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Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in
neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly
improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor
(EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced
hippocampal long-term potentiation. The ‘brain hardware upgrade’, underlying these observations, includes an EPO induced ~20%
increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In
parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven
differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel
mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells,
paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in
brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive ‘brain
hardware upgrade’ and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motor-
cognitive tasks, drift into transient ‘functional hypoxia’, thereby triggering neuronal EPO/EPOR expression.
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THE PARTICULAR SITUATION OF CONTEMPORARY RESEARCH
ON ERYTHROPOIETIN
Recombinant human (rh) EPO has been an approved and safe
drug for treating renal anemia for meanwhile over 35 years [1–5].
Over the last 25 years, roles of EPO and its receptor, EPOR, in brain
became increasingly evident [6, 7], even though the existence of
an endogenous brain EPO system has for long time remained a
matter of dispute [8]. Explaining the multifaceted brain EPO
system, however, will be pivotal to understand adaptive brain
mechanisms and develop novel treatment strategies for brain
diseases, exploiting both, rhEPO and hypoxia-induced brain EPO.
This in turn faces several challenges.
The rhEPO market has always been highly lucrative, but patents

expired around 2008. Industry, facing competition by biosimilar
producers and fearing off-label use and emergence of new side
effects, withdrew essentially all support of research on further
rhEPO indications, while funding agencies keep sending appli-
cants for clinical EPO projects to industry. Its name, derived from
the original description in erythropoiesis and somewhat mislead-
ing for neuroscientists or reviewers, and its negative reputation as
doping drug have not helped funding translational research on
EPO. This is unfortunate considering that >300 preclinical studies
since 1998 showed beneficial effects of high-dose rhEPO in a wide
spectrum of brain disease models [6, 7, 9–12].
In fact, considerable upregulation of EPO/EPOR in brain occurs

for instance upon brain injury [7, 13], which stimulated researchers
early to explore the neuroprotective and neuroregenerative

potential of this growth factor [9, 14]. Notwithstanding all this
evidence, underlying mechanisms have remained widely obscure.
Even though research on extra-hematopoietic, direct tissue-
protective properties of rhEPO started in the nineties [9, 14–16],
results were partly controversial [8, 13], owing to lack of necessary
tools, e.g., specific antibodies or targeted genetic models. But also
the extremely low brain expression of EPO/EPOR poses a huge
problem (Fig. 1), with EPO undetectable by e.g., single cell
RNA sequencing (scRNA-seq) - a so-called ‘drop-out effect’ across
tissues - and EPOR even on ‘strongly expressing’ hematopoietic
cells amounting to much less than 1000 molecules per cell
[13, 17]. At the same time, this low expression reflects perfectly the
incredible potency of this growth factor.

UNUSUAL REVERSE TRANSLATION IN BRAIN EPO RESEARCH:
HUMAN TRIALS FIRST
Following own clinical observations as neurologist and psychia-
trist (HE), starting over 30 years ago, and contrary to the usual
translational methodologies in neuroscience, we started with
investigator-initiated clinical trials on rhEPO already in 1998,
including trials in ischemic stroke, multiple sclerosis, schizo-
phrenia, major depression and bipolar disease [18–23]. This
‘human trials first’ approach led to the discovery of the highly
reproducible neuroprotective and procognitive effects of rhEPO
in humans, independent of hematopoiesis. In addition, it
documented repeatedly a significant reduction of gray matter
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loss in brain disease upon rhEPO treatment [24–26]. Strikingly, in
healthy humans, application of a single high-dose of rhEPO
already increased the hippocampal response during memory
retrieval [27].
Many effects of rhEPO treatment on cognition, neuroprotection,

and neuroregeneration, however, have for a long time been
difficult to persuasively separate from rhEPO effects on erythro-
poiesis/hematocrit. Acute anemia, for instance, affects human
brain functions and respective neurophysiological measures like
P300, while anemia correction or oxygen breathing results in
prompt improvement [28].

