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Abstract

We describe new Chow-weight (co)homology theories on the category
DMeff

gm(k,R) of effective geometric Voevodsky motives (R is the coefficient
ring). These theories are interesting "modifications" of motivic homology;
Chow-weight homology detects whether a motive M ∈ ObjDMeff

gm(k,R)
is r-effective (i.e., belongs to the rth Tate twist DMeff

gm(k,R)(r) of effec-
tive motives), bounds the weights of M (in the sense of the Chow weight
structure defined by the first author), and detects the effectivity of "the
lower weight pieces" of M . Moreover, we calculate the connectivity of M
(in the sense of Voevodsky’s homotopy t-structure, i.e., we study motivic
homology) and prove that the exponents of the higher motivic homology
groups (of an "integral" motive) are finite whenever these groups are tor-
sion. We apply the latter statement to the study of higher Chow groups
of arbitrary varieties.

These motivic properties of M have plenty of applications. They are
closely related to the (co)homology ofM ; in particular, if the Chow groups
of a varietyX vanish up to dimension r−1 then the highest Deligne weight
factors of the (singular or étale) cohomology of X with compact support
are r-effective.

Our results yield vast generalizations of the so-called "decomposition
of the diagonal" theorems, and we re-prove and extend some of earlier
statements of this sort.
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Introduction
The paper is dedicated to extending the well-known technique of decomposition
of the diagonal (cf. Remark 0.5(1) below) to Voevodsky motives, and the ap-
plication of the results to the study of arbitrary varieties and their cohomology.
Our main tool are the completely new Chow-weight homology theories. They
are closely related to motivic homology of Voevodsky motives; yet Chow-weight
homology has several interesting properties that do not hold for motivic homol-
ogy.

So, we consider Voevodsky’s category DM eff
gm(k,R) of R-linear effective geo-

metric motives; here we assume the base field k is perfect and its characteristic p
is invertible in the coefficient ring R whenever it is positive (this is equivalent to
1/e ∈ R, where e is the exponential characteristic of k). Recall thatDM eff

gm(k,R)

contains the category Choweff(k,R) of R-linear effective Chow motives over k.
Now, the first author defined an exact (and conservative) weight complex func-
tor tR : DM eff

gm(k,R)→ Kb(Choweff(k,R)) whose restriction to Choweff(k,R) ⊂
DM eff

gm(k,R) is the obvious embedding Choweff(k,R)→ Kb(Choweff(k,R)) (see
Definition 1.4.1 and Remark 1.4.3 below). Then for tR(M) = (Ms) and a per-
fect field extension K/k we define the abelian group CWHi

j(MK , R) as the i-th
homology of the complex h2j,j(M

s
K , R) obtained from tR(M); here h2j,j = CHj

is the extension to Chow motives of the dimension j (R-linear) Chow group
functor (whereas the notation originates from motivic homology), and the lower
index K indicates that we extend the base field to K. Consequently, if M is a
Chow motive then CWHi

j(MK) = {0} for i 6= 0 and CWH0
j (MK) = h2j,j(MK);

thus one may say that Chow-weight homology is somewhat easier to compute
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than the motivic one (cf. Remark 0.5(2); in Remark 3.1.3 we recall that these
restrictions of Chow-weight homology characterize it completely).

Next we recall that Choweff(k,R) contains the Lefschetz motive L = R〈1〉 =
R(1)[2]; for n ≥ 0 we say that a motive M is n-effective if it belongs to
DM eff

gm(k,R)〈n〉 = DM eff
gm(k,R) ⊗ L⊗n = DM eff

gm(k,R)(n). The first statement
that demonstrates the usefulness of Chow-weight homology is as follows.

