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Abstract

Estimating age based on neuroimaging-derived data has become a popular approach

to developing markers for brain integrity and health. While a variety of machine-

learning algorithms can provide accurate predictions of age based on brain character-

istics, there is significant variation in model accuracy reported across studies. We

predicted age in two population-based datasets, and assessed the effects of age

range, sample size and age-bias correction on the model performance metrics

Pearson's correlation coefficient (r), the coefficient of determination (R2), Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE). The results showed that these

metrics vary considerably depending on cohort age range; r and R2 values are lower

when measured in samples with a narrower age range. RMSE and MAE are also lower

in samples with a narrower age range due to smaller errors/brain age delta values

when predictions are closer to the mean age of the group. Across subsets with differ-

ent age ranges, performance metrics improve with increasing sample size. Perfor-

mance metrics further vary depending on prediction variance as well as mean age

difference between training and test sets, and age-bias corrected metrics indicate
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high accuracy—also for models showing poor initial performance. In conclusion, per-

formance metrics used for evaluating age prediction models depend on cohort and

study-specific data characteristics, and cannot be directly compared across different

studies. Since age-bias corrected metrics generally indicate high accuracy, even for

poorly performing models, inspection of uncorrected model results provides impor-

tant information about underlying model attributes such as prediction variance.
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1 | INTRODUCTION

Brain-predicted age is increasingly used as a marker for structural

brain integrity and health across normative and clinical populations

(Bittner et al., 2021; Cole, 2020; Cole et al., 2018, 2020; de Lange

et al., 2019, 2020; Franke, Gaser, & Alzheimer's Disease Neuroimag-

ing Initiative, 2012; Franke, Gaser, Manor, & Novak, 2013; Franke,

Ristow, & Gaser, 2014; Gaser et al., 2013; Høgestøl et al., 2019;

Kaufmann et al., 2019; Pardoe et al., 2017; Richard et al., 2019;

Rokicki et al., 2021; Schnack et al., 2016; Smith et al., 2020). Since

brain structure is known to vary with age across the lifespan, machine

learning (ML) regression models can be used to predict chronological

age based on neuroimaging data (Cole et al., 2017; Cole &

Franke, 2017; Cole, Franke, & Cherbuin, 2019; Franke et al., 2010;

Franke & Gaser, 2019). Training a regression model on a wide range

of magnetic resonance imaging (MRI) scans allows it to build a norma-

tive trajectory of brain differences across age, and condense a rich

variety of brain characteristics into a single quantity per individual.

Prediction models can then be applied to unseen data, providing an

estimate of brain-predicted age for each individual in the dataset. The

difference between an individual's brain-predicted and chronological

age (brain age delta) provides a proxy for deviations from expected

age trajectories, and has been associated with clinical risk factors

(Beck et al., 2022; Cole, 2020; de Lange, Anatürk, et al., 2020) as well

as neurological and neuropsychiatric conditions (Cole et al., 2020;

Cole, Marioni, Harris, & Deary, 2019; Franke & Gaser, 2019; Hajek

et al., 2019; Han et al., 2020; Kaufmann et al., 2019; Kolenic

et al., 2018; Rokicki et al., 2021; Tønnesen et al., 2020; Van Gestel

et al., 2019). Brain age delta estimates have also been linked to bio-

medical variables and lifestyle factors in healthy population cohorts

(Anatürk et al., 2021; Cole, 2020; Cole, Franke, & Cherbuin, 2019; de

Lange et al., 2019; Dunås, Wåhlin, Nyberg, & Boraxbekk, 2021;

Franke et al., 2020; Smith et al., 2020), and the overall evidence sup-

ports the use of brain-predicted age as a surrogate marker for brain

integrity and health (Cole et al., 2017).

A number of recent studies show that ML algorithms can predict

age based on MRI data with high accuracy, for example, (Couvy-

Duchesne et al., 2020; Gong, Beckmann, Vedaldi, Smith, &

Peng, 2021; Han et al., 2020; Kaufmann et al., 2019, Leonardsen

et al., 2021). However, in addition to differences in feature sets

included (Cole, 2020; de Lange, Anatürk, et al., 2020; Jollans

et al., 2019), training and test set characteristics such as size and age

range (de Lange, Anatürk, et al., 2020; Jollans et al., 2019) can lead to

considerable variation in model performance metrics across studies.

This is due to general statistical features of regression models, and is

not specific to brain-age prediction. Prediction accuracy is commonly

evaluated using the correlation coefficient for brain-predicted versus

chronological age (r), or the coefficient of determination (R2), in addi-

tion to Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE). While these metrics are useful for comparing different algo-

rithms applied to the same dataset, the comparison of model perfor-

mance across studies is less straightforward. For example, the

correlation coefficient is reduced when measured in restricted ranges

of a variable (Bland & Altman, 2011; Bryant & Gokhale, 1972), while

the model error metrics RMSE and MAE depend on the distribution of

the predicted variable, and will thus vary between studies with differ-

ent cohort age ranges.

In age-prediction studies, statistical corrections of overestimated

predictions in younger subjects and underestimated predictions in older

subjects can also have a large effect on model performance metrics.

This phenomenon, which is commonly referred to as age-bias (Beheshti,

Nugent, Potvin, & Duchesne, 2019; de Lange & Cole, 2020; Le

et al., 2018; Liang, Zhang, & Niu, 2019; Smith, Vidaurre, Alfaro-Almagro,

Nichols, & Miller, 2019), occurs due to general statistical features of a

regression analysis (see Section 2.6). Age-bias correction ensures that

any group comparisons or associations with other variables of interest

are not influenced by the age-dependence of the predictions. However,

model performance metrics calculated post correction may not always

provide a relevant or valid representation of the initial model perfor-

mance. This is important since the validity of brain-predicted age esti-

mates depends on aspects such as sufficient variance in predictions,

which is contingent on how well the initial model performs.

