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A B S T R A C T   

Understanding the brain changes underlying cognitive dysfunction is a key priority in multiple sclerosis (MS) to 
improve monitoring and treatment of this debilitating symptom. Functional connectivity network changes are 
associated with cognitive dysfunction, but it is less well understood how changes in normal appearing white 
matter relate to cognitive symptoms. If white matter tracts have network structure it would be expected that 
tracts within a network share susceptibility to MS pathology. In the present study, we used a tractometry 
approach to explore patterns of variance in white matter metrics across white matter (WM) tracts, and assessed 
how such patterns relate to neuropsychological test performance across cognitive domains. A sample of 102 
relapsing-remitting MS patients and 27 healthy controls underwent MRI and neuropsychological testing. Trac-
tography was performed on diffusion MRI data to extract 40 WM tracts and microstructural measures were 
extracted from each tract. Principal component analysis (PCA) was used to decompose metrics from all tracts to 
assess the presence of any co-variance structure among the tracts. Similarly, PCA was applied to cognitive test 
scores to identify the main cognitive domains. Finally, we assessed the ability of tract co-variance patterns to 
predict test performance across cognitive domains. We found that a single co-variance pattern which captured 
microstructure across all tracts explained the most variance (65% variance explained) and that there was little 
evidence for separate, smaller network patterns of pathology. Variance in this pattern was explained by effects 
related to lesions, but one main co-variance pattern persisted after this effect was regressed out. This main WM 
tract co-variance pattern contributed to explaining a modest degree of variance in one of our four cognitive 
domains in MS. These findings highlight the need to investigate the relationship between the normal appearing 
white matter and cognitive impairment further and on a more granular level, to improve the understanding of 
the network structure of the brain in MS.   

1. Introduction 

The ‘clinico-radiological paradox’ (Barkhof, 1999, 2002) highlights 
the poor correlation between demyelinating lesions and clinical 

symptoms in multiple sclerosis (MS). Cognitive symptoms are common 
and associated with poor outcomes, but the pathology is poorly under-
stood (Sumowski et al., 2018), making cognitive dysfunction a challenge 
in the management of MS. A research priority is therefore to identify 
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MRI correlates of cognitive impairment to understand pathological 
mechanisms better. 

Cognition in MS is often evaluated as a global impairment, yet 
cognitive dysfunction involves deficits in separate domains, including 
processing speed and memory (Charcot, 1877; Benedict et al., 2006; 
Sepulcre et al., 2006; Migliore et al., 2016; Matias-Guiu et al., 2017; De 
Meo et al., 2021). Understanding if and how different cognitive domains 
are susceptible to different underlying brain abnormalities can inform 
our understanding of the mechanisms of cognitive impairment in MS. 

Cognitive symptoms in MS have been associated with functional 
network connectivity abnormalities (reviewed in Chard et al., 2021; 
Jandric et al., 2021), but the mechanisms causing these functional 
connectivity changes are not known. White matter (WM) damage can 
influence functional connectivity (Schoonheim et al., 2015; Patel et al., 
2018; Tewarie et al., 2018), possibly through alteration of anatomical 
connections between functionally connected regions (Catani and Ffyt-
che, 2005; Dineen et al., 2009). Such WM damage could be due to le-
sions or to pathological processes in tissue outside of lesions. There is 
evidence of both secondary axonal loss from inflammatory activity in 
lesions, such as Wallerian degeneration, and lesion-independent 
degeneration of axons following demyelination resulting from more 
diffuse inflammation in non-lesioned tissue (Trapp et al., 1998; Bitsch 
et al., 2000; Trapp and Stys, 2009). 

Diffusion MRI studies (dMRI) have established associations between 
cognitive impairment and damage to non-lesioned, or normal-appearing 
white matter (NAWM) in MS. These studies have largely used whole- 
brain analyses of the WM, such as tract-based spatial statistics (TBSS, 
Smith et al., 2006), to show that non-lesional damage in specific WM 
areas, such as the corpus callosum and cingulum, correlates with 
cognitive symptoms (e.g. Dineen et al., 2009; Sbardella et al., 2013; 
Meijer et al., 2016a). More recently, there has been evidence of co-
varying patterns of pathology in white matter tracts. In healthy partic-
ipants, independent component analysis (ICA) based-approaches have 
demonstrated patterns of covariance between white matter tracts, 
thought to reflect shared phylogenetic and functional relationships 
(Wahl et al., 2010; Li et al., 2012). It can be expected that tracts that 
share characteristics and/or are part of the same networks are similarly 
susceptible to pathology. Using ICA on a TBSS skeleton in a sample of 
secondary progressive MS patients (SPMS), Meijer et al., (2016a) found 
eighteen components corresponding to WM tracts, which they visually 
grouped into six different WM classes on the basis of anatomical fea-
tures. Fractional anisotropy (FA) values within some of these classes 
correlated with cognitive function, suggesting cognitively-relevant 
patterns of neurodegeneration (Meijer et al., 2016a). However, given 
that a voxel-wise approach was used, the data decomposition method 
used segmented the white matter into components reflecting the major 
WM tracts of the brain. Subsequent clustering of tracts was then ach-
ieved manually. As an extension of this work, it is important to under-
stand whether patterns of pathology are also present across groups of 
tracts identified by an unbiased data decomposition approach. This is 
necessary to test whether groups of tracts are similarly susceptible to MS 
pathology. 

The method for assessing WM is also an important consideration. The 
standard for whole brain WM analysis has long been TBSS, which works 
by skeletonising the centre of each tract, based on high average FA 
values, to improve registration of non-homologous brains (Smith et al., 
2006). As such TBSS does not reconstruct individual WM tracts, raising 
concerns about its anatomical accuracy (Bach et al., 2014). Tractog-
raphy, which fits a diffusion tensor or alternative model at each voxel to 
trace the fibre orientation through the WM (Mori et al., 1999; Basser 
et al., 2000; Catani et al., 2002; Jeurissen et al., 2019), provides an 
alternative for obtaining anatomically accurate WM tracts. While chal-
lenging in its own right, technological developments have improved the 
ease and accuracy of individual, automated tractography (Warrington 
et al., 2020), and it has been shown that newer tracking algorithms can 
perform satisfactorily in the presence of MS lesions, and reconstruct 

even tracts with a high prevalence of lesions (Lipp et al., 2020). This 
makes tractography a feasible option for segmenting the brain into a 
large number of functionally meaningful WM units for investigating 
whether damage to non-lesioned parts of specific tracts can help un-
derstand cognitive symptoms in MS. 

In the present study we conduct an analysis of WM microstructure 
diffusion metrics in a large sample of RRMS patients using a tractometry 
approach (Bells et al., 2011). We use automated individual tractography 
to reconstruct 40 WM tracts and extract four diffusion metrics from the 
non-lesioned parts of the tracts. By conducting principal component 
analysis (PCA) of extracted metrics we can test whether their grouping 
reflects the known network structure of the brain and covarying patterns 
of damage across tracts. Exploring this can help us understand the pat-
terns of degeneration in normal appearing tissue in MS. 

