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Upcoming observational runs of the LIGO-Virgo-KAGRA collaboration, and future gravitational-
wave (GW) detectors on the ground and in space, require waveform models more accurate than
currently available. High-precision waveform models can be developed by improving the analytical
description of compact binary dynamics and completing it with numerical-relativity (NR) infor-
mation. Here, we assess the accuracy of the recent results for the fourth post-Minkowskian (PM)
conservative dynamics through comparisons with NR simulations for the circular-orbit binding en-
ergy and for the scattering angle. We obtain that the 4PM dynamics gives better agreement with
NR than the 3PM dynamics, and that while the 4PM approximation gives comparable results to
the third post-Newtonian (PN) approximation for bound orbits, it performs better for scattering
encounters. Furthermore, we incorporate the 4PM results in effective-one-body (EOB) Hamiltoni-
ans, which improves the disagreement with NR over the 4PM-expanded Hamiltonian from ~ 40%
to ~ 10%, or ~ 3% depending on the EOB gauge, for an equal-mass binary, two GW cycles be-
fore merger. Finally, we derive a 4PN-EOB Hamiltonian for hyperbolic orbits, and compare its
predictions for the scattering angle to NR, and to the scattering angle of a 4APN-EOB Hamiltonian

computed for elliptic orbits.

I. INTRODUCTION

Gravitational-wave (GW) observations [1-4] have im-
proved our understanding of compact binaries, composed
of black holes and/or neutron stars, their properties,
and their astrophysical formation channels [5-7]. Search-
ing for GW signals and estimating their parameters re-
quire accurate waveform models or templates. Since
numerical-relativity (NR) simulations are computation-
ally expensive, analytical approximation methods be-
come essential for producing such waveforms.

The post-Newtonian (PN) approximation is valid for
slow motion, v?/c? < 1, and weak gravitational poten-
tial, GM /rc? < 1, making it most applicable for binaries
in bound orbits where v?/c? ~ GM/rc?, which are the
main sources observed by ground-based GW detectors,
such as LIGO, Virgo and KAGRA [8-10]; for reviews,
see Refs. [11-16].

Similarly, the post-Minkowskian (PM) approximation
is a weak-field expansion, but places no restriction on
the magnitude of velocities. Next to entirely classi-
cal approaches to the PM approximation [17-25], re-
cent progress is pioneered by methods starting out from
(quantum) scattering amplitudes [26-39]. In addition,
manifestly classical methods that make use of quantum-
field-theory techniques show great promise for advanc-
ing the PM approximation, namely effective field the-
ory [40-45] and worldline quantum field theory [46, 47]
approaches. The PM approximation has also been ap-
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plied to spin [48-67], tidal [68-74] and radiative ef-
fects [75-88].

The PM expansion encompasses the PN expansion,
such that the (n 4+ 1)PM order includes all the infor-
mation up to the nPN order, making it potentially more
accurate. Binaries in bound orbits can reach velocities
on the order of 0.4 or larger when spiraling over the last
orbits before merger. This means that the relativistic
corrections become more and more important in the last
stages of the inspiral and plunge. Thus, we might ex-
pect that at some high PM order, the PM expansion
may start to become more accurate than the PN ex-
pansion. Furthermore, scattering encounters on hyper-
bolic trajectories can reach high velocities, for which the
PM approximation becomes more relevant. The gravita-
tional self-force (GSF) approximation [89-101] expands
the Einstein’s equations in power of the binary’s mass
ratio mo/m; < 1. It is thus valid for any velocity and
is not restricted to the weak fields. Figure 1 illustrates
the regions of parameter space in which the PN, PM
and GSF approximations are (roughly) applicable when
generic orbits are considered.

Detecting GW bursts from hyperbolic encounters
would have important implications on our understand-
ing of dense stellar environments and the merger rate of
compact objects formed through this astrophysical chan-
nel. Currently, there does not seem to be a consensus in
the literature [102-108] on the event rate for scattering
encounters, due to the high uncertainty in the astrophys-
ical models; the expected event rates vary between 0.001
to 0.39 per year for upcoming LIGO-Virgo-KAGRA runs,
depending on the model [108], with higher rates expected
for future detectors. Gravitational waves from hyper-
bolic encounters would be expected at higher rates in
the LIGO-Virgo-KAGRA frequency band if a large pop-
ulation of primordial black holes exists in dense stellar
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FIG. 1. The left panel shows the region of applicability of NR and the PN, PM, and GSF approximations for small eccentricity
e ~ 0, in which case the PN and PM approximations overlap. The right panel shows the range in eccentricity for which each
approximation is applicable for comparable masses ¢ ~ 1. The PM approximation is more accurate than the PN approximation
for scattering encounters at large velocities, or equivalently large eccentricities at fixed periastron distance.

clusters, as was proposed in Refs. [109-112] based on
some inflationary models. Other GW sources that could
reach highly-relativistic velocities are binaries in galactic
nuclei, where dynamical capture and three-body interac-
tions can drive binaries to high eccentricities [104, 113—
123].

Most studies of hyperbolic and parabolic encounters
use the PN approximation, for both the dynamics [124-
127] and the GW energy spectrum [105, 128-131]. The
effective-one-body (EOB) formalism [132, 133] has also
been applied to scattering, as in Refs. [134-139]. EOB
waveform models improve the inspiral-merger-ringdown
waveforms by combining test-body, PN, black-hole per-
turbation, and NR results. PM results have been incor-
porated in EOB Hamiltonians in Refs. [22, 23, 140, 141].