Theorem 0.1. LetM be an object ofDM eff
gm(k,R), n > 0, andK0 is a universal

domain containing k.1 Denote the set Z× [0, n− 1] ⊂ Z× Z by I.
1. Then M ∈ DM eff

gm(k,R)〈n〉 if and only if CWHi
j(MK) = {0} whenever

(i, j) ∈ I and K is the perfect closure of a finitely generated extension of k.
2. If R = Q then M ∈ DM eff

gm(k,R)〈n〉 if and only if CWHi
j(MK0

) = {0}
for all (i, j) ∈ I.

3. If R ⊂ Q and CWHi
j(MK0) ⊗ Q = {0} for all (i, j) ∈ I then there

exists an integer E > 0 such that for any perfect field extension k′/k we have
E · CWHi

j(Mk′) = {0} for all these (i, j).

These statements can be vastly generalized; see Theorems 3.2.1, 3.3.3, 3.6.4,
and 5.1.2, and §3.4 below. In particular (instead of effectivity) one can study
weights and connectivity ofM (that is, relateM to the filtrations induced by the
Chow weight structure and the homotopy t-structure; see §2.1–2.2 below) and
"measure effectivity" of the higher terms of the complex tR(M). For R = Q
one can also study the case where the corresponding Chow-weight homology
vector spaces are finite dimensional (over Q). Moreover, we apply these results
to study the Deligne weight filtration on singular and étale cohomology. Instead
of formulating all motivic statements of this sort here (yet see the end of this
introduction for a short plan of the paper), we will now describe one of their
applications to motives with compact support of varieties.

Theorem 0.2. Let r > 0, X is a k-variety (that is, a reduced separated scheme
of finite type over k),K0 is a universal domain containing k, and CHj(XK0 ,Q) =
{0} for 0 ≤ j < r. Then the following statements are valid.

1. There exists E > 0 such that the Z[1/e]-linear Chow groups CHj(Xk′ ,Z[1/e])
are annihilated by the multiplication by E for all 0 ≤ j < r and all field exten-
sions k′/k (here e = p if p > 0 and e = 1 if p = 0).

2. If k is a subfield of C and q > 0 then the (highest) q-th weight factor of the
mixed Hodge structure Hq

c (XC) (the singular cohomology of XC with compact
support) is r-effective (as a pure Hodge structure).

Moreover, the same property of the Deligne weight factors of Hq
c (Xkalg ) is

fulfilled for étale cohomology with values in the category of Q`[Gal(k)]-modules
if k is the perfect closure of a finitely generated field.

In particular, these factors are zero if q < 2r.
3. The motiveMc

Q(X) (see Definition 4.1.1(2)) is an extension of an element
of DM eff

gm(k,Q)wChow≥1 (see §2.2) by an object of Choweff(k,Q)〈r〉.

Remark 0.3. 1. The vanishing of lower Chow groups is quite "common" for non-
proper varieties. In particular, if suffices to assume that X is an open subvariety
of X ′ × Ar for some k-variety X ′; cf. Remark 4.1.7(2) below for more detail.

2. These statements are completely new; yet are easily seen to generalize
the corresponding (rather well-known) properties of proper smooth varieties.

1See Definition 2.3.1(2) and Proposition 5.2.3 below.
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Note also that the formulation of Theorem 4.2.3 below is somewhat similar to
Theorem 0.2; yet it mentions higher motivic homology. Moreover, in Corollary
5.1.6(2) below parts 2 and 3 of our theorem are generalized to the case where
the Q-vector spaces CHj(XK0 ,Q) = {0} are finite dimensional if 0 ≤ j < r.

3. By Proposition 3.5.5 below (see also Remark 4.2.2(2)), the combination
of two of more or less "standard" motivic conjectures yields that the first im-
plication in Theorem 0.2(2) is actually an equivalence.

Let us now recall some basics on ("classical") decomposition of the diagonal
and relate it to our results. Decomposition of the diagonal (see Remark 0.5(1)
below) was introduced by Bloch in §1A of [Blo80] (cf. also [BlS83]; a rich
collection of recent results related to this notion can be found in [Voi14]). Let
us recall some easily formulated motivic results obtained via this method (and
essentially established in [Via17]). For simplicity, we will state them for motives
and Chow groups with rational coefficients over a universal domain k; yet they
also can be generalized similarly to Theorem 0.1.

