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. Introduction 

Characterizing the age-dependent developmental trajectories of the
rains of healthy and diseased individuals is essential for precision
edicine. Verdi et al. (2021) recently emphasized that we must move

eyond the “average patient ” when using neuroimaging. Instead, we
ust understand individual differences in brain aging processes to al-

ow early detection of functional deterioration and neurodegenerative
isease. Quantifying these individual developmental trajectories hinges
n choosing the proper “Descriptive Parameters ” (DPs) that summarize
rain anatomy or physiology features and distinguishing their normal
r abnormal evolution during the lifespan. These DPs depend strongly
n age ( Matou š ek and Petersén, 1973 ). 

Central to the definition of healthy developmental brain trajecto-
ies is the creation of age-dependent developmental “norms ” ( “charts ”
r “atlases ”) comprising both measures of central population tendency
s well as dispersion. The norms enable quantifying the age-adjusted
tatistical distance of a subject’s DP from the healthy population. Exam-
les of such distances are the z-score or Mahalanobis distance. Armed
ith these age-dependent statistical distances, we can quantify Brain
evelopmental Deviation (BDD) and even use them to cluster and stage
isease progressions ( Harmony, 1984 ). 

Large multinational projects to develop norms are now underway.
hese projects aim to increase genotypic and phenotypic diversity and,
ignificantly, achieve sample sizes to provide adequate statistical power
 Bethlehem et al., 2022 ). These endeavors have a fundamental limita-
ion due to the costly nature and sparse geographical distribution of
he technologies used to probe the brain. Large parts of the world pop-
lation, even in high-income countries, are difficult or impossible to
ample. Thus, issues of fairness and racial bias cannot be ignored. 

In contrast with other neurotechnologies, electroencephalography
EEG) is affordable, portable, and deployable in all health system levels–
hatever the economic setting. Thus EEG is a potential tool for detecting
DD in a Global Health context ( Valdés-Sosa et al., 2021 ). Quantitative
EG (qEEG) facilitates this use by using EEG-based DPs to compare indi-
iduals with qEEG norms. The most common embodiment of qEEG uses
he EEG log-power spectrum as DPs. The seminal work of Matou š ek and
etersén (1973) pioneered this work 50 years ago, with the visionary
ntroduction of the “age-dependent EEG quotients ” to measure brain
ge —antedating by 4 decades current interest in this topic! This line of
2 
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hina 

ain quantitative electroencephalography (qEEG) methods pursuing higher sen-
ental Disorders. Prior qEEG work lacked integration of cross-spectral informa-
l connectivity descriptors. Lack of geographical diversity precluded accounting
ing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifes-
EG norms for cross-spectral tensors. These norms result from the HarMNqEEG

rain Consortium. We calculate the norms with data from 9 countries, 12 de-
564 subjects. Instead of raw data, only anonymized metadata and EEG cross-
r visual and automatic quality control, developmental equations for the mean
traditional and Riemannian DPs were calculated using additive mixed-effects
batch effects ” and provide methods to calculate harmonized z-scores. (ii) We
annian norms produce z-scores with increased diagnostic accuracy predicting
alnutrition in the first year of life and detecting COVID induced brain dysfunc-
 data to calculate different individual z-scores from the HarMNqEEG dataset.

ping bias-free, low-cost neuroimaging technologies applicable in various health

ork John et al. ( 1977 ), Harmony et al. (1988) , Bosch-Bayard et al.,
2001) , Bosch-Bayard et al. (2020) , Hernandez-Gonzalez et al. (2011 )
ubsequently systematized this initiative. Consequently, developmen-
al norms were constructed in several countries ( Gordon et al., 2005 ;
orensen and Dickson, 2003 ; Thatcher et al., 2003 ). Other projects re-
ently vigorously launched are being repurposed for normative work
 Pavlov et al., 2021 ). 

An instance of norm construction and evaluation of BDD in a lower
r middle-income country (LMIC) has been the Cuban Human Brain
apping Project (CHBMP). Its first wave provided norms (means and

tandard deviations (SDs)) for the narrow band (NB) log-spectral DP
ased on 211 subjects from age 5 to 97. Despite being based on a sin-
le country database, CHBMP norms describe BDD consistently in other
ountries ( Bosch-Bayard et al., 2001 ; Bringas Vega et al., 2019 ; Taboada-
rispi et al., 2018 ). Nevertheless, the small sample sizes make country
omparisons relatively underpowered compared to neuroimaging efforts
uch as ENIGMA ( Thompson et al., 2014 ). 

The lack of global inclusiveness and small sample sizes in qEEG
orms is a situation that this paper attempts to ameliorate by construct-
ng a multinational norm based on 1564 EEGs from 9 countries and
4 EEG devices. We used the novel collaboration strategy described in
azula et al., (2020) to facilitate data-sharing. Each site did not share

aw data but rather processed it with standardized software. The only
nformation shared for collaboration was anonymized data and the EEG
ross-spectrum of each subject. 

The diversity of countries and sites brought the problem of harmo-
ization to the forefront. Harmonization is the elimination of “batch
ffects ”. A batch effect is a nuisance variance due to cross-site equip-
ent differences, changes over time of parameters of experiments that
urport to measure the same underlying biological mechanisms, and
ifferent preprocessing of raw data. Genomics was the first to iden-
ify and minimize batch effects with statistical techniques. One such
ell-known technique is COMBAT, described in ( Johnson et al., 2007 ).
ubsequently, MRI multisite studies identified a similar problem where
atch effects may be due to different acquisition systems, or varia-
ions in protocols. Recent efforts to address batch effects have gained
raction in neuroimaging ( Fortin et al., 2018 ; Pomponio et al., 2020 ;
utherford et al., 2021 ). 

A multinational EEG norm faces an even greater need for harmo-
ization than MRI, because of the variability of recording systems from
ifferent vendors compounded by the lack of standards. Different ampli-
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1 For some calculations, using the complex value of an off-diagonal element 
𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) is inconvenient, and instead, we decompose these quantities into their 
real and imaginary parts (or absolute values and phases). We use the obvi- 
ous notation, for example, Real ( 𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) ) , Imag ( 𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) ) in the case of the cross- 
er transfer functions, electrode placement systems, preprocessing pro-
ocols beg the question of EEG batch effects. Despite the apparent need
or harmonization, to the best of our knowledge, there are no statistical
tudies of batch effects in qEEG. Therefore, we propose new statistical
echniques adapted to the nature of EEG spectra for this purpose and try
o identify what variables effectively define qEEG batches, testing their
ffect on the resulting harmonized norms and the final practical impact
n measuring BDD. 

We shall also remedy a current difficulty with qEEG norms. As men-
ioned before, these are predominantly either for broad band (BB) sen-
or space log-spectra DPs ( Ahn et al., 1980; John et al., 1988 )) or their
arrow band version ( Szava et al., 1994 ; Valdés et al., 1992 ). This pref-
rence for log-spectra ignores that all second-order (linear) properties of
uasi-stationary EEGs are encoded in the full cross-spectrum, a tensor or
ulti-dimensional array, Hermitian frequency-dependent matrices. The
iagonal of each matrix contains the spectra for that frequency. Using
nly that information for qEEG ignores the off-diagonal elements, which
re the cross-spectra. 

To explain the intrinsic geometric relation of spectra and cross-
pectra, we remind the reader that this type of data belongs to a Rie-
annian manifold. The related theory provides the unified framework

o deal with the cross-spectrum in a principled way. Proper distances
etween samples are not Euclidean as in usual multivariate statistics
ross-spectrum, but related concepts appropriate for Riemannian mani-
old ( Pennec, 1999 ; Bhatia, 2007 ; Congedo et al., 2017 ; Sabbagh et al.,
020 ). 

Cross-spectra are positive-definite Hermitian (HPD) matrices that lie
n a nonlinear manifold, a positive-definite cone ( Bhatia, 2007 ). Pre-
ious efforts of the PAVS lab to construct qEEG norms used the log-
rithm as a transformation towards Gaussianity and then followed up
ith ordinary univariate statistics cross-spectrum to construct norms
 Bosch-Bayard et al., 2001 ; Bringas Vega et al., 2019 ; Szava et al., 1994 ;
aboada-Crispi et al., 2018 ). In the Riemannian framework, the ma-
rix logarithm transforms the whole cross-spectral matrix towards mul-
ivariate Gaussianity (Riemannian vectorization ( Pennec et al., 2006 ;
arachant et al., 2012 ; Sabbagh et al., 2020 )). The approximate mul-
ivariate gaussian distribution of log matrix covariance matrices has a
ong history ( Leonard and Hsu, 1992 ) but has not yet been employed in
EEG. 

Riemannian geometry has become popular in the Brain-Computer
nterface (BCI) literature, with significant advantages for classification
recision ( Barachant et al., 2013 ; Congedo et al., 2017 ; Yger et al.,
017 ). Sabbagh et al., (2020) recently showed that Riemannian methods
mprove brain age estimation with MEG. However, to our knowledge,
he construction of Riemannian geometry-based developmental norms
or EEG or MEG has not been attempted. We remedy this situation in
his paper, constructing harmonized norms for the Riemannian vector-
zed cross-spectra and investigating the existence of batch effects for this
ype of multinational data. We also gauge the practical effect of these
echnical refinements on discriminant equations between out-of-sample
ontrols and pathological subjects. 

We alert the reader that our previous norms comprised scalp and
ource space log spectra ( Bosch-Bayard et al., 2001 ). The excessive com-
utational complexity of a Riemannian source cross-spectral analysis is
ut of the present paper’s scope we postpone this development to future
ork. 

This paper is organized as follows: the methods section contains (1)
he theoretical basis of traditional and Riemannian qEEG DPs; (2) Gath-
ring data and preprocessing for the multinational qEEG norm project;
3) Construction of the harmonized norms. In the section of results, we
resent (1) the quality control of the project; (2) the effect of centering
n the cross-spectrum. (3) the detection of the batch effect; (4) a pre-
entation of harmonized norms; and finally, we describe the validation
f the norms for detecting BDD. 

Table 1 collects the basic mathematical symbols used in this paper.
he notation for several indices is summarized in Table A1 
s

3 
. Methods 

.1. Traditional and Riemannian DPs based on EEG cross-spectrum 

Quantitative electroencephalography (qEEG) studies DPs obtained
rom the electroencephalogram (EEG). These DPs encode physiolog-
cally relevant information. Here we explain the frequency domain
Ps defined with the EEG cross-spectrum. Nonlinear frequency-domain
 Billings and Tsang, 1989a , 1989b ), time-domain ( Koenig et al., 2002 ),
r time/frequency domain ( Makeig et al., 2004 ) DPs are also essential.
n later stages of the multinational qEEG normative project, we will in-
lude these types of DPs. Table 2 summarizes EEG frequency domain
Ps, which we now describe formally. 

With (discrete) Fourier transform, the EEG signal 𝑣 𝑖,𝑒,𝑐 ( 𝑡 ) (for the
ubject 𝑖 , 𝑖 = 1 , … , 𝑁𝑖 , at the channel 𝑐, 𝑐 = 1 , … , 𝑁𝑐 and epoch 𝑒 ,
 = 1 , … , 𝑁𝑒 ) can be transformed to the frequency domain, 𝑣 𝑖,𝑒,𝑐 ( 𝜔 )
frequency 𝜔 = Δ𝜔, … , 𝑁𝜔 Δ𝜔 where Δ𝜔 is the frequency resolution)
hich is the complex-value coefficients. The covariance matrix across
ll epochs 𝑣 𝑖,𝑒,𝑐 ( 𝜔 ) is the cross-spectral matrix 𝐒 𝑖 ( 𝜔 ) at frequency 𝜔 . 𝐒 𝑖 ( 𝜔 )
s Hermitian with elements 𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) . Note that the set of all 𝐒 𝑖 ( 𝜔 ) for
ll frequencies 𝜔 = Δ𝜔, … , 𝑁𝜔 Δ𝜔 for a given subject 𝑖 is a 3-mode
ulti-dimensional array with dimensions 𝑁 𝑐 ×𝑁 𝑐 ×𝑁 𝜔 . We remind

he reader that this multi-dimensional array is also known as a ten-

or , which we denote by S 𝑖 ( Fig. 1-a ). This concept generalizes that of
 matrix. An intuitive way to think of the cross-spectral tensor S 𝑖 is to
onsider it a “slide box ” in which each "slide" is a cross-spectral ma-
rix ( Fig. 1 -a). We defer a more formal discussion about cross-spectra as
ensors to Appendix A for the interested reader. The set 𝑠 𝑖,𝑐 ,𝑐 ′ (∶) for all
requencies is known as a tube ( Fig. 1 -b). 

For example, in this paper, the channel number 𝑐 = 9 corresponds to
he recording at the left occipital channel in the 10–20 system O1. 

.1.1. Traditional qEEG DPs 

The most traditional DPs are the log-spectra which are obtained by
pplying the logarithm to the diagonal elements of cross-spectral matri-
es 𝐒 𝑖 ( 𝜔 ) ∈ ℙ 𝑁𝑐 and stacking them as a vector: 

𝝀( 𝜔 ) = 
[
𝜆𝑖,𝑐,𝑐 ( 𝜔 ) , 

]
, 

𝑖,𝑐,𝑐 ( 𝜔 ) = log 
(
𝑠 𝑖,𝑐,𝑐 ( 𝜔 ) 

)
, 

𝑐 = 1 , ..., 𝑁𝑐 

The complete set of log spectral DPs is then 𝐲 λ
𝑖 
∈ ℝ 

NcN 𝜔 ( Fig. 1 -c),
here 

 

λ
𝑖 
= 
[
𝝀𝑖 ( Δ𝜔 ) 𝑇 , … , 𝝀𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 

]𝑇 
(1) 

This vector is unconstrained, and therefore the assumption that the
 

λ
𝑖 

is sampled from a multivariate Gaussian distribution is reasonable,
roviding a natural link to quantify BDD using standard univariate and
ultivariate statistical distances. 

These are the “traditional DPs ” with which the PAVS lab developed
EEG norms calling the narrowband developmental equations “Devel-
pmental surfaces ” ( Szava et al., 1994 ) since they are bivariate func-
ions of frequency and age. Developmental Surfaces describe EEG scalp
hannels and sources ( Bosch-Bayard et al., 2001 ). These norms are now
xtensively used, with open-source data and code ( Bosch-Bayard et al.,
020 ; Valdes-Sosa et al., 2021 ). 

However, the log spectra DPs 𝐲 λ
𝑖 

are measures limited to separate
hannels. The relations between channels must be assessed to study the
ital aspect of functional connectivity. To do this, we must consider
he off-diagonal part of cross-spectral matrices 1 . A popular measure is
pectrum. 
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Table 1 

Basic mathematical symbols. 

𝑎 ∈ ℂ Scalar (lower-case font) 
𝐚 ∈ ℂ 𝑑 Vector of size 𝑑 (bold lower-case font), with 𝐚 = [ 𝑎 1 , … , 𝑎 𝑑 ] 𝑇 

𝐀 ∈ ℂ 𝑑 1×𝑑 2 Matrix with size 𝑑1 × 𝑑2 (bold-uppercase font) 𝐀 = [ 𝑎 𝑖,𝑗 |𝑖 = 1 , … , 𝑑1 , 𝑗 = 1 , … , 𝑑2 ] 
A ∈ ( ℂ ) 𝑑 1×𝑑 2×⋯ ×dn Tensor of size 𝑑1 × 𝑑2 ×… × 𝑑𝑛 (bold gothic font) A = [ 𝑎 𝑖 1 ,𝑖 2 , …, in |𝑖 1 = 1 , … , 𝑑1 , … , in = 1 , … , dn ] 
A ∈ ( ℂ ) 𝑑 1×𝑑 2×𝑑 3 (3-d tensor) Slices: frontal A ∶ , ∶ ,𝑘 ; lateral A ∶ ,𝑗, ∶ ; horizontal A 𝑖, ∶ , ∶ Fibers: column A ∶ ,𝑗,𝑘 ; row A 𝑖, ∶ ,𝑘 ; tube A 𝑖,𝑗, ∶ The colon “: ” denotes all elements in 

that dimension 
𝟏 𝑛 ∈ ℝ 

𝑛 ×1 The vector with size 𝑛 × 1 whose elements are equal to 1 
𝐈 𝑛 ∈ ℝ 

𝑛 ×𝑛 𝑛 × 𝑛 Identity matrix ‖𝐚 ‖ Euclidean norm of a vector, ‖𝐚 ‖ Δ
= 
√ ∑|𝑎 𝑖 |2 ‖𝐀 ‖𝐹 Frobenius norm of a matrix ‖𝐀 ‖𝐹 

Δ
= 
√

Tr ( 𝐀𝐀 𝐻 ) = 
√ ∑|𝑎 𝑖,𝑗 |2 . [ ⋅] 𝐻 is the conjugate transpose of a complex number vector or matrix. 