In this paper, we study the recent 4PM results of
Refs. [34, 35, 44]. In Sec. IT and Sec. ITI, we summa-
rize those results and incorporate them in EOB Hamil-
tonians. Then, in Sec. IV, we compare the circular-orbit
binding energies with NR, while in Sec. V, we compare
the scattering angles. We conclude in Sec. VI, and write
in Appendices A and B the expressions for the PN and
EOB Hamiltonians. We also provide those expressions as
a MATHEMATICA file in the Supplemental Material [142].

Notation

We adopt units in which the speed of light ¢ = 1.

For a binary with masses my and mo, with my > mao,

we define the following quantities:

mims H mi
M= = = — =—. (1
mi + ma, 1Y M ) v Ma Mo ( )
From the total energy E, we define the binding energy:
_ E-M
E= , (2)
I

and the effective energy F.g through the EOB energy

map [132]
EZM\/I—I—?V(E;H—l). (3)

We also introduce the following quantities:
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where v is related to the asymptotic relative velocity v
by

V-1 1 )

or =
SR v T

When dealing with PN expansions, it is convenient to
define the dimensionless energy variable !

e=7% —1=17%2 (6)

v

I Note that € used here is denoted p2, in Refs. [35, 143].



The orbital angular momentum is denoted L, and is
related to the relative position R, radial momentum Pg,
and total linear momentum P via

2 2 L2

We use Hyyp, to denote a Hamiltonian with PM or PN
information that is valid for unbound/hyperbolic motion,
and use Hg) for a Hamiltonian valid for bound/elliptic
orbits. A Hamiltonian written without a ‘hyp’ or ‘ell’
subscript is valid for generic motion.

We often use the following dimensionless rescaled
quantities:

R 1 P Pg
r=E—=—, UuU=- = — = —,
GM’ T? p ’L[,) p M
L . H
l=—, H=-—. (8)
GMu I

II. PM-EXPANDED SCATTERING ANGLE
AND HAMILTONIAN

The 4PM conservative dynamics (including tail effects)
has been derived recently in Refs. [34, 35, 44, 45] for
hyperbolic orbits in a large-eccentricity expansion. We
note that this 4PM result agrees with the 6PN result of
Refs. [76, 144, 145], and exhibits a simple mass depen-
dence, which is expected due to Lorentz invariance and
dimensional analysis, as argued in Ref. [24]. The result
of Refs. [34, 35, 44, 45] also agrees with the 5PN result
of Refs. [146-148], except for a single term that does not
have the expected mass dependence, and is proportional
to v2. 2 Furthermore, Ref. [45] argued that conservative
memory terms are still missing at 4PM order. However,
in this paper, we follow the definition of the conservative
dynamics of Refs. [76, 144, 145], and thus assume that
the results in Refs. [34, 35, 44, 45] are complete. Further
studies in the community would be needed to shed light
on this matter.

The two-body dynamics can be conveniently encoded
in the gauge-invariant radial action, I, which at 4PM
order can be written schematically as

hyp 7TG4M7V2P2 p
IT,4PM = I”';SPM - 8EL3 4
V-1
+v (4/\43 In Y+ M7+ Mffm> ] . (9)

2 The difference in the 5PN conservative scattering angle between
Refs. [35, 143] and [146], which is given by Eq. (69) of the latter,
is proportional to v2v%/L%. In all configurations considered in
this paper, the velocities reached by a binary system are typically
< 0.5. As a consequence, such a difference has a very small effect
in our study — for example on the order of 103 degrees for the
range of parameters in Fig. 6.

which includes the lower PM orders, with the 3PM part
I 3pm valid for both bound and unbound motion. The
terms M- are directly related to parts of the scatter-
ing amplitude; they are independent of the masses, and
are written in Eq. (3) of Ref. [35]. An expression for
these terms that is valid for generic orbits (bound and un-
bound) is difficult to derive and has not yet been found.
The physical reason is that the tail effects [149] starts to
enter at 4PM order, which is a nonlocal-in-time interac-
tion depending on the entire history of the binary. Thus,
it is different for bound and unbound orbits.

The scattering angle, by which the two bodies are de-
flected in the center-of-mass frame, is a gauge-invariant
function that contains the same information as the ra-
dial action or the hyperbolic-orbit Hamiltonian. It can
be obtained from the derivative of the radial action with
respect to the angular momentum, that is,

oI
X= 7700

(10)

Reference [35] also derives a two-body Hamiltonian
from the radial action, following the steps in Refs. [29,
150]. The 4PM Hamiltonian in isotropic gauge, and for
hyperbolic orbits, is given by

4
GYL
HYP = \/mZ{ + P2+ \/mg + P2+ men, (1)
n=1

where the c¢,-coefficients are given by Egs. (10) of
Ref. [31] and Eq. (8) of Ref. [35]. Like the radial ac-
tion, the 3PM part of H}f%ﬁ/[ is valid for generic motion,
but the 4PM piece is for hyperbolic orbits. This Hamil-
tonian is determined in Ref. [35] from an ansatz that
matches the scattering angle that follows from the radial
action Ifff,M7 which is determined from the scattering
amplitudé.