Proposition 0.4. (i) Let O be an effective Chow motive over k. Then O is
r-effective if and only if CHj(O) = {0} for 0 ≤ j < r (see Remark 3.8 of [Via17]).

(ii) Let h : N → O be a morphism of effective Chow motives. Then CH0(h)
is surjective if and only if h "splits modulo 1-effective motives", i.e., if it cor-
responds to a presentation of O as a retract of N

⊕
(Q〈1〉) for some effective

motive Q (cf. Proposition 3.5 of ibid. and Remark 0.5(1) below).
(iii) For h : N → O as above the homomorphisms CHj(h) are surjective for

all j ≥ 0 if and only if h is split surjective (this is Theorem 3.18 of ibid.).

Remark 0.5. 1. In statements of this sort one usually takes O to be the motive
of a smooth projective P/k, whereas N is obtained by resolving singularities of
a closed subvariety P ′ of P (cf. Lemma 3 of [GoG13] and Proposition 3.5 of
[Via17]). In this case, if CHj(h) is surjective for all j < c then the diagonal cycle
∆ in P × P is rationally equivalent to the sum of a cycle supported on P ′ × P
and one supported on P ×W for some closed W ⊂ P of codimension at least r.
That is why one speaks about decomposing the diagonal; see Proposition 4.3.1
below for more detail.

One can usually reformulate these cycle-theoretic statements using the fol-
lowing trivial observation: if M is an object of an additive category B, idM =
f1 +f2 (for f1, f2 ∈ B(M,M)), and fi factor through some objects Mi of B (for
i = 1, 2), then M is a retract of M1

⊕
M2. In particular, if B is idempotent

complete (this is the case for all "standard" motivic categories) then M is a
direct summand of M1

⊕
M2.

2. Proposition 0.4(i) can easily be deduced from Theorem 0.1(2).
Moreover, we obtain that one cannot use motivic homology instead of the

Chow-weight one in the theorem. Indeed, if M = R〈1〉 then h10(MK0
) =

DM eff
gm(K0, R)(R[1], R(1)[2]) ∼= K∗0 ⊗Z R 6= {0} (if R is not a torsion ring; see

Definition 2.2.2(5) below for this notation). Note also that "classical" decompo-
sition of the diagonal methods cannot yield Theorem 0.2 since one cannot avoid
distinguished triangles and long exact sequences in the proof of this "mixed
statement".

Thus the results of the current paper demonstrate that the language of Chow
weight structures, weight complexes, and Chow-weight homology is appropriate
for extending decomposition of the diagonal results to varieties that are either
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singular or non-proper, and to general Voevodsky motives. The main disadvan-
tage of Chow-weight homology is that its values are often huge (since ordinary
Chow groups are); cf. Remark 2.3.6(2) and Theorem 5.1.2 below.

3. Proposition 0.4(ii,iii) follows from our general results as well; we demon-
strate this in Corollary 3.3.9 and Remark 3.3.10(2) below.

To prove this corollary we will consider the motive M = Cone(h). Since the
weight complex functor tQ is exact, the Chow group assumptions in Propositions
0.4(ii,iii) are equivalent to the vanishing of CWH0

0(M) and of CWH0
j (M) for all

j ≥ 0, respectively. Moreover, CWHi
j(M) = {0} for i 6= −1, 0 automatically.

For the sake of the readers scared of Voevodsky motives, we also note that
our results can be applied to Kb(Choweff(k,R)) (i.e., to complexes of R-linear
Chow motives) instead of DM eff

gm(k,R); see Remark 3.3.5 below. Yet even these
more elementary versions of our results are "quite triangulated", and their proofs
involve certain triangulated categories of birational motives.