Tr Trace of a matrix. Tr ( 𝐀 ) = 
𝑑 ∑

𝑖 =1 
𝑎 1 , 1 + …+ 𝑎 𝑖,𝑖 + …+ 𝑎 𝑑,𝑑 

vech Half matrix vectorization, ℍ 𝑛 → ℂ 𝑚 , 𝑚 = 𝑛 ( 𝑛 + 1 ) ∕2 . Stacks the matrix’s lower triangle part, including the diagonal and column-wise 
into a vector 

vec h −1 The inverse operator of vech , ℂ 𝑚 → ℍ 𝑛 . Reassembles the vector to a matrix that the vector is lower-part including the diagonal of the 
matrix with column-wise 

⊙ Hadamard or elementwise matrix product 
𝐴 ∪ 𝐵 Union of the sets 𝐴 and 𝐵
𝑈∖ 𝐴 Set difference of 𝑈 and 𝐴 , the set of all elements of 𝑈 are not the member of 𝐴 
H The n-dimensional Hilbert space ℂ 𝑛 which inner product between vectors 𝐚 and 𝐛 is written as ⟨𝐚 , 𝐛 ⟩ or 𝐚 𝐻 𝐛 
𝕄 𝑛 The 𝑛 × 𝑛 complex matrix space, with the inner product for square matrices 𝐀 and 𝐁 , ⟨𝐀 , 𝐁 ⟩ = tr (𝐀 𝐻 𝐁 ). The associated norm is ‖𝐀 ‖𝐹 = 

√
Tr ( 𝐀 𝐻 𝐀 ) 

ℍ 𝑛 Hermitian matrix space with size 𝑛 × 𝑛 in 𝕄 𝑛 , such that ℍ 𝑛 = { 𝐀 ∈ 𝕄 𝑛 , 𝐀 𝐻 = 𝐀 } 
ℙ 𝑛 Positive-definite matrix space. Open subset in ℍ 𝑛 , ℙ 𝑛 = { 𝐀 ∈ ℍ 𝑛 , ⟨𝐱, 𝐀 ⟩ > 0 , ∀𝐱 ≠ 𝟎 } 
𝑇 𝐀 ℙ 𝑛 The tangent space to ℙ 𝑛 at point 𝐀 , 𝐀 ∈ ℙ 𝑛 , which can be written as 𝑇 𝐀 ℙ 𝑛 = { 𝐀 } ×ℍ 𝑛 

Table 2 

EEG frequency domain DPs. 

DP Name Definition 

Basic statistics 

𝑣 𝑖,𝑐,𝑒 ( 𝑡 ) ∈ ℝ 
𝑣 𝑖,𝑐,𝑒 ( 𝜔 ) ∈ ℂ 

EEG potential vector and its 
Fourier transform 

EEG potential of the individual 𝑖 , electrode 𝑐 of 𝑒 -th epoch at a time 𝑡 or frequency 𝜔 for the Fourier 
transform 

𝐒 𝑖 ( 𝜔 ) ∈ ℙ 𝑁𝑐 Cross-spectral matrix The covariance matrix of 𝑣 𝑖,𝑐,𝑒 ( 𝜔 ) across all epochs for an individual 𝑖 at the frequency 𝜔 which has been 
positive definite regularized 

S 𝑖 ∈ ( ℂ ) 
Nc ×Nc ×𝑁𝜔 Cross-spectral tensor S 𝑖 , ∶ , ∶ ,𝜔 = 𝐒 𝑖 ( 𝜔 ) 

Traditional DPs 

𝐲 λ
𝑖 
∈ ( ℝ ) NcN 𝜔 Log-spectrum DPs 𝐲 λ

𝑖 
= [ 𝝀𝑖 (Δ𝜔 ) 𝑇 , … , 𝝀𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 ] 𝑇 , 𝝀𝑖 ( 𝜔 ) ∈ ( ℝ ) 

Nc 

𝐲 r 
𝑖 
∈ ℝ 

𝑁 𝑚𝑁 𝜔 Coherence DPs 𝐲 r 
𝑖 
= [ 𝐫 𝑖 ( Δ𝜔 ) 𝑇 , … , 𝐫 𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 ] 𝑇 

𝐫 𝑖 ( 𝜔 ) ∈ ( ℝ ) Nm , Nm = Nc ( Nc + 1)∕2 
𝐲 ψ 

𝑖 
∈ ( ℝ ) NmN 𝜔 Phase DPs 𝐲 ψ 

𝑖 
= [ 𝛙 𝑖 (Δ𝜔 ) 𝑇 , … , 𝛙 𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 ] 𝑇 

𝛙 𝑖 ( 𝜔 ) ∈ ( ℝ ) Nm , Nm = Nc ( Nc + 1)∕2 

Riemannian DPs 

𝐲 θ
𝑖 
∈ ( ℂ ) NmN 𝜔 Riemannian DPs 𝒚 θ

𝑖 
= [ 𝛉𝑖 (Δ𝜔 ) 𝑇 , ..., 𝛉𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 ] 𝑇 

𝛉𝑖 ( 𝜔 ) ∈ ( ℝ ) 
Nm , Nm = Nc ( Nc + 1)∕2 

c  

𝑟

𝜓

𝐲

𝐲
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2 Empirical multivariate transformations can achieve this objective 
( Biscay Lirio et al., 1989 ), but they are time-consuming and not natural. 
ohence, the absolute magnitude of the complex correlation coefficients:

𝐫 𝑖 ( 𝜔 ) = vech 
[
𝑟 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) 

]
, 

 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) = 
||||||

𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) √
𝑠 𝑖,𝑐,𝑐 ( 𝜔 ) × 𝑠 𝑖,𝑐 ′ ,𝑐 ′ ( 𝜔 ) 

||||||, 
𝑐 ′, 𝑐 = 1 , … , 𝑁𝑐 (2) 

Also widely used is the phase: 

𝛙 𝑖 ( 𝜔 ) = vech 
[
𝜓 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) 

]
, 

 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) = arctang 

[ 

Real 
(
𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) 

)
Imag 

(
𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) 

)] 

, 

𝑐 , 𝑐 ′ = 1 , … , 𝑁𝑐 (3) 

The coherence and phase DPs for the whole tensor S 𝑖 are: 

 

r 
𝑖 
= 
[
𝐫 𝑖 ( Δ𝜔 ) 𝑇 , … , 𝐫 𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 

]𝑇 
 

ψ = 
[
𝛙 𝑖 ( Δ𝜔 ) 𝑇 , … , 𝛙 𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 

]𝑇 

𝑖 

4 
The 𝐲 r 
𝑖 

and 𝐲 ψ 
𝑖 

DPs have been widely used in connectivity research.
nfortunately, when bundled as a set with log-spectral DPs, these “tradi-

ional DPs ” are not jointly multivariate Gaussian 2 , even when applying
ny of the usual data transformations separately to each measure. 

.1.2. Riemannian qEEG DPs 

The difficulties of traditional DPs mentioned above can be remedied
ith the concept of Riemannian geometry. Since the cross-spectral ten-

or S 𝑖 comprises frontal slices 𝐒 𝑖 ( 𝜔 ) , we consider these first. 

.1.2.1. Riemann geometry of the cross-spectra at a single frequency. The
 𝑖 ( 𝜔 ) are well-known mathematical objects that we already identified
s Hermitian positive definite (HPD) matrices with unique properties,
s discussed in depth in Bhatia (2007) . In particular, these elements of
hese matrices do not distribute freely in Euclidean space but instead live
n the manifold of positive definite (PD) matrices ℙ 𝑁𝑐 and are restricted
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Fig. 1. The generation of traditional and Riemannian DPs. (a) The cross-spectral matrix 𝐒 𝑖 ( 𝜔 ) is the frontal slices of the tensor S 𝑖 ; (b) Fixing a channel and collecting 
all frequencies creates tubes 𝑠 𝑖,𝑐 ,𝑐 ′ (∶) . (c) Vertically stacking the diagonal tubes’ logarithm generates the traditional log-spectral DPs vector 𝐲 λ

𝑖 
∈ ( ℝ ) NcN 𝜔 for fixed 

channels. (d) Riemannian DPs result from the half-vectorization of the matrix logarithm of the geometrically centered 𝐒 𝑖 ( 𝜔 ) , producing the vectors 𝐲 θ
𝑖 
∈ ( ℝ ) NmN 𝜔 . The 

inverse process is labeled as 𝜽−1 which recovers S 𝑖 . 
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o a hyper-dimensional cone ( Pennec et al., 2006 ; Barachant et al.,
012 ). This property induces dependencies among the elements of each
atrix, hence the nonlinear nature of the underlying manifold. The

urved nature of this manifold precludes the use of simple Euclidean
istances to quantify distances between cross-spectra, impeding the cal-
ulation of the usual norms and distances of previously involved in
ormative qEEG. Fortunately, ℙ 𝑁𝑐 endowed with the affine invariant
etric, is a complete differentiable Riemannian manifold ( Bhatia, 2007 ;
ongedo et al., 2017 ). 

In more detail, each point 𝐒 𝑖 ( 𝜔 ) on the ℙ 𝑁𝑐 is associated with a
ocal Euclidean vector space, known as the tangent space, denoted
s 𝑇 𝐒 𝑖 ( 𝜔 ) ℙ 𝑁𝑐 . Each tangent space has a smoothly varying inner prod-
ct, which defines the Riemannian metric locally ( Pennec et al., 2006 ;
arachant et al., 2012 ; Congedo et al., 2017 ). We use two operators to
ass from the manifold to the tangent space and back. The logarithmic
apping projects the 𝐒 𝑖 ( 𝜔 ) to the tangent space 𝑇 𝐂 ℙ 𝑁𝑐 with respect to
 reference (centering) matrix 𝐂 ( Pennec et al., 2006 ), 

o g 𝐜 
(
𝐒 𝑖 ( 𝜔 ) 

)
= 𝐐 𝑖 ( 𝜔 ) 
= 𝐂 

1∕2 logm 

(
𝐂 

−1∕2 𝐒 𝑖 ( 𝜔 ) 𝐂 

−1∕2 )𝐂 

1∕2 

here logm denotes matrix logarithm 

3 . Furthermore, the inverse oper-
tor of logarithm mapping projects the tangent vector to the ℙ 𝑁𝑐 man-
fold with the exponential mapping, 

xp 𝐜 
(
𝐐 𝑖 ( 𝜔 ) 

)
= 𝐒 𝑖 ( 𝜔 ) 
= 𝐂 

1∕2 expm 

(
𝐂 

−1∕2 𝐐 𝑖 ( 𝜔 ) 𝐂 

−1∕2 )𝐂 

1∕2 

here expm is the matrix exponential. 
Thus, we can apply Euclidean calculations by transforming the orig-

nal curved ℙ 𝑁𝑐 manifold to the tangent space where we assume that
ocally Gaussianity holds ( Pennec, 1999 ). We achieve this transforma-
ion by the “Riemannian vectorization ” operator ( Pennec et al., 2006 ;
ongedo et al., 2017 ; Sabbagh et al., 2020 ) on cross-spectral matrices,
hich produce the vector 𝜽𝑖 ( 𝜔 ) with the transformation of the space
 𝑁𝑐 → ℂ 

𝑁𝑚 . 

𝑖 ( 𝜔 ) = vech 
[
logm 

(
𝐂 

−1∕2 𝐒 𝑖 ( 𝜔 ) 𝐂 

−1∕2 )] (4) 

hich is known as a parallel transport on the ℙ 𝑁𝑐 manifold. Selec-
ion of the matrix 𝐂 is crucial, and a typical choice is to select it
3 For matrix 𝐀 ∈ ℙ 𝑛 , if the eigen decomposition of 𝐀 is 𝐀 = 𝐔𝐋 𝐔 𝐻 , logm ( 𝐀 ) = 
 diag ( log ( 𝑙 1 ) , … , log ( 𝑙 𝑛 ) ) 𝐔 𝐻 and expm ( 𝐀 ) = 𝐔 diag ( exp ( 𝑙 1 ) , … , exp ( 𝑙 𝑛 ) ) 𝐔 𝐻 . 

5 
o whiten a given 𝐒 𝑖 ( 𝜔 ) , that is, to minimize ‖𝐒 𝑖 ( 𝜔 ) − 𝐈 Nc ‖2 𝐹 . For sev-
ral 𝐒 𝑖 ( 𝜔 ) , we need to center the whole sample with a single 𝐂 , so
hat statistical calculations are carried out in a common tangent space
 Arsigny et al., 2005 ; Barachant et al., 2013 ; Ng et al., 2016a ). This
bjective is best achieved when 𝐂 is closest in some sense to all
he 𝐒 𝑖 ( 𝜔 ) ( Hauberg et al., 2013 ; Ng et al., 2016a ). If we have rea-
on to believe that 𝐒 𝑖 ( 𝜔 ) are already whitened, then 𝐂 = 𝐈 𝑁𝑐 , which
s precisely the Log-Euclidean approach to Eq. (4) ( Barachant et al.,
013 ; Ng et al., 2016b ). Nevertheless, there is consensus that the
ptimal mean is 𝐶 = 𝐺( 𝑠 1 ( 𝜔 ) , ..., 𝑠 𝑁𝑖 ( 𝜔 ) ) where the function 𝐺 is the
archer mean ( Bhatia and Holbrook, 2006 ; Karcher, 1977 ), also known
s the Riemannian or geometric mean ( Moakher, 2005 ; Bhatia and
olbrook, 2006 ). Also see ( Tuzel et al., 2008 ; Barachant et al.,
012 ; Congedo et al., 2017 ). The estimation of the Karcher mean
s highly nonlinear and must be calculated using iterative methods.
n particular, we use the software implemented by Bini and Ian-
azzo (2013) ( http://bezout.dm.unipi.it/software/mmtoolbox/ ) based
n the Richardson-like iteration. Further details about the Riemannian
eometric mean calculation are in Appendix B.1 . We emphasize that
hough the calculation of the matrix 𝐂 is highly nonlinear, the appli-
ation of the centering operation 𝐂 

− 1∕2 𝐒 𝑖 ( 𝜔 ) 𝐂 

− 1∕2 is easily shown to be
inear. 