Thus, the present study aims to: 1) determine if WM tracts can be 
decomposed into components of shared covariance based on a network 
or pathology structure; 2) assess the cognitive domains structure present 
in common neuropsychological test data; 3) explore the relationship 
between WM tract components and cognitive domains in RRMS. 

2. Material and methods 

2.1. Participants 

Demographic, clinical and MRI data was collected in one study ses-
sion from 102 RRMS patients and 27 healthy controls. This cohort has 
also been investigated and described in previous work (Jandric et al., 
2021b). All participants were between 18 and 60 years of age, right- 
handed and had no contraindications for MR scanning. Patients ful-
filled additional eligibility criteria of having no relapses or change to 
treatment for 3 months prior to the MRI scan, and not having any co-
morbid neurological or psychiatric disease. 

Patients were recruited through the Helen Durham Centre for Neu-
roinflammation at the University Hospital of Wales and controls from 
the community. The study was approved by the NHS South-West Ethics 
and the Cardiff and Vale University Health Board R&D committees. All 
participants provided written informed consent to participate in the 
study. 

2.2. Cognitive assessment 

Participants were assessed with the Multiple Sclerosis Functional 
Composite (MSFC) (Cutter et al., 1999) and the Brief Repeatable Battery 
of Neuropsychological Tests (BRB-N) (Amato et al., 2006). The BRB-N 
consists of the following tests: the selective reminding test of verbal 
memory, which is scored as the sum of words in long term storage (SRT L 
sum), the sum of words consistently recalled (SRT C sum) and the words 
recalled after a delay (SRT delayed); the spatial recall test of visual 
memory, which is scored over three consecutive trials (Spatial1to3) and 
on a delayed trial (Spatial delayed); the symbol digit modalities test 
(SDMT) of attention and concentration; the paced auditorial serial 
addition test of processing speed, with a three second delay (PASAT3) 
and with a two second delay (PASAT2); and the word list generation test 
(WLG) of verbal fluency. 

2.3. MRI acquisition 

MRI data were acquired on a 3 T MR scanner (General Electric HDx 
MRI System, GE Medical Devices, Milwaukee, WI) using an eight 
channel receive-only head RF coil. A high-resolution 3D T1-weighted 
sequence was acquired for identification of T1-hypointense MS le-
sions, segmentation, registration and volumetric measurements (voxel 
size = 1 mm × 1 mm × 1 mm, TE = 3.0 ms, TR = 7.8 ms, matrix =
256x256x172, FOV = 256 mm × 256 mm, flip angle = 20◦). A T2/ 
proton-density (PD)-weighted sequence (voxel size = 0.94 mm × 0.94 
mm × 4.5 mm, TE = 9.0/80.6 ms, TR = 3000 ms, FOV = 240 mm × 240 
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mm, 36 slices, flip angle = 90◦) and a fluid-attenuated inversion re-
covery (FLAIR) sequence (voxel size = 0.86 mm × 0.86 mm × 4.5 mm, 
TE = 122.3 ms, TR = 9502 ms, FOV = 220 mm × 220 mm, 36 slices, flip 
angle = 90◦) were acquired for identification and segmentation of T2- 
hyperintense MS lesions. A twice refocused diffusion-weighted spin 
echo echo-planar (SE-EPI) sequence with 6 volumes with no diffusion 
weighting and 40 volumes with diffusion gradients applied in uniformly 
distributed directions was acquired for tractometrics analyses (diffusion 
directions: Camino 40, b = 1200 s/mm2, voxel size = 1.8 mm × 1.8 mm 
× 2.4 mm, TE = 94.5 ms, TR = 16000 ms, FOV = 230 mm × 230 mm, 57 
slices, flip angle = 90◦). In addition, a 3D MT sequence (voxel size =
0.94 mm × 0.94 mm × 1.9 mm, TE = 1.8 ms, TR = 26.7 ms, FOV = 240 
mm × 240 mm, flip angle = 5◦) and mcDESPOT sequence (voxel size =
1.7 mm × 1.7 mm × 1.7 mm, TE = SPGR: 2.1 ms, bSSFP: 1.6 ms, IR- 
SPGR: 2.1 ms, TR = SPGR: 4.7 ms, bSSFP: 3.2 ms, IR-SPGR: 4.7 ms, 
FOV = 220 mm × 220 mm, flip angle = SPGR: [3, 4, 5, 6, 7, 8, 9, 13, 18] 
degrees bSSFP: [10.6, 14.1, 18.5, 23.8, 29.1, 35.3, 45, 60] degrees IR- 
SPGR: 5◦) were acquired to obtain microstructure parameter maps as 
described in Lipp et al. (2019). 

2.4. MRI processing 

2.4.1. Structural image analysis and lesion marking 
Structural 3D T1-weighted images from patients were lesion filled to 

allow better segmentation and registration of brain tissue. This was done 
by first segmenting lesions on T2-weighed images using the JIM soft-
ware (v.6, Xinapse), consulting also the FLAIR and PD-weighted images. 
Two independent operators performed this segmentation and inter-rated 
reliability was statistically assessed. Lesion filling was achieved using 
FSL’s lesion_filling function (Battaglini et al., 2012), to estimate in-
tensities from surrounding white matter to ‘fill’ the lesions with. This 
processed is described in more detail in previous work (Lipp et al., 
2019). 

Next, lesion filled 3D T1-weighted images were skull-stripped using 
FSL’s bet function (options -m -S -B -f .25 -o -m), then segmented into 
grey matter (GM), WM and cerebrospinal fluid (CSF) using FSL’s Auto-
mated Segmentation Tool (FAST) (Zhang et al., 2001). Intracranial 
volume (ICV) was calculated with fslstats as the number of voxels in 
skull-stripped T1-weighted images. Volumetric measurements normal-
ised for head size, including normalised brain volume (NBV), normal-
ised GM volume (NGMV) and normalised WM volume (NAWM) were 
quantified from lesion-filled 3D T1-weighted images with FSL’s SIENAX 
tool (Smith et al., 2002). Lesion volume was calculated from binary 
lesion masks created as part of lesion marking. The lesion-filled 3D T1- 
weighted images were non-linearly registered to the Montreal Neuro-
logical Institute (MNI) 152 template space using FSL’s FNIRT tool and 
the warps saved for subsequent analyses. 

2.4.2. dMRI analysis: quantification of FA and RD maps 
Preprocessing of dMRI data in ExploreDTI (v 4.8.3; Leemans et al., 

2009) included motion correction and corrections for eddy current and 
EPI-induced geometrical distortions. The latter was achieved by regis-
tering each diffusion image to its respective (skull-stripped and down-
sampled to 1.5 mm) 3D T1 image (Irfanoglu et al., 2012) using Elastix 
(Klein et al., 2010), with appropriate reorientation of the diffusion- 
encoding vectors (Leemans and Jones, 2009). As these data were to be 
fed into FSL’s Xtract tool, dMRI images were further processed in FSL. 
The FDT tool was used to fit diffusion tensors and the Bedpostx tool to fit 
the probabilistic diffusion model (Behrens et al., 2003, 2007). Fractional 
anisotropy (FA) and radial diffusivity (RD) maps were normalised to 
MNI space through the application of the previously obtained warps. FA 
and RD maps were available for all participants. 

