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INTRODUCTION: Proteins are the product of
gene expression and the molecular building
blocks of cells. Examples include enzymes that
orchestrate the cell’s chemistry, filaments that
shape the cell’s structure, or the pharmaco-
logical targets of drugs. The genome sequence
provides us with the complete set of proteins
that give rise to the human cell. However, sys-
tematically characterizing how proteins orga-
nize within the cell to sustain its operation
remains an important goal of modern cell
biology. A comprehensive map of the human
proteome’s organization will serve as a ref-
erence to explore gene function in health
and disease.

RATIONALE: Subcellular localization and phys-
ical interactions are key aspects tightly related to
the function of any given protein. Proteins local-
ize to different subcellular compartments,which
enables a spatial separation of cellular functions.
Proteins also physically interact with one an-
other, formingmolecular networks that connect
proteins involved in the same processes. There-

fore, mapping the cell’s molecular organization
requires a comprehensive description of where
different proteins localize andhow they interact.
Among other strategies, a powerful approach to
map cellular architecture is to visualize indi-
vidual proteins using fusions with fluorescent
protein “tags.” These tags allow us not only
to image protein localization in live cells, but
also to measure protein interactions by serving
as handles for immunopurification–mass
spectrometry (IP-MS). Recent advances in
genome engineering facilitate tagging of
endogenous human genes, so that the cor-
responding proteins can be characterized in
their native cellular environment.

RESULTS: Using high-throughput CRISPR-mediated
genome editing, we constructed a library of 1310
fluorescently tagged cell lines. By performing
paired IP-MS and live-cell imaging using this
library, we generated a large dataset that maps
the cellular localization and physical interactions
of the corresponding 1310 proteins. Applying
a combination of unsupervised clustering and

machine learning for image analysis allowed us
to objectively identify proteins that share spatial
or interaction signatures. Our data provide
insights into the function of individual pro-
teins, but also enable us to derive some gen-
eral principles of human cellular organization.
In particular, we show that proteins that bind
RNA form a separate subgroup defined by
specific localization and interaction signa-
tures. We also show that the precise spatial
distribution of a given protein is very strongly
correlatedwith its cellular function, such that
fine-grained molecular insights can be derived
from the analysis of imaging data. Our open-
source dataset can be explored through an in-
teractive web interface at opencell.czbiohub.org.

CONCLUSION: Our results show that endoge-
nous tagging coupled with interactome and
microscopy analysis provides new systems-level
insights about the organization of the human
proteome. The information contained within
the subcellular distribution of each protein is
highly specific and can be pairedwith advances
inmachine learning to extrapolate fine-grained
functional information using microscopy
alone. This opens exciting avenues for the
characterization of understudied proteins,
high-throughput screening, and modeling
of complex cellular states during differen-
tiation and disease.▪
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OpenCell: Combining endogenous tagging, live-cell imaging, and
interaction proteomics to map the architecture of the human proteome.
We created a library of engineered cell lines by using CRISPR to
introduce fluorescent tags into 1310 individual human proteins. This

allowed us to image the localization of each protein in live cells, as
well as the interactions between a given target and other proteins within
the cell. This large dataset enables a systems-level description of the
organization of the human proteome.
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Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined
genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically
map the localization and interactions of human proteins. Our approach provides a data-driven
description of the molecular and spatial networks that organize the proteome. Unsupervised clustering
of these networks delineates functional communities that facilitate biological discovery. We found that
remarkably precise functional information can be derived from protein localization patterns, which often
contain enough information to identify molecular interactions, and that RNA binding proteins form a
specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive
website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of
human cellular organization.

S
equencing the human genome has trans-
formed cell biology by defining the pro-
tein parts list that forms the canvas of
cellular operation (1, 2). This paves the
way for elucidating how the ~20,000 pro-

teins encoded in the genome organize in space
and time to define the cell’s functional archi-
tecture (3, 4). Where does each protein localize
within the cell? Can we comprehensively map
how proteins assemble into larger functional
communities? Amain challenge to answering
these fundamental questions is that cellular
architecture is organized alongmultiple scales.
Therefore, several approachesneed tobe combined
for its elucidation (5). In a series of pioneering
studies, human protein-protein interactions
have been mapped using ectopic expression
strategies with yeast two-hybrid (6) or epitope
tagging coupled to immunoprecipitation–mass
spectrometry (IP-MS) (7, 8), whereas protein

localization has been charted using immuno-
fluorescence in fixed samples (9). A comple-
mentary approach is to directly modify genes
in a genome by appending sequences that
illuminate specific aspects of the corresponding
proteins’ function [commonly referred to as
“endogenous tagging” (10)]. For example, en-
dogenously tagging a gene with a fluorescent
reporter enables imaging of protein subcellular
localization in live cells and supports functional
characterization in a native cellular environment
(10, 11). The use of endogenous tagging to study
the organization of a eukaryotic cell is illus-
trated by seminal work in the budding yeast
Saccharomyces cerevisiae. There, libraries of
tagged strains have enabled the comprehensive
mapping of protein localization and molecular
interactions across the yeast proteome (12–14).
These libraries were made possible by the
relative simplicity of homologous recombina-
tion and genome engineering in yeast (15). In
human cells, earlier work has leveraged al-
ternative strategies including expression from
bacterial artificial chromosomes (16) or central-
dogma tagging (17) because of the difficulty of
site-specific gene editing. CRISPR-mediated ge-
nome engineering now allows for homologous
recombination–based endogenous tagging to
be applied for the interrogation of the human
cell (10, 11, 18).
Here, we combined experimental and ana-

lytical strategies to create OpenCell, a proteomic
map of human cellular architecture. We gen-
erated a library of 1310 CRISPR-edited human
embryonic kidney (HEK) 293T cell lines har-
boring fluorescent tags on individual proteins,

which we characterized by pairing confocal
microscopy andmass spectrometry. Our dataset
constitutes the most comprehensive live-cell
image collection of human protein localization
to date. In addition, integration of IP-MS using
the fluorescent tags for affinity capture enables
measurement of localization and interactions
from the same samples. For a quantitative de-
scription of cellular architecture, we developed
a data-driven framework to represent protein
interactions and localization features, supported
by a newmachine learning algorithm for image
encoding.
This approach allows us to delineate com-

munities of functionally related proteins by
unsupervised clustering and facilitates the
generation of mechanistic hypotheses, includ-
ing for proteins that had so far remained un-
characterized. We further demonstrate that
the localization pattern of each protein is de-
fined by unique and specific features that can
be used for functional interpretation, to the
point that spatial relationships often contain
enough information to predict interactions at
the molecular scale. Finally, our analysis en-
ables an unsupervised description of the hu-
man proteome’s organization; in particular,
we found that RNA binding proteins exhibit
unique functional signatures that shape the
proteome’s network.