Now let us describe the contents of the paper; some more information of this
sort can be found at the beginnings of sections.

In §1 we recall some of the theory of weight structures.
In §2 we describe several properties of (various categories of) Chow and

Voevodsky motives and of Chow weight structures for the latter. The most
important (though somewhat technical) results of this section are Proposition
2.2.6(3,6) on morphisms between Chow motives inside DM eff

gm(k,R). We also
prove some auxiliary statements on the behaviour of complexes whose terms
are certain (higher) Chow groups under morphisms of base fields; most of these
results are more or less well-known.

In §3 we define (our main) Chow-weight homology theories and study the
properties of Chow-weight homology of arbitrary objects of the Voevodsky cat-
egory DM eff

gm(k,R). In particular we express the weights of a motive M ∈
ObjDM eff

gm(k,R) and its effectivity (i.e., whether it belongs to ObjDM eff
gm(k,R)〈r〉

for a given r > 0) in terms of its Chow-weight homology. We also relate the
vanishing of the higher degree Chow-weight homology of M to that of its mo-
tivic homology (along with its motivic connectivity) and to the effectivity of the
higher (Deligne) weight factors of cohomology. Moreover, the combination of
two (of more or less "standard") motivic conjectures yields that the implications
of the latter type are in fact equivalences (see Proposition 3.5.5). Furthermore,
we prove that the vanishing of rational Chow-weight homology ofM in a certain
range is "almost equivalent" to M being an extension of a motive satisfying the
integral Chow-weight homology vanishing in the same range by a torsion motive
(see Theorem 3.6.4). This implies the following: if the higher motivic homology
groups of a motive M are torsion, then their exponents are finite.

In §4 we apply our general results to motives with compact support of arbi-
trary k-varieties. We apply them to obtain Theorem 0.2 as well as several results
related to it (see §4.2). Moreover, we re-prove and generalize certain decomposi-
tion of the diagonal results of [Par94] and [Lat96]; in the process we demonstrate
the relation of our methods and results to the "usual" cycle-theoretic formula-
tions of decompositions of the diagonal statements. We also recall that in the
case where k is finite the effectivity conditions for motives are closely related to
the number of rational points of k-varieties (taken modulo powers of q = #k);
see Proposition 4.2.4(2). Furthermore, we study tensor products of motives
and relate them to varieties. In particular, we prove (roughly) that the afore-

5



mentioned standard conjectures imply that the "effectivity and connectivity" of
the tensor product of (geometric Q-linear) motives over a characteristic 0 field
cannot exceed the sums of the effectivities and connectivities of the multipliers,
respectively.

In §5 we prove some more statements and discuss further developments of
the theory. We study the finite-dimensionality of Chow-weight homology and of
Chow groups in the case R = Q; this gives a certain generalization of Theorems
3.3.3 and 0.2. We also dualize some of our results; this allows us to calculate the
dimensions of motives and bound their weights (from above) in terms of their
Chow-weight cohomology.

We also note that an alternative version of this text is available as [BoS14];
note however that some of the notation and the numeration of the statements in
ibid. differs from the current text, and the exposition is less accurate. Moreover,
some results of our paper are generalized in [BoK20]; see Remark 5.3.1(6) below.

The authors are deeply grateful to the referee for his really helpful remarks.

List of main definitions and notation
For the convenience of the readers we list some of the terminology and notation
used in this paper. The reader may certainly ignore this section.

• Karoubian categories, Karoubi envelopes, extension-closed and Karoubi-
closed subcategories, extension-closures, Karoubi-closures, envelopes, X ⊥
Y , D⊥, and ⊥D are defined in §1.1.

• Weight structures (general and bounded ones), their hearts, the classes
Cw≥i, Cw≤i, Cw=i, C [i,j], weight-exact functors, connective subcategories
of triangulated categories, weight truncations w≤mM , w≥mM , and m-
weight decompositions are recalled in §1.2.