With an increasing number of studies using brain age prediction

based on ML regression models, there is a pressing need to establish a

general understanding of model performance metrics, and how and

why they may vary across studies. In this work, we address general

statistical aspects of regression models in a brain-age specific context,

and demonstrate the effects of age range, sample size and age-bias

correction on metrics that are commonly used to evaluate model

accuracy; r, R2, RMSE and MAE.
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2 | MATERIALS AND METHODS

2.1 | Datasets and data availability

The data were derived from UK Biobank (UKB) and the Cambridge

Centre for Ageing and Neuroscience dataset (Cam-CAN). Sample

demographics are provided in Table 1. The two datasets were chosen

due to large sample size (UKB) and wide age range (Cam-CAN). The

data are available through established access procedures for UKB

(https://www.ukbiobank.ac.uk/researchers) and Cam-CAN (https://

www.cam-can.org/index.php?content=dataset). The code used for

running the age prediction models is available at https://github.com/

amdelange/brainage.

2.2 | MRI data acquisition and processing

A detailed overview of the UKB data acquisition and protocols is pro-

vided in (Alfaro-Almagro et al., 2018; Miller et al., 2016), and the

processing pipeline is available in (Kaufmann et al., 2019). For Cam-

CAN, study protocols are available in Shafto et al. (2014) and Taylor

et al. (2017). For each of the datasets, global and regional measures of

cortical volume, area and thickness in addition to subcortical volume

were extracted based on the Desikan–Killiany atlas (Desikan

et al., 2006) and automatic subcortical segmentation in FreeSurfer (ver-

sion 5.3; Fischl et al., 2002). This set of features include MRI measures

that are generally found to change with age (Storsve et al., 2014;

Walhovd et al., 2005), and have been used in previous global and

regional age prediction models (de Lange et al., 2020; Kaufmann

et al., 2019; Smith et al., 2020; for details, see https://surfer.nmr.mgh.

harvard.edu/fswiki/CorticalParcellation, www.frontiersin.org/articles/

10.3389/fnins.2012.00171/full#h12 and https://freesurfer.net/fswiki/

SubcorticalSegmentation). For UKB, the MRI data were residualised

with respect to scanning site (Alfaro-Almagro et al., 2021; Solanes

et al., 2021) using linear models. To remove poor-quality data likely due

to subject motion, UKB participants with Euler numbers (Rosen

et al., 2018) of ≥3 SDs from the mean were identified and excluded

(N = 778; de Lange, Barth, et al., 2020). For Cam-CAN, 28 participants

were excluded based on manual inspection of images as described in

Beck et al. (2022) and Richard et al. (2018). In total, data from 41,285

and 622 participants were included for UKB and Cam-CAN,

respectively.

2.3 | Brain-age prediction

To estimate global brain age, we used the XGBoost regression algo-

rithm (XGB; https://github.com/dmlc/xgboost), which is based on gra-

dient tree boosting. XGB has demonstrated high performance in

previous machine learning competitions (Chen & Guestrin, 2016), and

has been used in a number of recent brain age studies (Anatürk

et al., 2021; Beck et al., 2021; de Lange et al., 2019; de Lange,

Anatürk, et al., 2020; Voldsbekk et al., 2021; Richard et al., 2020).

Learning objective was set to regression with squared loss. To test

whether choice of algorithm influenced the results, we repeated the

UKB analyses in Sections 2.5 and 2.6 using Linear Support Vector

Regression (SVR; https://scikit-learn.org/stable/modules/generated/

sklearn.svm.LinearSVR.html) with loss = epsilon insensitive. Hyper

parameters for both algorithms were tuned in a held-out UKB subset

(N = 4,129) using nested cross-validation with three inner folds for

randomised search, and five outer folds for model validation. Subse-

quent models were run for (i) the rest of the UKB sample

(N = 37,156) and the full Cam-CAN sample (N = 622), (ii) UKB subsets

with different age range and sample sizes (see Section 2.5) and

(iii) UKB and Cam-CAN samples where fractions of the data were ran-

domly shuffled (see Section 2.6). For each iteration, the MRI input fea-

tures were scaled using the robust scaler (Baecker et al., 2021) from

the scikit-learn library (Pedregosa et al., 2011), which removes the

median and scales the data according to the quantile range.

2.4 | Model performance metrics

Model performance metrics included the correlation between brain-

predicted and chronological age (Pearson's r), R2, RMSE and MAE. An

overview is provided in Table 2. For all models, uncertainties on the

metrics were calculated using 200 bootstraps of each sample.

2.5 | Effects of age range and sample size

To assess the effects of age range and sample size, we ran a series of

experimental tests as described in the sections below. Due to the

large sample size, UKB data were used to systematically assess effects

TABLE 1 Sample demographics

UKB Cam-CAN

N 41,285 622

Age

Mean ± SD 64.15 ± 7.54 54.17 ± 18.40

Range (years) 45–82 18–87

Sex

% male 47.36 50.64

% female 52.64 49.35

Scanner site

% 1 25.19 100

% 2 61.48 0

% 3 13.33 0

Note: For UKB, scanner site 1 represents Newcastle, site 2 and 3

represents Cheadle and Reading, respectively (all UKB sites use 3 T

Siemens Skyra scanners with 32-channel head coils). Mean age ± SD for

each of the UKB sites: 1 = 64.90 ± 7.41; 2 = 63.47 ± 7.50; 3 = 65.81

± 7.55. Sex distribution (M/F): 1 = 45.73/54.27%, 2 = 48.23/31.83%,

3 = 46.47/53.53%. For Cam-CAN, site 1 represents Cambridge (3 T

Siemens TIM Trio with a 32-channel head coil).
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of age range and sample size using subsets as described in Sec-

tions 2.5.2 and 2.5.3.