Engineered cell library

Fluorescent protein (FP) fusions are versatile
tools that can enable the measurement of
protein localization (by microscopy) as well
as protein-protein interactions (by acting as
affinity handles for IP-MS) (18, 19) (fig. S1A).
Here, we constructed a library of fluores-
cently taggedHEK293T cell lines by targeting
human genes with the split-mNeonGreen2
system (20) (Fig. 1A). Split FPs greatly sim-
plify CRISPR-based genome engineering by
circumventing the need for molecular clon-
ing (18) and allowed us to generate endoge-
nous genomic fusions (Fig. 1B) that preserve
native expression regulation. A full descrip-
tion of our pipeline is available in (21) and is
summarized in Fig. 1, C to E. In brief, FP
insertion sites (N or C terminus) were chosen
on the basis of information from the litera-
ture or structural analysis (fig. S1B and table S1).
For each tagged target, we isolated a polyclonal
pool of CRISPR-edited cells, which was then
characterized by live-cell three-dimensional
(3D) confocal microscopy, IP-MS, and geno-
typing of tagged alleles by next-generation
sequencing. Open-source software development
and advances in instrumentation supported
scalability (Fig. 1C). In particular, we devel-
oped crispycrunch, a CRISPR design software
that enables guide RNA selection and homology
donor sequence design (github.com/czbiohub/
crispycrunch). We also fully automated the
acquisition of microscopy data in Python for
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on-the-fly computer vision and selection of
desirable fields of view imaged in 96-well
plates (github.com/czbiohub/2021-opencell-
microscopy-automation). Our mass spectrome-
try protocols used the high sensitivity of
trapped ion mobility spectrometry time-
of-flight (timsTOF) instruments (22), which
allowed miniaturization of IP-MS down to
0.8 × 106 cells of starting material [fig. S1C;
about one-tenth of the material required in
previous approaches (7, 8)].
In total, we targeted 1757 genes, of which

1310 (75%) could be detected by fluorescence
imaging and form our current dataset (full
library details in table S1). From these, we
obtained paired IP-MS measurements for
1260 targets (96%; Fig. 1D). The 1310-protein
collection includes a balanced representation
of the pathways, compartments, and functions
of the human proteome (fig. S1D), with the

exception of processes specific to mitochondria,
organellar lumen, or extracellular matrix. In-
deed, the split-FP system tags a gene of in-
terest with a short sequence (mNG11) while a
larger FP fragment (mNG21-10) is expressed
separately (Fig. 1A). In the version used here,
the mNG21-10 fragment is expressed in the
nucleocytoplasm and prevents access to pro-
teins inside organellar compartments. Mem-
brane proteins can be tagged as long as one
terminus extends into the nucleocytoplasm. In
future iterations, other split systems that con-
tain compartment-specific signal sequences could
be used to target organellar lumen (23).
Fluorescent tagging was readily successful

for essential genes, which suggests that FP
fusions are well tolerated (fig. S2A). To eval-
uate other factors contributing to successful
fluorescent detection, we measured RNA and
protein concentration in HEK293T cells (fig.

S2B) using a 24-fraction scheme for deep
proteome quantification (see fully annotated
proteome in table S2). This revealed that
protein abundance is the main limitation to
detection (Fig. 1D and fig. S2C; see details for
unsuccessful targets in table S3); most suc-
cessful targets are among the top 50% most
abundant (fig. S2D). Gene-editing efficiency
was another important factor: Among well-
expressed targets, failure was correlated with
significantly lower rates of homologous re-
combination (fig. S2E), which would impair
the selection of edited cells by fluorescence-
activated cell sorting (FACS). Training a regres-
sion model revealed that the combination of
protein abundance and editing efficiency could
predict successful detectionwith 82% accuracy.
Tomaximize throughput, we used a polyclonal

strategy to select genome-edited cells by FACS.
Polyclonal pools contain cells with distinct

Cho et al., Science 375, eabi6983 (2022) 11 March 2022 2 of 13

OpenCell

...

Protein A
Protein B
Protein C

Protein X

Protein + = 

Complemented 
mNeonGreen2 tag

mNG11
mNG21-10

Protein 

Expressed in trans 5’ arm 3’ arm
ssODN donor

Genome

Cas9/gRNA

mNG11

ORF

B

Cas9 RNP

mNG115’ arm 3’ arm

ssODN donor

FACS Genotype

Live-cell 3D 
confocal microscopy

IP/mass-spec.
(mNeonG. pull-down)

Interactive exploration at 
opencell.czbiohub.org

HEK293T

CRISPR design software
Automated microscopy 
acquisition in Python
Miniaturized pull-downs + timsTOF

WWW

Image encoding

Interaction profile
(Immuno-precipitations) Unsupervised clustering

of localization and interactome

Data mining

Unsuccessful
(447)

Successful
(1310)

1757 CRISPR targets

Paired IP/MS
(1260, 

96%)

D

A

C

1

2

3

1

2

3

E

0 1 2 3 4 5

[protein] nmol/L (log10)

Successful

Unsuccessful

All proteome

Median expression in HEK293T

** p = 2x10-100

Fig. 1. The OpenCell library. (A) Functional tagging with split-mNeonGreen2.
In this system, mNeonGreen2 is separated into two fragments: a short mNG11
fragment, which is fused to a protein of interest, and a large mNG21-10
fragment, which is expressed separately in trans (that is, tagging is done in
cells that have been engineered to constitutively express mNG21-10).
(B) Endogenous tagging strategy: mNG11 fusion sequences are inserted
directly within genomic open reading frames (ORFs) using CRISPR-Cas9 gene
editing and homologous recombination with single-stranded oligodeoxynu-
cleotide donors (ssODNs). (C) The OpenCell experimental pipeline. See text

for details. (D) Successful detection of fluorescence in the OpenCell library.
Top: Of 1757 genes that were originally targeted, fluorescent signal was
successfully detected for 1310. Bottom: Low protein abundance is the main
obstacle to successful detection. The graph shows the distribution of
abundance for all proteins expressed in HEK293T versus successfully or
unsuccessfully detected OpenCell targets; boxes represent 25th, 50th, and
75th percentiles, and whiskers represent 1.5 times the interquartile range.
Median is indicated by a white line. P value: Student’s t test. (E) The OpenCell
data analysis pipeline.
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genotypes. HEK293T cells are pseudo-triploid
(24) and a single edited allele is sufficient to
confer fluorescence. Moreover, various DNA
repair mechanisms compete with homologous
recombination for the resolution of CRISPR-