2.5. MTR and MWF maps 

Magnetisation transfer ratio (MTR) and myelin water fraction (MWF) 

maps were calculated as described in Lipp et al., (2019), which included 
non-linear co-registration with participants’ T1-weighted images using 
Elastix (Klein et al., 2010). The warps obtained from nonlinear regis-
tration of T1-weighted images to MNI space were then applied to MTR 
and MWF maps already in T1-space, to achieve registration to MNI 
space. MTR maps were obtained for all HC and 101 MS patients, and 
MWF for 25 HC and 95 MS patients. MTR and MWF maps could not be 
obtained for some participants due to specific absorption rate (SAR) 
constraints of the mcDESPOT sequence, or due to logistical reasons. 

2.6. Tractography and tractometry 

Bedpostx outputs and T1-weighted to MNI registration warps were 
fed into FSL’s Xtract tool which uses standardised protocol seeding, 
exclusion, waypoint and termination masks to perform automated in-
dividual tractography to reconstruct 42 WM tracts, then uses the warps 
to register the outputs to MNI space (Warrington et al., 2020). Auto-
mated, individual tractography was chosen over atlas-based tract seg-
mentation approaches to improve the accuracy of tract extraction in 
individual participants and therefore reduce noise and improve statis-
tical power when extracting diffusion metrics from each tract. All tracts 
were visually inspected to ensure that they had reconstructed well. In a 
large proportion of participants, both MS and HC, the fornix failed to 
reconstruct or was missing portions of the tract. As such, it was not 
considered for any analyses. The remaining 40 tracts yielded re-
constructions in line with their anatomical descriptions and were 
retained. 

Because the protocol masks for defining anatomical start, stop, 
waypoint and exclusion points of the tract are based on tract atlases, 
they can lead to extracted tracts having some grey matter. To ensure that 
tract masks used for our analyses were limited to the WM to be suitable 
for tractometry analyses, we first thresholded the masked probabilistic 
tractography outputs at 0.001 and then masked the output further with 
the respective WM mask from the segmented T1-weighted scan. These 
tracts were binarised and all voxels marked as lesions were removed to 
get a mask of only the non-lesioned part of the tract. The proportion of 
each tract affected by lesions in each participant was calculated by 
counting the lesion voxels in each tract relative to the voxels of the 
whole tract, averaged over all 102 participants for each tract. 

To obtain FA, RD, MTR and MWF metrics from each reconstructed 
tract, each metric was averaged across all voxels in the non-lesioned 
tract masks. Distributions of each metric in each tract were assessed 
through histogram inspection in MATLAB (v R2020a). The majority of 
the FA, RD, MTR and MWF tract maps had distributions deviating from 
normality so median values were extracted. 

2.6.1. Metrics dimensionality reduction 
The four WM microstructure metrics were extracted from each tract 

and decomposed into one metric using principal component analysis. 
This dimensionality reduction analysis was performed on the FA, RD, 
MWF and MTR metrics in RStudio v 1.4.1103 using the principal function 
(RStudio Team, 2020). Mean values were imputed for the missing MTR 
and MWF values and a dataset comprising of 4 WM metrics × 40 WM 
tracts × 27 or 102 participants (for HC and MS, respectively) was 
created. The four metrics were reduced to a lower dimensionality that 
explains the maximum amount of variance in the data through a PCA 
performed across participants and tracts, as described by Chamberland 
et al., (2019). First, a correlation matrix of Pearson’s r was calculated to 
determine feasibility of a PCA based on high correlations and tested with 
Bartlett’s test of sphericity to ensure a significant difference from an 
identity matrix. The metric principal component for further analyses 
was chosen on the basis of an inspection of the scree plot (Cattell, 1966) 
and eigenvalues > 1. A metric component score for the first extracted 
principal component, explaining most variance, was calculated for each 
tract and participant. 
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2.6.2. Principal component analysis of WM tract covariance 
To assess whether patterns of shared covariance exist across the WM, 

an additional PCA, following the same process, was performed in HC and 
MS, respectively. For this PCA, the metric component score of the first 
extracted component was used as the WM microstructure metric for 
each tract. 

2.6.3. Regression of sources of heterogeneity in data 
To identify the sources of variance in a tract component (TC) 

resulting from this PCA, its component scores were correlated with a 
number of demographic and anatomical variables: age, sex, years of 
education, ICV, lesion volume, NBV, NGMV and NWMV. Multiple re-
gressions were performed to identify which of these variables explained 
most variance of the TC. First, all demographic and anatomical were 
inputted into a correlation matrix to assess the degree of multi-
collinearity. As there was high correlation between NBV, NGMV and 
NWMV, only NBV was included in the model, along with age, sex, ed-
ucation ICV and lesion volume. The demographic and anatomical vari-
ables that came out as the strongest predictors in the regression analysis 
were regressed out of the raw data and the metric dimensionality 
reduction and PCA of WM tract covariance steps were performed again. 
The aim of this was to take into account strong general effects of certain 
variables on all considered white matter tracts. In particular, the effects 
of lesion volume were regressed out to allow us to explore whether 
microstructural white matter variance is shared similarly across some 
tracts compared to others, potentially demonstrating shared suscepti-
bility to non-lesional pathology. A Varimax rotation was applied to the 
first four principal components, based on eigenvalues > 1 and propor-
tion variance explained, to improve interpretability. 

2.6.4. Cognitive test principal component analysis 
Finally, we aimed to find the cognitive domain structure in this 

dataset. As for the metric and tract PCAs, a correlation matrix was 
constructed based on the scores on each of the BRB-N tests, and on the 
basis of confirmed correlations between tests and a significant Bartlett’s 
test, a PCA was performed to decompose the battery tests into cognitive 
domains. Principal components were extracted on the basis of scree 
plots, eigenvalues and variance explained. A Varimax rotation was 
applied for interpretability. To understand what influences cognitive 
function, the resulting rotated cognitive components (CCs) were corre-
lated with the tract components and all demographic and anatomical 
variables, after checking multicollinearity among predictors. NBV, 
NGMV and NWMV correlated highly so the variables included were age, 
sex, education, ICV, lesion volume and NBV. Multiple regression ana-
lyses were performed to determine the relationship between WM tract 
microstructure and cognitive domains, while controlling for variables 
which may also influence cognitive function. 