2.1.2.2. Riemannian geometry of the tensors S 𝑖 . Our objects of study
re the S 𝑖 tensors which are HPD tensors, not matrices. Fortunately, we
an leverage much work on specific third-order tensors ( Braman, 2010 ;
ilmer et al., 2013 ; Lund, 2020 ). These third-order tensors have time
r frequency as the third dimension, and an extensive theory associated
ith the “t-product ” has been developed, which the PAVS lab has pre-
iously used to study time series ( Karahan et al., 2015 ). Properties of S 𝑖 

ollow from those of the matrix 𝐒 𝐵 
𝑖 
= blockdiag ( 𝐒 𝑖 ( Δ𝜔 ) , … , 𝐒 𝑖 ( 𝑁𝜔 Δ𝜔 ) ) ,

hich belongs to ℙ 𝑁 𝑐𝑁 𝜔 thus inheriting all the properties described
n the previous section 4 . The centering operation in this new space
s 𝐂 

𝐵 − 1∕2 𝐒 𝐵 
𝑖 
𝐂 

𝐵 − 1∕2 , with 𝐂 

𝐵 = blockdiag ( 𝐂 ( Δ𝜔 ) , … , 𝐂 ( 𝑁𝜔 Δ𝜔 ) ) . When
e assume the same centering matrix for all frequencies, then C =

old ( blockdia g −1 ( 𝐈 𝑁𝜔 ⊗ 𝐂 )) . Thus, as with the single frequency case, es-
imating the centering matrix is a nonlinear operation, while applying
ensor centering 𝐂 

𝐵 − 1∕2 𝐒 𝐵 
𝑖 
𝐂 

𝐵 − 1∕2 is linear. We examine the most appro-
riate centering strategy for our data in Section 3.2 . 
4 𝐒 𝐵 
𝑖 

and S 𝑖 are isomorphic, see Appendix B.2 . 

http://bezout.dm.unipi.it/software/mmtoolbox/


M. Li, Y. Wang, C. Lopez-Naranjo et al. NeuroImage 256 (2022) 119190 

 

t

𝐲

 

t  

s  ‖‖‖
 

t  

e

𝐒

2

 

s  

b  

m  

d

𝐲

f
 

p

𝑧  

w  

m  

“  

M  

d  

d  

t  

i
 

f  

m  

t  

i  

s  

z

2

2

 

t  

n

 

 

 

t
 

p  

c  

E  

o  

a
 

c  

(  

s  

s  

c  

f
 

s  

t  

b
 

r

 

 

 

 

 

 

s  

f  

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 ⌈⋅⌉, round up to an integer. 
The application of Riemannian vectorization to the cross-spectral
ensor produces the DP 𝐲 θ

𝑖 
∈ ℂ 

NmN 𝜔 ( Fig. 1 -d), 

 

θ
𝑖 
= 
[
𝛉𝑖 ( Δ𝜔 ) 𝑇 , … , 𝛉𝑖 ( 𝑁𝜔 Δ𝜔 ) 𝑇 

]𝑇 
(5) 

This transformation guarantees that the 𝐲 θ
𝑖 
( 𝜔 ) more closely satisfy

he Multivariate Gaussianity assumption ( Pennec, 1999 ). Note that we
cale the off-diagonal 𝐲 θ

𝑖 
( 𝜔 ) by 

√
2 preserving the equality of norms

𝐂 

−1∕2 𝐒 𝑖 ( 𝜔 ) 𝐂 

−1∕2 ‖‖‖𝐹 
= ‖‖‖𝐲 θ𝑖 ( 𝜔 ) ‖‖‖2 . 

The inverse operation of Riemannian vectorization returns the vec-
ors from space of ℂ 

𝑁𝑚 back to manifold ℙ 𝑁𝑐 ( equation 8 of Sabbagh
t al., 2020 ): 

 𝑖 ( 𝜔 ) = expm 

(
𝐂 

−1∕2 (vec h −1 
(
𝐲 θ

𝑖 
( 𝜔 ) 

))
𝐂 

−1∕2 ) (6) 

.2. The definition of qEEG norms 

DPs are highly dependent on age and other covariates. For this rea-
on, and considering for the moment only age, they have been adjusted
y the “z transform ” ( John et al., 1977 )) to provide age-independent
easures of BDD. Formally, the z-score is based on the following model,
efined for any type of frequency domain DP 

 𝑖 ( 𝜔 ) = 𝝁( 𝜔, 𝑎 ) + 𝝈( 𝜔, 𝑎 ) ⊙ 𝐞 𝑖 , 𝐞 𝑖 ∼N ( 𝟎 , 𝐈 ) (7) 

or any frequency 𝜔 and age 𝑎 . 
Thus, the z score for any DP 𝑦 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) of an individual, for electrode

airs ( 𝑐 , 𝑐 ′) and frequency 𝜔 is expressed in scalar form as: 

 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) = 
𝑦 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) − �̂�𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) 

�̂�𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) 
(8)

here 𝜇𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) and 𝜎𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) are the frequency and age-dependent
ean and SD, respectively. The functions 𝜇𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) are known as

EEG Development Equations ”( Ahn et al., 1980; John et al., 1977;
atou š ek and Petersén, 1973 ) or “qEEG norms ”. This concept of age-

ependent norms also generalizes to include dependence on other in-
ependent variables such as sex, or as in the case of this paper coun-
ry/device/study (batches). We shall call the new equations described
n this paper “HarMNqEEG norm ”. 

The z-score is a probabilistic measure of the individual’s deviation
rom the normative population perhaps due to a BDD. Probabilistic state-
ents about a z-score are most straightforward when the distribution of

he DP for the normative sample is approximately Gaussian. Thus, it
s convenient to transform DPs with a function that ensures this Gaus-
ianity —a step carried out before calculating regression equations and
-scores. 

.3. The harmonized multinational qEEG project 

.3.1. Data acquisition 

The HarMNqEEG collaboration is creating multinational norms for
he cross-spectral tensors S 𝑖 . The collaboration had two main compo-
ents: 

• Preparation of the data by the collaborators at each site for sharing
information ( Fig. 2 -b) 

• Processing of the shared data to achieve harmonized norms ( Fig. 2 -
a). 

We now summarize the workflow, explaining details separately in
he subsequent sections. 

The project was launched by an open international call for
articipation via the Global Brain Consortium ( https://globalbrain
onsortium.org/ ). The collaborative model only shared processed data,
EG cross-spectral tensors S 𝑖 and anonymized metadata. This data was
6 
btained using the within-site software data_gatherer MATLAB program,
s shown in Fig. 2 -b. 

A prerequisite for any site to join the study was to have ethi-
al approval by the corresponding authorities to share processed data
EEG cross-spectra tensors S 𝑖 ) and anonymized metadata. The inclu-
ion/exclusion criteria for the normal subjects have been described re-
pectively in the reference, the last column of Appendix Table C1 . These
riteria are sufficiently and equally stringent to guarantee a sample of
unctionally healthy subjects. 

Each site submitted a “batch ” of samples. A sample contains a cross-
pectral tensor S 𝑖 and the metadata: sex, 𝑠 𝑖 age 𝑎 𝑖 and batch 𝑏 𝑖 . Here 𝑖
ags each individual. See the dimensions of S 𝑖 in the last block of Fig. 2 -
. 

To be accepted into the study, the batch had to fulfill the following
equirements: 

• It had to be part of a normative study or control group with explicit
inclusion and exclusion criteria (see below). 

• The S 𝑖 had to be obtained with the MATLAB script (data_gatherer)
from at least one minute of artifact-free, eyes closed, quasi-
stationary, resting-state EEG epochs 𝐯 𝑖,𝑒 ( 𝑡 ) . 

• Finally, the batch had to pass numerical quality control with partial
or total rejection of the batch or samples being possible (detail see
Section 3.1 ). 

We explain some design decisions of this project, which were neces-
ary given the significant difference in recording protocols for the dif-
erent batches. We homogenized a minimalistic set of specifications ap-
licable to all sites and devices: 

• Recordings were from the 19 channels 𝑁𝑐 = 19 of the 10/20 In-
ternational Electrodes Positioning System: Fp1, Fp2, F3, F4, C3,
C4, P3, P4, O1, O2, F7, F8, T3/T7, T4/T8, T5/P7, T6/P8, Fz, Cz,
Pz) ( Standards and Best Practices organization for open and FAIR
neuroscience | INCF ). 

• We started this effort from a legacy dataset, that of the first wave of
the Cuban Human Brain Mapping data. The data of 211 subjects were
stored as cross-spectral matrices sampled from 1.17 to 19.14 Hz,
with a 0.39 Hz resolution. Since this data set has been well studied,
we restricted the final analysis to the same range. 

• For the rest of the datasets, we required that the amplifiers used to
record all EEG data had at least a frequency response range from
0.5 to 35 Hz, even though subsequent processing reduced it to the
restrict range mentioned. 

• Each EEG was organized as a sequence of artifact-free 2.56 s
(The segment length of EEG data was ⌈( 1∕ 2 . 56 ) × ( SampleRate ) ⌉5 ).
This format allows a frequency resolution of Δ𝜔 = 0 . 39 Hz ( Bosch-
Bayard et al., 2022 ). 

• The scalp EEG cross-spectrum was calculated using Bartlett’s method
( Møller, 1986 ) by averaging the periodograms of more than 20 con-
secutive and non-overlapping segments. While the uniform window
of Bartletts method does not have the optimal statistical properties,
extensive comparisons with multi-taper spectrum estimation showed
little difference in the calculation of norms or machine learning clas-
sification. 

• We provided the instruction of artifact cleaning work for each site,
and the one-site artifact rejection did not include the use of ICA tech-
niques. 

• Following the principles of open science but respecting the re-
searchers’ rights to retain control of their raw data, all these function-
alities were encapsulated in a script programmed in MATLAB and
distributed among the researchers in each recording site. (GitHub lo-
cation of the script: https://github.com/CCC- members/BC- V _ group _
stat/blob/master/data _ gatherer.m ). Each site ran the script on their

https://globalbrainconsortium.org/
https://www.incf.org/
https://github.com/CCC-members/BC-V_group_stat/blob/master/data_gatherer.m
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Fig. 2. Dataflow of the collaboration for the Harmonized qEEG norms. (a) General overview. Each collaborative site collected resting-state EEGs from healthy 
control subjects in the eyes closed condition (obtained from a normative study). After within-site quality control and artifact rejection, the MATLAB “data_gatherer ”
script was used to obtain the EEG cross-spectrum for each participant, which, together with anonymized meta-data, constituted a “sample ”. These samples were 
shared with the central processing site and, after further calculations, yielded qEEG DPs, traditional and Riemannian. In turn, these DPs were used to construct 
the harmonized qEEG norms. An independent data set of healthy subjects and those with Brain Developmental Disorders allowed the comparison of the diagnostic 
accuracy of different DPs. Boxes shaded in gray indicate data and process private to each collaborative site; (b) Further details of within-site processing. Each site 
carried out initial quality control of raw EEG recordings and metadata (sample), using procedures for artifact rejection. Samples with cleaned EEG and encrypted ID 

were processed to cross-spectrum and the encrypted meta data for further sharing. 
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Fig. 3. Gives an overview of the age range of the samples is 5–97 years. The 
Age distribution of the Multinational qEEG norms sample is skewed towards 
younger ages, with relatively fewer samples older than 65 years. In addition, 
there is an almost balanced gender distribution for all the samples. 

2

G

 

t  

m

data and only shared the processing results without sharing their
raw data. Thus, they only shared the EEG cross-spectra, basic sub-
jects’ information as an anonymized code, age, and sex, as well as
technical parameters like recording conditions, montage, recording
reference, EEG device used, laboratory, and country. 

We define the term “batch ” as a specific combination of country,
evice, and year of recordings ( Table D1 ). Three different definitions of
atches reflect different hypotheses, namely: 

• (Country) Batches are the countries from which data comes. 
• (Device) Batches are the specific type of equipment from which data

come. 
• (Study) Batches are the specific projects which generate a dataset, a

combination of country, device, and the year of data recorded. 

We tested whether batches, defined in various ways, need to be ac-
ounted for when calculating qEEG normative equations. If there are
ystematic differences between the normative equations of each batch,
ne must add a batch-specific additive correction to these equations. 

The multinational call for the multinational qEEG norms and sub-
equent batch selection produced 1792 samples. After quality control,
amples diminished to 1564, with 783 females and 781 males. A further
reakdown of the samples by country, device, study, and age range is
n Table C1 . 

Fig. 3. The dataset was collected from 9 countries, including Barba-
os, China, Colombia, Cuba, Germany, Malaysia, Russia, Switzerland,
nd the USA. The ages of samples for multinational EEG norms cover
he whole life span (5–95 years). Sampling is skewed towards younger
articipants, reflecting sampling of normative projects involved. 
7 
.3.2. Preprocessing procedures and transformation of DPs towards 

aussianity 

To be able to pool all cross-spectrum under the same framework, at
he same time controlling for irrelevant nuisance variables, we imple-
ented the following preprocessing steps: 
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.3.2.1. Average reference. We carried additional centering of all cross-
pectrum matrices 𝐒 𝑖 ( 𝜔 ) from their original recording montages to the
verage reference ( Hu et al., 2019 ): 

̃
 𝑖 ( 𝜔 ) = 

[
𝐇 𝐒 𝑖 ( 𝜔 ) 𝐇 

𝑇 
]
1∶ ( 𝑁𝑐−1 ) , 1∶ ( 𝑁𝑐−1 ) 

ith the operator 𝐇 = 𝐈 𝑁𝑐 − 𝟏 𝑁𝑐 𝟏 𝑁𝑐 
𝑇 ∕ 𝑁𝑐 . This type of centering should

ot be confused with the centering described in the section on Rieman-
ian DPs. 

The average reference operation introduces an exact linear depen-
ence between electrodes, a property common to all unipolar references
 Hu et al., 2019 ). We deemed it expedient to eliminate one of the redun-
ant electrodes, for which we chose the electrode (Pz). Note that the
umber of electrodes 𝑁𝑐 changes from 19 to 18. 

.3.2.2. Regularization of symmetric semi-positive definite matrices. We
egularized sample cross-spectrum matrices to ensure them to be of full
ank. We used the Maximum likelihood shrinkage factor described in
 Schneider-Luftman and Walden,2016 ). The �̃� 𝑖 ( 𝜔 ) are Hermitian matri-
es, and frequently are rank reduced. To guarantee subsequent Rieman-
ian operations (especially the matrix logarithm operator), we regular-
zed �̃� 𝑖 ( 𝜔 ) to ensure positive definiteness. Regularization was achieved
ith Hilbert-Schmidt (HS) loss, 

 HS 
Δ
= 𝐸 

{ 

Tr 

{ ( 

⌢ 

𝐒 𝑖 
(
𝜔 ; 𝜌𝑖 

)
− ̃𝐒 𝑖 ( 𝜔 ) 

) 2 
} } 

= 𝐸 

{ ‖‖‖‖⌢ 

𝐒 𝑖 
(
𝜔 ; 𝜌𝑖 

)
− ̃𝐒 𝑖 ( 𝜔 ) 

‖‖‖‖
2 

F 

} 

For the ill-conditioned case, take the shrinkage coefficient as
alden and Schneider-Luftman (2015) , 

𝑖 ( 𝜔 ) = 

[ 

1 − 𝑁𝑒 

𝑁𝑐 
+ 𝑁𝑒 

𝛼

T r 2 
(
�̃� 𝑖 ( 𝜔 ) 

)] −1 

The estimation is, 

 

𝐒 𝑖 ( 𝜔 ) = (1 − 𝜌𝑖 ( 𝜔 ) ) ̃𝐒 𝑖 ( 𝜔 ) + 𝜌𝑖 ( 𝜔 ) 
Tr 
(
�̃� 𝑖 ( 𝜔 ) 

)
𝑁𝑐 

𝐈 𝑁𝑐 

here 𝛼 = Tr { ( ̃𝐒 𝑖 ( 𝜔 ) ) 2 } − ( 1∕ 𝑁𝑒 )T r 2 ( ̃𝐒 𝑖 ( 𝜔 ) ) , 𝑁𝑒 is the number of EEG
pochs here. 

.3.2.3. Global-scale factor correction. Though two EEG recordings may
how a similar appearance, they may differ significantly in overall am-
litude. This observation is modeled as a general gain factor which is
andomly varying for similar EEG data. These sources of variance arise
rom different EEG devices, recording conditions, amplifiers, and other
ubject characteristics (skull thickness, hair thickness, skin impedance,
nd other non-physiological factors). A solution to this nuisance source
f variability is to rescale the cross-spectra by a random general scale
actor (GSF) as described in Hernández et al., (1994) . These authors
howed that the maximum likelihood estimate of the GSF for an indi-
idual is the geometric average of all log power values across all deriva-
ions. 