induced genomic breaks (25) so that alleles
containing nonfunctional mutations can be
present in addition to the desired fusion alleles.
However, such alleles do not support fluores-
cence and are therefore unlikely to have an

impact on other measurements, especially in
the context of a polyclonal pool. We devel-
oped a stringent selection scheme to signifi-
cantly enrich for fluorescent fusion alleles
(fig. S3A). Our final cell library has a median
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(B) Unsupervised Markov clustering of the interactome graph. (C) Example of
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The density of protein-protein interactions between communities is represented
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in PubMed articles versus RNA expression for all proteins found within
interactome communities. The bottom 10th percentile of publication count
(poorly characterized proteins) is highlighted. (F) NHSL1, NHSL2, and KIAA1522
are part of the SCAR/WAVE community and share amino acid sequence
homology. (G) DMXL1/2, WDR7, and ROGDI form the human RAVE complex.
Heatmaps represent the interaction stoichiometry of preys (lines) in the pull-
downs of specific OpenCell targets (columns). See text for details.
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61% ofmNeonGreen-integrated alleles, 5%wild-
type, and 26% other nonfunctional alleles (fig.
S3B; full genotype information in table S1).
Finally, we verified that our engineering

approach maintained the endogenous abun-
dance of the tagged target proteins. For this,
we quantified protein expression by Western
blotting using antibodies specific to proteins
targeted in 12 different cell pools (fig. S3C)
and by single-shot mass spectrometry in 63
tagged lines (fig. S3D). Both approaches revealed
a median abundance of tagged targets in en-
gineered lines at ~80% of untagged HEK293T
control, with five outliers (8% of total) identified
by proteomics (fig. S3D, all within a factor of 3.5
of control). The overall proteome composition
was unchanged in all tagged lines (fig. S3, E
and F).
Overall, our gene-editing strategy preserves

near-endogenous abundances and circum-
vents the limitations of ectopic overexpression
(11, 26, 27), which include aberrant localiza-
tion, changes in organellar morphology, and
masking effects (see the examples of SPTLC1,
TOMM20, and MAP1LC3B in fig. S3G). There-
fore, OpenCell supports the functional profil-
ing of tagged proteins in their native cellular
context.

Interactome analysis and stoichiometry-driven
clustering

Affinity enrichment coupled to mass spec-
trometry is an efficient and sensitive method
for the systematic mapping of protein inter-
action networks (28). We isolated tagged pro-
teins (“baits”) from cell lysates solubilized in
digitonin, a mild nonionic detergent that pre-
serves the native structure and properties of
membrane proteins (29). Specific protein in-
teractors (“preys”) were identified by proteo-
mics from biological triplicate experiments
[see fig. S4, A and B, and (21) for a detailed
description of our statistical analysis, which
builds upon established methods (7)]. In total,
the full interactome from our 1260 OpenCell
baits includes 29,922 interactions among a total
of 5292 proteins (baits and preys, Fig. 2A; full
interactome data in table S4).
To assess the quality of our interactome, we

estimated its precision (the fraction of true
positive interactions over all interactions) and
recall (the fraction of interactions identified
relative to a ground truth set) using reference
data (fig. S4B). For recall analysis, we quan-
tified the coverage in our data of interactions
included in CORUM (30), a compendium of
protein interactionsmanually curated from the
literature. To estimate precision, we quantified
howmany of our interactions involved protein
pairs expected to localize to the same broad
cellular compartment (31) (fig. S4B). To bench-
mark OpenCell against other large-scale inter-
actomes, we compared its precision and recall
to Bioplex [overexpression of hemagglutinin-

tagged baits (8, 32)], the yeast two-hybrid
human reference interactome [HuRI (6)], and
our own previous data [green fluorescent pro-
tein fusions expressed from bacterial artificial
chromosomes (7)] (fig. S4, C to E). We also
calculated compression rates for each dataset
as ameasure of the overall richness in network
patterns andmotifs distinguishable fromnoise,
which correlates with overall network quality:
Real-world networks contain redundant infor-
mation that can be compressed, whereas pure
noise is not compressible (33) (fig. S4F). Across
all metrics, OpenCell outperformed previous
approaches.OpenCell also includesmany inter-
actions not reported in previous datasets (fig.
S4, E and G). Our interactome may better
reflect biological interactions because it pre-
serves near-endogenous protein expression.
A powerful way to interpret interactomes is

to identify communities of interactors (8, 13).
To this end, we applied unsupervised Markov
clustering (MCL) (34) to the graph of inter-
actions defined by our data (5292proteins total,
baits and preys). We first measured the stoichi-
ometry of each interaction, using a quantitative
approach we previously established (7). Inter-
action stoichiometry measures the abundance
of a protein interactor relative to the abundance
of the bait in a given immunoprecipitation
sample. We have shown that stoichiometry
can be interpreted as a proxy for interaction
strength and that interactions can be classified
between core (i.e., high) and low stoichiome-
tries (7). In our current data, both high- and
low-stoichiometry interactions were signifi-
cantly enriched for protein pairs sharing Gene
Ontology (GO) annotations (fig. S4H). Using
stoichiometry to assignweights to the edges in
the interaction graph (Fig. 2B), a first round of
MCL delineated interconnected protein com-
munities and led to better clustering perform-
ance than clustering based on connectivity
alone (fig. S4I). To better delineate stable
complexes, we further refined each individual
MCL community by additional clusteringwhile
removing low-stoichiometry interactions. The
resulting subclusters outline core interactions
within existing communities (Fig. 2B). Figure
2C illustrates how this unsupervised approach
enables delineation of functionally related pro-
teins: All subunits of the machinery responsi-
ble for the translocation of newly translated
proteins at the endoplasmic reticulum (ER)
membrane (SEC61/62/63) and of the ERmem-
brane complex (EMC) are grouped within re-
spective core interaction clusters, but both are
part of the same larger MCL community. This
mirrors the recently appreciated cotranslational
role of EMC for insertion of transmembrane
domains at the ER (35). Additional proteins that
have only recently been shown to act cotransla-
tionally are found clustering with translocon or
EMC subunits, including ERN1 (IRE1) (36) and
CCDC47 (37, 38). Thus, clustering can facilitate

mechanistic exploration by grouping proteins
involved in related pathways. Overall, we iden-
tified 300 communities including a total of 2096
baits and preys (full details in table S4). On-
tology analysis revealed that these communities
are significantly enriched for specific cellular
functions, supporting their biological relevance
(82% of all communities are significantly en-
riched for specific biological process or molecu-
lar function GO terms; see table S5 for complete
analysis). A graph of interactions between com-
munities reveals a richly interconnected network
(Fig. 2D), the structure of which outlines the
global architecture of the human interactome
(discussed further below).
Interactome clustering can be directly ap-