To assess how close Hfgi/[ is to a bound-orbit 4PM
Hamiltonian, we complement Hgﬁ/l with bound-orbit
corrections AHZ%M(HPN), such that the nPN expansion

of Hfg‘ﬁ/[ + AHZ%M(DPN) gives the correct nPN Hamilto-
nian up to O(G*) for bound orbits in isotropic gauge.
We obtain AH{Ey . px) to 6PN order, as explained in
Appendix A, since the 6PN Hamiltonian is fully known
up to O(G*) [144, 145]. In Sec. IV, we compare the bind-
ing energy calculated from these Hamiltonians with NR,
finding a small difference between Hfgﬁ/[ and its bound-
orbit corrections.

III. EFFECTIVE-ONE-BODY HAMILTONIANS

In the case of nonspinning compact objects, the EOB
formalism [132, 133] maps the binary motion to that of a
test mass in a deformed Schwarzschild background. The
two-body Hamiltonian HFOB is related to an effective



Hamiltonian H°® via the energy map

HEOB — M\/l + 2w (Heff — 1> . (12)
"

The effective metric is defined by

g¥datda” = —AdT? + BAR? + R? (d6* + sin® 0d¢?) ,

(13)
with the mass-shell condition [151]
0=g'P.P,+1*+Q, (14)
leading to the effective Hamiltonian Heg = — P,
pP: L2
H§T14<u2+l§4EQkQ>. (15)

In the v — 0 limit, Heg reduces to the Schwarzschild
Hamiltonian for a test mass, which is given by

Hi=(1-2u)[1+1—2up?+1u?].  (16)

To include higher PN information in an EOB Hamil-
tonian, we write an ansatz for the A, B and ) potentials
in Eq. (15), perform a canonical transformation, then
match HFOB to the PN-expanded Hamiltonian. This
procedure is explained in more detail in Appendix A. For
PM results, it is more convenient to calculate the gauge-
invariant scattering angle from the ansatz for HFOB
then match it to the PM-expanded scattering angle in
Eq. (10). These calculations will lead to the first deriva-
tion of 4PM-EOB Hamiltonians (and their nPN limits)
for hyperbolic orbits.

As an ansatz, we choose the B potential to be the
same as in the Schwarzschild metric, i.e., B =1/(1—2u),
and include all the 4PM corrections into either @ or A.
When included in @, we get a 4PM generalization of
the post-Schwarzschild (PS) Hamiltonian considered in
Refs. [23, 140], which is given by

(HFPS$)2 = HZ + (1 - 2u)
X (UQQQPM + ugzpm + vt qupn + A?pN) , (A7)

where g,pMm can in general be any scalar function of the
energy or the dynamical variables. In this ansatz, we
include a 4PN correction term A4QPN as explained below.

The other gauge we consider in this paper incorporates
PM corrections in the A potential, and reads

(HHPS™)2 — (1 —2u+ v?azpym + u’aszpm + ulaspm

+ Afpn) [L+ (1 —2u)p? + 12u?], (18)

which is meant to more closely resemble, in the circular-
orbit limit, the standard EOB gauge of Refs. [132, 151,
152], which is often used in EOB waveform models for
LIGO-Virgo-KAGRA observations.

To determine the g,pyv and a,py coefficients, we cal-
culate the scattering angle from the Hamiltonian. To

TABLE I. Summary of the Hamiltonians considered in this
paper.

Hamiltonian definition
H,pn PN-expanded Hamiltonian to O(c™2")
H,.pMm PM-expanded Hamiltonian to O(G"™)

H¥% + AHGD ey 4PM hyperbolic-orbit  Hamiltonian
plus a bound-orbit correction up to
orders nPN and 4PM

Hslll’i;&PM) PN-expanded Hamiltonian truncated
at O(G*) in isotropic coordinates,
valid for bound orbits

HESE PN-EOB Hamiltonian in the gauge
used in Refs. [132, 151, 152]

HEOB.PS EOB Hamiltonian in Eq. (17), based
on the PS gauge [23, 140]

HPOB’PS* EOB Hamiltonian in the gauge used in
Eq. (18)

Hfg\?;élPN 4PM-EOB Hamiltonian (for hyper-

bolic orbits) complemented with the
missing 4PN part (for bound orbits).

achieve this, we invert the Hamiltonian HEOB (l,r,pr) =
E + 1/v to obtain p,.(FE,l,r), then evaluate the integral

X:—z/ Wdr—w, (19)

0

where ry is the turning point obtained from the
largest root of the unperturbed (1PM) radial momentum
pg»o)(E_’,l,r) = 0. To simplify evaluating this integral,
we assume that a canonical transformation has been per-
formed such that g,py and a,,py are functions only of the
effective energy FEeog, which is constant. However, since
gnpM and an,py themselves define Heg, their dependence
on Feg should be understood perturbatively in the PM
scheme. When working up to 3PM order, that energy can
be taken to be the (1IPM-accurate) Schwarzschild Hamil-
tonian Hg (see Refs. [23, 140] for more details). However,
at 4PM order, we need to account for nonlinear effects
by using the 2PM effective energy, as explained in Ap-
pendix B.