2.5.1 | Dataset comparison: full age range and
sample size in each cohort

To compare the performance metrics for general models based on

UKB versus Can-CAN data, we ran models including the full age range

(45–82 years for UKB; 18–87 years for Cam-CAN) and sample size

(N = 37,156 for UKB; 622 for Cam-CAN) within each dataset. To

maximise the statistics on which the performance metrics were based,

10-fold cross-validation was used. This procedure splits the sample

into 10 folds of random subsets, where 9 of the 10 folds are used to

train the model and predictions for the remaining fold are then made.

Age distributions for 10 random folds in each dataset are shown in

Figure S1. This process is repeated 10 times, with a different fold held

out of the training each time, in order to generate predictions for all

subjects.

2.5.2 | Test sets with varying age ranges; training
set held constant

To assess the performance metrics in test sets with different age

ranges, we trained a model on a subset including the full age range,

and applied it to unseen test sets with different age ranges. For this

experiment, a random 50/50 split was first applied to the full dataset,

where one half of the data served as the training set, and the other

half was used to create test sets with different age ranges. In this set-

ting, age range varies only for the test sets. Sample size was held con-

stant across training and test sets with N representing the maximum

number of participants available with the narrowest age range.

2.5.3 | Training sets with varying age ranges; test
set held constant

To assess the performance metrics when age range was varied only

for the training sets, we trained models based on subsets with differ-

ent age ranges, and applied them to the same test set. For this experi-

ment, a random 50/50 split was first applied to the full dataset, where

one half of the data was used to create training sets with different

age ranges. The other half was used to select the test set, where an

age range cut was applied to retain only the subjects within the

narrowest age range. Sample size was held constant across training

and test sets with N representing the maximum number of partici-

pants available with the narrowest age range.

2.5.4 | Training and test sets with equal age ranges

To assess the performance metrics when age range was equal for

training and test sets, we ran models using 10-fold cross-validation

within a series of subsets with different age ranges. To test the effects

of age range in addition to sample size, we also ran the cross-validation

models using fractions of 2.5, 5, 10, 25, 50, 75 and 100% of the maxi-

mum number of participants available within the narrowest age range.

2.6 | Age-bias correction

Brain-predicted age is often overestimated in younger subjects and

underestimated in older subjects due to general statistical features of

the regression analysis (Liang et al., 2019). This phenomenon can be

explained by the limiting case where a model is unable to predict age

based on the input features. In this scenario, all subjects will be

predicted to have the median age (equivalent to the mean age if the

data are symmetrically distributed), because such an estimate mini-

mises the residuals; this is the aim of regression/ordinary least squares

fitting. Assigning the median age as the prediction for all subjects will

overestimate young subjects and underestimate older subjects (see

Figure 1, and Figure 9 in Section 3). With increasing prediction

TABLE 2 Overview of the model performance metrics and how
they are usually interpreted in the context of model accuracy
(italic font)

Metric Description Equation

r The correlation coefficient

(here, Pearson's r) between

predicted and

chronological age. Higher

values indicate better fit.

r¼
P

yi�yð Þ byi�by� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

yi�yð Þ2
P byi�by� �2

r

R2 The proportion of the

variance in the dependent

variable that can be

explained by the

independent variables (not

equivalent to r squared).

Higher values indicate better

fit.

R2 ¼1�
PN

i¼1
byi�yi
� �2PN

i¼1
y�yið Þ2

RMSE The square root of the

average of squared errors,

which provides an overall

measure of the prediction

error across the group.

Lower values indicate better

fit.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 byi�yið Þ2

q

MAE The average of the absolute

value of each residual;

similar to RMSE as an

overall measure of the

prediction error across the

group. Lower values indicate

better fit.

MAE¼ 1
N

PN
i¼1 byi�yij j

Note: Here, y are the true age values for each subject, by are their predicted

age values, y is the mean true age of the sample and by is the mean

predicted age of the sample.

Abbreviations: MAE, mean absolute error; RMSE, root mean squared

error.
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accuracy, the degree to which the model predicts median age is

reduced, since the predictions move closer to true age. Hence, age-

bias is less pronounced in models with high prediction accuracy, but

will always be present to some extent since the relationship between

brain characteristics and age is not perfect (as in x = y). To account for

the method-inherent age-bias, a statistical correction can be applied

to the age predictions or brain age delta estimates (Beheshti

et al., 2019; Cole, 2020; de Lange et al., 2019; Gong et al., 2021; Le

et al., 2018; Liang et al., 2019; Niu, Zhang, Kounios, & Liang, 2020;

Peng, Gong, Beckmann, Vedaldi, & Smith, 2021; Rokicki et al., 2021;

Smith et al., 2019). An example of a correction procedure is provided

in Figure 1, where a correction is applied to the predictions by first

fitting Y¼ α�Ωþβ, where Y is the modelled predicted age as a func-

tion of chronological age (Ω), and α and β represent the slope and

intercept. The derived values of α and β are used to correct predicted

age with Corrected Predicted Age = Predicted Age + Ω� α�Ωþβð Þ½ �.
Delta values can then be calculated as (Corrected delta = Corrected

Predicted Age � Chronological Age), which gives equivalent results to

applying the correction directly to the delta values (see, e.g., Beheshti

et al., 2019; de Lange & Cole, 2020; Liang et al., 2019; Smith

et al., 2020), as illustrated in Figure 1.