For the sake of completeness, we summarized the GSF method here.
uppose for an individual 𝑖 , the EEG potential recorded at the electrode
is 𝑣 𝑖,𝑒,𝑐 ( 𝑡 ) = 𝛾𝑖 𝛽𝑖,𝑒,𝑐 ( 𝑡 ) , the global scale factor 𝛾𝑖 is independent of epoch
nd electrode and the constant 𝛽𝑖,𝑐 ( 𝑡 ) is the GSF-independent EEG scale.

aking the Eigen-decomposition 
⌢ 

𝐒 𝑖 ( 𝜔 ) = 𝚪𝑖 ( 𝜔 ) 𝐃 𝑖 ( 𝜔 ) 𝚪𝐻 

𝑖 
( 𝜔 ) , where 𝚪𝑖 ( 𝜔 )

s the eigenvector matrix and 𝐃 𝑖 ( 𝜔 ) is the diagonal matrix of eigenvalues.

escaling the 
⌢ 

𝐒 𝑖 ( 𝜔 ) we have: 

og 

⌢ 

𝐒 𝑖 ( 𝜔 ) 
𝛾2 

𝑖 

= 𝚪𝑖 ( 𝜔 ) log 
𝐃 𝑖 ( 𝜔 ) 

𝛾2 
𝑖 

𝚪𝐻 

𝑖 
( 𝜔 ) 

= 𝚪𝑖 ( 𝜔 ) 
(
log 𝐃 𝑖 ( 𝜔 ) − 𝜅𝑖 𝐈 

)
𝚪𝐻 ( 𝜔 ) 
𝑖 

8 
= 𝚪𝑖 ( 𝜔 ) log 𝐃 𝑖 ( 𝜔 ) 𝚪𝐻 

𝑖 
( 𝜔 ) − 𝜅𝑖 𝐈 

= log 
⌢ 

𝐒 𝑖 ( 𝜔 ) − 𝜅𝑖 𝐈 (9) 

Thus, the GSF affects the diagonal of the cross-spectrum (the log
pectra). The estimator of 𝜅𝑖 is the geometric mean of power spectrum,

𝑖 = 2 log ( 𝛾𝑖 ) , 

̂𝑖 = 
1 

𝑁𝜔 Nc 

𝑁𝜔 ∑
𝜔 =3Δ𝜔 

Nc ∑
𝑐=1 

log 
(

⌢ 

𝑠 𝑖,𝑐,𝑐 ( 𝜔 ) 
)

(10) 

Then the GSF-corrected cross-spectrum can be represented as, 
 

𝐒 𝑖 ( 𝜔 ) = 
⌢ 

𝐒 𝑖 ( 𝜔 ) ∕ exp 
(
�̂�𝑖 

)
(11)

.3.2.4. The logarithm of spectra and Riemannian vectorization of cross-

pectra. The final step is to transform the DPs towards gaussianity: 
For the traditional log-spectrum DPs, get 𝐲 λ

𝑖 
with diagonal logarithm

perator as in the Eq. (1) . To obtain 𝐲 λ
𝑖 
., we only apply steps 2.3.2.1 and

.3.2.3 for preprocessing. 
For the Riemannian DPs, we transform 𝐒 𝑖 ( 𝜔 ) to the Euclidean tangent

pace, 𝐲 θ
𝑖 

employing the Riemannian vectorization operator as in the
q. (5) . 

.4. Construction of multinational harmonized qEEG norms 

.4.1. Possible normative models 

Here, for the HarMNqEEG modeling, we work on the two types of
Ps, 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) , 𝑚 = λ or θ, where 𝑚 are types of DPs shown in Table 3 ,

hich we assume satisfy the gaussian distribution. In Table 3, we sum-
arize normative equations and related z-scores. 

Each 𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) can be expressed as a general linear model (GLM): 

 

𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) + 𝜎𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) 𝜀 𝑚 𝑖,𝑐 ,𝑐 ′

( 𝜔 ) , 𝜀 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) ∼N (0 , 1) (12) 

here 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) and 𝜎𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) are the population means and SD,

espectively. Henceforth, the value of a variable for an individual is de-
oted with a subscript, e.g. 𝑎 𝑖 . Also, the symbol " ⋅" instead of a variable
ndicates that it is pooled over all individuals. These conventions for
ndices are summarized in Appendix Table A.1. 

Unfortunately, the general HarMNqEEG model (12) is very “data
reedy ”, being too complex. For that reason, we explore more par-
imonious additive models, each depending on a smaller subset of
ariables. Instead of the general 𝜇𝑚 

𝑐 .𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) , we consider the ad-

itive models described in Table 4 . The most trivial model assumes
hat 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) is a constant 𝜇𝑚 

𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, ⋅) . Given PAVS lab prior

ork, we chose as fixed effects only frequency and age, with possi-
le models 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, ⋅, ⋅, ⋅) , 𝜇𝑚 

𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, ⋅) , and 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) . We then con-

ider additional constant additive random effects that depend on batch,
𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑏, ⋅) , sex, 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑠,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑠, ⋅) or batch

nd sex 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑠,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑠, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑏, ⋅) . We finally look at

he last level of complexity for the population mean: the additive ran-
om effects (for example, the random effect is a batch effect), instead of
eing constant, are now functions of frequency and age, 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, ⋅, ⋅, 𝑏 ) ,

𝑚 

𝑏,𝑐 .𝑐 ′
( ⋅, 𝑎, ⋅, 𝑏 ) , and 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, 𝑏 ) . 

Similarly to the mean, we model the standard deviation (SD)
s shown in Table 5 with fixed effects, for example, log 𝜎𝑚 

𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, ⋅)

r log 𝜎𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) . Additive batch random effects considered were

ither constant log 𝜎𝑚 
𝑏,𝑐 ,𝑐 ′

( ⋅, ⋅, ⋅, 𝑏 ) or functions log 𝜎𝑚 
𝑏,𝑐 ,𝑐 ′

( 𝜔, ⋅, ⋅, 𝑏 ) and
og 𝜎𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, 𝑏 ) dependent on frequency and age, respectively. To refer

o any specific normative model we combine the labels for the mean and
D contained in Table 4 and Table 5 . For example the norm with fixed
ean and SD is termed 0-A. 

When fitting these models, we follow a sequential strategy, fitting
rst the fixed effects and then, based on the residuals or z score of
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Table 3 

Normative equations and related z-scores. 

Variable Name Definition 

𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) DPs of type m For the subject 𝑖 , electrode pairs ( 𝑐 , 𝑐 ′) , at frequency 𝜔 . 𝑚 is any of the DPs types 𝑚 = {λ, θ, r, ψ} , 
and the definition of DPs types is in Table II. 

𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) The Normative mean of 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 𝔼 [ 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) ] 

𝜎𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) The normative standard deviation of 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 𝔼 [ ( 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) − ̂𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) ) 

2 ] 

𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) Global z-score 𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = 
𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 )− ̂𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

�̂�𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

𝜇𝑚 
𝑠 ∕ 𝑏,𝑐 ,𝑐 ′

( 𝜔, 𝑎, 𝑠, 𝑏 ) Sex/batch-corrected mean of 𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) 𝔼 [ 𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) ] 
𝜎𝑚 

𝑠 ∕ 𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) Sex/batch-corrected standard deviation of 𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 𝔼 [ ( 𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) − ̂𝜇𝑚 

𝑠 ∕ 𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 )) 

2 ] 

𝑧 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = 
𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 )− ̂�̃�𝑚 

𝑠 ∕ 𝑏,𝑐,𝑐 
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) 

̂̃𝜎𝑚 
𝑠 ∕ 𝑏,𝑐,𝑐 

( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) 

𝑧 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) Sex/batch-corrected z-score of 𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) ̂̃𝜇𝑚 
𝑠 ∕ 𝑏,𝑐,𝑐 

( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) = 
�̂�𝑚 

𝑠 ∕ 𝑏,𝑐,𝑐 
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) 

�̂�𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

̂̃𝜎𝑚 
𝑠 ∕ 𝑏,𝑐,𝑐 

( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) = 
�̂�𝑚 

𝑠 ∕ 𝑏,𝑐,𝑐 
( 𝜔, 𝑎 𝑖 , 𝑠 𝑖 , 𝑏 𝑖 ) 

�̂�𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

𝑦 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) Harmonized 𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) 𝑦 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = 𝑧 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) × �̂�𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) + ̂𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

𝜇𝑚 ∗ 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) The harmonized normative mean of 𝑦 𝑚 ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 𝔼 [ 𝑦 𝑚 ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) ] 

Table 4 

Extended bayesian information criterion of models for DPs. 

Model component type Label Population mean functions nBIC nEBIC 
𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

Ⅰ : Fixed effects 0 𝜇𝑚 
𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, ⋅) 1.000 0.995 

1 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, ⋅, ⋅, ⋅) 0.995 0.715 

2 𝜇𝑚 
𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, ⋅) 0.321 1.000 

3 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) 0.164 0.711 

Ⅱ : Constant random effects 4 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑏, ⋅) 0.154 0.285 

5 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑠,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑠, ⋅) ∗ 0.164 0.710 

6 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑠,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑠, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, ⋅, 𝑏, ⋅) ∗ 0.155 0.287 

Ⅲ : Functional random effects 7 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, ⋅, ⋅, 𝑏 ) 0.111 0.315 

8 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, 𝑏 ) 0.153 0.211 

9 𝜇𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, 𝑏 ) 0.127 0.631 

Table 5 

Models for the population logarithm SD. 

Label Population logarithm SD functions nBIC nEBIC 
𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

A log 𝜎𝑚 
𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, ⋅) 0.111 0.211 

B log 𝜎𝑚 
𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, ⋅) + log 𝜎𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, 𝑏 ) 0.104 0.041 

C log 𝜎𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) 0.014 0.107 

D log 𝜎𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎𝑚 

𝑏,𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, 𝑏 ) 0.008 0.008 

E log 𝜎λ
𝑐,𝑐 
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎λ

𝑏,𝑐,𝑐 
( 𝜔, ⋅, ⋅, 𝑏 ) 0 –

log 𝜎θ
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎θ

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, 𝑏 ) – 0 
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his fit, we fit the random effects if required. A concrete example of
his is deferred to Section 3.3 . All estimates of the mean function and
D functions (including fixed and random effects) are obtained with
he Nadaraya-Watson (NW) kernel regression ( Nadaraya, 1964 ). This
onparametric smoothing method depends on the bandwidth hyper-
arameter and the more smoothed the data, the less complex the model.
he complexity of the model is reflected in the “equivalent ” degrees of
reedom ( Fisher, 1922 ). Special consideration was given to estimating
he population variance as it does not have a Gaussian distribution as
ssumed by NW regression. Instead, for the variance, we used the mod-
fied NW regression to estimate the variance function for heavy-tailed
nnovation ( Chen et al., al.,2009 ). 

To stabilize sub-sample (batch or sex) estimators, we fixed their
mooths to the same bandwidth as the global smooth, thus using
he bandwidths obtained with all the data for the smaller samples.
he shared bandwidth chosen for each model is optimal for a given
P set { 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) , 𝑐 ′ ≤ 𝑐 = 1 , … , Nc } for the model 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) and
9 
𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) . In this paper, the bandwidths for the mean smooth were

.4 and 0.48 for frequency and age, respectively. The corresponding
andwidths for the variance smooth are 0.6 and 0.72. 

Due to the large amount of computation needed for our models, in-
tead of applying ordinary NW regression, we used an in-house proce-
ure Fast multivariate kernel regression with nufft (FKreg). Our FKreg is
 nonparametric multiple multivariate kernel regression based on a fast
inning algorithm ( Wand, 1994 ) which executes in 𝑂( 𝑛 + 𝑚 log 𝑚 ) oper-
tions instead of 𝑂( 𝑛𝑚 ) , and usually, the gridding points 𝑚 are less than
he number of samples 𝑛 . About the FKreg in-house code, we mention
hat it includes the capability for complex-valued DPs regression (The
aper of FKreg is under preparation). We, therefore, use the FKreg al-
orithm to estimate real and imaginary smooths of DPs simultaneously
ith a common variance. To our knowledge, this is the first instance
f complex-valued qEEG harmonized norms. We also used a fast band-
idth selection for multiple multivariate smooth. The speed-up was pos-

ible by the use of the randomized generalized-cross-validation (rGCV)
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o approximate the best range of degrees of freedom (df) ( Girard, 1989 ).
ubsequently, we fine-tune the df with the more accurate (but less time-
onsuming) method than Turlach and Wand (1996) . 

The COMBAT model ( Johnson et al., 2007 ) is our model 4-B for
 

𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) , GAMLSS ( Rigby and Stasinopoulos, 2005 ) is our model 7-E and

-E for 𝑦 λ
𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) separately. For Gaussian noise, both these

odels are just particular instances of our formulations. 

.4.2. Normative model selection 

As mentioned in Section 2.4.1 , the Eq. (12) can have different
pecifications. To find the optimal HarMNqEEG model, we minimize
nformation-theoretic measures that are a tradeoff between model fit
nd model complexity. For standard statistical scenarios, examples of
hese criteria are Akaike’s information criterion (AIC) ( Akaike, 1973 ),
ross-validation (CV) ( Stone, 1974 ), generalized cross-validation (GCV)
 Craven and Wahba, 1978 ). The Bayes information criterion (BIC)
 Schwarz, 1978 ) is of particular interest due to its good properties and
dopted in this paper. 

Unfortunately, for the Riemannian DPs, the number of DPs is large
ompared to the samples. This excess of variables is the “small-n-large-
 ” problem, common in bioinformatics and neuroimaging, making most
odel comparison criteria (including BIC) perform poorly. BIC performs

oo “liberally, ” usually picking excessively complex models. Chen and
hen (2008) proposed a correction for BIC in the “small n large p ” sce-
ario. They diagnosed that the uniform prior on the model space is the
ause of BIC’s liberality in the small-n-large-P setting. They correct this
roblem with a family of Extended Bayes information criteria (EBIC)
 Chen and Chen, 2012 ). The EBIC value for a model is, 

BIC = −2 ln ( L ) + 𝐾 log 𝑛 + 2 𝐾𝜂 log 𝑃 (13)

here 𝐾 is the model’s degree of freedom, L is the model likelihood, and
 is the number of DPs variables where the relation with sample number
s 𝑃 = O( 𝑛 𝑘 ) . The selection of 𝜂 should be 𝜂 > 1 − 1∕ 2 𝑘 . Here, for Rieman-
ian DPs, 𝑃 = 15288 ( 𝑁 𝜔𝑁 𝑐 2 ), 𝑛 = 1564 , we set 𝜂 = 0 . 7 . The calculations
f EBIC are independent for all possible models. To better compare the
BIC values, we use the normalized EBIC (nEBIC), scaled to [0,1] for
odel selection. For traditional DPs, since 𝑃 < 𝑛 , 𝑃 = 846 ( 𝑁 𝜔𝑁 𝑐), we
sed normalized BIC (nBIC) values for model selection. 

Table 4 and Table 5 show the nBIC and nEBIC values for the sequence
f tested models, containing results for both 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) sepa-

ately. We thus ranked models based on the nBIC/nEBIC criterion and
elected the optimal HarMNqEEG model with the lowest nBIC/nEBIC.
he model selection list here are the results for “batch ” defined by study
hat we did the parallel model selections with other batch definitions
country and device mentioned in Section 2.3.1 ) and selected the best
atch definition with lowest nBIC/nEBIC value Table E1 . 

We first examined the optimal structure for the mean function in the
quation, assuming a homoscedastic variance model that 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) was

 constant. The trivial model 𝜇𝑚 
𝑐 ,𝑐 ′
( ⋅, ⋅, ⋅, ⋅) , labeled as “0 ″ in Table 4, as-

umes no dependence on any covariates and is only included as a base-
ine null model. Models with frequency and age fixed effects, labeled
–3 in Table 4, were checked next. Note that a model depending on
requency alone did not noticeably lower the nBIC/nEBIC. On the other
and, modeling age substantially decreased the criterion. The combina-
ion of age and frequency achieved the minimum (marked with light
ray in the level Ⅰ ). Thus 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) was kept as a fixed effect for all

ubsequent models tested. 
Next, we turned attention to the models that add constant random

ffects related to sex or batch, labeled 4 to 6. One can see that the
est model depends only on the batch effect for 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) (marked with

ight gray in the level Ⅱ ). Surprisingly, including gender as a covari-
te does not improve the criterion. Gender also deteriorates model per-
ormance when batch effects are included (models with an asterisk).

e, therefore, discounted gender from further exploration. Finally, we
ocused on functional random additive effects for the homoscedastic
10 
odel family where batch interacts with age and frequency (models 7 to
). For 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) , the optimal model includes both variables 𝜇λ

𝑐,𝑐 
( 𝜔, 𝑎, ⋅, ⋅) +

λ
𝑏,𝑐,𝑐 

( 𝜔, ⋅, ⋅, 𝑏 ) . Contrary to our initial expectations, the random func-

ional effect chosen for 𝑦 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) was 𝜇θ
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇θ

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, 𝑏 ) , which

epended on age but not frequency. 
At this stage, an inspection of the models’ residuals suggested that

he homoscedastic assumption is not realistic. We, therefore, searched
or the best model for the SD, as we show in Table 5. All heteroscedas-
ic models improved substantially on the homoscedastic one (model 7-A
nd 8-A for 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) ). Note that we assumed that the model

or the SD should have a similar form as for the mean. This choice is plau-
ible, reducing the number of models to examine. The model with over-
ll lower nBIC/nEBIC is log 𝜎λ

𝑐,𝑐 
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎λ

𝑏,𝑐,𝑐 
( 𝜔, ⋅, ⋅, 𝑏 ) for 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) ,

nd log 𝜎θ
𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎θ

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅, 𝑏 ) for 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) . 