plied to help elucidate the cellular roles of the
many human proteins that remain poorly
characterized (39). We identified poorly char-
acterized proteins by quantifying their occur-
rence in article titles and abstracts from
PubMed (Fig. 2E). Empirically, we determined
that proteins in the bottom 10th percentile of
publication count (corresponding to fewer
than 10 publications) are very poorly anno-
tated (Fig. 2E). This set encompasses a total of
251 proteins found in interaction commun-
ities for which our dataset offers potential
mechanistic insights. For example, the pro-
teins NHSL1, NHSL2, and KIAA1522 are all
found as part of a community centered around
SCAR/WAVE, a large multisubunit complex
nucleating actin polymerization (Fig. 2F).
All three proteins share sequence homology
and are homologous to NHS (fig. S5A), a
protein mutated in patients with Nance-Horan
syndrome. NHS interacts with SCAR/WAVE
components to coordinate actin remodeling (40).
Thus, NHSL1, NHSL2, and KIAA1522 might
also act to regulate actin assembly. A recent
mechanistic study supports this hypothesis:
NHSL1 localizes at the cell’s leading edge and
directly binds SCAR/WAVE to negatively regu-
late its activity, reducing F-actin content in
lamellipodia and inhibiting cell migration
(41). The authors identified NHSL1’s SCAR/
WAVE binding sites, and we found these se-
quences to be conserved inNSHL2 andKIA1522
(Fig. 2F). Therefore, our data suggest that both
NHSL2 and KIAA1522 are also direct SCAR/
WAVE binders and possible modulators of the
actin cytoskeleton.
Our data also shed light on the function of

ROGDI, whose variants cause Kohlschuetter-
Toenz syndrome [a recessive developmental
disease characterized by epilepsy and psycho-
motor regression (42)]. ROGDI appears in the
literature because of its association with dis-
ease, but no study, to our knowledge, has spe-
cifically determined its molecular function.
We first observed that ROGDI’s interaction
pattern closely matched that of three other
proteins in our dataset: DMXL1, DMXL2, and
WDR7 (Fig. 2G). This set exhibited a specific
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interaction signaturewith the v-ATPase lysosomal
proton pump. All four proteins interact with
soluble v-ATPase subunits (ATP6-V1), but not
its intramembranemachinery (ATP6-V0).DMXL1
andWDR7 interactwith V1 v-ATPase, and their

depletion in cells compromises lysosomal re-
acidification (43). Sequence analysis showed
that DMXL1 or 2, WDR7, and ROGDI are ho-
mologous to proteins from yeast andDrosophila
involved in the regulation of assembly of the

soluble V1 subunits onto the V0 transmembrane
ATPase core (44, 45) (fig. S5B). In yeast, Rav1 and
Rav2 (homologous to DMXL1/2 and ROGDI,
respectively) form the stoichiometric RAVE
complex, a soluble chaperone that regulates
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v-ATPase assembly (45). To assess the existence
of a human RAVE-like complex, we generated
new tagged cell lines for DMXL1 and 2, WDR7,
and ROGDI. Because of the low abundance of
these proteins, the localization of DMXL2 and
ROGDI was not detectable, but pull-downs of
DMXL1 andWDR7 confirmed a stoichiometric
interaction betweenDMXL1 and 2,WDR7, and
ROGDI (Fig. 2G, right panels). No direct in-
teraction between DXML1 and DMXL2 was
detected, suggesting that they might nucleate
two separate subcomplexes. Therefore, our data
reveal a human RAVE-like complex comprising
DMXL1 or 2, WDR7, and ROGDI, which we
propose acts as a chaperone for v-ATPase
assembly based on its yeast homolog. Alto-
gether, these results illustrate how our data can
facilitate the generation of new mechanistic
hypotheses by combining quantitative analysis
and literature curation.

Image dataset: Localization annotation and
self-supervised machine learning

A key advantage of our cell engineering ap-
proach is to enable the characterization of
each tagged protein in live, unperturbed cells.
To profile localization, we performed spinning-
disk confocal fluorescence microscopy (63×,
1.47NAobjective) under environmental control
(37°C, 5% CO2) and imaged the 3D distribution
of proteins in consecutive z-slices. Microscopy
acquisition was fully automated in Python to
enable scalability (fig. S6, A and B). In par-
ticular, we trained a computer vision model
to identify fields of view (FOVs) with homoge-
neous cell density on-the-fly, which reduced
experimental variation between images. Our
dataset contains a collection of 6375 3D stacks
(five different FOVs for each target) and in-
cludes paired imaging of nuclei with live-cell
Hoechst 33342 staining.
Wemanually annotated localizationpatterns

by assigning each protein to one ormore of 15
separate cellular compartments such as the
nucleolus, centrosome, or Golgi apparatus
(Fig. 3A). Because proteins often populate
multiple compartments at steady state (9), we
graded annotations using a three-tier system:
Grade 3 identifies prominent localization com-
partment(s), grade 2 represents less pronounced
localizations, and grade 1 annotates weak
localization patterns nearing our limit of
detection (see fig. S7A for two representative
examples; full annotations in table S6). Ig-
noring grade 1 annotations, which are inher-
ently less precise, 55% of proteins in our
library were detected in multiple locations
consistent with known functional relation-
ships. For example, clear connections were
observed between secretory compartments
(ER, Golgi, vesicles, plasma membrane), or
between cytoskeleton and plasma membrane
(fig. S7B and table S6). Many proteins were
found in both nucleus and cytoplasm (21% of

our library), highlighting the importance of
the nucleocytoplasmic import and export
machinery in shaping global cellular function
(46, 47). Because our split-FP system does not
enable the detection of proteins in the lumen
of organelles, multilocalization involving trans-
location across an organellar membrane (which
is rare but does happen for mitochondrial or
peroxisomal proteins) cannot be detected in
our data.
To benchmark our dataset, we compared our