The approach described above can be used to derive the α and β

coefficients from a fit in a training set, and use them to correct the

predictions or brain age deltas in an independent test set (Beheshti

et al., 2019; Gong et al., 2021; Liang et al., 2019; Peng et al., 2021;

Rokicki et al., 2021; Smith et al., 2019). Alternatively, the correction

can be applied to the full dataset, which, although representing a sce-

nario of data leakage, gives equivalent results to regressing out chro-

nological age from brain age delta and using the residuals (de Lange

et al., 2019; Kaufmann et al., 2019; Le et al., 2018; Richard

et al., 2019; Tønnesen et al., 2020), or using age as a covariate in

regressions/correlations between brain age delta and other variables

of interest (Anatürk et al., 2021; de Lange, Barth, et al., 2020; Le

et al., 2018). While reporting uncorrected model performance metrics

and subsequently age-correcting the delta values (or including age as

a covariate in subsequent analyses) is commonly done, this yields

identical statistical adjustments (de Lange & Cole, 2020) and hence

does not circumvent the influence of the age-correction on the pre-

dictions and “behind the scenes” inflation of prediction accuracy

(Butler et al., 2021).

To assess the effect of age correction on performance metrics,

we applied the approach described above to (i) the full UKB and Cam-

CAN models, (ii) UKB models based on subsets with different age

range and sample sizes and (iii) a series of UKB and Cam-CAN models

were 0, 10, 25, 50 and 75% of the data was randomly shuffled (age

values are randomly reordered across subjects), to systematically

assess corrected metrics across models with different levels of initial

prediction accuracy. The shuffling experiment was conducted to

F IGURE 1 Example of age-bias correction applied to (i) predicted age (top row) and (ii) brain age delta (bottom row). (a) The uncorrected
association between predicted and true age. The orange line shows the linear fit applied to model the age bias. (b) The relationship between
predicted and true age after using the coefficients from the fit (orange line in plot a) to correct predicted age. (c) Corrected delta calculated as
corrected predicted age � true age, which shows no age dependence. (d) The uncorrected relationship between brain age delta and true age, with
the orange line showing the linear fit applied to model the age bias. The negative slope is due to an anti-correlation between true age on the x-
axis and negative true age on the y-axis, which occurs since negative true age is part of delta (predicted age � true age). (e) Corrected delta
calculated based on the correction in plot d, which shows no age dependence. (f) Corrected predicted age calculated using corrected delta + true
age. Hence, corrected delta obtained via a correction of the predicted age values gives equivalent results to correcting the delta values
themselves for age (de Lange & Cole, 2020), since the delta value contains the prediction minus true age. The correlation (r) between the
corrected delta values in plots c and e = 1.00
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simulate scenarios in which the model performance shifts from more

to less accurate, in order to test if the influence of the age-bias correc-

tion on the predictions varies according to how accurate the initial

model is. To test if using the coefficients from a fit in a training set to

correct the predictions in an independent test set yielded different

results, we split the full UKB and Cam-CAN samples in half to produce

subsets A and B. A model trained on dataset A (B) was used to make

predictions in dataset B (A). A fit to predicted versus true age was per-

formed on dataset A (B), and the coefficients α and β applied to

dataset B (A) to correct the predictions. The same cross-check was

performed for the UKB models in Section 3.3.

3 | RESULTS

3.1 | Full models

The performance metrics for the 10-fold cross-validated models

including the total sample size and full available age range for each

dataset are provided in Table 3. Despite the smaller sample size

(622 vs. 37,156 in UKB), the Cam-CAN prediction showed larger r and

R2 values. The Cam-CAN model also showed larger RMSE and MAE

values due to its wider age range (18–87 vs. 45–82 in UKB). Hence,

the lower RMSE/MAE values in UKB compared to Cam-CAN are not

due to better model performance, but rather reflect that predictions

in samples with a narrower age range are closer to the mean age of

the group, which results in lower errors/smaller brain age delta values

as shown in Figure 2. All performance metrics improved for both

models after age-bias correction, as shown in Table 3. When adjusting

for age-bias using fit coefficients derived from a training set to correct

the predictions in independent test sets, the results were highly com-

parable (Table 4). To check for potential scanning site effects (Alfaro-

Almagro et al., 2021; Solanes et al., 2021), we plotted the UKB delta

distributions and calculated the correlation between predicted and

true age (r) for each site separately. As shown in Figure S2, the results

were similar across the three sites.

3.2 | Effects of age range and sample size

This section shows model performance metrics measured in subsets

with different age ranges. As a cross-check, we repeated the age-

range tests using samples where the lower instead of upper age limit

was kept constant. The results were consistent, as shown in

Figures S3–S5.

3.2.1 | Test sets with varying age ranges; training
set held constant

Figure 3 shows the model performance metrics calculated in UKB test

sets with different age ranges when a model trained on the full age

range is applied to each test set.

r and R2 values

As seen in Figure 3, r values are lower when calculated in test sets

with a narrower age range, even though the predictions are based on

a training set including the full age-range. The correlation coefficient

is in general lower when measured in restricted ranges of a variable

(Bland & Altman, 2011; Bryant & Gokhale, 1972), which is due to a

smaller range in predicted and true age leading to less covariance. This

also applies to the R2 values, but R2 is influenced by an additional

effect; due to larger difference in mean age between the training and

test sets, the R2 value becomes negative for the narrowest age range.

The age-bias corrected r and R2 values are generally larger for all

models, and the corrected values decrease with a narrower age range.

In this scenario, the prediction variance is similar across test sets,

which is a result of the training set being held constant. Hence, while

both corrected and uncorrected r and R2 values are lower when mea-

sured in test sets with a restricted age range, low values do not imply

that the brain-predicted age estimates are invalid (prediction variance

is further discussed in Section 3.3). For R2, the test set with the

narrowest age range shows the largest improvement after age-bias

correction. This is because the correction adjusts the mean age differ-

ence between the training and test sets, as further described below.