Since the scattering angle is gauge invariant, match-
ing y calculated from the EOB Hamiltonian to the PM-
expanded scattering angle in Eq. (10) enables us to
solve for the coefficients g,pMm(y) and a,pm(7), where
v = Eegr/1n. (See Appendix B or the Supplemental Ma-
terial [142] for the expressions of these coefficients.).

We also complement the 4PM EOB Hamiltonians
above with the missing 4PN(5PM) piece. This is done
by writing an ansatz for Aypn, such that

5
- 4
A4pN = E e " + (agmu'e + asmu’) Inu
n=2

+ a471n8u4 Ine, (20)



where we use the PN expansion parameters u and € =
~% —1, each of one PN order. Then, we perform a canon-
ical transformation and match the result to the elliptic
4PN Hamiltonian of Ref. [152]. Note that the Ine term
is there to cancel a corresponding term that appears in
the 4PM hyperbolic-orbit Hamiltonian. The coefficients
in Eq. (20) are written in Appendix B.

We summarize in Table I the different Hamiltonians
considered in this paper.

IV. BINDING ENERGY FOR CIRCULAR
ORBITS

The 4PM part of the Hamiltonian in Eq. (11) is valid
in the large-eccentricity limit, which means it is not con-
sistent with the circular-orbit binding energy at 4PN and
higher orders. However, we show that the tail contribu-
tion to that Hamiltonian has a small effect on the dy-
namics, and so we use it to get an estimate for the 4PM
contribution to the binding energy.

A. PN-expanded binding energy

We start by comparing the PN-expanded binding en-
ergy calculated from a bound-orbit Hamiltonian to the
unbound case.

In Appendix A, we compute the bound-orbit 6PN
Hamiltonian in isotropic coordinates, by canonically
transforming the EOB Hamiltonian of Refs. [144, 145].
We truncate that Hamiltonian at 4PM, and calculate the
binding energy, which at 4PN reads

ESien = Bspn() + 2° [1;(7325 - V% In z
(4280717r2 | 7899659 | 1036 ln2)
36864 34560 45
5 (143572 122815 534113
v ( 576 6912 ) 73456
B 7TVt }’ (21)
62208

where E3py(7) is given by Eq. (232) of Ref. [12], and # =
(MQ)?/3, with Q being the orbital frequency. Note that
the 4PN part of this result is not gauge-invariant, but is
only valid for isotropic coordinates. The reason is that
PN-accurate coordinate transformations — for example
to isotropic coordinates — in general span several PM
orders.

We find that the difference between the binding energy
in Eq. (21) and the energy computed from the hyperbolic-
orbit Hamiltonian (11) at 4PN is given by

~iso,h; iso,ell

E4PN(YzSDM) - E4PN(4PM)
_ b 37933  1036vg B 113847608 In 2
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FIG. 2. Relative difference in the circular-orbit bind-
ing energy, computed analytically from an elliptic versus a
hyperbolic-orbit Hamiltonian.

_ 14724991n 3 n 136718751n5
20 12
~ 14.94v1° , (22)

where we see that the disagreement is in the non-
logarithmic, linear-in-v coefficient of Eq. (21). That

coefficient is —112.96 in Ejpx/ipyy, and is —98.01 in
Eiso,hyp

APN(APM)> with the difference being 14.94. (Note that
the Inx term in Eq. (21) is the same for bound and un-
bound orbits, as was shown to all PN orders in Ref. [87].)

In Fig. 2, we plot the relative difference in the binding
energy at different PN orders, and for mass ratios ¢ = 1
and ¢ = 10, finding disagreement < 2%, which justifies
applying the hyperbolic 4PM result to bound orbits as
we do below, since we find that the disagreement with
NR is larger than 2%.

B. Binding energy from PM-expanded
Hamiltonians

To compute the binding energy for circular orbits from
the PM-expanded Hamiltonian in Eq. (11), we do so nu-
merically by setting p, = 0 in the Hamiltonian and solv-
ing p., = —0H /Or = 0 for the angular momentum [ at dif-
ferent orbital separations. We then plot E = H,py—1 /v
versus the orbital frequency MQ = 9H /9l (see Ref. [140]
for more details).

In Fig. 3, we compare the binding energy with NR data
that were extracted in Ref. [153] from numerical simula-
tions produced by the Simulating eXtreme Spacetimes
(SXS) collaboration [154, 155]. In particular, we use the
simulations with SXS ID 0180 for mass ratio ¢ = 1 and
ID 0303 for ¢ = 10, for which the numerical error is too
small to show in the figure.

We see that the 4PM Hamiltonian gives much better
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FIG. 3. Binding energy versus orbital frequency for the PM-expanded Hamiltonians compared to the NR prediction for a
nonspinning equal-mass (left panel) and mass-ratio ¢ = 10 (right panel) binary black hole. The top axis gives the number of
GW cycles before merger, which is twice the number of orbits. The lower panels show the relative difference of the 4PM curves

with NR.

agreement with NR toward merger than Hamiltonians
computed at lower PM orders. This is because the 4PM
Hamiltonian contains the full 3PN information, which is
known to give considerably better results than 2PN. The
improvement at 4PM is even more significant for mass
ratio ¢ = 10 than ¢ = 1, because the 3PN coefficient in
the binding energy increases significantly with increasing
mass ratio. In addition, it seems that Hgﬁd is very close
to what a bound-orbit 4PM Hamiltonian would be, as

evidenced by how close the curves Hgf/{ + AHZ%M(HPN),

computed at 4PN, 5PN and 6PN orders, are to Hfgﬁ/[.