SEPARATING EPO EFFECTS ON BRAIN FROM HEMATOPOIESIS
An elegant study employing either transgenic mice with EPO
overexpression exclusively in brain or wildtype mice receiving just
one high-dose rhEPO injection showed convincingly that EPO in
brain has remarkable effects on exercise performance in absence
of any hematocrit changes [29]. This can for instance explain the
intriguing brain effects of athletes upon EPO doping, e.g.,
increased drive and motivation [30]. Even though doping in
sports is definitely not reinforced here, it represents one of the
most convincing ‘field studies’, supporting the strong and
enduring effects of rhEPO on brain performance.
Substantial additional evidence supports that EPO actions in

brain are not related to hematopoiesis: (i) There was either no
increase in hematocrit or no correlation between such increase
and cognition. (ii) The effect on cognition by far outlasted any
transient effect on hematocrit [18, 20, 22, 26, 31]. (iii) Even more
compellingly, the above-cited study on transgenic EPO expression
in brain [29] and (iv) non-hematopoietic EPO analogues [32–37]
have been further key arguments for EPO actions on brain in
absence of blood effects. (v) Moreover, boosted cognition and
neuroplasticity of mice expressing constitutively active EPOR in
glutamatergic pyramidal neurons [38], but not in GABAergic
interneurons [39], suggested a central role of these neurons for
EPO effects on cognition, independent of hematopoiesis.

BACK-TRANSLATION OF BRAIN EPO RESEARCH TO MICE:
PROCOGNITIVE EFFECTS
With sophisticated higher cognition testing in normal mice,
employing the Five Choice Serial Reaction Time Task [40, 41] or
visual discrimination tasks in the Touch-Screen based operant
system [42], we initiated targeted ‘back-translational’ work. We
were able to document faster, more pronounced and lastingly
improved attention, learning and memory, together with
enhanced hippocampal long-term potentiation upon rhEPO
application [43–45]. Similar cognitive improvement ensued from
experiments using prolylhydroxylase inhibitors for stabilization of
hypoxia-inducible factor (HIF). This HIF stabilization, leading to
increased EPO expression in brain (and other tissues), provided
first hints that endogenous EPO may be sufficient to improve
cognition, but did not ultimately prove it, since vascular
endothelial growth factor, for instance, also rises upon HIF
stabilization [46, 47] and can enhance hippocampal learning and
memory [48].

BRAIN EPO ADDS A NEW LAYER OF COMPLEXITY TO
POSTNATAL NEUROGENESIS
Some of the neuroprotective and neuroregenerative actions of
rhEPO in disease models were speculated to be related to
neurogenesis [49–52], but for a long time, no data were available
to support this hypothesis or to discriminate between rhEPO
effects on neural progenitor proliferation versus differentiation in
postnatal brain [51]. In hematopoiesis, EPO is crucial for
antiapoptotic effects on erythroid precursors and for their
differentiation rather than for proliferation [53]. We therefore
asked whether similar mechanisms apply for the brain. Based on
our findings of EPO enhancing cognition and long-term potentia-
tion [43], we initiated our recently published studies on healthy
young mice, in which we investigated the effects of three-week
administration of rhEPO, starting at the age of four weeks, on
brain cell numbers [45, 54]. Entirely unexpected was the discovery
that this treatment leads to an around 20% increase in numbers of
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Fig. 1 Dropout effect in single-cell transcriptome analysis. a Unbiased clustering of hippocampal cells from mice under normoxia (n= 2) or
hypoxia (n= 2), represented in UMAP space, reveals 16 distinct cell populations across conditions [77]. b The extremely low expression of
EPOR in these populations, compared to the abundant expression of renin receptor (c), illustrates the partial ‘dropout effect’ of scRNA-seq for
EPOR. We note that EPO is not detectable at all using this method.
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pyramidal neurons in cornu ammonis (CA), in absence of any
respectively altered cell proliferation or apoptosis [45]. Using
nanoscopic secondary ion mass spectrometry (NanoSIMS), we
found that in rhEPO-treated mice, fed with 15N-leucine diet, an
equivalent ~20% of neurons revealed elevated 15N-leucine
incorporation, reflecting high de-novo protein synthesis [45].
Under constant cognitive challenge (but not without), the
discovered increase in neuron numbers persisted until over six
months of age [45]. Reassuringly, the increase in pyramidal neuron
numbers and dendritic spines is similarly observed when EPO
treatment starts at older age, precluding a purely late develop-
mental phenomenon [54]. We concluded that at any age, EPO
most likely drives the differentiation of diverse non-dividing, pre-
existing local precursors within neuronal lineages, i.e., in absence
of elevated DNA synthesis. Uncovered by serendipity with rhEPO,
our observations added a new layer of complexity to postnatal
neurogenesis and neuroregeneration where brain expressed EPO
appears to play a crucial role in the sense of a ‘neurogenesis fast
track’. This novel role of brain EPO is best sketched with a circle
including motor-cognitive challenge and ‘functional hypoxia’ (see
below; Fig. 2).