RMSE and MAE values

As seen in Figure 3, RMSE and MAE initially decrease as the age range

is narrowed, but then show a subsequent increase in the test sets with

the narrowest age range. This trend is due to two competing effects:

(a) the RMSE and MAE values generally decrease in test sets with a

narrower age range due to smaller prediction range; (b) the RMSE and

MAE values increase with a larger mean age difference between the

training and test sets. When Effect 2 becomes more prominent than

Effect 1, a turning point in RMSE and MAE is observed. The mean age

and delta values for the training set and each of the test sets are

TABLE 3 The correlations (r)
between predicted age and chronological
age, R2, root mean square error (RMSE)
and mean absolute error (MAE)
± uncertainties for the age predictions
including the total sample and full age
range in each of the datasets

UKB UKB corr. Cam-CAN Cam-CAN corr.

r 0.728 ± 0.002 0.898 ± 0.001 0.870 ± 0.008 0.927 ± 0.005

R2 0.529 ± 0.003 0.760 ± 0.002 0.753 ± 0.013 0.837 ± 0.011

RMSE (years) 5.169 ± 0.018 3.687 ± 0.014 9.134 ± 0.230 7.417 ± 0.186

MAE (years) 4.140 ± 0.015 2.969 ± 0.012 7.403 ± 0.217 6.001 ± 0.162

Note: The performance metrics are provided before and after age-bias correction (corr).
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shown in Table 5. After age-bias correction, the RMSE and MAE

values are generally smaller for all models, with similar values across

test sets as seen in Figure 3. The similar values are due to stable pre-

diction variance across test sets (a result of the training set being held

constant). As seen for R2, the test set with the narrowest age range

shows the largest improvement in RMSE/MAE after age-bias correc-

tion, due to the adjustment of the mean difference between the train-

ing and test sets.

F IGURE 2 Age distributions (left plot), uncorrected brain age delta distributions (middle plot) and corrected brain age delta distributions (right
plot) in UKB (red) and Cam-CAN (CC; blue). The distributions are normalised to have the same area, and the y-axes represent the density

TABLE 4 Performance metrics ±

uncertainties provided before and after
age-bias correction (corr), where the
coefficients derived from a training set
are used to correct the predictions in
separate test sets

UKB UKB corr. Cam-CAN Cam-CAN corr.

r 0.722 ± 0.003 0.898 ± 0.001 0.889 ± 0.008 0.930 ± 0.005

R2 0.521 ± 0.004 0.756 ± 0.003 0.790 ± 0.014 0.844 ± 0.011

RMSE (years) 5.205 ± 0.025 3.711 ± 0.018 8.427 ± 0.234 7.260 ± 0.194

MAE (years) 4.176 ± 0.022 3.002 ± 0.015 6.797 ± 0.203 5.788 ± 0.171

Note: N in training and test sets = 18,578/18,578 for UKB, 311/311 for Cam-CAN.

F IGURE 3 Performance metrics calculated in
UK Biobank (UKB) test sets with different age
ranges. Predictions are based on a model trained
on the full age range. The x-axes indicate the age
range for each of the test sets. Sample size is kept

constant across training and test sets, and
represents the maximum number of participants
available with the narrowest age range (65–
82 years). Corr = corrected, representing the
model metrics calculated post age-bias correction
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3.2.2 | Training sets with varying age ranges; test
set held constant

Figure 4 shows the model performance metrics when models trained

on different age ranges are applied to the same test set.

r and R2 values

As seen in Figure 4, the uncorrected r values are stable for all models,

although the predictions are based on training sets with different age

ranges. This is because the correlation coefficient is determined by

the restricted age and prediction range in the test set (which is held

constant). For R2, the uncorrected values increase substantially when

the training is based on a narrower age range, due to the decreasing

difference in mean age between the training and test sets (the mean

age difference is largest when the training is based on the full age

range, and smallest when the training is based on the narrowest age

range (65–82 years) as it matches the age range of the test set (65–

82 years)). After age-bias correction, the r values are generally larger

for all models, but the largest improvement is seen for the model

where the training is based on the narrowest age range. This is due

to lower prediction variance in training sets with a narrower age

range: the lower the initial variance, the larger the improvement in

r after age-bias correction (see Section 3.3). For R2, the largest

improvement after age-bias correction is seen for the model where

the training is based on the widest age range. This is because the cor-

rection adjusts the mean age difference between training and test

sets, which is largest when the training is based on the widest age

range.

TABLE 5 Mean ± SD for age and
model errors/brain age delta values in
the training set and each of the test sets

with different age ranges

Age Brain age delta Corr. Brain age delta

Training set (45–82 years) 64.16 ± 7.56 0.01 ± 5.41 2.67 � 10�14 ± 3.80

Test set (45–82 years) 64.17 ± 7.50 �0.05 ± 5.28 8.60 � 10�15 ± 3.66

Test set (50–82 years) 64.48 ± 7.27 �0.32 ± 5.14 1.28 � 10�14 ± 3.80

Test set (55–82 years) 66.15 ± 6.12 �1.96 ± 4.75 3.19 � 10�17 ± 3.90

Test set (60–82 years) 68.17 ± 4.89 �4.01 ± 4.46 �1.51 � 10�14 ± 4.04

Test set (65–82 years) 70.64 ± 3.68 �6.42 ± 4.34 �1.89 � 10�14 ± 4.13

Note: Corr indicates the age-corrected delta values. Larger mean age difference between training and test

sets leads to smaller R2 values and larger RMSE and MAE values, as shown in Figure 3.

F IGURE 4 Performance metrics calculated in
a UK Biobank (UKB) test set (age range = 65–
82 years). Predictions are based on models trained
with different age ranges. The x-axes indicate the
age range of the training sets applied to the same
test set. Sample size is kept constant across
training and test sets, and represents the
maximum number of participants available with
the narrowest age range (65–82 years). Corr =
corrected, representing the model metrics
calculated post age-bias correction
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RMSE and MAE values

As shown in Figure 4, RMSE and MAE decrease when the training is

based on a narrower age range. This is due to two effects: (i) lower

prediction variance in models trained on a narrower age range, and

(ii) decreasing mean age difference between training and test sets.

After age-bias correction, the largest improvements in RMSE and

MAE are seen when the training is based on the widest age range.