localization annotations against the Human
Protein Atlas (HPA), the reference antibody-
based compendium of human protein localiza-
tion (9). This revealed significant agreement
between datasets: 75% of proteins shared at
least one localization annotation in common
(Fig. 3B; this includes 25% of all proteins that
shared the exact same set of annotations, see
full description in table S7A). Because HPA
mostly reports on cell lines other thanHEK293T,
a perfect overlap was not expected, as pro-
teins might differentially localize between
related compartments in different cell types.
However, the annotations for 147 proteins (11%
of our data) were fully inconsistent between
the two datasets (fig. S7C). An extensive cura-
tion of the literature on the localization of those
proteins allowed us to resolve discrepancies for
115 proteins (i.e., 78%of that set; full curation in
table S8). Of these, existing literature evidence
supported the OpenCell results for 113 (98.3%)
of the 115 cases (fig. S7D). This confirms the
usefulness of endogenous tagging as an aid to
refining the curation of localization in the
human proteome. Finally, our dataset included
350 targets that have orthologs in S. cerevisiae.
Comparison between OpenCell and yeast local-
ization annotations (48) revealed a high degree
of concordance (fig. S7E and table S7B; 81% of
proteins share at least one annotation in com-
mon, including 36% perfect matches).
Although expert annotation remains the

best-performing strategy to curate protein
localization (49, 50), the low-dimensional
description it allows is not well suited for
quantitative comparisons. Recent developments
in image analysis and machine learning offer
new opportunities to extract high-dimensional
features frommicroscopy images (50, 51). There-
fore, we developed a deep learning model to
quantitatively represent the localization pattern
of each protein in our dataset (52). Briefly, our
model is a variant of an autoencoder (Fig. 3C):
a form of neural network that learns to vectorize
an image through paired tasks of encoding
(from an input image to a vector in a latent
space) and decoding (from the latent space
vector to a new output image). After training,
a consensus representation for a given pro-
tein can be obtained from the average of the
encodings from all its associated images. This
generates a high-dimensional “localization
encoding” (Fig. 3C) that captures the complex

set of features that define the spatial distribu-
tion of a protein at steady state and across
many individual cells. One of the main advan-
tages of this approach is that it is self-supervised.
Therefore, as opposed to supervised machine
learning strategies that are trained to recognize
pre-annotated patterns [for example, manual
annotations of protein localization (50)], our
method extracts localization signatures from
raw images without any a priori assumptions
or manually assigned labels. To visualize the
relationships between these high-dimensional
encodings, we embedded the encodings for all
1310 OpenCell targets in two dimensions using
UMAP, an algorithm that reduces high-dimensional
datasets to two dimensions (UMAP 1 and
UMAP 2) while attempting to preserve the
global and local structures of the original data
(53). The resulting map is organized in distinct
territories that closely match manual annota-
tions (Fig. 3D, highlighting monolocalizing pro-
teins). This shows that the encoding approach
yields a quantitative representation of the bio-
logically relevant information in our microscopy
data. The separation of different protein clusters
in the UMAP embedding (discussed further
below) mirrors the fascinating diversity of
localization patterns across the full proteome.
Images from nuclear proteins offer compelling
illustrative examples of this diversity and re-
veal how fine-scale details can define the lo-
calization of proteins within the same organelle
(Fig. 3E).

Functional specificity of protein localization in
the human cell

Extracting functional insights directly from
cellular images is amajor goal of modern cell
biology and data science (54). In this context,
our image library and associated machine
learning encodings enable us to explore what
degree of functional relationship can be in-
ferred between proteins solely based on their
localization. For this, we first used an unsuper-
vised Leiden clustering strategy commonly
used to identify cell types in single-cell RNA
sequencing datasets (55). Clusters group pro-
teins that share similar localization properties
(every protein in the dataset is included in a
cluster); these groups can then be analyzed for
how well they match different sets of ground-
truth annotations (Fig. 4A). The average size of
clusters is controlled by varying a hyper-
parameter called resolution (fig. S8A). System-
atically varying clustering resolution in our
dataset revealed that not only did low-resolution
clusters delineate proteins belonging to the
same organelles (Fig. 4, A and B), clustering at
higher resolution also enabled us to delineate
functional pathways and even molecular com-
plexes of interacting proteins (Fig. 4, A to C).
This demonstrates that the spatial distribution
of each protein in the cell is highly specific, to
the point that proteins sharing closely related
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functions can be identified on the sole basis of
the similarity between their spatial distribu-
tions. This is further illustrated by how finely
high-resolution clusters encapsulate proteins
specialized in defined cellular functions (Fig. 4C).
For example, our analysis not only separated
P-body proteins (cluster #83) from other forms
of punctate cytoplasmic structures, but also
unambiguously differentiated vesicular traffick-
ing pathways despite their very similar localiza-
tion patterns: The endosomal machinery (#40),
plasma membrane endocytic pits (#117), and
COP-II vesicles (#143) were all delineated with
high precision (Fig. 4C). Among ER proteins,
the translocon formed clusters with the SRP
receptor, EMC subunits, and the OST glyco-
sylation complex, all responsible for cotransla-
tional operations (#9). This performance
extended to cytoplasmic (fig. S8A) and nuclear
clusters (fig. S8B), revealing that spatial pat-
terning is not limited to membrane-bound
organelles and that subcompartments also
exist in the nucleocytoplasm. An illustrative
example is a cytoplasmic cluster (#17) formed
by a group of RNA binding proteins (includ-
ing ATXN2L, NUFIP2, and FXR1; Fig. 4C)
that separate into granules upon stress con-
ditions (56–59). Stress granules are not formed
under the standard growth conditions used in
our experiments, but the ability of our analysis
to cluster these proteins together reveals an
underlying specificity to their cytoplasmic
localization (i.e., “texture”) even in the absence
of stress.
A direct comparison between imaging and

interactome data allowed us to further ex-
amine the extent to which molecular-level
relationships (that is, protein interactions)
can be derived from a comparison of localiza-
tion patterns. For OpenCell targets that di-
rectly interact, we compared the correlation
between their localization encodings derived
from machine learning (defining a “localiza-
tion similarity”) and the stoichiometry of their
interaction. This “localization similarity” mea-
sures the similarity between the global steady-
state distributions of two proteins, as opposed
to a direct measure of colocalization. We
found that most proteins interact with low
stoichiometry [as we previously described
(7)] and without strong similarities in their
spatial distribution (Fig. 4D, solid oval). This
means that although low-stoichiometry inter-
actors colocalize at least partially to interact,

their global distribution within the cell is
different at steady state. On the other hand,
high-stoichiometry interactors share very sim-
ilar localization signatures (Fig. 4D, dashed
oval). Indeed, proteins interacting within
stable complexes annotated in CORUM fall
into this category (Fig. 4E), and the localization
signatures of different subunits from large
complexes are positioned very closely in UMAP
embedding (Fig. 4F). In an important correlate,
we found that a high similarity of spatial dis-
tribution is a strong predictor of molecular
interaction. Across the entire set of target pairs
(predicted to interact or not), proteins that
share high localization similarities are also
very likely to interact (Fig. 4G). For example,
target pairs with a localization similarity greater
than 0.85 have a 58% chance of being direct
interactors and a 68% chance of being second
neighbors (i.e., sharing a direct interactor in
common). This suggests that protein-protein
interactions could be identified from a quanti-
tative comparison of spatial distribution alone.
To test this, we focused on FAM241A (C4orf32),