For comparison, the figure also shows the 3PN EOB
Hamiltonian in the gauge of Refs. [132, 151, 152], which
gives better agreement with NR (also when considering
different mass ratios) because it includes the exact test-
body limit, and the associated resummation of the PN
results. In the plots, we stop the numerical evaluation of
the energy either at the innermost-stable circular orbit
(ISCO) or at two GW cycles (one orbit) before merger.
We note that the EOB results on the figures do not con-
tain any NR information, and the ggo effective metric
contains PN terms in a Taylor-expanded form.

C. Binding energy from PM-EOB Hamiltonians

Similarly, computing the binding energy from the PM-
EOB Hamiltonians leads to Fig. 4 for ¢ = 1 and Fig. 5
for ¢ = 10. In both figures, we plot the binding energy at
each PM order, and complement 4PM with 4PN infor-
mation. We stop the numerical evaluation either at the
ISCO or at one GW cycle before merger.

From the figures, we observe the following:

e The 4PM order provides a significant improvement
over the lower orders, even though the PM Hamil-
tonian is for hyperbolic orbits.

e The PS* gauge performs better than the PS gauge,
for both equal and unequal masses. That difference
is due to higher-order terms resulting from the re-
summation of the Hamiltonian coefficients. We ex-
pect that the more PN/PM orders are included, the
closer different gauges would be to each other.

e Complementing 4PM with the missing 4PN in-
formation for bound orbits gives results for the
PS™* gauge that are comparable to the standard PN-
EOB gauge.
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FIG. 5. Similar to Fig. 4 but for mass ratio ¢ = 10, and we only show the relative difference since the EOB curves are closer
to the NR curve than for equal masses. All curves end at the ISCO.

e Using 4PN-expanded potentials in HESNB"“ gives its 4PN expansion.

almost the same result as the 4PM+4PN Hamilto-
nian, although for the PS* gauge, the 4PM+4PN
Hamiltonian is slightly better for equal masses than
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FIG. 6. Comparison of the PM-expanded scattering angle with NR. The left panel shows the conservative scattering angle,
except for the yapm—+ x5 curve that also includes the leading-order (3PM) radiative contribution. The right panel incorporates
the effect of the radiative losses from the NR simulations using Eq. (25).

V. SCATTERING ANGLE COMPARISON
WITH NR

Since the 4PM part of the radial action in Eq. (9) is
valid for hyperbolic orbits, a better comparison with NR
is through the scattering angle.

NR simulations for the scattering angle were reported
in Ref. [134] for equal masses ¢ = 1 and initial linear
momentum |p| = 0.11456439M. The initial energy in
these simulations is approximately ENR ~ 1.02259 (cor-
responding to velocity v ~ 0.4), and the initial angular
momentum LR is proportional to the impact parameter
bNgr, which ranges between 9M to 16M. The NR error
in the scattering angle is ~ 1 — 2 degrees.

Reference [134] also reported the energy and angular
momentum losses due to the emitted GWs, which can be
used to account for radiation-reaction (RR) effects in the
conservative scattering angle. It was proven in Ref. [126]
that when working to linear order in RR, the radiative
contribution to the total scattering angle is half the dif-
ference of the conservative scattering angle evaluated as
a function of the outgoing and incoming states, i.e.,

1

= 5 [XCOHSA(Eouta Lout) - Xcons.(Ein; Lin)] )

rad.

(23)
which means that the total scattering angle is given by

th (Ein» Lin) = Xcons. (Eina Lin) + Xrad. (Eina Lin)

1
= 5 [Xcons.(Ein7 Lin) + XCOHSA(Eouta Lout)] ) (24)
which can be written as
XtOt (Eirn Lin) = XCOHS-(Eana Lavg)7 (25)

where

Ein + Eout Lin + Lout
2 ’ 2 '

We emphasize that the relation (25) holds when neglect-

ing contributions quadratic in RR, which start at 5PN
order.

Bavg = (26)

A. PMe-expanded scattering angle

In the left panel of Fig. 6, we plot the conservative
PM-expanded scattering angle, calculated from Eq. (10),
for the initial values of energy and angular momentum
used in the NR simulations, which are written in Table
I of Ref. [134]. We sce that each PM order gives better
agreement with NR than the lower orders, with an overall
good agreement at 4PM, especially considering that these
scattering angles are rather large while the PM expansion
is an approximation away from a straight line.

We also plot the 3PN expansion of the 4PM scatter-
ing angle, finding that the difference with the full 4PM
angle is only ~ .1 degrees. This is because the initial
velocity is v ~ 0.4, for which a PN expansion provides
a good approximation. Higher velocities would lead to
larger differences between the PM scattering angle and
its PN expansion. Furthermore, the figure shows the
3PM conservative scattering angle plus the leading order
(3PM) radiative contribution, which is given by Eq. (5.7)
of Ref. [75], however the effect of that radiative contri-
bution is so small that it is almost the same as the con-
servative 3PM curve.

In the right panel of Fig. 6, we plot the scattering angle
taking into account the effect of RR by modifying the



initial conditions, as explained above in Eq. (25). We see
that all curves are shifted closer to the NR curve, but
their order remains the same.

