

dimension |{𝑖 ∈ [𝑛] ∶ 𝜒𝜋𝑖(𝑐(𝑎)) ≠ 0}|.
Proof. Equation (2.1) is satisfied thanks to Proposition 4.5. The bound on |𝐴𝑆| follows from
straightforward counting. The maximality claim is a consequence of Theorem 4.2 and Theo-
rem 4.4. □

We now finish the proof of Theorem 1.3, part (a). Write𝔄 for the additive system on 𝑌 guaran-
teed by Proposition 4.9. We apply Proposition 2.2 to the product space 𝑌 and the additive system
𝔄 to deduce that there exists a positive number 𝑐(𝑘1,…,𝑘𝑛), depending only on the vector (𝑘1, … , 𝑘𝑛),
such that there are at least

𝑐(𝑘1,…,𝑘𝑛) ⋅𝑀
2𝑛−2

vectors 𝑎 ∈ {𝑦1} ×
∏

2⩽𝑖⩽𝑛 𝑌
2
𝑖
in 𝐶[𝑛]−{1} (and therefore, by the last part of Proposition 4.9, with

(𝜋𝑖(𝑐(𝑎)))𝑖∈[𝑛]∶𝜒𝜋𝑖(𝑐(𝑎))≠0
maximal). On the other hand, no more than (𝑛 − 1) ⋅𝑀2𝑛−3 vectors 𝑎 in

{𝑦1} ×
∏

2⩽𝑖⩽𝑛 𝑌
2
𝑖
are such that pr1(𝜋𝑖(𝑎)) = pr2(𝜋𝑖(𝑎)) for some 𝑖. It follows that there are at least

𝑐(𝑘1,…,𝑘𝑛) ⋅𝑀
2𝑛−2 − (𝑛 − 1) ⋅𝑀2𝑛−3

vectors in 𝐶[𝑛]−{1} with distinct coordinates. By the last part of Proposition 4.9, each of them gives
a maximal vector 𝑐(𝑎) such that

𝜔(𝜋𝑖(𝑐(𝑎))) = 𝑘𝑖

for each 𝑖 ∈ [𝑛]. Precisely 2𝑛−1 choices of 𝑎 will give rise to the same vector when passing to 𝑐(𝑎).
All in all, we have obtained at least

𝑐(𝑘1,…,𝑘𝑛) ⋅𝑀
2𝑛−2 − (𝑛 − 1) ⋅𝑀2𝑛−3

2𝑛−1

distinctmultiquadratic fieldsℚ(
√
𝑎1, … ,

√
𝑎𝑛)with (𝑎1, … , 𝑎𝑛) amaximal vector andwith𝜔(𝑎𝑖) =

𝑘𝑖 for each 𝑖 ∈ [𝑛]. For𝑀 going to infinity this quantity goes to infinity, which gives us the desired
conclusion. □
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5 PROOF OF THEOREM 1.4 AND COROLLARY 1.5

In this section we give a proof of Theorem 1.4 and Corollary 1.5. We start by demonstrating that
Corollary 1.5 is a simple consequence of Theorem 1.4. Denote by 𝐾 ∶= ℚ(

√
𝑎1, … ,

√
𝑎𝑛) a field

satisfying the conclusion of Theorem 1.4. Recall that we have an exact sequence

0 →
(𝐾∕𝑐)

∗

∗
𝐾

→ Cl(𝐾, 𝑐) → Cl(𝐾) → 0.

To ease the notation, let us denote by 𝐴 the group (𝐾∕𝑐)
∗

∗
𝐾

. This gives the inequality

dim𝔽2
Cl(𝐾, 𝑐)[2] ⩽ dim𝔽2

Cl(𝐾)[2] + dim𝔽2
𝐴[2]

⩽ 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2
𝑛−1 − 2𝑛 + 1 + 2𝑛 ⋅ 𝜔(𝑐).