a protein of unknown function that was not
part of our original library, and asked whether
we could predict its interactions using imaging
data alone, rather than the classical deorphan-
ing approach that uses interaction proteomics.
We thus generated a FAM241A endogenous
fusion that was analyzed with live imaging and
IP-MS separately. Encoding its localization pat-
tern, using a “naïve” machine learning model
that was never trained with images of this new
target, revealed a very high localization sim-
ilarity with two subunits of the ER oligosac-
charyl transferase OST (>0.85 similarity to
STT3B and OSTC), and high-resolution Leiden
clustering placed FAM241A in an image cluster
containing only OST subunits (Fig. 4H, top).
This analysis suggested that FAM241A is a
high-stoichiometry interactor of OST. IP-MS
revealed that FAM241A was indeed a stoichi-
ometric subunit of the OST complex (Fig. 4H,
bottom). Although the specific function of
FAM241A in protein glycosylation remains to
be fully elucidated, this proof-of-concept exam-
ple establishes that live-cell imaging can be
used as a specific readout to predict molecular
interactions.
Collectively, our analyses establish that the

spatial distribution of a given protein con-
tains highly specific information from which
precise functional attributes can be extracted by

modern machine learning algorithms. In addi-
tion, we show that whereas high-stoichiometry
interactors share very similar localization pat-
terns, most proteins interact with low stoi-
chiometry and share different localization
signatures. This reinforces the importance of
low-stoichiometry interactions for defining
the overall structure of the cellular network,
not only providing the “glue” that holds the
interactome network together (7) but also con-
necting different cellular compartments.

RNA binding proteins form a unique group in
both interactome and spatial networks

To gain insight into global signatures that or-
ganize the proteome, we further examined the
structures of our imaging and interactome
datasets. First, we reduced the dimensionality
of each dataset by grouping proteins into their
respective spatial clusters (as defined by the
high-resolution localization-based clusters in
Fig. 4, A and C) or interaction communities (as
defined in Fig. 2B). We then separately clus-
tered these spatial groups (fig. S9A) and inter-
action communities (fig. S9B) to formalize
paired hierarchical descriptions of the human
proteome organization. These hierarchies are
highly structured and delineate clear groups of
proteins (see comparison to hierarchies expected
by chance, fig. S9C). In both hierarchies, groups
isolated at an intermediate hierarchical layer
outline “modules” that are enriched for specific
cellular functions or compartments (fig. S9, A
and B; full ontology analysis in tables S5 and
S9). At a higher layer, each dataset is parti-
tioned into three “branches,”which represent
core signatures that shape the proteome’s ar-
chitecture from a molecular or spatial per-
spective (fig. S9, A and B). The structure of the
localization-based hierarchy (fig. S9A) reca-
pitulates the human cell’s architecture across
its three key compartments (nucleus, cyto-
plasm, membrane-bound organelles; fig. S10,
A and B), which reinforces the relevance of
our unsupervised hierarchical analysis. This
motivated a deeper examination of the hier-
archical architecture of the interactome (fig.
S9B; ontology analysis in table S5). We found
that intermediate-layer modules of the inter-
actome delineate specific cellular functions
such as transcription or vesicular transport
(fig. S9B), reflecting, as expected, that func-
tional pathways are formed by groups of pro-
teins that physically interact (60, 61). More
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encoding vectors) versus interaction stoichiometry between all interacting
pairs of OpenCell targets. Two discrete subgroups are outlined: low
stoichiometry/low localization similarity pairs (solid oval) and high
stoichiometry/high localization similarity pairs (dashed oval). In this
representation, the distributions of values across x and y axes have been
binned, and the density of protein pairs within each bin is color-coded.
(E) Probability density distribution of CORUM interactions mapped
on the graph from (D). Contours correspond to isoproportions of density

thresholds for each 10th percentile. (F) Localization patterns of different
subunits from example stable protein complexes, represented on the
localization UMAP. (G) Frequency of direct (first neighbor) or once-removed
(second neighbor, having a direct interactor in common) protein-protein
interactions between any two pairs of OpenCell targets sharing localization
similarities above a given threshold (x axis). (H) Parallel identification of
FAM241A as a new OST subunit by imaging or mass spectrometry. See text
for details.
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strikingly, the highest-layer structure showed
that two of the three interactome branches
were defined by clear functional signatures
(fig. S10, C to E): Branch B is significantly
enriched in proteins that reside in or interact
with lipid membranes, whereas branch C is
significantly enriched in RNA binding pro-
teins (RNA-BPs) (Fig. 5B). This indicates that

bothmembrane-related proteins and RNA-BPs
interact more preferentially with each other
than with other kinds of proteins in the cell.
That membrane-related proteins form a spe-

cific interaction group is perhaps not surpris-
ing, as the membrane surfaces that sequester
them within the 3D cell will be partially main-
tained upon detergent solubilization. On the

other hand, the fact that RNA-BPs also form
a specific interaction group is unexpected,
because our protein interactions were mea-
sured in nuclease-treated samples (21) inwhich
most RNAs are degraded. This suggests that
protein features beyond binding to RNAs
themselves might drive the preferential inter-
actions of RNA-BPswith each other. Therefore,
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Fig. 5. Segregation of RNA-BPs in both interactome and imaging datasets.
(A) Hierarchical structure of the interactome dataset; see full description in
fig. S9B. (B) Distribution of membrane-related (transmembrane or membrane-
binding) proteins and RNA-BPs within the three interactome branches.
(C) Distribution of hydrophobicity and intrinsic disorder in the membrane
and RNA-BP branches of the interactome hierarchy, respectively (see full
analysis in fig. S10). For intrinsic disorder, two separate scores are shown for
completeness: IUPRED2 (89) and metapredict (90), a new aggregative
disorder scoring algorithm. Boxes represent 25th, 50th, and 75th percentiles;
whiskers represent 1.5 times the interquartile range. Median is represented by
a white line. **P < 10–3 (Student’s t test); exact P values are shown.
(D) Distribution of RNA-BP percentage across spatial clusters, comparing our
data to a control in which the membership of proteins across clusters was
randomized 1000 times. Lines indicate parts of the distribution overrepresented
in our data versus control (**P < 2 × 10–3, Fisher’s exact t test). (E) Distribution