To summarize, the optimal normative model selected for 𝑦 λ
𝑖,𝑐,𝑐 
( 𝜔 )

as, 

𝜇λ
𝑐,𝑐 
( 𝜔, 𝑎, 𝑠, 𝑏 ) = 𝜇λ

𝑐,𝑐 
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇λ

𝑏,𝑐,𝑐 
( 𝜔, ⋅, ⋅𝑏 ) 

og 𝜎λ
𝑐,𝑐 
( 𝜔, 𝑎, 𝑠, 𝑏 ) = log 𝜎λ

𝑐,𝑐 
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎λ

𝑏,𝑐,𝑐 
( 𝜔, ⋅, ⋅𝑏 ) 

(14) 

The optimal model for 𝑦 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) was: 

𝜇θ
𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) = 𝜇θ

𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + 𝜇θ

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅𝑏 ) 

og 𝜎θ
𝑐 ,𝑐 ′
( 𝜔, 𝑎, 𝑠, 𝑏 ) = log 𝜎θ

𝑐 ,𝑐 ′
( 𝜔, 𝑎, ⋅, ⋅) + log 𝜎θ

𝑏,𝑐 ,𝑐 ′
( ⋅, 𝑎, ⋅𝑏 ) 

(15) 

.4.3. Optimal normative model 

The HarMNqEEG norms are data and procedures that calculate
lobal and harmonized z-scores. It does this by using the model (14)
or the 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) and the model (15) for the 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) . The norms thus

ontain information for calculating the global developmental surface of
eans and SDs, with additional batch corrections for the models de-

cribed in Section 2.4.2. For the 𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) , 𝑚 = λ or θ, the basic model is:

𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = 
𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) + 𝜇𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) + 𝜎𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) 𝜀 𝑚 𝑖,𝑐 ,𝑐 ′

( 𝜔 ) 
𝜀 𝑚 

𝑖,𝑐 ,𝑐 ′
∼N (0 , 1) 

For computational expediency, to carry out sequential z-scores for
he fixed and random effects, we rescale the random effects mean and
he SD by dividing them with the fixed effect SD that �̃�𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) =

𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) 

𝜎𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

and �̃�𝑚 
𝑏,𝑐 ,𝑐 ′

( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) = 
𝜎𝑚 

𝑏,𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) 

𝜎𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

. The modified model

ow reads: 

 

𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = 𝜇𝑚 
𝑐 ,𝑐 ′

(
𝜔, 𝑎 𝑖 , ⋅, ⋅

)
+ 𝜎𝑚 

𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, ⋅

)
�̃�𝑚 

𝑏,𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 

)
+ 𝜎𝑚 

𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, ⋅

)
�̃�𝑚 

𝑏,𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 

)
𝜀 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

𝜀 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) ∼N ( 0 , 1 ) 
(17) 

The steps to obtain the z-scores for 𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) are: 𝜇𝑚 
𝑏,𝑐 ,𝑐 ′

( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) and
𝑚 
𝑏,𝑐 ,𝑐 ′

( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) 

• We first ignore the possible batch effects and fit global estimates for
�̂�𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) and �̂�𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 

• We then calculate the “batch-free ” z-score value as 

𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) = 

𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) − �̂�𝑚 
𝑐 ,𝑐 ′

(
𝜔, 𝑎 𝑖 , ⋅, ⋅

)
�̂�𝑚 

𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, ⋅

) (18)

We obtain the batch-specific mean estimators ̂̃𝜇
𝑚 

𝑏,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) and

D estimators ̂̃𝜎𝑚 

𝑏,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 ) . The batch-harmonized z-score is: 

 

𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) = 

𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) − ̂̃𝜇𝑚 

𝑏,𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 

)
̂̃𝜎
𝑚 

𝑏,𝑐 ,𝑐 ′
(
𝜔, 𝑎 𝑖 , ⋅, 𝑏 𝑖 

) (19) 

The HarMNqEEG norms 𝜇𝑚 ∗ 
𝑐 ,𝑐 ′
( 𝜔, 𝑎 ) for 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) are obtained by

moothing the batch harmonized 𝑦 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) , 𝑦 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) = �̂�𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) ×

 

𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) + �̂�𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) 
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Note that since we removed all random effects, we can omit the "."
ymbols and use the notation 𝜇𝑚 ∗ 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 ) for the mean functions. 

. Results 

.1. Quality control 

We implemented three distinct stages of quality control: 

1. The first filter for quality control and correction or elimination of
outliers was at each recording site. At each site, the batches submit-
ted had to be part of a normative study or control group with explicit
inclusion and exclusion criteria ( Table C.1) . 

2. As mentioned before, the centralized processing team did not have
access to the raw EEG data but rather only to the cross-spectra. Pre-
liminary quality control for each sample consisted of visual inspec-
tion of a) the topographic map of 𝑦 λ

𝑖 
( 𝜔 ) at representative frequencies

and b) the 𝑦 λ
𝑖 
( 𝜔 ) from 1.17 Hz to 19.14 Hz. At least two certified

clinical neurophysiologists carried out independent evaluations to
avoid subjectivity. The criterion for rejection of cases was overall
extreme deformation from expected patterns. There was no attempt
to enforce a “very typical pattern ” such as the presence of an alpha
peak since this may be absent in many normal subjects. Examples of
accepted and rejected cross-spectra are shown in Fig. S.1, where (a)
is an accepted sample (b) is a rejected sample, whose highest power
was not at the occipital lobe. Additionally, the spectra are almost
flat, indicating the prevalence of noise. 

3. Once all batches were gathered, we conducted a machine-learning
check for outliers. This centralized second stage quality control step
is explained below in detail. 

In qEEG research, as in all forms of data science, outliers are a prob-
em that violates assumptions and can derail model estimation, compar-
son, and inference. Outliers are a common problem that can arise at any
tep in the whole qEEG pipeline due to: recording artifacts, mistakes in
lectrode ordering, missteps in data processing, and other factors. 

In this study, we carry out outlier detection based on the distribution
f DP z-scores 𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) . We assumed that acceptable data conformed to

 multivariate Gaussian distribution. We then leveraged the fact that the
aximum likelihood covariance estimator (MLE) is sensitive to outliers

nd that effect spills over to the derived Mahalanobis Distance (MD).
terative methods for robust MD ( Leroy and Rousseeuw, 1987 ) calcu-
ate a corrected MD and make it easy to diagnose multivariate normality
 Olive, 2004 ) and identify outliers samples. Specifically, before attempt-
ng the construction of harmonized norms, we detected and eliminated
utlier subjects for 𝑦 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) , 𝑚 = {λ, θ} values separately. We first calcu-

ated each subject’s 𝑧 𝑚 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) according to the model Eq. (8) . We then
reate a data matrix where each subject is an observation ( 𝑛 = 1564 ),
easured on the 𝐳 λ

𝑖 
( 𝑃 = 𝑁 𝜔𝑁 𝑐 = 47 × 18 = 846 ) and 𝐳 θ

𝑖 
( 𝑃 = 𝑁 𝜔𝑁 𝑐 2 =

7 × 18 2 = 15288) . 
Because of the small-n-large-P, we first carry out a nonlinear data

apping to a low dimensional component space using the t-distributed
tochastic neighborhood embedding (t-SNE) ( Van der Maaten and Hin-
on, 2008 ). This reduction allows us to compute both the Classical and
obust Mahalanobis distances (CMD, RMD) of each sample. We employ

he robust estimates Minimum Covariance Determinant (FAST-MCD)
ethod ( Rousseeuw and Driessen, 1998 ) for the normative sample’s
ean and covariance matrix. It is then convenient to detect outliers

rom the D-D plot (Scatter plot of CMD versus RMD). In the absence of
utliers, the data points cluster around the line y = x . By contrast, out-

iers deviate from this pattern with a practical threshold being 
√ 

𝜒2 2 , 0 . 975 
he value of inverse chi-square cumulative distribution with two degrees
f freedom for probability equal to 0.975 

The results of this analysis are shown in Fig. 4 (dots indicate accepted
amples, colored by study, and red crosses are outliers). We found that
ost data samples are closely grouped in the low dimensional space
11 
or 𝐳 λ
𝑖 

and 𝐳 θ
𝑖 

shown in Fig. 4 -a and b separately, and the exceptions
re some outlier points, as shown in Fig. 4 -b. At the same time, we can
umerically identify these outliers quickly by inspection of the D-D plot
 Fig. 4 -c and d). Non-outlier data points cluster tightly around the y = x
ine since their RMD and CMD should be similar. Outliers have a larger
han expected RMD and CMD, as quantified by the Chi-square criteria
vertical and horizontal red lines of coordinate axes) ( Fig. 4 -c and d). 

Centralized quality control was carried out iteratively, with feed-
ack about each batch at each site. We detected mistakes in using the
atherer program or selecting the normative sample —evidenced by a
omplete batch consisting of outliers. An example of this type of error
as a batch with the EEG channels ordered incorrectly —correction of

his order eliminated the majority of outliers. With these types of errors
orrected, the number of outliers diminished considerably. 

As a consequence of this outlier detection step, we identified and
liminated 191 subjects from the samples used for the norm calcula-
ion of 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) , which reduced the final samples number to 1373. By

ontrast, there are no outliers for 𝑦 λ
𝑖,𝑐,𝑐 
( 𝜔 ) . 

.2. Choice of centering matrix 

Fig. 5 presents the degrees of whitening achieved by different cen-
ering procedures, measured by half the Frobenius norm between the
oherency matrices and the Identity matrix ( Schott, 2005 ). Any type of
entering is a highly significant improvement in spatial whitening. A
requency-specific centering, rather than an overall common one, per-
orms better in delta, theta, and alpha bands, while a common centering
perator has advantages in the beta band. These results are confirmed
ith a paired test ( p = 0.05, with FDR to correct for multiple compar-

son correction with q = 0.05 ( Benjamini and Yekutieli, 2001 )) with
ignificant results shown as a black bar under the mean curves. 

.3. Batch harmonization results 

Section 2.4.3 suggests that qEEG norm models must include batch
ffects. It remains to see if this effect has practical consequences. A pos-
ible result of ignoring these batch effects is that 𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) may not dis-

ribute as standard Gaussian variables. In this case, harmonizing samples
f batch harmonized z-scores 𝑧 𝑚 ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) (obtained with Eq. (19) ) should

emedy this. 
Indeed, Fig. 6 -a compares the histograms of 𝑧 θ

𝑖, Fp 1 , O2 ( 𝜔 ) ( Fig. 6 -a) and

 

θ∗ 
𝑖, Fp 1 , O2 ( 𝜔 ) ( Fig. 6 -b) for the different batches. With the histogram of the

 

θ
𝑖, Fp 1 , O2 ( 𝜔 ) for each batch, suggests they are not standard Gaussian. Note
hat this effect is not evident in the histogram of the aggregated global
 scores pooling all batches ( Fig. 6 -c). The histograms for each batch
re more closely gaussian for the harmonized 𝑧 θ∗ 

𝑖, Fp 1 , O2 ( 𝜔 ) ( Fig. 6 -b), now
n correspondence with the appearance of the aggregate for all batches
ig. 6 -d. 

The harmonization effect is also evident in the scatter plots of the
 

θ
𝑖, Fp 1 , O2 ( 𝜔 ) as a function of frequency and age. There are slight but de-
ectable deviations of the z-scores of each batch from a symmetric dis-
ribution around the zero plane ( Fig. 6 -e). However, for the 𝑧 θ∗ 

𝑖, Fp 1 , O2 ( 𝜔 ) ,
hese deviations are removed ( Fig. 6 -f). The corresponding results of
 

λ
𝑖, O2 , O2 ( 𝜔 ) and 𝑧 λ∗ 

𝑖, O2 , O2 ( 𝜔 ) are shown in Fig. S.2. 
Additional insight about the effect of harmonization follows from

he manifold learning method t-SNE. With all the subjects as observera-
ions, we project the 𝐳 θ

𝑖 
to a common two-dimensional space and see

hat the data points form clusters, each corresponding to a different
atch ( Fig. 7 -a). After harmonization, in the t-SNE plot for the 𝐳 θ∗ , these
lusters disappear ( Fig. 7 -b). This batch correction effect also occurs for
ultivariate spectral measures. Clustering of 𝐳 λ

𝑖 
and their disappearance

or 𝐳 λ∗ are shown in Fig. S.3. 

𝑖 
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Fig. 4. Outlier detection for traditional log-spectrum and Riemannian z-scores. Each batch (study) is coded with a different color. Subplots (a) and (b) are two- 
dimensional representations of DPs via t-SNE, for traditional log-spectrum 𝐳 λ

𝑖 
and Riemannian z-scores, 𝐳 θ

𝑖 
. Subplots c) and d) are the corresponding D-D (Robust- 

Mahalanobis distance versus Mahalanobis distance) plots with limits for outlier detection set at the conventional level, confirming the existence of outliers for 
Riemannian z-scores. Dots indicate accepted sample points and red crosses outliers. There are no outliers for 𝐳 λ

𝑖 
. 

Table 6 

The effect of harmonization on the mean and SD of z-scores. 

Metric 
Null hypothesis rejected times for mean values (Proportion). Null hypothesis rejected times for SD values (Proportion) 

p = 0.01 p = 0.05 p = 0.01 p = 0.05 

𝑧 λ
𝑖,𝑐,𝑐 
( 𝜔 ) 194(77%) 195(77%) 197(78%) 208(83%) 

𝑧 λ∗ 
𝑖,𝑐,𝑐 
( 𝜔 ) 0 0 0 0 

𝑧 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) 3173(70%) 3232(71%) 3575(79%) 3614(80%) 
𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 0 0 0 0 
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Furthermore, these graphical demonstrations of batch effect can also
e confirmed by testing whether 𝑧 λ

𝑖,𝑐,𝑐 
( 𝜔 ) , 𝑧 λ∗ 

𝑖,𝑐,𝑐 
( 𝜔 ) , 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) , and 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 )

ave mean 0, and variance 1 —which would follow from these vari-
bles having a standard Gaussian distribution. We used MATLAB func-
ions ttest for the mean and vartest for the variance, choosing signifi-
ance levels of p = 0.01 and p = 0.05 for tests. Additionally, we used
DR correction for multiple comparisons with false discovery rate level
 = 0.05 ( Benjamini and Hochberg, 1995 ). There are 252 ( 𝑁 𝑏𝑁 𝑐 =
4 × 18 , 𝑁𝑏 is the number of batches) times test for 𝑧 λ

𝑖,𝑐,𝑐 
( 𝜔 ) , 𝑧 λ∗ 

𝑖,𝑐,𝑐 
( 𝜔 )

nd 4536 ( NbN 𝑐 2 = 14 × 18 2 ) times test for 𝑧 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) and 𝑧 θ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) in total.
able 6 shows the null-hypotheses rejected proportion for four metrics.
efore harmonization, there are batch effects that the z-scores of 𝑧 λ

𝑖,𝑐,𝑐 
( 𝜔 )

nd 𝑧 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) are not standard Gaussian distribution for both p = 0.01 and

 = 0.05. After harmonization, the test statistic for 𝑧 λ∗ 
𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 )

re never rejected, providing further assurance that batch effects are
orrected. 

.4. The HarMNqEEG norms 

To see how well the Riemannian norms approximate the classical
orms, we first calculate the “surrogate ” cross-spectral norms according
12 
o Eq. (6) based on the norms in Section 2.4.3: 

 0 ( 𝜔, 𝑎 ) = expm 

(
𝐂 

−1∕2 (vec h −1 
(
𝝁θ∗ ( 𝜔, 𝑎 ) 

))
𝐂 

−1∕2 ) (20) 

We then obtain surrogates of the traditional norms from these cross-
pectral norms, 𝐒 0 ( 𝜔, 𝑎 ) . The process is summarized in Table 7 . 