• Weight complexes, weight filtrations, and weight spectral sequences are
recalled in §1.4.

• The motivic categories Choweff(k,R) ⊂ DM eff
gm(k,R) ⊂ DM eff

− (k,R) ⊂
DM eff(k,R) and Chow(k,R), the functorMR, (shifted) Tate twists 〈r〉 =
−(r)[2r], the homotopy t-structure tRhom, and varieties (resp. motives) of
the type XK (resp. MK) are introduced in §2.1.

• The Chow weight structures wChow on DM eff
gm(k,R) and on its subcate-

gories d≤mDM eff
gm(k,R), along with r-effectivity and dimensions for mo-

tives and their motivic homology groups h∗∗(−, R) are introduced in §2.2.
We also define the functor lr : DM eff

gm(k,R) → DMr
gm(k,R), and intro-

duce the Chow weight structure wr
Chow on DMr

gm(k,R) for any r ≥ 0.

• Essentially finitely generated fields, universal domains, fields of definition
for motives, rational extensions, and function fields are defined in §2.3.

• Our "main" Chow-weight homology functors CWH∗∗(−K , R) and
CWH∗∗(−K , ∗, R) are introduced in §3.1 (whereas the "Poincare dual"
Chow-weight cohomology functors CWC∗,∗(−K , R) and CWC∗,∗(−K , ∗, R)
are defined in §5.2).
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• Staircase sets I ⊂ Z × [0,+∞) (this includes sets of the type I〈c〉) are
introduced in §3.3; an example is drawn in Corollary 3.4.2(3).

• Étale and singular cohomology functors Het,Q`
and Hsing, and Deligne’s

weights WD∗H
∗ on their values are considered in §3.5.

• Motives with compact supportMc
Q(−) andMc

R(−) are recalled in §4.1.

We will treat both the characteristic 0 and the positive characteristic case
below. Yet the reader may certainly assume that the characteristic of k is 0
throughout the paper; certainly, in this case one does not have to think about
perfectness and the assumption 1/e ∈ R, and can use singular cohomology.

The authors are deeply grateful to H. Esnault, M. Ivanov, and M. Levine
for interesting discussions concerning the paper, and to D. Kumallagov and to
the referee for their very useful comments to the text. The first author is also
deeply grateful to the officers of the Max Planck Institut für Mathematik for
the wonderful working conditions during the writing of §4.1–4.3.

1 Some preliminaries on weight structures
This section is dedicated to recalling the theory of weight structures in triangu-
lated categories.

In §1.1 we introduce some notation and conventions for (mostly, triangu-
lated) categories; we also prove two simple lemmas.

In §1.2 we recall the definition and basic properties of weight structures.
In §1.3 we relate weight structures to localizations.
In §1.4 we recall several properties of weight complexes and weight spectral

sequences.

1.1 Some (categorical) notation and lemmas
• For a ≤ b ∈ Z we will write [a, b] (resp. [a,+∞), resp. [a,+∞]) for the

set {i ∈ Z : a ≤ i ≤ b} (resp. {i ∈ Z : i ≥ a}, resp. [a,+∞) ∪
{+∞} ⊂ Z ∪ {+∞}); we will never consider real line segments in this
paper. Respectively, when we write i ≥ c (for c ∈ Z) we mean that i is an
integer satisfying this inequality.

• Given a category C and X,Y ∈ ObjC we write C(X,Y ) for the set of
morphisms from X to Y in C.

• For categories C ′, C we write C ′ ⊂ C if C ′ is a full subcategory of C.

• Given a category C and X,Y ∈ ObjC, we say that X is a retract of Y if
idX can be factored through Y .

• An additive subcategoryH of an additive category C is said to be Karoubi-
closed in C if it contains all retracts of its objects in C. The full subcat-
egory KarC(H) of additive category C whose objects are all the retracts
of objects of a subcategory H (in C) will be called the Karoubi-closure of
H in C.
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• The Karoubi envelope Kar(B) (no lower index) of an additive category B
is the category of “formal images” of idempotents in B. Consequently, its
objects are the pairs (A, p) for A ∈ ObjB, p ∈ B(A,A), p2 = p, and the
morphisms are given by the formula

Kar(B)((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′ ◦ f = f ◦ p = f}.