B. Scattering angle from PM-EOB Hamiltonians

To compute the scattering angle from the EOB Hamil-
tonians, we start with an initial azimuthal angle ¢;, = 0,
evolve the equations of motion without RR force, then
read off the final angle ¢y, leading to the scattering an-
gle XEOB = ®out — ®in — 7. We start the evolution with
initial separation 7, = 104, initial angular momentum
LNR "and solve ENF = HEOB for the initial p,..

In Fig. 7, we plot the relative difference in the con-
servative scattering angle between EOB and NR, finding
much smaller difference than the PM-expanded angles in
Fig. 6. Similarly, in Fig. 8, we plot the same quantity
but using initial conditions that account for the NR en-
ergy and angular momentum losses, as in Eq. (25). For
comparison, both figures show the scattering angle cal-
culated from a 3PN EOB Hamiltonian in the gauge of
Refs. [132, 151, 152], which is valid for arbitrary trajec-
tories since 3PN is purely local in time (no tails contri-
butions).

From Fig. 7, we see that 4PM performs better than
3PM for the PS gauge, but 3PM is better for the
PS* gauge. However, when including the NR RR in
Fig. 8, 4PM becomes closer to NR than 3PM for both
gauges. We also see that the PS* gauge gives better
agreement with NR than the PS gauge.

For bound orbits, we saw in the previous section that
PN-expanding the PM Hamiltonians gave almost the
same results. For scattering encounters on the other
hand, we see from both Fig. 7 and Fig. 8 that the 4PM
Hamiltonians lead to better results than the 3PN expan-
sion of their potentials, for both EOB gauges and whether
or not RR is included.

C. 4PN EOB Hamiltonian for hyperbolic orbits

The 4PN EOB Hamiltonian derived in Ref. [152] in-
cluded the nonlocal part in a small-eccentricity expan-
sion, and is thus valid for bound orbits. To see the effect
of using a bound versus an unbound-orbit Hamiltonian
on the scattering angle, we compute a 4PN EOB Hamil-
tonian for hyperbolic orbits to next-to-leading order in
the large-eccentricity expansion. To our knowledge, this
is the first time that such a Hamiltonian is computed.

We start by writing an effective Hamiltonian of the
form

A 2
H:;N’hyp: \/Ahyp [1+ by + 1202+ QW |, (27)

Bhyp

(Bhyp)—l = AP phYP (28)

in which the potentials contain local and nonlocal-in-time
contributions, starting at 4PN order. The local part is
valid for generic motion, and is given by Eqs. (4.4), (9.6)
and (9.7) of Ref. [143], which we follow in how the local
and nonlocal parts are split.

We then write an ansatz for the potentials with un-
known coefficients for the nonlocal contribution, that is

AP — 1 — 2y + 2003 + (9441 2) vut

™
3 32
4172 221\ ,  [2275w2 4237 5
+ - — |V + —— |Vv|iu
32 6 512 60
+ (a5 + aBr, nw + azfs, np?) u, (29)

D™P =1+ 6vu® + (52v — 61/°) u?

12372 1679
) 2 -/ _
+ (B - ae0) v+ (15

237617r2> } .
— | V| U

1536
+ (df{loc + dflﬂfrfu Inu + dfl‘}{)rfp lnpz) u?, (30)
QWP = 2w (4 — 3v)ulpt + (101/3 — 832 + 201/) u’p?
272 9
+ (61/3 - 5” - 5”) uZpS. (31)

In this ansatz, the 4PM nonlocal coefficients in DPP are
at leading order in the large-eccentricity expansion, while
those at 5PM in A™P are at next-to-leading order, with
no nonlocal contributions to @Q"™P. We also assume in
the ansatz a dependence on Inp? because it simplifies
the result, but other possible choices include In(l?u?) or
In En, with Ex being the Newtonian energy.

To fix the unknown coefficients in the ansatz, we cal-
culate the scattering angle from the Hamiltonian using
Eq. (19), then match the result to the total 5SPM(4PN)
scattering angle, which schematically reads

X4PN

X1 X2 X3 Xiloc 4 Xflﬂoc X150c 4 Xgloc
2 L + L? + L3 + LA + L5 ’
(32)

where the local y,, coefficients are given by Eq. (10.1)

of Ref. [143], and the nonlocal part by Eq. (6.11) of
Ref. [144]. After matching the scattering angle and solv-
ing for the Hamiltonian coefficients, we obtain the fol-

lowing solution

2752 5464
afloc =y (1112 — ) ,

15 75
e, = g, =0,
dloe = (168 — %1 2) ,
ag, = =0, (%)

that is, with no dependence on Inw.

In Fig. 9, we compare to NR the scattering angle com-
puted from the elliptic-orbit Hamiltonian of Ref. [152]
and the angle computed from the hyperbolic-orbit Hamil-
tonian in Eq. (27). We see that, unexpectedly, the
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while incorporating radiative effects from NR through the initial conditions as in Eq. (25).

elliptic-orbit Hamiltonian gives better agreement with
NR. However, that result depends on the particular re-
summation of the potentials.