We first show in Fig. 8 examples of harmonized developmental sur-
aces for the diagonal elements Fp1, O1, and O2. Subplots a to c corre-
pond to the measures 𝜇λ∗ 

𝑐,𝑐 
( 𝜔, 𝑎 ) , 𝜇θ∗ 

𝑐,𝑐 
( 𝜔, 𝑎 ) , and 𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) . To be noted,

ig. 8 -a (the detail in Fig. S.4) is similar to the developmental surfaces re-
orted in Szava et al.,( 1994 ). Our current, more extensive, multinational
ataset produces very similar results to the previous, smaller, single-
ountry study ( Szava et al., al.,1994 ). Fig. 8 -b shows the surfaces of
θ∗ 
𝑐,𝑐 
( 𝜔, 𝑎 ) (detailed in Fig. S.5), which are quite different from those in

ig. 8 -a, 𝜇λ∗ 
𝑐,𝑐 
( 𝜔, 𝑎 ) . These differences are not surprising considering the

ighly nonlinear nature of the transformations involved in passing to
he manifold tangent space —involving centering with the Riemannian
eometric mean and a matrix-logarithmic transformation. Importantly,
he consistency of the norm construction procedure is illustrated by the
oncordance between the traditional log-spectra 𝜇λ∗ 

𝑐,𝑐 
( 𝜔, 𝑎 ) ( Fig. 8 -a) and

he surrogate log-spectra 𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) ( Fig. 8 -c) confirming the results of
zava et al., (1994) . Thus, when analyzing traditional log-spectral mea-
ures, 𝜇λ∗ 

𝑐,𝑐 
( 𝜔, 𝑎 ) we base our subsequent analyses on 𝐒 0 ( 𝜔, 𝑎 ) . 
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Table 7 

Surrogate traditional normative equations. 

Variable Name Definition 

𝐒 0 ( 𝜔, 𝑎 ) Surrogate cross-spectral norm expm ( 𝐂 −1∕2 ( vec h −1 ( 𝝁θ∗ ( 𝜔, 𝑎 ))) 𝐂 −1∕2 ) 
𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) Surrogate log-spectral norm log ( 𝐒 0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) ) 

𝜇r 0 ,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) Surrogate coherence norm 

|||| 𝑠 0 ,𝑐 ,𝑐 ′ ( 𝜔,𝑎 ) √
𝑠 0 ,𝑐,𝑐 ( 𝜔,𝑎 )×𝑠 0 ,𝑐 ′ ,𝑐 ′ ( 𝜔,𝑎 ) 

||||
𝜇
ψ 
0 ,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) Surrogate phase norm arctang 

[
Re al ( 𝑠 0 ,𝑐 ,𝑐 ′ ( 𝜔,𝑎 )) 
Im ag ( 𝑠 0 ,𝑐 ,𝑐 ′ ( 𝜔,𝑎 )) 

]

Fig. 5. Spatial whitening effect of several centering operations applied to the 
cross-spectral matrices. Solid thick lines represent the norms calculated across 
all subjects with the colored backgrounds delimiting the 0.01 confidence inter- 
vals). Shown are the means for no centering (blue), common centering for all 
frequencies(green), and centering separately at each frequency (red). The thick 
black bar below the curves marks the frequencies at which the two centering 
strategies are significantly different. A paired t -test determines these differences 
with a significance level p < 0.05 corrected for multiple comparisons by an FDR 
with q = 0.05. 
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Fig. 9 provides a more detailed view of the surrogate log-spectral
evelopmental surface already shown in Fig. 8 -c. Fig. 9 -a, shows the
urface of 𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) for all frequencies at fixed younger ages (5, 15,
5, and 40). Fig. 9 -b shows similar plots for older ages (45, 60, 80, and
5). Orthogonal view of 𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) are shown in Fig. 9 -c, document-
ng changes with age at a few specific frequencies (2 Hz, 8 Hz, 10 Hz,
5 Hz) —the vertical lines on this figure mark 7, 16 and 50 years. 

These plots of 𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) show that children have higher values than
ther ages at the lower frequency bands (delta and theta). By con-
rast, alpha activity increases in magnitude, and its peak moves to-
ards higher frequencies. The alpha peak stabilizes around 25 years
ntil around 40 years. After 40 years old, the alpha peak moves back
owards lower magnitudes and frequencies, albeit slightly. For Fig. 9 ,
etailed illustrations are in the supplement (Fig. S.6). 

Next, we present the norms for the off-diagonal part 𝑐 ≠

 

′, ( Fp 1 , O1) or (O1 , O2) with surrogate coherence and phase develop-
ental surfaces. We show the same types of plots as in Figs. 8 and 9 .
he Figs. 10–12 show the developmental surface of surrogate coherence
nd surrogate phase. From Figs. 10 -a and 11 , we can see that the co-
erences 𝜇r 0 ,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) increase from early childhood to around 40 years
nd after 40 years slightly decrease until around 50, subsequently in-
reasing again after 50. Coherences are maximal at around 10 Hz for
ll ages. Figs. 10 -b and 12 show the surrogate phase’s developmental
urface and detailed information. With age, the phase increases from
13 
hildhood to age 20, later decreasing until 50, to increase afterward un-
il 95 ( Fig. 12 -a to 12 -b). The highest phases are at 10 Hz for all ages
 Fig. 12 -c). Here, to better express the range of phases, we show the
esults for channel pair ( Fp1 , O1 ) , − 𝜇ψ 0 , Fp 1 , O1 ( 𝜔, 𝑎 ) + 𝜋 and − 𝜇ψ 0 , O1 , O2 ( 𝜔, 𝑎 )
or channel pair ( O1 , O2 ) 

.5. Validation of the HarMNqEEG norms for classification of 

choolchidren who suffered malnutrition in the first year of life 

To check the validity of our new harmonized qEEG norms, we re-
isited the problem of using the qEEG to classify school-children who
uffered from Protein Energy Malnutrition (PEM) limited to the first year
f life (BMal) and to distinguish them from healthy classmate controls
BCtrl), who were matched by age, sex, and handedness. Prior work is
escribed in Bringas Vega et al. (2019) , Taboada-Crispi et al. (2018) .
his work is part of the Barbados Nutrition Study– a project that is still
ngoing for nearly half a century ( Galler et al., 1983a , 1983b ). 

With the 𝑧 λ
𝑖,𝑐,𝑐 
( 𝜔 ) , we previously achieved excellent robust elastic-

et discrimination between BCtrl and BMal. Those z-transforms were
btained using the CU1990 qEEG norms ( Bosch-Bayard et al., 2020 ). 

With the new tools developed in this paper, we gauge the effect on
he discrimination between the two groups of three enhancements (a)
se of multinational instead of a national norm, (b) Use of 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) in-

tead of 𝑦 λ
𝑖,𝑐,𝑐 
( 𝜔 ) , and c) Use harmonized multinational norms. 

To answer these questions, we constructed several datasets as shown
n the Venn diagram ( Fig. 13 -a): 

• Barbados 1978 malnutrition (BMal) comprising 𝑁𝑖 = 44 samples; 
• Barbados 1978 Control (BCtrl) comprising 𝑁𝑖 = 62 samples. 
• In this case, the norms used to calculate z-scores were the com-

plete HarMNqEEG dataset (MN) but excluding the Barbados controls
(MN\BCtrl). This modification of the normative data set avoided val-
idation bias. 

After forming these sets and training tests, we processed two types
f test DPs for the validation ( Fig. 13 -b). We carried out the following
teps: 

• Obtain the 𝑦 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) of the groups BMal and BCtrl by using the geo-
metric mean of MN\BCtrl when centering as in Eq. (4) . Subsequently
calculate 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) of BMal and BCtrl. 

• Estimate the normative mean �̂�𝑚 
𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) and SD ̂𝜎𝑚 

𝑐 ,𝑐 ′
( 𝜔, 𝑎 𝑖 , ⋅, ⋅) with

the dataset MN\BCtrl. 
• Obtain the global z-scores 𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) as in the formula (18). 

• Obtain the batch harmonized z scores 𝑧 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) as in the formula (19).

To carry out the batch correction in the final step, and due to the lack
f a larger sample of BCtrl, we plugged in the CU1990 random effect
stimator. We base our choice of the CU1990 sample for the batch cor-
ection on the social, ethnic, and climatic similarity between Cuba and
arbados and prior studies that indicated that the Cuban norms describe
he variability of the BCtrl group ( Taboada-Crispi et al., 2018 ). Thus,
e enter the statistical learning procedure with the following types of

-scores for BMal and BCtrl: 
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Fig. 6. Histograms and scatter plots for 𝑧 θ
𝑖, Fp 1 , O2 ( 𝜔 ) before and after harmonization. Each batch (study) is coded with a different color. (a) Histograms of z-score 

𝑧 θ
𝑖, Fp 1 , O2 ( 𝜔 ) for each batch separately, and (c) for all batches superimposed; (b) Histograms of batch harmonized Riemannian DP z-score 𝑧 θ∗ 

𝑖, Fp 1 , O2 ( 𝜔 ) for each batch 

separately, and (d) with all batches superimposed. (e) Scatter plot of 𝑧 θ
𝑖, Fp 1 , O2 ( 𝜔 ) as a function of frequency and age; (f) Scatter plot of 𝑧 θ∗ 

𝑖, Fp 1 , O2 ( 𝜔 ) as a function of 
frequency and age, after harmonization. 
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Type of DPs 𝑦 λ
𝑖,𝑐,𝑐 
( 𝜔 ) 𝑦 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

qEEG norms 𝑧 λ
𝑖,𝑐,𝑐 
( 𝜔 ) 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

HarMNqEEG norms 𝑧 λ∗ 
𝑖,𝑐,𝑐 
( 𝜔 ) 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

We evaluate the discriminatory power of z-score types based on an
lastic-net regression using the SSRC (Stable Sparse Robust Classifier)
oolbox of Bosch-Bayard et al. ( 2018 ). The SSRC toolbox was previ-
i  

14 
usly used for this same dataset in Bringas Vega et al. (2019) . SSRC
ses multiple resampling to select a stable set of predictors and then
with additional independent resampling) to estimate the ROC curves
or discrimination between both groups. We plot the ROC curve and
eport the Area under the ROC curve (AUC) for each type of z-score.
esides the AUC for the whole ROC curve, we also report the standard-

zed partial AUC (spAUC) ( McClish, 1989 ) for the discriminant scores
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Fig. 7. Low dimensional scatter plots of Rie- 
mannian DP z-scores 𝐳 θ

𝑖 
, before and after har- 

monization. The low dimensional representa- 
tion is a nonlinear mapping (via t-SNE) of 
z-scores of all Riemannian DPs onto two di- 
mensions. Each axis is log-transformed. Points 
represent subjects, colored-coded by batch 
(study). (a) Low dimensional unharmonized 
𝐳 θ

𝑖 
form clusters; (b) Low dimensional harmo- 

nized 𝐳 θ∗ 
𝑖 

lack cluster structure. 

Fig. 8. Examples of harmonized normative means for channel pairs 𝑐 = 𝑐 ′ as a function of frequency and age. Normative means (Developmental surfaces) with 
examples 𝑐 = 𝑐 ′ = Fp 1 or O1 or O2 .(a) Traditional log-spectra 𝜇λ∗ 

𝑐,𝑐 
( 𝜔, 𝑎 ) ; (b) The Riemannian norm 𝜇θ∗ 

𝑐,𝑐 
( 𝜔, 𝑎 ) ; (c) Surrogate log-spectrum norm 𝜇λ0 ,𝑐,𝑐 ( 𝜔, 𝑎 ) , reconstructed 

from the normative mean of 𝐒 0 ( 𝜔, 𝑎 ) . 

t  

c  

q  

p  

S

 

(  

𝑧  

t  
hat produce 10% and 20% false positives rate (FPR). These partial AUC
urves are of even greater interest in clinical settings, which usually re-
uire low false-positive rates. Accompanying these ROC curves are their
robability distribution functions, also obtained via resampling with
SRC. 
15 
In Fig. 14 , we first show the ROC curves of these four metrics
 Fig. 14 -a). Obviously, 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) and 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) allow higher accuracy than

 

𝜆
𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑧 λ∗ 

𝑖,𝑐,𝑐 
( 𝜔 ) . Harmonization boosts total accuracy from 0.829

o 0.870 when comparing 𝑧 𝝀
𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑧 𝝀∗ 

𝑖,𝑐,𝑐 
( 𝜔 ) . Likewise, there is an in-
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Fig. 9. Details of the surrogate log-spectral normative mean. The data in this figure are from the same normative means as in Fig. 8 -c. The variation of the norm 

for fixed ages: (a) at younger ages (5 yr, 15 yr, 25 yr, and 40 yr), (b) at elder ages (45 yr, 60 yr, 80 yr, and 95 yr age). (c) Changes of the norm with age at specific 
frequencies (2 Hz,8 Hz,10 Hz, 15 Hz, with vertical lines at 7 yr, 16 yr, and 50 yr. 

Fig. 10. Examples of surrogate coherence and phase norma- 
tive means for (Fp1-O1) and (O1-O2). (a) Surrogate coherence 
normative mean for 𝜇r 0 ,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) ; (b) Surrogate phase normative 
mean of − 𝜇ψ 0 , Fp 1 , O1 ( 𝜔, 𝑎 ) + 𝜋 for (Fp1-O1) and − 𝜇ψ 0 , O1 , O2 ( 𝜔, 𝑎 ) for 
(O1-O2). 

c  

v  

o  

s  

i  

R  

s  

e  
rease from 0.943 to 0.952 when comparing 𝑧 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) and 𝑧 θ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) . A
aluable output of the SSRC toolbox is the probability density functions
f the AUC and spAUC for the different measures. From Fig. 14 -B, we
ee that the AUC of 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) is significantly larger than that of 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) ,
16 
ndicating that harmonization is beneficial for accuracy. However, the
OC curves become very close for lower False Positive Rates (FPR). The
pAUC at 20% FPR still shows a modest edge for harmonization. How-
ver, the situation reverses for even lower FPR (10%), with harmoniza-
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Fig. 11. Details of surrogate coherence 𝜇r 0 ,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) normative mean. The data in this figure are from the same normative means as in Fig. 10 -a. The variation of the 
norm for fixed ages: (a) at younger ages (5 yr, 15 yr, 25 yr, and 40 yr), (b) at elder ages (45 yr, 60 yr, 80 yr, and 95 yr age). (c) Changes of the norm with age at 
specific frequencies (2 Hz,8 Hz,10 Hz, 15 Hz), with vertical lines at 7 yr, 16 yr, and 50 yr. 

Table 8 

Standardized sparse AUC (spAUC) values of model validation. 

Metric 𝑧 λ
𝑖,𝑐,𝑐 
( 𝜔 ) 𝑧 λ∗ 

𝑖,𝑐,𝑐 
( 𝜔 ) 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

FPR 10% 0.628 0.669 0.828 0.818 
FPR 20% 0.704 0.750 0.877 0.884 
FPR 100% 0.829 0.870 0.943 0.952 

t  

m
 

w  

s  

b  

a  

a  
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p  

r  

t  
ion lowering the spAUC. Table 8 summarizes the AUC for the different
easures compared under different FPRs. 

Moreover, the higher accuracy for 𝑧 θ
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) and 𝑧 λ∗ 
𝑖,𝑐,𝑐 
( 𝜔 ) are achieved

ith a much smaller number of features. As shown in Fig. 15 , a and b the
elected features of 𝑧 λ

𝑖,𝑐,𝑐 
( 𝜔 ) and 𝑧 λ∗ 

𝑖,𝑐,𝑐 
( 𝜔 ) are grouped in four frequency

ands (1–4 Hz, 4–8 Hz, 8–13 Hz, 13–20 Hz). There are more frontal
nd occipital electrodes involved in the classification, specifically F8
nd O2. Fig. 14 -c and 14 -d show the selected features of 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) and

 

θ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) , where the predominance of connections between frontal and
ccipital derivations is also evident, e.g., F8-O1. This type of combined
17 
ctivity/connectivity figure might be useful for ulterior interpretation
f the differencs between groups. 