The correspondence A 7→ (A, idA) (for A ∈ ObjB) fully embeds B into
Kar(B). Moreover, Kar(B) is Karoubian, i.e., any idempotent morphism
yields a direct sum decomposition in Kar(B). Recall also that Kar(B) is
triangulated if B is (see [BaS01]).

• The symbol C below will always denote some triangulated category; usu-
ally it will be endowed with a weight structure w.

• For any A,B,C ∈ ObjC we say that C is an extension of B by A if there
exists a distinguished triangle A→ C → B → A[1].

• A class D ⊂ ObjC is said to be extension-closed if it is closed with respect
to extensions and contains 0. We call the smallest extension-closed sub-
class of objects of C that contains a given class B ⊂ ObjC the extension-
closure of B.

Moreover, we call the smallest extension-closed Karoubi-closed subclass of
objects of C that contains B the envelope of B.

• Given a class D of objects of C we write 〈D〉 or 〈D〉C for the smallest full
Karoubi-closed triangulated subcategory of C containing D. We call 〈D〉
the triangulated category densely generated by D.

• For X,Y ∈ ObjC we write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC
we write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. Given D ⊂ ObjC we
will write D⊥ for the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.

• Given f ∈ C(X,Y ), where X,Y ∈ ObjC, we call the third vertex of (any)
distinguished triangle X f→ Y → Z a cone of f .

• For an additive category B we write K(B) for the homotopy category
of (cohomological) complexes over B. Its full subcategory of bounded
complexes will be denoted by Kb(B). We will write M = (M i) if M i are
the terms of the complex M .

1.2 Weight structures: basics
Let us recall the definition of the notion that is central for this paper.

Definition 1.2.1. I. A couple of subclasses Cw≤0, Cw≥0 ⊂ ObjC will be said
to define a weight structure w on a triangulated category C if they satisfy the
following conditions.
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(i) Cw≥0 and Cw≤0 are Karoubi-closed in C (i.e., contain all C-retracts of
their objects).

(ii) Semi-invariance with respect to translations.
Cw≤0 ⊂ Cw≤0[1], Cw≥0[1] ⊂ Cw≥0.
(iii) Orthogonality.
Cw≤0 ⊥ Cw≥0[1].
(iv) Weight decompositions.
For any M ∈ ObjC there exists a distinguished triangle

X →M → Y→X[1]

such that X ∈ Cw≤0, Y ∈ Cw≥0[1].

We will also need the following definitions.

Definition 1.2.2. Let i, j ∈ Z; assume that a triangulated category C is en-
dowed with a weight structure w.

1. The full subcategory Hw of C whose objects are Cw=0 = Cw≥0 ∩ Cw≤0

is called the heart of w.

2. Cw≥i (resp. Cw≤i, resp. Cw=i) will denote Cw≥0[i] (resp. Cw≤0[i], resp.
Cw=0[i]).

3. C [i,j] denotes Cw≥i ∩ Cw≤j ; hence this class equals {0} if i > j.

Cb ⊂ C will be the category whose object class is ∪i,j∈ZC [i,j].

4. We say that (C,w) is bounded if Cb = C (i.e., if ∪i∈ZCw≤i = ObjC =
∪i∈ZCw≥i).

5. Let C ′ be a triangulated category endowed with a weight structure w′; let
F : C → C ′ be an exact functor.

F is said to be weight-exact (with respect to w,w′) if it maps Cw≤0 into
C ′w′≤0 and sends Cw≥0 into C ′w′≥0.

6. Let D be a full triangulated subcategory of C.

We say that w restricts to D whenever the couple (Cw≤0∩ObjD, Cw≥0∩
ObjD) is a weight structure on D.