This is because the correction adjusts the difference in mean age

between the training and test sets, which is largest when the train-

ing is based on the widest age range. Although the correction

adjusts mean age differences, corrected RMSE and MAE values still

decrease when training sets are based on a narrower age range. This

is due to lower prediction variance with a narrower age range,

which results in smaller model errors/brain age delta values

(Figure 8).

3.2.3 | Training and test sets with equal age ranges

Figure 5 shows the model performance metrics when 10-fold cross-

validations are run within different age-range subsets (age range is

equal for training and test sets).

r and R2 values

As seen in Figure 5, the uncorrected r values decrease with a narrower

age range. This is due to two effects: (i) r is smaller in subsets with a

narrower age range due to restricted age and prediction range, and

(ii) the variance in predictions is smaller when the training is based on

a narrower age range. Since the age range is equal for training and test

sets within each subset, there are no mean age differences. Hence, R2

values are only influenced by the same effects as r; variable range and

variance in predictions. After age-bias correction, the r values improve

substantially across subsets, with the largest improvement seen for

models with the lowest initial r values. This is due to lower prediction

variance in subsets with a narrower age range (see Section 3.3). The

same effect is reflected in the corrected R2 values.

RMSE and MAE values

As shown in Figure 5, RMSE and MAE decrease with a narrower age

range. This is due to the restricted prediction range in subsets with a

narrower age range (predictions in samples with a narrower age range

are closer to the mean age of the group, which equates to lower

model errors/smaller brain age delta values). After age-bias correction,

the RMSE and MAE values are generally smaller for all models, but

the corrected values also decrease with a narrower age range. This is

due to lower variance in subsets with a narrower age range, which

results in smaller model errors/delta values (Figure 8).

Effects of age range and sample size

As shown in Figure 6, all performance metrics improved with increas-

ing sample size across subsets with different age ranges. Across all

sample fractions, the effects of age range corresponded to the trends

F IGURE 5 Performance metrics calculated in
UK Biobank (UKB) subsets with different age
ranges. Predictions are based on models trained
using 10-fold cross-validation within each subset
(age range is equal for training and test sets). The
x-axes indicate the age range for each of the
subsets. Sample size is kept constant across
subsets, and represents the maximum number of
participants available with the narrowest age
range (65–82 years). Corr = corrected,
representing the model metrics calculated post
age-bias correction
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in Figure 5; lower uncorrected r and R2 values in subsets with a

narrower age range due to restricted prediction range and lower vari-

ance, and lower RMSE and MAE values in subsets with a narrower

age range due to restricted prediction range. Age-bias corrected met-

rics improved for all models, as shown in Figure 7.

3.3 | Age-bias correction applied to models with
different levels of prediction accuracy

The results of applying the age-bias correction to models where 0, 10,

25, 50 and 75% of the data was randomly shuffled are shown in

Figure 8. All performance metrics improved after correction, and the

models with the poorest initial prediction accuracy (highest fraction of

randomly shuffled data) showed the largest improvement after correc-

tion due to lower variance in predictions, as shown in Figure 9. The

lower variance occurs with more predictions around the median age

of the sample, which is a result of the model lacking sufficient infor-

mation to provide accurate predictions. For Cam-CAN, all models

improved to a similar extent after correction, as shown in Figure S6.

The variance in the Cam-CAN data was more similar across models

with different shuffle fractions (Figure S7) as compared to UKB,

indicating that the wider age range provides more information for the

model—leading to less predictions around median age.

When using separate UKB training and test sets where the age

correction parameters α and β were derived from a fit to the training

set and used to correct the predictions in the test set, the results were

highly comparable as shown in Figures S8 and S9. As a crosscheck, we

repeated the age-bias analysis for UKB including a quadratic age term

in the correction, which showed similar results (Figure S10).

3.4 | UKB results based on SVR instead of XGB

The UKB results based on SVR instead of XGB are shown in

Section S5, Supporting Information. In line with recent studies (Dunås

et al., 2021; Liang et al., 2019), we found no evidence that choice of

algorithm influenced the observed patterns: the effects of age range

were highly comparable (Figures S11–S13). The trends for subsets

with different sample size and age range were also highly comparable,

but XGB showed more stable performance across the smallest sample

fractions (Figure S14). Age-bias correction showed equivalent effects

for SVR and XGB models in samples where fractions of the data were

randomly shuffled (Figures S15 and S16).

F IGURE 6 Performance metrics
calculated in UK Biobank subsets with
different age range and sample size.
Predictions are based on 10-fold cross-
validation models run within each age-
range subset (age range is equal for
training and test sets within each subset).
The x-axes show the age range for each
subset, while the y-axes indicate the

subset sizes in fractions of the maximum
number of participants available with the
narrowest age range; N for each sample
fraction: 0.025 = 451, 0.05 = 902,
0.1 = 1,805, 0.25 = 4,512, 0.5 = 9,025,
0.75 = 13,538, 1 = 18,050
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4 | DISCUSSION AND SUMMARY OF
FINDINGS

Predicting age based on neuroimaging data can provide a useful

marker for brain integrity and health (Cole & Franke, 2017; Cole,

Marioni, et al., 2019; Kaufmann et al., 2019; Rokicki et al., 2021;

Smith et al., 2020), However, the current results emphasise that the

model performance metrics r, R2, RMSE and MAE cannot be directly

compared across different studies, as they depend on factors includ-

ing age range, sample size, prediction variance and mean age differ-

ences between training and test sets.

4.1 | Effects of age range

The results in Section 3.2 show that model performance metrics

depend on cohort age range in training and test sets. Since r and R2

values are lower when measured in restricted ranges of a variable

(Bland & Altman, 2011; Bryant & Gokhale, 1972), these metrics can

be lower when calculated in test sets with a narrow age range—also

when the predictions are based on a training set with a wider age

range. In this case, low r and R2 values are not indicative of poor

model performance or insufficient variance in brain-predicted age

estimates, but rather reflect the limited age variance in the test set.