The second inequality can be an equality only if

dim𝔽2
Cl(𝐾)[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1,

and

dim𝔽2
𝐴[2] = 2𝑛 ⋅ 𝜔(𝑐),

thanks to Theorem 1.1 (for the first equation) and simple counting (for the second equation).
Therefore we deduce from

dim𝔽2
Cl(𝐾, 𝑐)[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1 + 2𝑛 ⋅ 𝜔(𝑐)

that

dim𝔽2
Cl(𝐾)[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1

and

dim𝔽2
𝐴[2] = 2𝑛 ⋅ 𝜔(𝑐). (5.1)

Observe that we have a surjection

𝜑 ∶
(𝐾∕𝑐)

∗

(𝐾∕𝑐)
∗2

→
𝐴

2𝐴
.

Therefore we deduce from Equation (5.1) that

dim𝔽2

(𝐾∕𝑐)
∗

(𝐾∕𝑐)
∗2

⩾ dim𝔽2

𝐴

2𝐴
= dim𝔽2

𝐴[2] = 2𝑛 ⋅ 𝜔(𝑐). (5.2)
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However, since all prime divisors of 𝑐 are odd, direct counting gives the upper bound

dim𝔽2

(𝐾∕𝑐)
∗

(𝐾∕𝑐)
∗2

⩽ 2𝑛 ⋅ 𝜔(𝑐) (5.3)

with equality if and only if all the primes dividing 𝑐 split completely in𝐾. It follows fromEquations
(5.1)–(5.3) that

dim𝔽2

(𝐾∕𝑐)
∗

(𝐾∕𝑐)
∗2

= 2𝑛 ⋅ 𝜔(𝑐) = dim𝔽2
𝐴[2] = dim𝔽2

𝐴

2𝐴
,

whence 𝜑 is an isomorphism. Furthermore, all primes dividing 𝑐 split completely in 𝐾.
On the other hand,

ker(𝜑) = im

(
red𝑐(𝐾) ∶

∗
𝐾

∗2
𝐾

→
(𝐾∕𝑐)

∗

(𝐾∕𝑐)
∗2

)
,

where red𝑐(𝐾) is the natural reductionmapmodulo 𝑐. We conclude that the map red𝑐(𝐾) is trivial
as desired.
It remains to prove Theorem 1.4. To this end we switch to the setup of the proof of Theorem 1.3

and indicate the necessary modifications. First of all, we recall that the choice of 𝑦1 was arbitrary,
so we are allowed to take 𝑦1 ∶= 𝑐. Now suppose that (𝑐, 𝑎1, … , 𝑎𝑛) is a maximal vector such that
all expansion maps have totally real field of definition. Then we claim that

dim𝔽2
Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐)[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1 + 2𝑛 ⋅ 𝜔(𝑐).

Surely we have that

dim𝔽2
Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛))[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1.

But now observe that the collection of characters

{𝜑𝑇(𝜓𝑎1,…,𝑎𝑛;𝑙(𝔊))}𝑙∣𝑐 prime, 𝑇⊆[𝑛]

is linearly independent and generates a subspace of

Cl(ℚ(
√
𝑎1, … ,

√
𝑎𝑛), 𝑐)

∨[2]

linearly disjoint from

Cl(ℚ(
√
𝑎1, … ,

√
𝑎𝑛))

∨[2]

by ramification considerations. This gives precisely the 2𝑛 ⋅ 𝜔(𝑐) additional characters in
Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐)

∨[2] and therefore yields

dim𝔽2
Cl(ℚ(

√
𝑎1, … ,

√
𝑎𝑛), 𝑐)[2] = 𝜔(𝑎1 ⋅ … ⋅ 𝑎𝑛) ⋅ 2

𝑛−1 − 2𝑛 + 1 + 2𝑛 ⋅ 𝜔(𝑐)

as desired.
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We still need to explain how one ensures that all expansionmaps are totally real. First of all, we
indicate how Proposition 4.8 can bemodified to ensure that all the maps 𝜓𝑦1;𝑦2(𝔊) are totally real.
In this case we use a more general version [13] of Rédei reciprocity, which includes −1 (taking
the role of the infinite place). Next one enlarges 𝐴𝑆 to encode the splitting condition at infinity,
and the maps 𝐹𝑆 are also extended accordingly. With these modifications in mind, one proceeds
exactly with the same argument as in Theorem 1.3.
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