2.7. Statistical analyses 

All analyses were performed in RStudio v 1.4.1103 (RStudio Team, 
2020) with the exception of analyses of demographic and clinical vari-
ables, which were analysed in SPSS version 23.0 (IBM Corp., 2015). All 
variables were tested for normality through visual inspection of histo-
grams and Q-Q plots and application of Kolmogorov-Smirnov tests. A 
significance threshold of p < 0.05 was applied unless otherwise indi-
cated. For all multiple regression models, the adjusted R-squared is re-
ported, to adjust for the number of predictors in the model. For 
individual predictors in the model, the reported coefficients are stand-
ardised beta coefficients calculated with the lm.beta function in R. 

3. Results 

3.1. Participant characteristics 

Demographic and clinical characteristics of the sample are presented 

in Table 1. Overall, patients were older and less educated than healthy 
controls, had lower NBV and NGMV, poorer upper and lower limb 
function, and performed worse on all cognitive tests except the word list 
generation test assessing verbal fluency. 

3.2. Metric dimensionality reduction 

The results in the following sections are for the MS group unless 
otherwise indicated. Bartlett’s test of sphericity was significant (χ2(6) =
155.85, p < 0.001) indicating the suitability of performing a PCA. Based 
on scree plot inspection and eigenvalues > 1, only the first principal 
component, which explained 60% of variance, was extracted. The 
component loadings were 0.92 for FA, − 0.87 for RD, 0.88 for MWF and 
0.15 for MTR, indicating that the main contributors to the component 
were FA, RD and MWF. 

Table 1 
Demographic, clinical and neuropsychological characteristics.   

HC (n = 27) RRMS (n = 102) Inferential test 
results 

Age, yr (median, range) 37.00 (23–59) 45.00 (18–60) U = 958.00, p 
= 0.015 

Male/female, n 12/15 33/69 χ2(1) = 1.37, p 
= 0.241 

Education years 
(median, range) 

19.00 (12–30) 15.00 (10–30) U = 613.50, p 
< 0.001 

Mean disease duration, 
yr (median, range) 

N/A 12.24 (1–39) N/A 

Timed 25 Foot Walk 
Test (median, range) 

4.35 (3.2–5.4) 5.25 (3.6–26.8) U = 572.50, p 
< 0.001 

9-Hole Peg Test 
(median, range) 

18.65 
(15.35–23.00) 

21.75 
(16.35–59.50) 

U = 537.50, p 
< 0.001 

SRT L sum (median, 
range) 

0.00 
(-1.26–1.37) 

− 0.54 
(-4.72–1.47) 

U = 914.00, p 
= 0.009 

SRT C sum (mean, SD) 0.00 (1.00) − 0.88 (1.22) t(49.06) = 3.86, 
p < 0.001 

SRT delayed (median, 
range) 

0.06 
(-2.13–1.16) 

− 0.49 
(-4.31–1.15) 

U = 881.00, p 
= 0.004 

Spatial1to3 0.00 (1.00) − 0.74 (1.20) t(47.76) = 3.29, 
p = 0.002 

Spatial delayed 0.11 
(-2.45–1.14) 

− 0.91 
(-2.96–1.14) 

U = 794.00, p 
= 0.001 

SDMT 0.00 (1.00) − 0.88 (0.98) t(40.14) = 4.09, 
p < 0.001 

PASAT3 (median, 
range) 

− 0.03 
(-2.61–1.26) 

− 1.32 
(-8.26–1.42) 

U = 692.00, p 
< 0.001 

PASAT2 0.17 
(-1.71–2.29) 

− 0.77 
(-4.45–2.41) 

U = 768.00, p 
< 0.001 

WLG 0.00 (1.00) − 0.24 (0.88) t(37.48) = 1.14, 
p = 0.263 

Normalised brain 
volume, L (mean, SD) 

1.56 (0.07) 1.51 (0.08) t(41.94) = 3.33, 
p = 0.002 

Normalised grey matter 
volume, L (median, 
range) 

0.81 
(0.72–0.89) 

0.77 
(0.61–0.89) 

U = 755.00, p 
< 0.001 

Normalised white 
matter volume, L 
(median, range) 

0.76 
(0.68–0.81) 

0.74 
(0.66–0.83) 

t(40.43) = 1.56, 
p = 0.127 

Independent samples t-tests were used for comparisons of variables with a 
normal distribution. Mann-Whitney U tests were used for variables which were 
not normally distributed. Sex, being a categorial variable, was tested with the 
chi-squared test. Cognitive test scores are reported as Z-scores. 
Abbreviations: HC = healthy controls; PASAT2 = paced auditory serial addition 
test 2 s delay; PASAT3 = paced auditory serial addition test 3 s delay; RRMS =
relapsing remitting multiple sclerosis; SD = standard deviation; SDMT = symbol 
digit modalities test; Spatial1to3 = spatial recall test average score over three 
trials; Spatial delayed = spatial recall test score at the delayed trial; SRT delayed 
= serial recall test scores at the delayed trial; SRT L sum = serial recall test long 
term storage sum of scores; SRT L sum = serial recall test consistent recall sum of 
scores; WLG = word list generation test. 
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3.3. Principal components of WM tract covariance 

In MS patients, a correlation matrix of all WM tracts was shown to be 
significantly different from an identity matrix using Bartlett’s test of 
sphericity (χ2(780) = 5803.14, p < 0.001), indicating the suitability of 
performing a PCA to assess the covariance structure of WM tracts (see 
Fig. 1A for the metric and tract correlation matrices and scree plots). The 
scree plot showed one strong principal component (65% variance 
explained), but three additional components had eigenvalues > 1 (7%, 
4% and 3% variance explained, respectively). A Varimax rotation was 
therefore applied to these first four principal components to improve 
interpretability. After rotation all tracts still loaded positively on TC1, 
demonstrating a great degree of shared variable between white matter 
tracts. 

In MS patients TC1 correlated most strongly with lesion volume (r =
-0.73), NGMV (r = 0.41), and NBV (r = 0.31) (see Fig. 1B). A multiple 
linear regression model showed that the variance of TC1 was best 
explained by lesion volume (ß = − 0.74, p < 0.001) in a model explaining 
54% of variance (R2 = 0.54, F(6, 95) = 20.58, p < 0.001). See Table 2 for 
full model statistics. 

After regressing out lesion volume, correlations matrices for WM 
metrics and tracts, respectively, showed somewhat weaker correlations 
but still passed Bartlett’s test of sphericity (χ2(6) = 90.01, p < 0.001 for 
metrics, χ2(780) = 4347.86, p < 0.001 for tracts), and yielded the same 
PCA structure (see Fig. 1C), indicating that most tracts still load posi-
tively onto a single component. After a component rotation of the four 
tracts that explained most of the variance (after rotation:79% cumula-
tive variance; 30%, 25%, 21%, 0.03% for TCs 1–4, respectively) most 
tracts still loaded positively on the first tract component, especially large 
WM tracts like the optic radiations, middle longitudinal fasciuli, forceps 
major, inferior fronto-occipital fasciculi, vertical occipital fasciculi and 
acoustic radiations. Similarly, the tracts which loaded most highly on 
TC2 were large tracts connecting distal areas of the brain, including the 
superior thalamic radiations, corticospinal tracts, frontal aslants, supe-
rior longitudinal fasiculi and the arcuate fasciculi. TC3 in contrast 
consisted mainly of shorter tracts, including sub-sections of the 
cingulum, the anterior commissure, forceps minor and uncinate fasciuli. 
Only the middle cerebellar penduncle loaded highly on TC4. The prin-
cipal component analysis screeplot showing a single dominant compo-
nent and the high tract loadings of all tracts onto the first of the four 
rotated components demonstrates a high covariance between all tracts 
investigated. Please see Table 3 for full details of tract loadings on the 
four components. 