To illustrate this, we consider a simple factorization of
the A potential given by

106 4172
Ahyp,fact. —(1-2 1 2 4
( u){+yu +<3 32>1/u
21841 27521n 2
+ v
300 15

n 96372
512
+

an? 21\ L 64
32 6 5vinp’

(34)

which agrees with Eq. (29) when Taylor expanded. Sim-
ilarly, the factorized version of the elliptic-orbits A po-
tential in Eq. (8.1) of Ref. [152] reads

1 4172
Aell,fact. _ (1 . QU) {1 + 2Vu3 + < 36 372T )mﬁ
N 1 N 96372 128y  2561In2 ,
20 512 5 5

+ 41W2—@ 1/2+%1/1nu u®
32 6 5 )

Comparing the scattering angle computed from Hamil-

(35)
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FIG. 9. Scattering angle calculated from 4PN EOB Hamil-
tonians for elliptic and hyperbolic orbits. The solid lines are
for Hamiltonians with Taylor-expanded potentials, while the
dashed lines are for Hamiltonians with factorized potentials.

tonians with these factorized potentials (dashed lines in
Fig. 9), we see that the hyperbolic-orbit Hamiltonian now
gives better agreement with NR than the one for elliptic
orbits.

These results show that there can be differences be-
tween elliptic and hyperbolic-orbit Hamiltonians when
applied to scattering encounters, but which performs bet-
ter depends on the particular gauge of the Hamiltonian
and the resummations of its coefficients.

VI. CONCLUSIONS

In this paper, we investigated the conservative 4PM
Hamiltonian with nonlocal-in-time (tail) effects for hy-
perbolic orbits, which was derived in Refs. [34, 35, 44, 45],
by comparing it to NR simulations for the binding en-
ergy and scattering angle. We found an improvement
over lower PM orders, which was expected since 4PM or-
der contains the full 3PN information. In addition, even
though the nonlocal part of the 4PM Hamiltonian is valid
for hyperbolic motion, we showed that it performs well
for bound orbits, and that the hyperbolic piece has a
small effect on the dynamics. This was demonstrated by
comparing the PN-expanded binding energy for bound
versus unbound orbits (see Fig. 2), and by complement-
ing the 4PM Hamiltonian with bound-orbit corrections
at 4PN, 5PN, and 6PN orders (see Fig. 3).

As a first study, we incorporated the 4PM information
in two EOB Hamiltonians, given by Eqs. (17) and (18).
(The EOB Hamiltonians are not calibrated to NR, sim-
ulations, and do not use resummations of the effective-
metric components.) For bound orbits, we found that the
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PM Hamiltonians gave similar results to the same Hamil-
tonians with PN-expanded potentials. However, for the
scattering angle, the PM-EOB Hamiltonians showed bet-
ter agreement with NR than PN-EOB Hamiltonians in
the same gauge (see Figs. 7 and 8).

In particular, we found that including 4PM results in
EOB Hamiltonians improved the disagreement with the
NR binding energy from about 40%, for equal masses at
2 GW cycles before merger, to about 10% for the PS
gauge and 3% for the PS* gauge (see Figs. 3 and 4).
For the scattering angle, that improvement was 8% and
2%, respectively for the two gauges, at impact parameter
b = 11GM and initial relative velocity v ~ 0.4 (see Figs. 6
and 8).

Furthermore, we worked out a 4PN EOB Hamilto-
nian for hyperbolic orbits, which extends the elliptic-
orbit Hamiltonian of Ref. [152]. We compared the scat-
tering angles of the two Hamiltonians to NR and showed
that the Hamiltonian gauge and the resummations of its
coefficients can affect the agreement with NR.

Our comparisons of the scattering angle also high-
lighted the importance of including radiation-reaction ef-
fects even when comparing conservative results with NR.
For example, the conclusions one draws would be dif-
ferent between Fig. 7, which is purely conservative, and
Fig. 8, which includes the NR radiative losses.

The only NR simulations currently available in the lit-
erature for the scattering angle [134] are for equal masses
and for a specific value of the energy corresponding to
v =~ 0.4. It would be interesting to see how PM and PN
information compare with NR for unequal masses and
higher velocities. Such studies would enable the construc-
tion of accurate waveform models over the whole binary
parameters space including large eccentricities and large
velocities.
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Appendix A: PN Hamiltonian for bound orbits in
isotropic gauge

In this appendix, we canonically transform the 6PN-
EOB Hamiltonian of Refs. [144, 145] to the isotropic
gauge, in which the Hamiltonian only depends on r and
p? with no explicit dependence on the angular momen-
tum.

We start by writing an ansatz with unknown coeffi-



cients for the Hamiltonian
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where the 0PM coefficients are given by the PN expansion
of
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Then, we write an ansatz for the generating function G,
perform a canonical transformation using Poisson brack-
ets, and match to the 6PN EOB Hamiltonian, i.e.,
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1 .
Hign) + a{gy {9, Hepn 1}
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EOB
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where each bracket introduces a factor of 1/c?.

The result for the full 6PN Hamiltonian, which con-
tains 6 coefficients that have not yet been determined in
Refs. [144, 145], is provided in the Supplemental Mate-
rial. Here, we write that Hamiltonian truncated at O(G*)
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This Hamiltonian can be used to check the PN expan-
sion of a bound-orbit isotropic-gauge 4PM Hamiltonian,
once the latter is computed in the future. Currently,
it only agrees with the hyperbolic-orbit Hamiltonian of
Ref. [34] at 3PN order.