.6. Validation of the HarMNqEEG norms for classification of qEEG 

lternations in Covid induced brain dysfunctions 

COVID-19 may cause long-term symptoms or conditions in peo-
le who either have been identified as potential carriers or have
ecovered from the infection. Valdés-Sosa et al. (2021) have coined
he term “COVID Induced Brain Dysfunction ” (CIBD) to refer to the
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Fig. 12. Details of surrogate phase 𝜇ψ 0 ,𝑐 ,𝑐 ′ ( 𝜔, 𝑎 ) normative mean. The data in this figure are from the same normative means as in Fig. 10 -b. The variation of the norm 

for fixed ages: (a) at younger ages (5 yr, 15 yr, 25 yr, and 40 yr). (b) at elder ages (45 yr, 60 yr, 80 yr, and 95 yr age). (c) Changes of the norm with age at specific 
frequencies (2 Hz,8 Hz,10 Hz, 15 Hz), with vertical lines at 7 yr, 16 yr, and 50 yr. 
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rocesses due to social, psychological, or biological causes. In that
aper, the need for objective evaluation of brain states for subjects
ith CIBD was called for. The search for such biomarkers in COVID-

nduced Brain Dysfunction is another project of the Global Brain
onsortium ( https://3design.github.io/GlobalBrainConsortium.org/
rojects.html# ). 

We report the preliminary results of this project here. For this pur-
ose, we take advantage of the Havana CIBD longitudinal project, which
athered the EEG after several months of PCR tests of two groups of par-
icipants: PCR positive patients and negative controls. The latter were
ecruited among the contacts confirmed for each patients. These two
amples were relatively balanced for social and psychological factors,
ncluding stress and other social aspects, since during the first year of
18 
he pandemic, all possible patients were provided free medical attention
nd isolation until a definitive diagnosis. 

We apply the HarMNqEEG classification methods as described in the
revious section. In this case instead of two groups we now have three
roups: COVID positive patients, COVID negative subjects, recruited
mong the contacts of the patient and a sample of the EEG normative
990 Cuban dataset. We present the Standardized sparse AUC (spAUC)
alues in Table 9 . 

The standardized sparse AUC values for the different groups are rel-
tively large and improve for the Riemannian DPs. These classification
esults are quite high and are further confirmation of the validity of the
orms. A complete description of this COVID study will be presented
lsewhere. 

https://3design.github.io/GlobalBrainConsortium.org/projects.html\043
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Fig. 13. Structure of training and test sets for evaluating the accuracy of different qEEG DPs to detect early protein-energy malnutrition. The different datasets 
are shown in a Venn diagram in (a). The normative dataset used to calculate the 𝑧 𝑚 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) is the complete Multinational Normative dataset, excluding the Barbados 

Controls (MN\ BCtrl). Batch corrected 𝑧 𝑚 ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) are obtained using the batch information in the Cuba1990 study. The steps for the evaluation of diagnostic accuracy 
are outlined in (b). 

Fig. 14. Diagnosis accuracy in detecting early protein-energy malnutrition based on different types of qEEG DPs. Shown in subplot (a) Receiver Operator Curves 
(ROC) for discriminant functions to distinguish children with protein-energy malnutrition, based on four types of DPs: red 𝑧 λ

𝑖,𝑐,𝑐 
( 𝜔 ) , blue 𝑧 𝜃

𝑖,𝑐,𝑐 
( 𝜔 ) , green 𝑧 𝜽

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) , and 

purple 𝑧 θ∗ 
𝑖,𝑐 ,𝑐 ′

( 𝜔 ) . The inset shows the robust Area under the ROC curve (AUC) for these types of DPs. In subplot (b), the distribution of spAUCs for Riemannian DPs, 
before and after harmonization. These are spAUC values for 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) and 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) at 10%, 20%, and 100% (full). 

Table 9 

Standardized sparse AUC (spAUC) values for multiple group classification. 

Metric 𝑧 λ
𝑖,𝑐,𝑐 
( 𝜔 ) 𝑧 λ∗ 

𝑖,𝑐,𝑐 
( 𝜔 ) 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) 

Total FPR 10% 0.85 0.85 0.92 0.95 
FPR 20% 0.61 0.64 0.75 0.79 
FPR 100% 0.68 0.69 0.80 0.87 

Marginal (1–2) 0.82 0.84 0.96 0.95 
Marginal (1–3) 0.90 0.90 1 0.99 
Marginal (2–3) 0.63 0.64 0.77 0.81 

1: group of normal samples (COVID-19_B); 2: group of negative COVID-19 PCR test samples (COVID-19_N); 3: group of positive COVID-19 PCR test samples (COVID- 
19_P). 

19 
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Fig. 15. Topography of features selected for detection of malnutrition based on different types of qEEG DPs. The features selected by the robust classifier are indicated 
in a plot of the 10/20 channel system. They are classified into the four traditional EEG frequency broad bands (though narrow bands). A red electrode indicates 
features related to a single channel. A red link between two electrodes indicates a feature selected for those two channels. a) Selected features for 𝑧 λ

𝑖,𝑐,𝑐 
( 𝜔 ) ; b) Selected 

features for 𝑧 λ∗ 
𝑖,𝑐,𝑐 
( 𝜔 ) ; c) Selected features for 𝑧 θ

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) ; d) Selected features for 𝑧 θ∗ 

𝑖,𝑐 ,𝑐 ′
( 𝜔 ) . 
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. Discussion 

This paper presents the HarMNqEEG project, an international qEEG
ormative collaboration intended to avoid racial and socioeconomic
ias. It is one of the main projects of the Global Brain Consor-
ium ( https://3design.github.io/GlobalBrainConsortium.org/project-
orms.html ). The construction of unbiased qEEG norms and methods
o quantify Brain Developmental Dysfunctions (BDD) is essential for
roviding easily accessible neuroimaging tools for use in public health
ettings worldwide. The model chosen for collecting data was offline
rocessing at each site using the MATLAB program “data_gatherer, ”
hich produced batches of samples, each sample consisting of an EEG
20 
ross-spectral tensor and anonymized meta-data. Thus, samples from
ifferent sites were guaranteed to be fully compatible, save for possible
ecording device and site variables. This compatibility was further
nhanced by imposing a minimalistic set of recording requirements
ased on the IFCN 10/20 EEG recording montage and a limited range
f EEG frequencies to analyze. 

We decided to avoid sharing raw EEG data from recording sites.
his choice facilitated the incorporation of diverse groups with varying
thical and administrative constraints. Data collection took less than 3
onths to complete. It did, however, require intensive visual and nu-
erical quality control at different stages of the processing pipeline.
ther initiatives such as COINSTAC ( Gazula et al., 2020 ) go to wholly

https://3design.github.io/GlobalBrainConsortium.org/project-norms.html
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nd fully decentralize processing, a vision that is the next logical step
or our project. One of the thorniest problem of distributed processing
s quality control. We are currently studying the outliers detected (in
ection 3.1 ) in this sample to propose methods to avoid future occur-
ences. 

Central processing of the cross-spectral tensors produced two sets
f qEEG DPs. The traditional NB log-spectra was included for back-
ard compatibility and comparison purposes. Importantly we introduce

n this paper a new type of qEEG DPs based on Riemannian geome-
ry. This development is essential since cross-spectral tensors occupy a
ighly nonlinear manifold. To this end, we define a Riemannian vector-
zation operator that transforms the cross-spectral tensor to a vector that
losely follows a multivariate gaussian distribution in Euclidean space.
n essential ingredient of the Riemannian vectorization is the matrix-

ogarithmic transform of the cross-spectral matrices. Leonard and Hsu
 Leonard and Hsu, 2001 ) proposed this transformation to obtain an un-
onstrained multivariate gaussian vector from covariance matrices. 

Recently, in a seminal series of papers, ( Sabbagh et al., 2020 ;
ngemann et al., 2021 ) showed the superiority of Riemannian DPs to
redict brain age with MEEG/EEG. Our work differs from these previous
pplications in two essential aspects. The first is the use of Hermitian
not Real) Riemannian Geometry since the frontal faces of the cross-
pectral tensor are cross-spectral matrices. A second difference is that
ather than predicting age by the Riemannian DPs, we consider age as
n independent variable to predict Riemannian DPs. 

There has been no previous attempt to create developmental surfaces
or the complete cross-spectral tensor. The added conceptual and com-
utational machinery of Riemannian geometry seems to be beneficial.
ith this framework, we can now norm not only the frequency-resolved

EG activities at each channel (via the spectra) but also the functional
onnectivity between electrodes (reflected in the cross-spectra). 

The multinational character of the datasets collected in the project
llowed us a first look at qEEG harmonization. We believe the HarM-
qEEG project is one of the first efforts to check for “batch effects ” in
EEG multisite datasets and propose computing subject z-scores from
atch-free qEEG norms. This is the first attempt to create a statistically
alid qEEG norm for cross-spectral tensors and their derived measures
coherence and phase). 

Our work confirmed that a large part of the variance of traditional
nd Riemannian DPs depends on frequency and age, underscoring the
eed for frequency and age-dependent norms to detect BDD. This fixed-
ffect dependency has been reported many times for traditional log-
pectra, including several papers from PAVS lab ( Taboada-Crispi et al.,
018 ; Bosch-Bayard et al., 2001 ; Bringas Vega et al., 2019 ). Indeed, the
hape of the norms or “developmental surfaces ” for traditional measures
old up with the larger multinational sample. Based on Riemannian ge-
metry, we confirm this frequency and age dependency for the full cross-
pectrum. The reconstruction of traditional log-spectral norms from the
iemannian norms (surrogate norms) shows the consistency of the two
rocedures for the traditional DP set. 

Regarding batch differences, note that using a global geometric mean
o center cross-spectral tensors forces all data onto a unique normative
angent space. We studied whether batch or sex effects should be re-
ained in the normative equations ( Ko et al., 2021 ; Simeon et al., 2021 ).
hese models were compared using the Extended Bayesian Information
riterion. The recent study of Ko et al. (2021) describe sex difference

n qEEG normative database, contrary to our study in which sex was
runed from the independent variables for fixed and random effects.
his lack of sex-dependency requires further study, given the numerous
euroimaging studies for other modalities that also find such an effect. 

On the other hand, batch effects, specifically site random effects,
ere evident. The modeling framework allowed the definition of batch-

ree z-scores. The need for this correction is particularly evident for Rie-
21 
annian DPs and easily observable in the t-SNE plots where harmoniza-
ion eliminates batch differences. 

The readers familiar with the construction of norms may be ac-
uainted with COMBAT ( Johnson et al., 2007 ) and generalized addi-
ive model for local scale and shape (GAMLSS) ( Rigby and Stasinopou-
os, 2005 )–harmonization methods widespread to eliminate batch ef-
ects. Our model includes and generalizes both COMBAT and GAMLSS
hen the latter is restricted to Gaussian noise —which is our case. HarM-
qEEG allows multivariate nonparametric functional forms for the bio-

ogical variables and the random additive effect (sex or batch) for mean
nd SD. Due to the Gaussianity of our DPs, we did not include mod-
ls of higher-order statistics as in GAMLSS, but our models are more
eneral for Gaussian data since our open source fkreg code allows the
ean and SD functions to be both complex-valued and multivariate,

nd the variance function can be log additive. Finally, compared with
he generalized additive mixed-mode (GAMM) ( Lin and Zhang, 1999 ),
hough the latter does allow multivariate functions, these are only for
he mean. We emphasize that both COMBAT and GAMLSS models were
ested in model selection and not retained due to having a higher
BIC/nEBIC. 

We additionally provide evidence that Riemannian qEEG can pro-
ide higher diagnostic accuracy than traditional qEEG by evaluating the
reviously well studied Barbados Nutritional Study data set ( Taboada-
rispi et al., 2018 ; Bringas Vega et al., 2019 ; Rutherford et al., 2021 )
nd a COVID related EEG data set. We are currently exploring other
linical datasets with this approach. 

The present study has several limitations: 
It is essential to reduce the sources of heterogeneity in the EEG sam-

le. However, we implemented their standard procedure to deal with
eterogeneity by using a linear mixed model for DP sparameters. 

An additional problem is that despite the substantial increase in sam-
le size (compared to previous studies), it still may be underpowered to
etect the effect of some biological variables such as gender. More im-
ortantly, the lack of combinations of types of equipment and country
recludes separating the effect of these two variables. This issue needs
o be the focus of further studies. Additionally, and as mentioned above,
he age distribution of the sample is skewed towards younger ages. It is
ssential to remedy the lack of balance of the age distributions to im-
rove the analysis of cognitive aging. 

A normative study with denser electrode montages would also be
esirable to improve localization accuracy, though the present study
elps evaluate less intensive EEG examinations. 

Artifact including eye blinks, movements, and scalp-muscle are
trongly expressed in EEG, potentially influencing further analysis, espe-
ially for pathology diagnosis. In this project, we provide the instruction
f each site for the artificial cleaning work. Additionally, the EEG pre-
rocessing protocol also is a type of “batch effect ” (can be grouped to
study ”) which are non-biological variables. In the future, we will apply
 standard EEG preprocessing pipeline supported by the GBC project. 

There are several future directions of this work already being devel-
ped. 

• We must extend the multinational Riemannian norms to source space
as was already done for traditional qEEG ( Bosch-Bayard et al., 2001 ;
Bringas Vega et al., 2019 ) 

• This source analysis woud help resolve better different spatial pat-
terns, which increase the heterogeneity of the normal patterns ( Paz-
Linares et al., 2018 ). 

• We must also promote the creation of multinational norms for other
sets of qEEG DPs such as microstates ( Koenig et al., 2002 ) 

• We must create and validate norms for multivariate Xi-Alpha mod-
els of the EEG cross-spectrum ( Pascual-marqui et al., 1988 ; Hu and
Valdes-Sosa, 2019 ; Tröndle et al., 2022 ). 
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The results presented in this paper contribute to developing bias-
ree low-cost neuroimaging technologies applicable in various health
ettings, especially those in low resource areas that are at the great-
st risk for neurodevelopmental disabilities and other brain disorders
 Galler et al., 2021 ). 

All the code and data are openly available to calculate different in-
ividual z-scores from the HarMNqEEG dataset. 
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able A1 

ummary of indices. 

𝑖 Index of individual 𝑖 ∈ { 1 , 2 , …𝑁𝑖 } . 
𝑐 Index of the channel 𝑐 ∈ { 1 , 2 , … , 𝑁𝑐 } , 𝑁𝑐 = 19 including
𝑒 Index of EEG epochs 𝑒 ∈ { 1 , 2 , … , 𝑁𝑒 } , the disjoint segmen
𝜔 Discrete frequency 𝜔 = 1 , … , 𝑁𝜔 . When multiplied by Δ𝜔

𝑎 Age, which takes value from the subset of { 𝑎 ∈ ℝ + , ⋅} . The
𝑠 Sex, which takes value from the subset of { Male , Female , ⋅}
𝑏 Batch, where 𝑏 𝑖 means batch of individual 𝑖 , the symbol " ⋅
𝑡 Time 𝑡 = 1 , … , 𝑁𝑡 . Physical time is obtained by multiplica
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upplementary materials 
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ppendix A. Description of cross-spectrum as a tensor 

.1. Summary of indices 
 Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz electrodes. 
ts selected from the continuous EEG. 
 gives the physical frequency. 
n 𝑎 𝑖 denotes the individual’s age 𝑖 . The symbol " ⋅ " indicates all ages. 
 . Then 𝑠 𝑖 indicates the sex of the individual 𝑖 . The symbol ’’ ⋅" indicates all sex. 
" indicates all batches and 𝑁𝑏 is the number of batches. 
tion with Δ𝑡 

https://10.0.28.135/syn26712693
https://10.0.28.135/syn26712979
https://github.com/LMNonlinear/HarMNqEEG
https://doi.org/10.1016/j.neuroimage.2022.119190
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Fig. A1. The construction of cross-spectrum. (a) Frequency domain DPs result from processing multi-channel EEG data 𝐯 𝑖,𝑒 ( 𝑡 ) epochs (individual 𝑖 , time 𝑡 . e-th epoch). 
(b) The cross-spectral matrices 𝐒 𝑖 ( 𝜔 ) are the covariance matrices of the Fourier transform of the 𝐯 𝑖,𝑒 ( 𝑡 ) . These 𝐒 𝑖 ( 𝜔 ) are the frontal slices of the tensor S 𝑖 ; (c) Besides 
columns and rows, the tensor has tubes 𝑠 𝑖,𝑐 ,𝑐 ′ (∶) which are the set of elements for two fixed channels and all frequencies. 
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.2. Technical notes about the EEG Cross-spectrum and its tensor 

epresentation 

The multi-channel EEG 𝐯 𝑖,𝑒 ( 𝑡 ) (Figure A1-a) is a vector time series
ecorded for the participant 𝑖 , at the time 𝑡 , for the 𝑒 -th epoch, where,
 = 1 , … , 𝑁 𝑖 ( 𝑁 𝑖 is the number of subjects), 𝑒 = 1 , … , 𝑁 𝑒 ( 𝑁 𝑒 is the num-
er of epochs which is an uninterrupted fixed-length sequence of time
oints). 𝑡 = 1 , … , 𝑁 𝑡 ( 𝑁 𝑡 is the number of time points in each epoch).
ote that 𝑡 is an integer index. When referring to actual time (in seconds
r milliseconds), 𝑡 is multiplied by Δ𝑡 , and this conversion ( Δ𝑡 ⋅ 𝑡 ) allows
hysiological interpretation. 