A supplementary analysis was performed to repeat all analysis steps 
performed in MS patients also in healthy controls. This was done as a 
control of the tract structure that emerged from the PCA, to understand 
if the finding of one strong tract component in MS was due to the disease 
(if the component structure is substantially different from controls) or 
likely to reflect some general aspect of WM microstructure (if the 
component structure is similar in controls). The same tract component 
structure that was found in MS patients was also found in MS, albeit with 
a slight different in which tracts loaded most likely onto the first tract 
component. All results from healthy controls are presented in Appendix 
1. 

To assess the influence of lesions on the present methodological 
approach, a supplementary analysis was performed in which voxels 
marked as lesions were not masked out of tract masks before WM metrics 
were extracted. All other analysis steps were not changed. Including 
lesioned tissue in the tract when extracting WM metrics did not sub-
stantially alter the results, one main tract component was still found. 
Please see Appendix 2 for results. 

3.4. Cognitive domains 

A correlation matrix of cognitive test scores showed a large number 
of moderate to high correlations and was significantly different from an 

identity matrix as assessed by Bartlett’s test of sphericity (χ2(36) =
558.62, p < 0.001), indicating a likely domain structure of cognition and 
confirming suitability for a PCA. Based on eigenvalues of at or near 1 and 
proportion variance explained, four components explaining 85% of 
variance were extracted. After a Varimax rotation a clear component 
structure emerged whereby cognitive component (CC) 1 reflects verbal 
cognition and CC2 visuospatial cognition, while CCs 3 and 4 reflect in-
formation processing speed and executive function, respectively. The 
component weights for rotated cognitive components (CCs) were as 
follows: Serial Recall Test Consistent recall (0.87), Serial Recall Test 
Long term storage recall (0.82), Word List Generation Test (0.80) and 
Serial Recall Test delayed recall (0.73) for CC1; Spatial Recall Test over 
three trials (0.90) and Spatial Recall Test delayed recall (0.93) for CC2; 
Paced Auditory Serial Addition Test 3 s delay (0.88) and Paced Auditory 
Serial Addition Test 2 s delay (0.89) for CC3; and Symbol Digit Modal-
ities Test (0.84) for CC4, see Table 4. 

3.5. Predictive ability of tract components, demographic and anatomical 
variables on cognition domains 

In MS, the ability of tract components and demographic and MRI 
variables to explain variance of cognitive domains was assessed by 
including them together in regression models. Together, these variables 
explained 17% variance of cognitive domains (see Table 2). The first 
cognitive component, CC1, was best predicted by TC1 (ß = 0.30, p =
0.009), sex (ß = 0.35, p = 0.010), lesion volume (ß = − 0.22, p = 0.049) 
and NBV (ß = − 0.32, p = 0.028), in a model explaining 17% of variance 
(R2 = 0.17, F(10, 91) = 3.04, p < 0.001). The final cognitive component, 
CC4, was best predicted by age (ß = − 0.27, p = 0.016) and lesion volume 
(ß = − 0.23, p = 0.035), in a model explaining 18% of the variance (R2 =

0.18, F(10, 91) = 3.19, p = 0.002). For cognitive components 2 and 3, 
the regression models were not significant. Please see Table 2 for full 
statistical results. 

We conducted a supplementary set of analyses to understand if using 
WM tract components reflects something additional to what a simple 
global FA measure would. We first correlated mean FA from TBSS to TC1 
and found a weak to moderate strength correlation (r = 0.32, p = 0.001). 
When regression analyses were repeated with the addition of this mean 
FA metric as a model predictor no additional variance in cognitive do-
mains was found. We also conducted univariate correlations between all 
cognitive domains and demographic and anatomical variables to un-
derstand the relationship between individual variables and cognition 
better and found several significant correlations. Full results for these 
supplementary analyses are presented in Appendix 3. 

4. Discussion 

In this study we combined PCA with tractometry to determine 
whether cognitive performance in people with MS relates to one or many 
patterns of white matter tract pathology. A decomposition approach of 
microstructure metrics from WM tracts showed a high degree of 
covariance across most tracts, indicating a global WM structure rather 
than shared relationships among some tracts over others due to func-
tional patterns or susceptibility to pathology. This global WM micro-
structure component was largely explained by lesion volume, but 
retained largely a single covariance pattern even after this factor was 
regressed out. Cognitive domains were only modestly explained by WM 
microstructure components and other anatomical and demographic 
variables. These findings do not support the suggestion of shared sus-
ceptibility to MS pathology among WM tracts as a brain correlate of 
cognitive impairment in MS. However, the effect of the methods used on 
these results must be considered, and is discussed in the following 
sections. 
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Fig. 1. Metric and tract principal component analysis in healthy controls. Fig. 1A shows the correlation matrices and scree plots for the PCA ran on the four white 
matter microstructural metrics (left) and the white matter tracts based on the first component from the metric PCA (right). Those metrics marked with a yellow line 
load most on principal component 1. All tracts loaded positively on tract principal component 1. Fig. 1B shows correlations between rotated tract principal 
component 1 (TC1) and demographic and anatomical variables. Variable marked with a black line, lesion volume, was a significant predictor of the principal tract 
component from Fig. 1A in multiple linear regression models. Fig. 1C shows the correlation matrices and scree plots for metric and tract PCAs after lesion volume was 
regressed out. Abbreviations: FA = fractional anisotropy; RD = radial diffusivity; MWF = myelin water fraction; MTR = magnetisation transfer ratio; ICV =
intracranial volume; NBV = normalised brain volume; NGMV = normalised grey matter volume; NWMV = normalised white matter volume. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.1. Metric dimensionality reduction 

Traditionally FA is used in MS studies of cognition, but FA has been 
shown to be susceptible to many factors, including myelination, axonal 
density and orientational dispersion of fibre populations in a voxel 
(Beaulieu, 2014; De Santis et al., 2014; Lazari and Lipp, 2021). A 
dimensionality reduction approach of multimodal WM metrics has been 
shown to overcome the problem of multiple comparisons of data con-
taining overlapping information while maintaining good sensitivity of 
WM microstructure (Chamberland et al., 2019; Geeraert et al., 2020; 
Bosticardo et al., 2021). 