FUNCTIONAL HYPOXIA AS PART OF A NOVEL MODEL OF
NEUROPLASTICITY
Hypoxia is the term for reduced oxygen in cells/tissues, relative
to ‘normal’. Earlier interpreted as principally pathological, e.g.,

upon cardiac arrest, hypoxia is increasingly recognized as strong
driver of development including angiogenesis, hematopoiesis,
or regeneration [55–59]. In perfect support, quite some literature
deals with hypoxic/ischemic preconditioning, where sub-lethal
insults induce protection against later fatal injuries by improving
tolerance, e.g., through lasting or stand-by activation of hypoxia
signaling pathways, anti-apoptosis, anti-excitotoxicity, and
autophagy [60]. Noteworthy, hypoxia can be the ultimate
consequence of various processes, including lower oxygen
availability due to hypoxemia, anemia, perfusion impairment,
or increased oxygen consumption (‘functional hypoxia’).
Although the mere cellular responses to physiological and
pathological hypoxia are similar, they are accompanied by
different parallel mechanisms, potentially directing responses
towards beneficial effects as observed upon mild to moderate
inspiratory hypoxia or functional hypoxia (as discussed in this
review) or adverse effects, e.g., occurring upon ischemia or
dysregulation of cerebral perfusion [61].
In 2019, W.G. Kaelin, P.J. Ratcliffe & G.L. Semenza jointly

received the Nobel Prize in Physiology and Medicine for their
discoveries of how cells sense and adapt to oxygen availability
[55–59]. The hypoxia-induced transcriptional program is partly
independent of [62–64] and partly controlled by HIF, binding to
hypoxia-responsive elements to modulate gene expression,
including EPO [6, 29, 46, 60, 63, 65–69]. This fundamental
context, however, has not been systematically translated to
normal brain functions, where it likely has a central, yet
unheralded role. Extensive physical activity and cognitive
challenge lead to widespread brain activation and improved
global brain function including mood [70, 71]. Neurologists/
psychiatrists encourage patients to improve functions by
practicing: ‘Use-it-or-lose-it’. Hippocampal volume increases
upon exercise in healthy or schizophrenic subjects, correlating
with e.g., improved short-term memory [72]. We hypothesized
that activity-induced, ‘functional hypoxia’ of neurons and brain-
expressed EPO may play pivotal roles in all these circumstances.
But this had still to be proven as detailed below. In perfect
agreement with this concept, but without even considering
functional hypoxia as the driving force, a recent elegant study
on a mouse model of Rett syndrome showed that intensive
physical training, beginning in the presymptomatic period,
dramatically improves the performance of specific motor and
memory tasks, and significantly delays the onset of symptoms.
Task-specific neurons that are repeatedly activated during
training were found to develop more dendritic arbors and to
have better neurophysiological responses than those in
untrained mice [73]. Rett syndrome is a progressive neurological
disorder in which children develop normally for the first one or
two years of life, before experiencing profound motor and
cognitive decline. The results of this beautiful work strongly
encourage novel therapeutic approaches in Rett syndrome but
also in other neurodevelopmental conditions like many forms of
intellectual disability or (syndromal) autism, as for instance in
fragile X syndrome or SYNGAP mutations [74–76]. These novel
therapeutic approaches likely build on functional hypoxia as
pivotal driving force.

THE BRAIN EPO CIRCLE EXPLAINING ADAPTIVE BRAIN
HARDWARE UPGRADE AND ENHANCED PERFORMANCE
With a refined transgenic reporter approach, utilizing the oxygen-
dependent degradation (ODD) domain of Hif-1α fused to CreERT2
recombinase, CAG-CreERT2-ODD::R26R-tdTomato mice [77, 78], we
provided first clues that complex running wheel (CRW) exposure as
voluntary motor-cognitive challenge leads to ‘relative oxygen
deficiency’ in hippocampal pyramidal neurons, i.e., initially higher
oxygen consumption than delivery, which we coined ‘functional
hypoxia’. Figure 3 shows tdTomato+ hypoxic cells in representative