In studies where predictions are estimated in several sub-samples, it

may be useful to include the age variance of the sub-sample with

the largest age range in the calculation of performance metrics

(Franke et al., 2010; Holmes, 1990), provided that the variances are

similar in the sub-sample and a matching/restricted range of the

sample used. In contrast, the use of training sets with a restricted

age range can potentially involve poor model performance accompa-

nied by low prediction variance, which is further discussed in

Section 4.2.

In addition to age range and prediction variance, the R2 value is

also influenced by differences in the mean age between training and

test sets. Larger mean age differences lead to smaller R2 values, as

well as larger RMSE and MAE values. However, the error metrics

RMSE and MAE will in general decrease with a narrower age range,

since predictions in samples with a narrower age range are closer to

the mean age of the group (which results in lower model errors/

smaller brain age delta values). Hence, small model errors do not nec-

essarily reflect better model performance, and a model based on a

cohort with a wide age range may show large R2 and r values accom-

panied by large RMSE and MAE values (as seen with Cam-CAN versus

UKB in Section 3.1). Alternative model error metrics such as Relative

Squared Error (RSE), Relative Absolute Error (RAE), Median Absolute

Error and weighted MAE also vary depending on age range, as shown

in Section S7, Supporting Information (Figures S18–S20).

F IGURE 7 Age-bias corrected
performance metrics calculated in UK
Biobank subsets with different age range
and sample size. Predictions are based on
10-fold cross-validation models run
within each age-range subset (age range
is equal for training and test sets within
each subset). The x-axes show the age
range for each subset, while the y-axes

indicate the subset sizes in fractions of
the maximum number of participants
available with the narrowest age range
(N for each sample fraction is provided in
Figure 6)
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4.2 | Age-bias corrected versus initial model
performance

The results in Section 3.3 show how statistical age-bias corrections

can inflate performance metrics by forcing an alignment between

predicted and true age, leading to accurate predictions also for poorly

performing models. This type of correction accounts for age-bias and

mean age differences between training and test sets, but corrected

performance metrics can also conceal potential issues with low pre-

diction variance. While reporting uncorrected model performance

metrics and subsequently correcting the delta values (instead of the

predictions) is common, these procedures yield equivalent corrections

by shifting the estimations to the same extent since the delta value

contains the prediction minus age, and age is used in the correction fit

(see Figures 1 and S17; de Lange & Cole, 2020). Hence, correcting the

delta values instead of the predictions does not truly circumvent

inflated prediction accuracy, and corrected delta values used to assess

relationships with clinical or cognitive data are not exempt from the

potential variance-related issues shown in Figures 8 and 9. Alternative

correction procedures have also been applied in previous studies. For

example, the method outlined in Cole et al. (2018) adjusts the slope

without utilising chronological age. While this method does not inflate

performance metrics, it inevitably increases the variance of the data

as it divides the predicted age for each subject on the slope value (α)

obtained from the regression fit. As an example, if we measure an

intercept of 2 and a slope of 0.5, each individual's (predicted age �
intercept) gets divided by 0.5. An individual with a predicted age of

50 will as a result get a corrected predicted age of 96, and an

individual with a predicted age of 60 will get a corrected predicted

age of 116. If the individual with a predicted age of 50 is 40 years old,

the delta value goes from 10 to 56. While this is not necessarily a

problem given that the scaling is usually moderate, it does complicate

comparisons of mean differences in brain age, for example, between

patients and controls, across studies using different correction

methods (de Lange & Cole, 2020).

As recently emphasised by Butler et al. (2021), further methodo-

logical and theoretical work is critical to improve the current limita-

tions of available age-correction procedures. Meanwhile, inspection of

uncorrected data can provide important information; for example,

r and R2 values calculated in test sets with a narrow age range may be

low, but prediction variance may be large if the training set has a

wider age range. When the age range of the training set is also

restricted, low r and R2 values may be due to low model performance

accompanied by low prediction variance. Since age-bias corrected

predictions/delta values do not contain information about these

underlying model attributes, plotting the initial fit and data points can

be helpful for evaluating the validity of brain-predicted age estimates.

For example, if the relationship between the MRI input features and

the dependent variable (age) is low in the training set, predictions may

cluster around the median age of the sample as the model lacks suffi-

cient information to provide accurate predictions. This would raise the

question of what brain-predicted age estimates derived from models

with low prediction accuracy actually represent, and whether other

types of estimates (e.g., summary scores of the imaging data that are

not obtained via age prediction) may be more appropriate in the given

sample.

F IGURE 8 Age-bias correction in UK Biobank
(UKB) models with 0, 10, 25, 50 and 75%
randomly shuffled data. All models improve after
correction, and the models with the poorest initial
prediction accuracy (highest fraction of shuffled
data) show the largest improvement. Hence,
corrected metrics may not provide a relevant
representation of initial model performance
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Since structural and functional brain measures show differential

variation with age across the lifespan, age prediction accuracy varies

depending on input features as well as cohort characteristics. For

example, we found low age prediction accuracy based on resting-state

functional MRI (fMRI) in UKB (Maglanoc et al., 2020) and the White-

hall II MRI sub-study cohort (WHII; de Lange, Anatürk, et al., 2020). In

F IGURE 9 Age-bias correction in UKB models with randomly shuffled data. SF = shuffle fraction in %. First column: The plots of predicted
versus true age show better performance for models with lower fractions of shuffled data. The models with the best performance also display the
highest prediction variance, whereas the poorly performing models show predictions that cluster around median true age, resulting in low
variance. Second column: The relationship between predicted and true age improves after age-bias correction, also for poorly performing models.
Third column: Delta versus true age, illustrating the age dependence of delta. The negative slopes are due to an anti-correlation between true age
on the x-axis and negative true age on the y-axis, which occurs since negative true age is part of delta (predicted age � true age). Models with
smaller slopes in predicted versus true age (first column) show larger negative slopes in delta versus true age (third column) as a result of this.
Fourth column: Corrected delta (corr. Pred age � true age), which shows no dependence on age. Corrected delta obtained via a correction of
predicted age gives equivalent results to correcting the delta values themselves for age (de Lange & Cole, 2020). Hence, while corrected delta
shows no age dependence, this is due to a strong correlation between corrected predicted age and true age as a result of the correction
(illustrated in Figure S17)
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WHII (N = 610, age range 60–85 years), the fMRI features showed