Our composite WM metric consisted mainly of FA, RD and MWF, and 
to a much lower degree, MTR. This finding is consistent with a previous 
report of poor correlations between MTR and FA, RD and MWF in 
normal appearing white matter (Lipp et al., 2019). MTR has shown 
particular sensitivity to lesioned tissue (Lipp et al., 2019; Moccia et al., 
2020) and in the present study lesions were masked out to obtained 
normal appearing white matter only. It is therefore possible that 
extracted MTR values had limited variance across tracts and/or patients. 

4.2. WM microstructure organisation 

Given the prior evidence showing connectivity changes associated 
with cognition in MS (reviewed in Chard et al., 2021, Jandric et al., 
2021a) and the possibility that they are driven by WM degeneration 
(Catani and ffytche, 2005; Dineen et al., 2009; Schoonheim et al., 2015), 
we aimed to assess whether WM tracts can be decomposed based on 
shared pathological or other features, and whether the resulting com-
ponents reflect known functional network structures. 

Our results provide limited evidence of separate covariance struc-
tures of WM tracts in MS patients. A single dominant component con-
sisting of all tracts was found in both people with MS and healthy 
controls, although with somewhat different tract loadings. In MS the 
main component was largely explained by lesion volume. Even though 
lesions were masked out of each tract and only non-lesioned tissue was 
included in the analyses, inflammatory activity in lesions is known to 
have an effect on surrounding tissue and Wallerian and retrograde 
degeneration is known to occur in remote areas from the lesions (Trapp 
et al., 1998; Bitsch et al., 2000; Trapp and Stys, 2009). After regressing 
out this predictor, the tract pattern covariance was still shared between 
all tracts (i.e. no separate patterns of pathology emerged). This suggest 
that although lesion effects explained about 50% of variance in this 
principal tract component, they were not the main source of variance 
shared between tracts that resulted in the analysis yielding only one 
strong component. Rather, it is likely that this component reflects some 
global aspect of white matter microstructure. 

There are a number of possible reasons for why pathology patterns 
associated with functional networks may not have emerged. First, white 
matter may not show a strong network structure or patterns of covarying 
pathology. We also found only one dominant tract component in healthy 
controls, and thus no evidence of a network structure in the white matter 
(see Appendix 1). This is consistent with a previous study in elderly 
healthy controls that found a single general factor explaining almost half 
of variance across all eight tracts assessed (Penke et al., 2010). Studies 
which do report patterns of WM pathology have grouped tracts into 
classes manually, rather than statistically based on shared features (Li 
et al., 2012, Meijer et al., 2016a). However, despite manual grouping, 
each class determined by Meijer et al., (2016a) did show that both FA 
values and component loadings within a class were associated with 
cognition, suggesting possible shared damage within a class. Thus it is 
important to investigate this potential shared susceptibility to pathology 
among tracts further. 

A second possible reason for the lack of several principal components 
is that patterns of WM pathology may only emerge at later stages of the 
disease. While network changes measured by rs-fMRI are common in 
RRMS and occur even in clinically isolated syndrome (CIS, reviewed in 
Jandric et al., 2021), they have been shown to be more pronounced in 
progressive MS (Meijer et al., 2018; Rocca et al., 2018), and the severity 
of brain pathology is generally related to disease duration (Reynolds 
et al., 2011). It is therefore feasible that if there is shared susceptibility 
to MS pathology in the WM, like in the grey matter, it comes more 
pronounced as the disease advances. This would need to be tested in 
longitudinal studies or large cross-sectional studies with both RRMS and 
SPMS samples. 

In addition, patterns of pathology may only become apparent when 
looking at regions within tracts and not, as assessed in this study, across 
whole tracts. It is known that many major tracts support several separate 

Table 2 
Predictors of WM tract covariance and cognitive domains.  

Dependent variable Predictors Model statistics 

Unrotated tract 
component 1 

Age: ß = 0.03, p = 0.727 R2 = 0.54, F(6, 95) =
20.58, p < 0.001 Sex: ß = 0.13, p = 0.186 

Education: ß = − 0.03, p =
0.690 
ICV: ß = − 0.03, p = 0.721 
Lesion volume: ß = − 0.74, p 
< 0.001 
NBV: ß = 0.01, p = 0.452 

CC1: Verbal cognition TC1: ß = 0.30, p = 0.009 R2 = 0.17, F(10, 91) =
3.04, p < 0.001 TC2: ß = − 0.07, p = 0.444 

TC3: ß = 0.14, p = 0.120 
TC4: ß = 0.08, p = 0.379 
Age: ß = − 0.01, p = 0.957 
Sex: ß = 0.35, p = 0.010 
Education: ß = 0.06, p =
0.558 
ICV: ß = 0.12, p = 0.365 
Lesion volume: ß = − 0.22, p 
= 0.049 
NBV: ß = − 0.32, p = 0.028 

CC2: Visuospatial 
cognition 

TC1: ß = − 0.01, p = 0.938 R2 = 0.05, F(10, 91) =
1.50, p = 0.153 TC2: ß = − 0.13, p = 0.191 

TC3: ß = 0.08, p = 0.442 
TC4: ß = − 0.11, p = 0.290 
Age: ß = − 0.32, p = 0.009 
Sex: ß = 0.10, p = 0.482 
Education: ß = 0.09, p =
0.358 
ICV: ß = 0.01, p = 0.963 
Lesion volume: ß = − 0.04, 
p = 0.708 
NBV: ß = − 0.04, p = 0.800 

CC3: Information 
processing 

TC1: ß = 0.06, p = 0.628 R2 = 0.06, F(10, 91) =
1.65, p = 0.106 TC2: ß = 0.12, p = 0.236 

TC3: ß = 0.24, p = 0.017 
TC4: ß = − 0.16, p = 0.101 
Age: ß = 0.18, p = 0.127 
Sex: ß = − 0.14, p = 0.318 
Education: ß = − 0.02, p =
0.839 
ICV: ß = − 0.10, p = 0.493 
Lesion volume: ß = 0.04, p 
= 0.739 
NBV: ß = 0.20, p = 0.197 

CC4: Executive 
function 

TC1: ß = − 0.02, p = 0.870 R2 = 0.18, F(10, 91) =
3.19, p = 0.002 TC2: ß = 0.05, p = 0.604 

TC3: ß = 0.15, p = 0.101 
TC4: ß = 0.03, p = 0.747 
Age: ß = − 0.27, p = 0.016 
Sex: ß = − 0.03, p = 0.851 
Education: ß = 0.07, p =
0.443 
ICV: ß = − 0.02, p = 0.872 
Lesion volume: ß = − 0.23, p 
= 0.035 
NBV: ß = 0.13, p = 0.352 

Significant predictors are presented in italics. Significance threshold p < 0.05 
applied unless otherwise indicated. Abbreviations: CC = cognitive component, 
NBV = normalised brain volume, NWMV = normalised white matter volume, 
TC = tract component, WM = white matter. 
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functions, for example the interior fronto-occipital fasciculus is involved 
in cognition and sensorimotor functions as well as other behaviours 
(Sarubbo et al., 2013). Indeed, Li et al., (2012) found different FA 
covariance patterns for different segments of the corpus callosum. In 
support of this point, a recent study found that WM tract metrics of 
volume and microstructural integrity from specific section of specific 
tracts, including subsections of the corpus callosum, superior longitu-
dinal fasciculus and the striato-prefrontal and striato-parietal pathways, 
better predict cognitive test performance than global tractography and 
lesion measures, and also better than whole tract measures (Winter 
et al., 2021). This lack of granularity in our data may therefore account 
for the weak component structure that emerged after rotation. Further 
studies comparing regional ICA and PCA approaches can help to deter-
mine the extent to which each of these factors is at play. 