of disorder score (IUPRED2) across spatial clusters, comparing our data to
a control in which the membership of proteins across clusters was randomized
1000 times. Lines indicate parts of the distribution overrepresented in our
data versus control (**P < 2 × 10–3, Fisher’s exact t test). (F) Ontology enrichment
analysis of proteins contained in high-disorder spatial clusters (average disorder
score >0.45). Enrichment compares to the whole set of OpenCell targets (P value:
Fisher’s exact test). (G) Prevalence of proteins annotated to be involved in
biomolecular condensation in high-disorder versus other spatial clusters. Boxes
represent 25th, 50th, and 75th percentiles; whiskers represent 1.5 times the
interquartile range. Median is represented by a white line. Note that for both
distributions, the median is zero. (H) Distribution of high-disorder spatial clusters
in the UMAP embedding from Fig. 3D. Individual nuclear clusters are not outlined
for readability. Multiple high-disorder spatial clusters include compartments or
proteins characterized by biomolecular condensation behaviors, which are marked
by an asterisk.
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we reasoned that the biophysical properties of
proteins within each interactome branch might
underlie their segregation. Indeed, an analysis
of protein sequence features revealed a separa-
tion of different biophysical properties in each
branch (fig. S10, F and G). Branch B was en-
riched for hydrophobic sequences (Fig. 5C),
consistent with its enrichment for membrane-
related proteins, whereas branch Cwas enriched
for intrinsic disorder (Fig. 5C). This is consistent
with the fact thatRNA-BPs are significantlymore
disordered than other proteins in the proteome
(fig. S11A) (62). RNA-BPs are also among the
most abundant in the cell (fig. S11B) and form a
higher number of interactions than other pro-
teins (fig. S11, C and D).
IP-MSmeasures protein interactions in vitro

after lysis and therefore does not directly
address the spatial relationship between inter-
acting proteins. Thus, we sought to further
examine how RNA-BPs distribute in our live-
cell imaging data. If RNA-BPs segregate into
interacting groups in vivo, this should also
manifest at the level of their intracellular
localization: They should enrich in the same
spatial clusters derived from our unsupervised
machine learning analysis. Indeed, the distri-
bution of RNA-BP content within spatial clus-
ters revealed a significant overrepresentation
of clusters that were either strongly enriched
or depleted for RNA-BPs (Fig. 5D). Because
spatial clusters can be interpreted as defining
“microcompartments” within the cell, both
enrichment and depletion have functional im-
plications: Not only are RNA-BPs enriched
within the samemicrocompartments, they also
tend to be excluded from others. Of the 26
spatial clusters (62%) that are highly enriched
in RNA-BPs, 16 include at least one protein in-
volved in biomolecular condensation [as cura-
ted in PhaSepDB (63)], which might reflect a
prevalent role for biomolecular condensation
in shaping the RNA-BP proteome. Collectively,
both interactome and imaging data under-
score that RNA-BPs (a prevalent group of
proteins representing 13% of proteins expressed
in HEK293T cells; see table S2) form a distinct
subgroup within the proteome characterized
by unique properties.
These results motivated a broader analysis

of the contribution of intrinsic disorder to the
spatial organization of the proteome in our
dataset. Plotting the distribution of mean in-
trinsic disorder within spatial clusters revealed
a significant overrepresentation of clusters both
enriched and depleted in disordered proteins
(Fig. 5E). Of 182 total spatial clusters, 26 were
enriched for disordered proteins, covering 13%
of the proteins in our imaging dataset. Overall,
the extent to which disordered proteins segre-
gated spatially was similar to the degree of
segregation found for hydrophobic proteins:
An analogous analysis revealed that 10% of
proteins in our dataset are found within clus-

ters significantly enriched for high hydropho-
bicity (fig. S12E), which map to membrane-
bound organelles (fig. S12F). This supports
the hypothesis that intrinsic disorder is as
important a feature as hydrophobicity in
organizing the spatial distribution of the
humanproteome. Consistentwith our previous
analysis, high-disorder clusters were enriched
for RNA-BPs (Fig. 5F), with 15 of these 26
clusters containing more than 50% of RNA-
BPs. High-disorder clusters were also enriched
for proteins annotated to participate in bio-
molecular condensation (Fig. 5G) and were
predominantly found in the nucleus (19 clus-
ters, 73% of total, Fig. 5H). Five of seven high-
disorder clusters found in the cytosol delineate
compartments for which biomolecular conden-
sation has been proposed to play an important
role (Fig. 5G), namely P-bodies (64), stress
granules (59), centrosome (65), cell junctions
(66), and the interface between cell surface
and actin cytoskeleton (67).

Interactive data sharing at opencell.czbiohub.org

To enable widespread access to the OpenCell
datasets, we built an interactive web applica-
tion that provides side-by-side visualizations
of the 3D confocal images and of the interac-
tion network for each tagged protein, together
with RNA and protein abundances for the
whole proteome (Fig. 6). Our web interface is
fully described in fig. S12.

Discussion

OpenCell combines three strategies to augment
the description of human cellular architecture.
First, we present an integrated experimental
pipeline for high-throughput cell biology, fueled
by scalable methods for genome engineering,
live-cell microscopy, and IP-MS. Second, we
provide an open-source resource of well-curated
localization and interactome measurements,
easily accessible through an interactive web
interface at opencell.czbiohub.org. Third, we
describe an analytical framework for the rep-
resentation and comparison of interaction or
localization signatures (including a self-supervised
machine learning approach for image encod-
ing). Finally, we demonstrate how our dataset
can be used for fine-grainedmechanistic explo-
ration (to explore the function of multiple pro-
teins that were previously uncharacterized) as
well as for investigating the core organizational
principles of the proteome.
Our current strategy that combines split

FPs and HEK293T—a cell line that is heavily
transformed but easily manipulatable—is mostly
constrained by scalability considerations. Tech-
nological advances arequicklybroadening the set
of cellular systems that can be engineered and
profiled at scale. Advances in stem cell technol-
ogies enable the generation of libraries that can
be differentiated in multiple cell types (11), while
innovations in genome engineering [for example,

bymodulatingDNA repair (68)] pave theway for
the scalable insertion of gene-sized payload,
for the combination of multiple edits in the
same cell, or for increased homozygosity in
polyclonal pools. In addition, recent develop-
ments in high-throughput light-sheet micros-
copy (69) might soon enable the systematic
description of 4D intracellular dynamics (70).
A central feature of our approach is the use