weaker relationships with age compared to grey matter features

derived from T1-weighted scans, and this result was also replicated in

a matched UKB sub-sample in the same study. When systematically

extending the UKB sub-sample, the fMRI prediction accuracy

improved with a wider age range and larger sample size, but remained

consistently lower than grey-matter based predictions in line with

other UKB analyses (Cole, 2020). Such findings further emphasise the

challenges of comparing model results across studies, as model perfor-

mance depends on specific brain characteristics and the age span over

which they are modelled. The distribution of morphometric features

may also vary across different age groups due to study exclusion

criteria and rates of undetected pathology among included partici-

pants. This may have an impact on prediction accuracy at different

ages, as well as on inferences regarding longitudinal trajectories across

the lifespan.

4.3 | Clinical applicability

Since brain age delta values provide an estimate of deviations from

expected age trajectories, this measure can be valuable for identifying

differences in patients relative to healthy controls (Han et al., 2020;

Kaufmann et al., 2019; Rokicki et al., 2021; Tønnesen et al., 2020).

Brain-predicted age estimates are also promising in terms of

predicting prognosis in diseases such as dementia (Biondo

et al., 2020; Gaser et al., 2013; Wang et al., 2019) and multiple sclero-

sis (Cole et al., 2020; Høgestøl et al., 2019). From a methodological

point of view, prediction models can benefit from advancements such

as incorporating uncertainties into the predictions (Hahn et al., 2021;

Marquand et al., 2019; Peng, Gong, Beckmann, Vedaldi, &

Smith, 2021). Predicted age estimates are currently represented by a

single value per individual, and while MAE and RMSE values describe

overall model errors, an uncertainty measure per estimate could pro-

vide a realistic accuracy range for each individual's brain-predicted

age. This could be obtained by using bootstrapping (Efron &

Tibshirani, 1994): N (e.g., 500) different versions of the training set are

created using random sampling with replacement. These training sets

are used to train N models, which will generate a distribution of

predicted age values for each subject with a mean μ and SD σ. Here, σ

represents the uncertainty of a person's brain-predicted age, so that it

becomes possible to determine whether their chronological age falls

within the confidence range μ ± σ. This could be applied to clinical

contexts, where the proportion of the respective brain age delta esti-

mates falling above a clinical risk threshold (e.g., 95 or 99%) would

represent the probability for the individual to be diagnosed as at risk.

While beyond the scope of the current study, feature importance

assessment can be used to identify the MRI measures that are most

prominently used in the model (Salih et al., 2021; Amoroso

et al., 2019; Samek, Montavon, Lapuschkin, Anders, & Müller, 2021;

Vercio et al., 2020), and partial dependence plots (Friedman, 2001;

Zhao & Hastie, 2021) can provide detailed information about how a

specific feature contributes to the prediction (Al Zoubi et al., 2018; de

Lange, Anatürk, et al., 2020). However, the most important features

for age prediction in healthy controls may not necessarily overlap with

the pathophysiological mechanisms of brain disorders (Bashyam

et al., 2020; Rokicki et al., 2021). Hence, in clinical studies aiming to

identify differences in brain tissue affected by a specific disease,

modality-specific models may provide more relevant biomarkers as

compared to global models showing accurate prediction of age

(Rokicki et al., 2021). Furthermore, longitudinal studies can character-

ise brain age trajectories over time, determining whether modifiable

variables such as cardiovascular health and lifestyle behaviours serve

as risk factors for the accelerated decline, and to what extent genetics

and early life factors explain individual differences in brain-predicted

age (Beck et al., 2022; Elliott et al., 2019; Vidal-Pineiro et al., 2021).

4.4 | Conclusion

Performance metrics used for evaluating age prediction models

depend on cohort and study-specific data characteristics, and cannot

be directly compared across different studies. Although some effects

can be mitigated through study designs where age distributions are

carefully matched across training and test sets, observed model per-

formance in a given test set cannot be generalised to samples with

different age ranges. Since age-bias corrected metrics in general indi-

cate high accuracy, even for poorly performing models, inspecting

uncorrected results can provide important information about underly-

ing model attributes such as prediction variance. While age prediction

models have been used for more than a decade to generate imaging-

based biomarkers (Franke & Gaser, 2019), the approach continues to

be developed and extended (see, e.g., Anatürk et al., 2021; de Lange,

Barth, et al., 2020; Kaufmann et al., 2019; Maglanoc et al., 2020; Peng

et al., 2021; Smith et al., 2020). Although not a main focus in the cur-

rent study, an increasingly common scenario involves combining data

from various cohorts and scanners, which poses additional challenges

related to site- and scanner-dependent variance (Alfaro-Almagro

et al., 2021; Solanes et al., 2021; Tønnesen et al., 2020). Improving

methods for site/scanner adjustments (Bayer et al., 2021; Dinga,

Schmaal, Penninx, Veltman, & Marquand, 2020), or incorporating

uncertainties into the predictions (Hahn et al., 2021; Marquand

et al., 2019), represent promising avenues for further developing

robust and valid biomarkers for brain health and disease. As evident

from the current results, clear reporting of sample characteristics and

model attributes is important to enable accurate interpretation of

model performance metrics in future work.
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