4.3. Relationships between WM microstructure and cognition 

Applying the same data decomposition approach to neuropsycho-
logical test data we identified four cognitive domains: verbal cognition, 
visuospatial cognition, information processing speed and executive 
function, consistent with the known domain structure of the BRB-N 
(Sepulcre et al., 2006; De Meo et al., 2021). 

We found that the first and main tract component was related to 

Table 3 
Tract loadings on each component derived from the tract PCA, after regressing out significant predictors of tract variance and applying Varimax rotation.  

TC1 TC2 TC3 TC4 

Tract Loading Tract Loading Tract Loading Tract Loading 

or_l  0.77 str_l  0.89 cbp_r  0.77 mcp  0.84 
mdlf_l  0.75 cst_l  0.86 ac  0.73 vof_r  0.26 
or_r  0.75 str_r  0.82 cbd_r  0.72 ac  0.25 
fma  0.75 cst_r  0.78 cbt_r  0.70 fma  0.23 
mdlf_r  0.74 fa_l  0.73 cbt_l  0.67 ar_r  0.23 
ifo_r  0.72 fa_r  0.68 cbp_l  0.67 or_r  0.23 
vof_l  0.70 af_l  0.66 fmi  0.65 cst_r  0.23 
ar_l  0.70 slf1_l  0.65 uf_l  0.64 atr_r  0.21 
vof_r  0.69 slf3_l  0.65 cbd_l  0.63 atr_l  0.18 
ar_r  0.68 af_r  0.63 uf_r  0.60 mdlf_r  0.16 
ifo_l  0.67 slf2_r  0.62 atr_l  0.59 ifo_r  0.14 
ilf_r  0.67 slf2_l  0.59 atr_r  0.58 ilf_l  0.12 
slf2_l  0.62 atr_l  0.59 ilf_l  0.55 fmi  0.12 
af_r  0.62 slf3_r  0.59 ifo_l  0.50 af_r  0.09 
slf1_r  0.61 atr_r  0.56 ilf_r  0.46 or_l  0.09 
slf3_r  0.60 mdlf_r  0.47 mdlf_l  0.44 slf3_r  0.08 
ilf_l  0.58 slf1_r  0.44 ifo_r  0.43 cbt_r  0.08 
slf2_r  0.58 ifo_l  0.44 fa_l  0.39 ilf_r  0.07 
af_l  0.56 ifo_r  0.43 slf1_l  0.39 str_r  0.06 
cbd_l  0.56 cbd_l  0.42 fma  0.38 uf_r  0.04 
uf_r  0.55 fmi  0.41 slf2_l  0.37 slf2_r  0.03 
cbt_l  0.54 mdlf_l  0.40 or_l  0.37 ifo_l  0.02 
slf3_l  0.53 or_r  0.40 ar_l  0.37 vof_l  0.02 
fa_r  0.52 ilf_r  0.39 af_l  0.34 str_l  0.02 
fmi  0.49 uf_r  0.37 mdlf_r  0.33 cbd_r  0.02 
cbd_r  0.47 uf_l  0.37 fa_r  0.33 cbd_l  0.01 
uf_l  0.45 cbd_r  0.35 vof_l  0.33 cbt_l  0.00 
slf1_l  0.44 or_l  0.35 slf1_r  0.32 mdlf_l  0.00 
cbt_r  0.44 ar_r  0.32 slf3_l  0.32 slf3_l  − 0.03 
cbp_l  0.42 cbp_l  0.31 af_r  0.31 cst_l  − 0.03 
fa_l  0.38 cbp_r  0.27 slf3_r  0.30 slf1_r  − 0.03 
atr_r  0.31 ilf_l  0.21 or_r  0.29 af_l  − 0.04 
atr_l  0.31 fma  0.21 slf2_r  0.28 cbp_l  − 0.04 
cbp_r  0.31 vof_r  0.15 vof_r  0.21 fa_r  − 0.04 
cst_r  0.24 ar_l  0.14 ar_r  0.17 slf2_l  − 0.05 
mcp  0.22 cbt_l  0.13 str_r  0.16 cbp_r  − 0.05 
str_r  0.19 vof_l  0.11 cst_r  0.14 slf1_l  − 0.06 
str_l  0.14 cbt_r  0.11 mcp  0.13 uf_l  − 0.07 
cst_l  0.08 ac  0.04 cst_l  0.09 fa_l  − 0.12 

Abbreviations: ac = anterior commissure; af = arcuate fasciculus; ar = acoustic radiation; atr = anterior thalamic radiation; cbd = cingulum subsection, dorsal; cbp =
cingulum subsection, peri-genual; cbt = cingulum subsection, temporal; cst = corticospinal tracr; fa = frontal aslant; fma = forceps major; fmi = forceps minor; ifo =
inferior fronto-occipital fasciculus; ilf = inferior longitudinal fasciculus; mcp = middle cerebellar peduncle; mdlf = middle longitudinal fasciculus; or = optic radiation; 
slf1-3 = superior longitudinal fasciculus 1–3; str = superior thalamic radiation; uf = uncinate fasciculus; vof = vertical occipital fasciulus. Left and right hemisphere 
tracts are denoted with _l and _r, respectively. 

Table 4 
Cognitive component weights in MS patients.   