Fig. 2 The brain EPO circle. Focusing on cornu ammonis (CA)
pyramidal neurons, we delineate here a physiological circle of
enduring neuroplasticity through enhanced dendritic spine density
and swift generation of new functional neurons from diverse
precursors without proliferation. Apparently, the entire precursor
cell lineage in adult murine CA that is ready to differentiate towards
pyramidal neurons remains ‘in flow’. In the proposed neuronal
lineage progression, the EPO-responsive progenitor cells and
immature neurons may never constitute abundant clusters in a
cross-sectional steady-state analysis, but increases rather occur in
transient waves with individual neurodifferentiation markers just
rising at particular time windows. In this process, neuron-microglia
counterbalance plays a pivotal role with both microglial and
pyramidal neuronal EPOR being critical for neuronal differentiation
upon EPO. Elimination of the pyramidal neuronal EPOR eradicates
EPO-driven neurodifferentiation. Strikingly, also upon microglial
EPOR deletion, the acceleration by EPO of neuronal differentiation is
abolished. We note that the brain EPO circle can be entered
anywhere, starting either with mild to moderate inspiratory hypoxia,
with rhEPO treatment or with motor-cognitive challenge as inducer
of functional hypoxia. Under all these circumstances, brain EPO (and
EPOR) emerge as central players of a novel mechanism driving
neuronal differentiation and lasting plasticity [54, 77, 105]. Note:
In this sketch, the balance symbolizes cell numbers and activity, not
weight, i.e., microglia numbers/activity go down while pyramidal neuron
numbers go up [105].
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mouse brain sections. We also spatially mapped these cells by light-
sheet microscopy [77]. This three-dimensional view allowed to
demonstrate hypoxia across essentially all brain areas. Amazingly,
running on CRW causes hypoxic neurons all over, and particularly
abundant in hippocampus. Here, the CRW-induced endogenous
hypoxia of pyramidal neurons augments EPO and EPOR expression,
as experimentally proven by in situ hybridization [54]. EPO and EPOR
in turn prompt via auto/paracrine signaling the emergence of new
pyramidal neurons and, in parallel, enhance dendritic spine densities
of preexisting neurons. As a result, performance is improved,
conveniently referring to ‘EPO brain doping’ [54].
An explanation for the fast appearance of a substantial amount

of new mature pyramidal neurons upon EPO in just 3–4 weeks was
provided by scRNA-seq in CA1, revealing an increase in newly
differentiating neurons already 6 h after a single intraperitoneal
rhEPO injection. This means that we see the start of enhanced
differentiation already at this early time point, as illustrated by a
pseudotime presentation of the trajectory analysis of neuronal
cells, performed in Monocle2 [54, 79]. In fact, the increase in the
number of differentiating immature neurons starts at 6 h after the
first EPO injection with an increase in T-box brain1 (Tbr1) positive
neuronal precursors over the placebo condition (Fig. 2). Additional
markers that characterize this early responding cluster include
doublecortin (Dcx) and transducin-like enhancer family member4
(Tle4). At one week after EPO treatment start, we see an increase
in a subsequent differentiation stage (Zbtb20 positive immature
neurons). This EPO-induced differentiation flow is ultimately
leading after 3–4 weeks to a 20% increase in mature pyramidal
neurons with expression of the markers Ctip2/NeuN, while the
other transcripts/proteins are no longer increased under EPO but
have returned to control/placebo level. This rapid, wave-like drive
of neurodifferentiation was similarly observed upon hypoxia-
induced expression of EPO in brain. Exposure to moderate
inspiratory hypoxia (12% O2) imitated the improved CRW
performance as well as the enhanced neuron numbers and
dendritic spines upon rhEPO, and inspiratory hypoxia in combina-
tion with CRW (add-on endogenous, functional hypoxia) even
acted synergistically. All these effects depend on pyramidal
neuronal expression of the EPOR gene [54].
Taken together, an intriguing novel model of neuroplasticity

emerged, in which specific task-associated neuronal networks drift
into transient functional hypoxia as a local as well as a brain-wide
response comprising indirectly activated neurons and non-
neuronal cells [77, 80]. This in turn triggers neuronal EPO/EPOR
expression to mediate neuroplasticity via adaptive transcript
regulation in the behaving brain, leading to substantial ‘hardware
upgrade’ (Fig. 2).