In Sec. IV, we complement the 4PM Hamiltonian
H fg{\’/[ with bound-orbit PN corrections AHZ{DIM(HPN) to

585252864

107495424

(

get an estimate for its effect on the circular-orbit binding
energy. We obtain those bound-orbit corrections using

Hell iso

nPN(4PM) (A7)

hy
AHSY — H,¥
4PM(nPN) — APM| o7

i.e., we subtract the nPN expansion of Hﬁ,’lﬁd from the
isotropic-coordinate Hamiltonian in Eq. (A6).



Appendix B: Coefficients of the 4APM-EOB
Hamiltonians

In this appendix, we list the coefficients of the PM-
EOB Hamiltonians, in the PS gauge of Eq. (17) and the
PS* gauge of Eq. (18).

1. Hamiltonian in the PS gauge

When matching the scattering angle calculated from
the EOB Hamiltonians to the PM-expanded scattering
angle in Eq. (10), we solve for the coefficients ¢,pnm(7) as
functions of the effective energy.

The 2PM coefficient was derived in Ref. [2
reads

3], and it

3(0*-1)(T—1)
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When working up to 3PM order, as in Ref. [140], it was
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enough to replace v by the Schwarzschild Hamiltonian
Hs. However, at 4PM order, we need to replace « by
the 2PM effective energy, which we take to be the 2PM
expansion of Eq. (17), i.e

X H
QZPM( S)u2.

— Hg + - B2
v s T (B2)

In the 3PM and 4PM coefficients, we simply replace v by
Hg.

The 3PM coefficient is given by Eq. (2.17) of Ref. [140],
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The 4PM coefficient we obtain reads
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7 2< +1)( v° — 607" — Ty v* — 57y + 12) + (—25v ol ¥ ¥ ) Lia P

1 1-
—5(7+1)2 (257° — 507° + 207" + 707° — v —527—12)le< 27>

2Lz (/%)

NG

where we recall that ¢ = 72 — 1.

(309° — 607" — 7% + 8272

— 57y +12),
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The bound-orbit 4PN correction term AfPN in Eq. (17) is given by

1399437In3  19531251In5
A?PN(HS,r): 5 In2+ n + n >

12 5 160 288

. (HZ —1)%v (1027 147432
r

(HZ —1)%v [ 78917 14099512 143362711In3 = 4296875In5
+ 3 — — In2 4 +
r 300 225 800 288
(Hg — D (296vg 27139 9766576 11826811n3  3906251n5 148(ﬂ§ -1)
— — In2 — 1
R 15 75 525 T T 100 T 36 B
1 136y 34499 2991772 254936 1061181 In3  390625In5 93
— v — — — In2+ + + —
5 3 1800 6144 25 400 144 4
20572 2387\ ,] 68 148(HZ — 1), -
- — — Inr — ——2 2" 1n(HZ - 1). B5
+< 64 24>V] g5 o s ) (B5)
2. Hamiltonian in the PS™ gauge
For the EOB Hamiltonian in the gauge in Eq. (18), the 2PM coefficient is given by
3(5v*—-1) (I —1)
= B
azpm () 3T 2 ; (B6)
and we replace 7 by the 2PM-expanded effective Hamiltonian, i.e.,
. H
~v— Hg + LPMA( ) (1 +p? + l2u2) u?. (B7)
2Hg
The 3PM coefficient is given by
6(572—-1)T -1
() = 22) _SET DD (B3)

¥ ['y?

where we replace vy by Hg. Similarly, for the 4PM coefficient, we obtain

_ qapm () 1
72 1294T3¢

+7%vIn2 [7578 In2 — 3007 + 457°In 2 + 4~°(416 + 451n 2) — 39*(6911n 2 — 816) + 47>(739 4+ 121n 2)

aspm () {9 (1957° — 2099* + 497> — 3) I'® — 18 (1357° — 157y* + 41> — 3) I

+v%(544 + 176710 2) — 127(191n 2 — 840) + 608 4 1861n 2} -T [8967% —37°% (256y/ev In2 + 225) + 704~°v

+97* (256+/evIn 2 + 105) — 16007°v + 99° (64/evIn2 — 33) + 27} +44%v1n (7;1) [152 — 7597 +1057%In 2

+4~°(104 + 4510 2) + 7*(612 — 5551n2) + 73(739 + 481n2) + +%(136 + 4351n 2) 4 (2520 — 2281n2) + 151n 2]
+ 3797 (257° — 1007* — 1807® — 519% — 228y — 42) evIn®(y + 1) — 37*v In <72+1) {2578 — 12575 — 1807° + 494*

— 4893 + 99 + 228y + 42} + 38492 (—49" + 1292 + 3) TYerin («/7 T4 1)

—27%vIn(y +1) [7578 In2 — 15077 — 1657°In 2 4+ 4°(832 — 1801n2) — 97*(117In2 — 2(68 + 51n 2))

+43(1478 — 4810 2) + ~+2(272 + 8971In 2) + 127(420 + 191n2) + 4(76 + 39 In 2)} } (B9)

The bound-orbit 4PN correction term Ajby in Eq. (18) is given by

2
AfPN(HSvT) = AfPN(HSvr) +US |:<6§0 - 41871— ) v 14V2:| ’ (BIO)
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