The vector 𝐯 𝑖,𝑒 ( 𝑡 ) has, as components, the set of scalar potentials
 𝑖,𝑒,𝑐 ( 𝑡 ) , measured with the same (unipolar) reference, for each channel
, where 𝑐 = 1 , … , 𝑁 𝑐 ( 𝑁 𝑐 is the number of channels). To streamline our
resentation, we indistinctively use the channel number of a particular
ontage or its channel label. 

Each EEG segment 𝑣 𝑖,𝑒,𝑐 ( 𝑡 ) is transformed to the frequency domain via
he (discrete) Fourier transform to yield the complex-valued coefficients
 𝑖,𝑒,𝑐 ( 𝜔 ) , where the symbol 𝜔 denotes frequency. The multiplication with
requency resolution Δ𝜔 refers to actual frequency 𝜔 = Δ𝜔, … , 𝑁𝜔 Δ𝜔

in Hz) ( 𝑁𝜔 is the number of the frequencies sampled). Careful selec-
ion of epochs ensures that a) they are approximately stationary and
) lack long-range memory correlations in time. The Fourier coeffi-
ients are then asymptotically (as 𝑁𝑡 → ∞) independent for each fre-
uency and sampled from a Circular Multivariate Complex distribu-
ion 𝑁 

( ℂ ) 
Nc 
( 𝟎 , 𝚺𝑖 ( 𝜔 )) with mean 0 and population covariance 𝚺𝑖 ( 𝜔 ) (dif-

erent for each participant 𝑖 ). (Chapter. 4.3, Brillinger, 1981 ). The set
 𝚺𝑖 ( 𝜔 )} , 𝜔 = 1 , … , 𝑁𝜔 is the “cross-spectrum, ” which is the basis for our
requency domain DPs. The cross-spectra encodes the linear and station-
ry properties of the EEG. It is important to note that the 𝚺𝑖 ( 𝜔 ) are not
ymmetric as in the real case but Hermitian. 

Since the 𝚺𝑖 ( 𝜔 ) are unobservable population quantities, we must use
he maximum-likelihood estimate, the covariance matrix 𝐒 𝑖 ( 𝜔 ) of the
omplex-valued coefficients of the Fourier transform, pooled over all
pochs. We assemble these sample covariances 𝐒 𝑖 ( 𝜔 ) , 𝜔 = 1 , … , 𝑁𝜔 into
 cross-spectral tensor S 𝑖 

6 3-mode dimensional array with dimensions
 𝑐 ×𝑁 𝑐 ×𝑁 𝜔 . The language of tensor has been used to great advantage

n our prior work ( Karahan et al., 2015; Mart ı ́nez-Montes et al., 2004;
iwakeichi et al., 2004 ), and this section provides a bridge that line of
ork that includes source localization. 

In the parlance of tensors, fixing two of the dimensions and vary-
ng over the others produces “fibers ”. Channels correspond to “column ”
6 The rank of the tensor is usually based on the canonical polyadic decom- 
osition or PARAFAC ( Miwakeichi et al., 2004 ). The rank of the cross-spectral 
ensors in this study depended on the data, ranging from 5 to 16 for our sample. 

 

u

∑
𝑘

23 
nd “row ” fibers and frequencies to “tube ” fibers. Also, in tensor termi-
ology, “frontal slices ” are just the usual cross-spectral matrices 𝐒 𝑖 ( 𝜔 ) .
he tube fibers correspond to the “spectra ” of time-series analysis. Let
 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) denote the individual elements of 𝐒 𝑖 ( 𝜔 ) ( Fig. A1 -b), where 𝑐 and
 

′ denote channels 𝑐 , 𝑐 ′ = 1 , … , 𝑁𝑐 . Then we have two types of fibers
 𝑖,𝑐 ,𝑐 ′ (∶) = { 𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) , 𝜔 = 1 , … , 𝑁𝜔 } ( Figure A1 -c): 

• When 𝑐 = 𝑐 ′ the fiber 𝑠 𝑖,𝑐,𝑐 (∶) sits on a diagonal element of the cross-
spectral matrices over all frequencies, it is a real scalar tube known
as the power-spectrum for the channel 𝑐. We shall refer to this type
of tube or its element as “diagonal ”. 

• When 𝑐 ≠ 𝑐 ′ the fiber 𝑠 𝑖,𝑐 ,𝑐 ′ (∶) sits on an off-diagonal element of
the cross-spectral matrices over all frequencies, this complex-valued
tube is the cross-spectrum between channels 𝑐 and 𝑐 ′. We refer to
this type of tube or its elements as “off-diagonal ”. 

• Instead of the usual property 𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) = 𝑠 𝑖,𝑐 ′ ,𝑐 ( 𝜔 ) (valid only for real
covariance matrices), we now have for the Hermitian case 𝑠 𝑖,𝑐 ,𝑐 ′ ( 𝜔 ) =
conj ( 𝑠 𝑖,𝑐 ′ ,𝑐 ( 𝜔 ) ) : symmetric elements are complex conjugates of each
other 

ppendix B. Notes of Riemannian vectorization 

.1. The technical notes of Riemannian geometric mean 

The Riemannian metric is defined locally as the inner product on
angent space, 

𝐐 1 , 𝐐 2 ⟩𝐀 = Tr (𝐐 1 𝐀 

−1 𝐐 2 𝐀 

−1 )
Where, 𝐐 1 , 𝐐 2 are vectors at tangent space at 𝐀 . The manifold ℙ 𝑛 is a

omplete Riemannian manifold with negative curvature with a metric.
he geodesic between two PD matrices points is unique, and its length
distance) has an analytic expression, 

( 𝐀 , 𝐁 ) ∶= ‖Lo g 𝐁 ( 𝐀 ) ‖𝐹 = ‖logm 

(
𝐁 −1∕2 𝐀𝐁 −1∕2 

)‖𝐹 

This expression defines the affine-invariant metric, which gives the
ost reasonable geodesic distance on PD ( Yger et al., 2017 ) based on
ifferential geometric information-theoretical arguments. Thus, the ge-
metric mean of the set of PD matrices 𝐀 𝑘 , 𝑘 = 1 , … , 𝐾 can be defined
s the center of mass, which is the unique solution of, 

 ( 𝐂 ) = 
𝐾 ∑

𝑘 =1 
𝛿2 
(
𝐀 𝑘 , 𝐂 

)
(B1)

It has been proved by Moakher (2005) that the center mass is the
nique PD solution of the nonlinear function, 

𝐾 

 =1 
logm 

(
𝐀 

−1 
𝑘 
𝐂 

)
= 

𝐾 ∑
𝑘 =1 

logm 

(
𝐂𝐀 

− 𝟏 
𝐤 
)
= 

𝐾 ∑
𝑘 =1 

logm 

(
𝐂 

1∕2 𝐀 

−1 
𝑘 
𝐂 

1∕2 ) = 0 (B2) 
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When 𝐾 = 2 the solution of (B1) is 𝐂 = 𝐀 1 ( 𝐀 

−1 
1 𝐀 2 ) 1∕2 , for 𝐾 ≥ 3 , the

xplicit expression is unknown, and an iterative estimation algorithm
s available ( Karcher, 1977 ; Bhatia, 2013 ; Congedo et al., 2017 ). Here
se the method based on the paper of Bini and Iannazzo (2013) , the
radient descent algorithm of Eq. (B2) is written as, 

 𝜄+1 = 𝐂 𝜄expm 

( 

− 𝜗 𝜄
𝐾 ∑

𝑘 =1 
logm 

(
𝐀 

−1 
𝑘 
𝐂 𝜄

)) 

, 𝐂 0 ∈ ( ℙ ) 𝑛 (B3) 

With 𝐂 0 = 𝐀 1 , or 𝐂 0 = 𝐈 . The iteration with choice 𝜗 𝜄 = 1∕ 𝐾 has
een discussed ( Manton, 2004 ; Pennec et al., 2006 ). Bini and Ian-
azzo (2013) provide an optimal value for 𝜗 and linearize Eq. (B3) which
s Richardson iteration, denoted as 

 𝜄+1 = 𝐂 𝜄 − 𝜗 𝐂 𝜄

𝐾 ∑
𝑘 =1 

logm 

(
𝐀 

−1 
𝑘 
𝐂 𝜄

)
(B4) 

The Eq. (B2) solution is the fixed point of Eq. (B4) . Thus, the
q. (B4) could be written as, 

 𝜄+1 = 𝐂 𝜄 − 𝜗 𝐂 

1∕2 
𝜄

𝐾 ∑
𝑘 =1 

logm 

(
𝐂 

1∕2 
𝜄 𝐀 

−1 
𝑘 
𝐂 

1∕2 
𝜄

)
𝐂 

1∕2 
𝜄

That all iterations are positive. It proved that the small enough 𝜗
uarantee the local convergence and when 𝜗 𝜄 = 1∕ 𝐾 , the pairwise com-
able C1 

ulti-national EEG norms dataset: including 9 countries, 12 devices and 14 batches. 

Country Dataset sites 

N individuals 

(Female; Male) Age range Device 

Barbados 62 
(F28; M34) 

Barbados_1978 62 (F28; M34) 5.5–11.4 DEDAAS 

China 268 
(F141; M127) 

Chengdu_2014 33 (F7; M26) 21–28 BrainAmp 

Chongqing_2016 235 (F134; M101) 15–26 BrainAmp 

Colombia 21 
(F13; M8) 

Colombia_2019 21 (F13; M8) 22–45 Neuro scan

Cuba 367 
(F153; M214) 

Cuba_1990 195 (F98; M97) 5.5–97 Medicid-3M

Cuba_2003 48 (F28; M20) 5–69 Medicid-4 

CHBMP 124 (F27; M97) 17–62 Medicid-5 

Germany 178 
(F113; M65) 

Germany_2013 178 (F113; M65) 22.5–77.5 BrainAmp 

Malaysia 26 
(F24; M2) 

Malaysia_2017 26 (F24; M2) 19–60 ANT Neuro

Russia203 
(F104; M99)) 

Russia_2013 58 (F34; M24) 18–49 nvx136 

145 (F70; M75) 16–57 actiCHamp

Switzerland209 
(F98; M111) 

Bern_1980 44 (F18;26) 10–16 Nihon Koh

Zurich_2017 165 (F80; M85) 18–90 EGI-256 HC

USA230 
(F109; M121) 

New York_1970s 230 (F109; M121) 6–80.5 DEDAAS 

Total 1564 (F783; M781) 

24 
ute matrices 𝐂 0 , 𝐀 1 , … , 𝐀 𝐾 at least globally quadratic convergence
 Bini and Iannazzo, 2013 ). 

.2. Centering is a linear operator 

It is well known (Chapter 3, Brillinger, 1981 ) that transforming a
ultivariate autocovariance matrix to the frequency domain produces
 block-diagonal covariance matrix with the cross-spectra for each fre-
uency on the main diagonal. That is: 

ov 
(
𝐱 
(
𝜔 1 

)
, 𝐱 
(
𝜔 2 

))
= 
{ 

𝚺𝐱𝐱 ( 𝜔 ) 𝜔 1 = 𝜔 2 
𝟎 𝜔 1 ≠ 𝜔 2 

This property induces an isomorphism between the tensors
and the cross-frequency block-diagonal covariance matrix

iag ( 𝚺𝐱𝐱 (Δ𝜔 ) , … , 𝚺𝐱𝐱 ( 𝑁𝜔 Δ𝜔 )) = 𝚺𝐵 . Given this isomorphism be-
ween the two manifolds S and 𝚺𝐵 , the centering operation applied
eparately to each frequency can also be defined in the space of
lock-diagonal matrices as 𝐂 

B = diag ( 𝐂 (Δ𝜔 ) , … , 𝐂 ( 𝑁𝜔 Δ𝜔 )) . Thus, the
entering operation in the block diagonal space is ( 𝐂 

𝐁 ) −1∕2 𝚺𝐵 ( 𝐂 

𝐵 ) −1∕2 .
t can be easily seen the centering operation in both representations is
nvertible and linear. 

ppendix C. Multinational EEG norms dataset 
Reference Year recorded Citation 

Linked Ears 1978 ( Bringas Vega et al., 2019 ; 
Taboada-Crispi et al., 2018 ) 

DC REST 2014 ( Li et al., 2015 ) 

MR plus common 2016 -2019 ( Duan et al., 2021 ) 

 average 2019 https://alz.confex.com/alz/ 
20amsterdam/meetingapp.cgi/ 
Paper/47837 

 common 1990 ( Bosch-Bayard et al., 2020 ) 

common 2003 ( Hernandez-Gonzalez et al., 2011 ) 

Linked Ears 2004–2008 ( Valdes-Sosa et al., 2021 ) 

MR plus common 2013 ( Babayan et al., 2019 ) 

 average 2017/2020 –

Cz 2013/2019 ( Ivanov et al., 2022 ) 

 Cz 2013/2019 

den common 1980 ( Koenig et al., 2002 ); 

GSN average 2012/2017–2019 ( Langer et al., 2013 ) 

common 1970s-1980s ( Ahn et al., 1980 ) 

https://alz.confex.com/alz/20amsterdam/meetingapp.cgi/Paper/47837
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A

T

B

cid-3M

cid-3M
_1990 
ppendix D. Batch definition 

able D1 

atch is defined by country, device and the recording year of data (study). 

Device 
Country 

BrainAmp 
MR plus 

BrainAmp 
DC actiCHamp DEDAAS 

EGI-256 
HCGSN Medi

Barbados DEDAAS- 
Barbdados_ 
1978 

China BrainAmp 
MR plus- 
Chongqing_ 
2016 

BrainAmp 
DC- 
Chengdu_ 
2014 

Cuba Medi
Cuba

Colombia 

Malaysia 

Germany BrainAmp 
MR plus- 
Germany_ 
2013 

Russia actiCHamp- 
Russia_ 
2013 

Switzerland 
EGI- 
Zurich_2017 

USA DEDAAS- 
NewYork_ 
1970s 
25 
 Medicid-4 Medicid-5 
Nihon 
Kohden nvx136 ANT Neuro Neuro scan 

- Medicid-4- 
Cuba_2003 

Medicid- 
5-CHBMP 

NeuroScan- 
Colombia_ 
2019 

ANTNeuro- 
Malaysia_ 
2017 

nvx136- 
Russia_ 
2013 

NihonKohden 
- 
Bern_1980 
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ppendix E. nBIC/nEBIC values for all possible models 

able E1 

BIC/nEBIC values for all possible modes. 

Metric 
Model component 
type 

Model 
nBIC values of 𝑦 λ

𝑖,𝑐,𝑐 
( 𝜔 ) 

“Batch ” definition 

country device 

I: Fixed effects 0-A 1.000 

1-A 0.995 

2-A 0.321 

3-A 0.164 

II: Constant random 

effects 
4-A 0.156 0.157 

5-A 0.164 0.164 

6-A 0.156 0.157 

III: Functional random 

effects 
7-A 0.117 0.119 

8-A 0.154 0.154 

9-A 0.121 0.125 

Ⅳ : Heteroscedasticity 3-C 0.064 0.064 

8-B 0.112 0.113 

8-C 0.019 0.022 

8-D 0.014 0.018 

8-E 0.006 0.011 

For the fixed effect, the nBIC/nEBIC values for three batch definition are th
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