Cognitive 
RC1 

Cognitive 
RC2 

Cognitive 
RC3 

Cognitive 
RC4 

SRT L sum  0.82  0.16  0.10  0.36 
SRT C sum  0.87  0.18  0.21  0.24 
SRT delayed  0.73  0.25  0.29  0.37 
Spatial1to3  0.15  0.90  0.23  0.06 
Spatial 

delayed  
0.10  0.93  0.01  0.15 

SDMT  0.20  0.17  0.27  0.84 
PASAT3  0.17  0.18  0.88  0.20 
PASAT2  0.25  − 0.06  0.89  0.11 
WLG  0.80  − 0.05  0.17  − 0.29 

Abbreviations: PASAT2 = paced auditory serial addition test 2 s delay; PASAT3 
= paced auditory serial addition test 3 s delay; SDMT = symbol digit modalities 
test; Spatial1to3 = spatial recall test average score over three trials; Spatial 
delayed = spatial recall test score at the delayed trial; SRT delayed = serial recall 
test scores at the delayed trial; SRT L sum = serial recall test long term storage 
sum of scores; SRT C sum = serial recall test consistent recall sum of scores; WLG 
= word list generation test. 
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specific cognitive domains, but overall these associations were not 
strong. This component, together with sex, lesion volume and normal-
ised brain volume, explained less than 20% of the variance of the verbal 
cognitive domain. This tract component is made up of most of the tracts 
investigated, but those which load most highly are long association 
tracts which connect most of the brain. Interesting, tracts which connect 
the occipital cortex to the rest of the brain load highly onto this tract 
component. It may seem as an unexpected finding that tracts associated 
with visual function predict a cognitive domain without a visual 
element, but it is important to consider that we found all tracts to 
correlate highly with each other, so this correlation between the tract 
component and cognition is not specific to visual tracts. Nevertheless, 
damage to the occipital cortex, including atrophy and functional con-
nectivity abnormalities, (in line with known pathology within the optic 
nerve, i.e. optic neuritis) is commonly reported in MS (Pagani et al., 
2005; Calabrese et al., 2007; Tona et al., 2014), so the present finding 
may reflect a non-cognitively specific marker of MS pathology, albeit 
weakly, as the tract component only explained a small proportion of this 
cognitive domain. Lesion volume and atrophy measures were also 
modest predictors of cognitive domain variance, confirming the clinical- 
radiological paradox and the need for more advanced brain pathology 
measures in the study of cognitive impairment in MS. 

The modest relationship between test performance on the different 
cognitive domains and WM tract components contrasts with previous 
evidence linking WM microstructure in MS to cognitive function (Dineen 
et al., 2009; Inglese and Bester, 2010; Hulst et al., 2013; Sbardella et al., 
2013; Llufriu et al., 2014, Meijer et al., 2016b). Given that all tracts 
loaded onto the first tract component, and it can therefore be interpreted 
as reflecting some global aspect of white matter microstructure, a 
stronger relationship with cognition may have been expected given prior 
research. This may be due to our use of whole tract measures. There is 
evidence to suggest that spatial topography is important for cognitive 
deficits and that some tracts in particular are involved in supporting 
cognitive function. Most of the early diffusion studies of cognition in MS 
report correlations between cognitive performance and diffusion metrics 
in specific regions of tracts, despite analyses being conducted over a 
whole brain WM skeleton. Those which are commonly reported across 
the literature are the corpus callosum, cingulum and forceps major and 
minor (Dineen et al., 2009; Sbardella et al., 2013; Llufriu et al., 2014). In 
addition, in another study of the sample investigated in the present 
study, WM metric differences between cognitively impaired and non- 
impaired patients were found mainly in the corpus callosum and 
cingulum (Jandric et al., 2021b). 

This possibility of spatial specificity has not been formally estab-
lished through a meta-analysis to date and is therefore speculative. 
However, it is supported by recent graph theory studies which have 
found associations between structural characteristics of predefined 
networks and cognitive function rather than across the whole con-
nectome (Llufriu et al., 2017, 2019; Koubiyr et al., 2019; Has Silemek 
et al., 2020). The third tract component identified in this study had had 
loadings from sections of the cingulum and forceps minor, yet did not 
explain a great deal of variance of cognitive domains. However, this 
tract component also consisted of a large number of other tracts with 
high loadings, so is non-specific to the cingulum and corpus callosum. 
Future work should focus on establishing if certain WM tracts in 
particular, e.g. those connecting key hub regions of the brain, are more 
important for cognitive function and more susceptible to pathology. For 
these purposes, graph theory may be informative in future work. While 
this approach is a promising tool for studying cognitive impairment in 
MS, it relies on many decisions regarding how the network is con-
structed (Yeh et al., 2020). The approach described in this paper was an 
attempt to identify such networks in a data-driven way. By looking at 
well defined specific white matter tracts, we ensured anatomical inter-
pretability and plausibility. Since we could only identify one main 
component across these tracts, a more fine-grained way of looking at 
connectivity between grey matter regions may be necessary for future 

attempts on data-driven network definition. 

4.4. Limitations 

Our study is not without limitations. Few previous studies have used 
data decomposition approaches to WM metrics in order to separate 
sources of signals, such as independent component analysis (ICA) (Li 
et al., 2012, Meijer et al., 2016a). In both studies the WM skeleton fed 
into the ICA returned components which reflected individual tracts or 
sub-sections of tracts. This is a complicated method to obtain individual 
tract masks, which in our study was achieved by tractography as a first 
analysis step. Grouping of tracts in both previous studies was done 
manually, which is an arbitrary approach to tract clustering, introducing 
the risk of bias. In contrast, we used PCA in an exploratory analysis to 
identify patterns of shared variance. This minimises the risk of bias and 
may also better reflect normal variation in white matter structure. By 
comparing dominant components between control and patients we were 
able to evaluate whether such structures are to be expected. However, 
the possibility should be considered that tract components are not 
actually orthogonal, perhaps due to the known multifunctional nature of 
WM tracts, and independent component analysis would in this case have 
been a more suitable approach. We could also have used factor analytic 
techniques, but PCA has been shown to produce very similar results to 
factor analysis when the communalities of variables investigated are 
greater than 0.7, which was the case in this study (Guadagnoli and 
Velicer, 1988). 

Finally, graph theory connectomics is an alternative approach to 
investigating the network structure of white matter. Due to the explor-
atory nature of the present study, a simpler method, which is able to 
capture anatomical accuracy of white matter tracts well, was employed 
for an initial investigation of shared relationships between tracts. 
However, it is clear that our results reflect some element of shared 
variance across all tracts investigated, which was stronger than any 
shared susceptibility to other factors, like involvement in different brain 
networks, which graph theory approaches have been shown to be able to 
tap into (Sporns and Betzel, 2016). In summary, this nascent research 
area requires further detailed work to determine the optimal analysis 
strategy to identify patterns of white matter pathology. In doing so they 
can help to understand whether there are networks that are susceptible 
to MS disease and how these might change over time. 

4.5. Conclusions and future directions 

In this study we explored whether non-lesioned portions of white 
matter tracts share variance among some tracts over others, which could 
indicate shared susceptibility to non-lesion pathology in MS. We did not 
find evidence of this, instead, our results revealed one strong component 
reflecting variance from all tracts, suggesting that our chosen method 
showed some shared aspect of white matter microstructure, which may 
be influenced by pathological processes in MS. This pattern of WM tract 
variance showed a modest relationship with cognitive function. 

The study raises several questions about whether, or not, there is a 
structure to the pathological changes underlying cognitive impairment 
in MS, and to what extent it is influenced by the methods used. An 
important aim for future research is to compare different approaches to 
investigating white matter connectivity to understand how best to probe 
shared vulnerability to MS pathology among tracts. By doing so we can 
develop a greater understanding of why spatially heterogeneous damage 
may lead to similar impairments to affect the lives of people with MS. 
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