EFFECTS OF PHARMACOLOGICAL OXYGEN MANIPULATIONS
ON BRAIN FUNCTION
We are just starting to understand the role of oxygen manipula-
tions in the brain with respect to effects on brain performance and
brain disease. Even though not directly related to the main topic
of this perspective, we note that a whole array of different
methods on modulating oxygen availability have been described
to influence brain functions in health and disease models. Just
examples are recent work on hyperbaric oxygen therapy that
reported alleviation of vascular dysfunction and amyloid burden in
an Alzheimer’s disease mouse model and also in elderly patients
[81]. Similarly, intermittent hypoxic–hyperoxic training in geriatric
subjects [82] and in patients with mild cognitive impairment [83]
showed beneficial effects on cognition. In this context, the
endogenous EPO system likely plays an important role. In fact, a
coding single nucleotide polymorphism of EPO, the nonsynon-
ymous rare variant SNP rs62483572, was identified to be
protective in Alzheimer’s disease [84]. Moreover, human EPO
and EPOR gain-of-function genotypes are associated with better
cognition [85].
Also upon chronic moderate hyperoxia, increased HIF accumu-

lation and EPO expression in mouse brain have been reported
[86], pointing to some overlap in downstream mechanisms of
hypoxia and hyperoxia, reflected or mediated e.g., by excess
reactive oxygen species (ROS, see below) [87–89]. On the other
hand, contrasting effects of hypoxia versus hyperoxia were found
in a mouse model of Friedreich’s ataxia where breathing of 11%
O2 attenuated the progression of ataxia, whereas breathing 55%
O2 hastened it [90]. We conclude here, that much work needs to
be done to understand respective mechanisms and to further
exploit them for the benefit of patients. Overall, however, we
should keep in mind, that hyperoxia is never physiological,
whereas (functional) hypoxia definitely represents a major driving
force of neurodevelopmental processes and adaptive neuroplas-
ticity. Using hypoxia or rhEPO as treatment strategies, we imitate
physiology, whereas hyperoxia would constitute some other sort
of a pharmacological therapy. Nevertheless, any approach that
demonstrates clear benefit in thus far untreatable diseases or
syndromes should be considered and encouraged to be pursued.
Even in COVID-19, where oxygen treatment depicts a logical and
important therapeutic contribution, rhEPO treatment as substitu-
tion therapy might help overcome the unexpected ‘hypoxia
paradox’ in this condition [91, 92].
Also worth mentioning in this context is the tight regulation

between oxidative stress and antioxidants relating to EPO path-
ways. Strong intermittent hypoxic conditions (nadir of 5% O2),
for instance, induce increased ROS production, which activate HIF.

Fig. 3 Labeling hypoxic cells. Illustrative coronal brain sections of CAG-CreERT2-ODD::R26R-tdTomato mice under (a) normoxia and (b)
voluntary complex running wheel performance (‘functional hypoxia’). Motor-cognitive challenge (over 5 consecutive days with daily tamoxifen
injections, 5 in total) induces globally enhanced numbers/intensity of tdTomato+ cells in the brain with particular focus on hippocampus and
cortex (pyramidal neurons) [77].
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Of note, this strong hypoxia may damage parvalbumin-expressing
interneurons through ROS accumulation, which apparently can be
ameliorated by environmental enrichment [93]. On the other hand,
ROS and antioxidants were shown to play a role in neuronal and
oligodendroglial differentiation [94–96]. Therefore, yet to be
elucidated downstream mechanisms of hypoxia and EPO may
involve some antioxidant compensation to balance ROS increase
and to allow undisturbed cellular differentiation processes.

DELINEATING THE MULTIFACETED AND MULTICELLULAR
BRAIN EPO SYSTEM
Importantly, effects of EPO on cognition and neuroregeneration
comprise parallel effects on other cell types. In a mouse model
of traumatic brain injury, we saw that early treatment with
rhEPO prevented consequences of secondary neurodegenera-
tion, i.e., progressive brain atrophy and cognitive decline
[25, 97], reduced the increase in injury-induced microglia and
dampened their motility [98, 99]. Reflecting the high - but still
poorly understood - complexity of the brain EPO system, also
interneurons [39, 100], oligodendrocytes, their precursors (OPC)
[45], astrocytes, endothelial cells and pericytes express EPO
and EPOR, at least in disease [6, 10], and EPO not only traverses
the blood-brain-barrier (BBB), but influences BBB function,
immune cell transmigration, angiogenesis, and cerebral blood
flow [31, 101–103].
In fact, EPO effects on interneurons are still much less clear. EPO