of endogenous fluorescent tags to study pro-
tein function. Genome-edited cells enable pro-
tein function to be examined at near-native
expression levels [which can circumvent some
limitations of overexpression (71)] and enable
the measurement of protein localization in
live cells [which can avoid artifacts caused by
fixation or antibody labeling (72)]. Comparing
our data to the current reference datasets of
protein-protein interactions (fig. S4, C to F) or
localization (fig. S7, C and D) highlights the
performance of our strategy. In addition, our
high success rate tagging essential genes [fig.
S2A; see also (73) in yeast] and the successful
tagging of the near-complete yeast proteome
(14, 73) indicate that fluorescent tagging gen-
erally preserves normal protein physiology.
However, limitations exist for specific pro-

tein targets. FPs are as big as an average hu-
man protein, and their insertion can impair
function or localization—for example, by oc-
cluding important interaction interfaces or
impairing subcellular targeting sequences.
In other cases, tags can affect expression or
degradation rates, whichmight explain why
we find tagged proteins being expressed at
80% of their endogenous abundance, and
8% of targets in our dataset having outlier
abundances at steady state (Fig. S3D). Fur-
ther, tagging often cannot discriminate be-
tween different isoforms of a protein (such as
splicing or posttranslationally modified var-
iants). Finally, relying on endogenous expression
can be an obstacle given the low concentration
of most proteins in the human cell: Detection
of poorly abundant proteins is difficult (espe-
cially those in the bottom half of the abundance
distribution) even when using a very bright FP
such asmNeonGreen (74) (fig. S2D). Solutions
to this obstacle include using FP repeats to
increase signal (18, 23) or using tags that bind
chemical fluorophores [e.g., HaloTag (75)],
which can be brighter than FPs or operate at
wavelengths where cellular autofluorescence
is decreased (76). Overall, the full description of
human cellular architecture remains a formida-
ble challenge that will require complementary
methods being applied in parallel. The diversity
of large-scale cell biology approaches is a solu-
tion to this problem (6, 8, 9, 11, 31, 70, 77–80).
Mirroring the advances in genomics follow-
ing the human genome sequence (2), open-
source systematic datasets will likely play
an important role in how the growth of cell
biology measurements can be transformed
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into fundamental discoveries by an entire
community (81).
In addition to presenting a resource of mea-

surements and protocols, we also demonstrate
how our data can be used to study the global
signatures that pattern the proteome. Our
analysis reveals that RNA binding proteins,
which form one of the biggest functional
families in the cell, are characterized by a
unique set of properties and segregate from
other proteins in terms of both interactions
and spatial distribution. Itwould be fascinating
to explore the extent to which RNA itself might
act as a structural organizer of the cellular
proteome (62, 82). This is, for example, the
case for some noncoding RNAs whose main
function is to template protein interactions
to form nuclear bodies (83). High intrinsic
disorder is one of the distinguishing features
of RNA-BPs that likely contributes to their
unique properties. Beyond RNA-BPs, our data
support a general role for intrinsic disorder in
shaping the spatial distribution of human
proteins. For example, 13% of proteins in our
dataset are found in spatial clusters that are
significantly enriched for disordered proteins.
This adds to the growing appreciation that
intrinsic disorder, which is much more preva-
lent in eukaryotic than in prokaryotic proteomes
(84, 85), plays a key role in the functional sub-

compartmentalization of the eukaryotic nucleo-
and cytoplasm in the context of biomolecular
condensation (86).
Lastly, we show that the spatial distribution

of each human protein is very specific, to the
point that remarkably detailed functional
relationships can be inferred on the sole basis
of similarities between localization patterns,
including the prediction of molecular inter-
actions [which complements other studies
(87)]. This highlights that intracellular orga-
nization is defined by fine-grained features
that go beyond membership to a given organ-
elle. Our demonstration that self-supervised
deep learning models can identify complex but
deterministic signatures from light microscopy
images opens exciting avenues for the use of
imaging as an information-rich method for
deep phenotyping and functional genomics
(51). Because light microscopy is easily scalable,
can be performed live, and enables measure-
ments at the single-cell level, this should offer
rich opportunities for the full quantitative
description of cellular diversity in normal
physiology and disease.

Methods summary

See (21) for a complete description of methods
for cell culture and CRISPR engineering, im-
munoprecipitation and mass spectrometry,

live-cell imaging, and data analysis of both
interactome and imaging datasets. In brief,
HEK-293T cells (ATCC CRL-3216) were engi-
neered to express in-frame fluorescent gene
fusions using the split-mNeonGreen2 system
(see Fig. 1A). In total, we targeted 1757 human
genes in separate experiments and could suc-
cessfully detect fluorescence for 1310 of these
gene targets, which constitute our current data-
set. CRISPR-based genomic insertions were per-
formedbynucleofection of purifiedCas9protein
precomplexed with synthetic guide RNAs, deli-
vered together with single-stranded oligodeox-
ynucleotide donors to template homologous
recombination. Fluorescent cells were selected
by flow cytometry as a polyclonal pool, which
was genotyped by next-generation amplicon
sequencing of the edited alleles. These selected
cell pools were used for functional character-
ization by microscopy and IP-MS. To image
protein localization in live cells, we performed
3D spinning disk confocal microscopy (63× ob-
jective, 1.47 NA) under environmental control
(37°C, 5% CO2). Microscopy acquisition was
fully automated in 96-well plates using a
custom acquisition script, written in Python
(github.com/czbiohub/2021-opencell-microscopy-
automation). To measure protein interactions,
we performed IP-MS from cell lysates solubi-
lized using digitonin detergent in the presence
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RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at M

ax Planck Society on A
pril 12, 2022

https://github.com/czbiohub/2021-opencell-microscopy-automation
https://github.com/czbiohub/2021-opencell-microscopy-automation
https://opencell.czbiohub.org


of benzonase (nuclease for DNA and RNA).
After immunoprecipitation of target proteins
using anti-mNeonGreen nanobody resin, cap-
tured proteins were digested into peptides by
LysC protease. Bottom-up mass spectrometry
analysis was then performed on a timsTOF
instrument. Mass spectrometry data were
quantified using MaxQuant. Data analysis
was performed in Python as detailed in (21).
The code and data used to generate the
figures can be found on GitHub at github.com/
czbiohub/2021-opencell-figures.
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Tracking proteins
Improved understanding of how proteins are organized within human cells should enhance our systems-level
understanding of how cells function. Cho et al. used CRISPR technology to express more than 1000 different
proteins at near endogenous amounts with labels that allowed both fluorescent imaging of their location and
immunoprecipitation and mass spectrometry analysis of interacting protein partners (see the Perspective by Michnick
and Levy). The large-scale data are made available on an interactive website, with clustering and analysis performed
by machine learning. The studies emphasize the unusual properties of RNA-binding proteins and indicate that protein
localization is very specific and may allow predictions of function. —LBR
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