treatment decreases the structural complexity of certain inter-
neuronal subpopulations and the density of inhibitory perisomatic
puncta that surround pyramidal neurons (Curto et al, manuscript in
preparation). In a transgenic mouse line that constitutively
overexpresses neuronal EPO from early development on, stimula-
tion of postnatal GABAergic maturation and an elevation of
hippocampal GABA-immunoreactive neurons was reported,
together with increase in interneurons expressing parvalbumin,
somatostatin and neuropeptide Y [100]. Whereas constitutively
active EPOR in GABAergic neurons changed hippocampal network
properties, cognition was not affected, suggesting that the effect
of EPO on cognition is dominated by its effect on the
glutamatergic system [39]. Much more work is needed to fully
understand the impact of EPO on the inhibitory circuitry.
In EPO-treated NG2-CreERT2 mice, we confirmed enhanced

differentiation of pre-existing oligodendrocyte precursors
(NG2+), again in absence of elevated DNA synthesis [45].
Completely unexpected was the observation that mice with lack
of oligodendroglial EPOR apparently develop a mild dementia
phenotype, as demonstrated in our IntelliCage test paradigm
[104]. This paradigm allows cognitive, emotional and social
phenotyping of mice in an observer-independent setting. The
underlying mechanisms of this OPC/oligodendrocyte-related
cognitive/intellectual disability are not yet understood and
presently subject to extensive study in our laboratory.
An unforeseen involvement of resident microglia started with

the discovery that stimulated neurodifferentiation, either by
rhEPO, functional or inspiratory hypoxia, goes hand in hand with
a decrease in microglia numbers. Obviously, during accelerating
neuronal differentiation, EPO acts as regulator of the CSF1R-
dependent microglia. Here, neuronally expressed IL-34 and
microglial CSF1R are instrumental [105]. Surprisingly, EPO affects
microglia in phases, initially by inducing apoptosis, later by
reducing proliferation, and overall dampens microglia activity and
metabolism, as verified by selective genetic targeting of either
microglial or pyramidal neuronal EPOR. It turned out that EPOR on
both cell types are critical for neuronal differentiation in CA upon
EPO [105]. We note that the EPO effects on microglia are opposite
to the effects on most other cell types, where this potent growth
factor rather acts in a strong antiapoptotic fashion, enhances
energy metabolism, and drives proliferation and/or differentiation.

The deeper delineation of these contrasting cellular responses to
the same ligand requires further study and may involve different
EPORs or different EPOR properties as well as diverse downstream
intracellular signaling.

CONCLUSIONS AND OUTLOOK
In summary, powerful, hematopoiesis-independent effects of
rhEPO on neuroprotection, neuroregeneration and cognition in
humans and rodents suggest that endogenous EPO in brain serves
fundamental, previously overlooked physiological functions. The
here introduced brain EPO circle explains as convenient working
model the adaptive ‘brain hardware upgrade’ and enhanced
performance upon rhEPO or brain EPO induction by hypoxia.
In this fundamental regulatory circle, neuronal networks when
challenged by motor-cognitive tasks, drift into transient ‘func-
tional hypoxia’, thereby triggering neuronal EPO and EPOR
expression (Fig. 2).
In other words, strong motor-cognitive exercise leads to

neuronal activation and functional hypoxia, inducing HIF activa-
tion, followed by EPO transcription (among other transcripts) in
pyramidal neurons, which in turn grow more dendritic spines and
simultaneously stimulate their neighboring cells, ready to become
neurons, to differentiate within the hippocampus. All this then
contributes to cognitive improvement. We note, however, that the
brain EPO circle can be entered anywhere, starting either with
mild to moderate inspiratory hypoxia, with rhEPO treatment or
with the aforementioned motor-cognitive challenge as inducer of
functional hypoxia, leaving plenty of possible ways for future
therapeutic interventions.
Remarkably, the bigger picture of the brain EPO system is still

missing to date, despite supporting hints of hypoxia influencing
cognition and of hypoxia-induced EPO [6, 7, 10]. All these hints are
first fragments of a still concealed mosaic. Physiological conditions
of brain EPO/EPOR expression, function and interplay of the
different brain cell types with respect to the brain EPO system
have remained widely unexplored. Published work on putatively
different types of EPOR in brain is fragmentary and contradictory
[106, 107]. Targeting EPO and hypoxia, the critical components of
the here delineated regulatory brain circle, may yield promising
innovative treatment approaches to neuropsychiatric diseases. But
admittedly, for complete mechanistic understanding, much work
still remains to be done.
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