7. Let H be a full subcategory of a triangulated category C.

We say that H is connective if ObjH ⊥ (∪i>0 Obj(H[i])).

Remark 1.2.3. 1. A simple (and yet quite useful) example of a weight structure
comes from the stupid filtration onKb(B) (or onK(B)) for an arbitrary additive
category B. In this case Kb(B)w≤0 (resp. Kb(B)w≥0) will be the class of
complexes that are homotopy equivalent to complexes concentrated in degrees
≥ 0 (resp. ≤ 0); see [BoS18b, Remark 1.2.3(1)].

The heart of this weight structure is the Karoubi-closure of B in Kb(B) (or
in K(B), respectively).

2. A weight decomposition (of any M ∈ ObjC) is almost never canonical.
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Still for any m ∈ Z the axiom (iv) gives the existence of a distinguished
triangle

w≤mM →M → w≥m+1M (1.2.1)

with some w≥m+1M ∈ Cw≥m+1 and w≤mM ∈ Cw≤m; we call it an m-weight
decomposition of M .

We will often use this notation below (even though w≥m+1M and w≤mM
are not canonically determined by M); we will call any possible choice either of
w≥m+1M or of w≤mM (for any m ∈ Z) a weight truncation of M . Moreover,
when we write arrows of the type w≤mM → M or M → w≥m+1M we will
always assume that they come from some m-weight decomposition of M .

3. In the current paper we use the “homological convention” for weight struc-
tures; it was previously used in [Wil09], [Bon18a], [BoI15], [BoS18b], [BoK18],
[Bon18b], [Bon18c], and [Bon19], whereas in [Bon10a] and in [Bon10b] the “coho-
mological convention” was used. In the latter convention the roles of Cw≤0 and
Cw≥0 are interchanged, i.e., one considers Cw≤0 = Cw≥0 and Cw≥0 = Cw≤0.
Consequently, a complex X ∈ ObjK(B) whose only non-zero term is the fifth
one (i.e., X5 6= 0) has weight −5 in the homological convention, and has weight
5 in the cohomological convention. Thus the conventions differ by “signs of
weights”; K(B)[i,j] is the class of retracts of complexes concentrated in degrees
[−j,−i].

We also recall that D. Pauksztello has introduced weight structures indepen-
dently in [Pau08]; he called them co-t-structures.

4. The orthogonality axiom (iii) in Definition 1.2.1 immediately yields that
Hw is connective in C. We will formulate a certain converse to this statement
below.

Let us recall some basic properties of weight structures. Starting from this
moment we will assume that all the weight structures we consider are bounded
(unless specified otherwise; this is quite sufficient for our purposes everywhere
except in the proof of Lemma 3.1.4(1).

Proposition 1.2.4. Let C be a triangulated category, n ≥ 0; we will assume
that w is a fixed (bounded) weight structure on C everywhere except in assertion
8.

1. The axiomatics of weight structures is self-dual, i.e., for C ′ = Cop (conse-
quently, ObjC ′ = ObjC) there exists the (opposite) weight structure w′
for which C ′w′≤0 = Cw≥0 and C ′w′≥0 = Cw≤0.

2. Cw≤0 is the extension-closure of ∪i≤0Cw=i in C; Cw≥0 is the extension-
closure of ∪i≥0Cw=i in C.

3. Cw≥0 = (Cw≤−1)⊥ and Cw≤0 = ⊥Cw≥1.

4. Let m ≤ l ∈ Z, X,X ′ ∈ ObjC; fix certain weight decompositions of
X[−m] and X ′[−l]. Then any morphism g : X → X ′ can be extended to
a commutative diagram of the corresponding distinguished triangles (see
Remark 1.2.3(2)):

w≤mX −−−−→ X −−−−→ w≥m+1Xy yg

y
w≤lX

′ −−−−→ X ′ −−−−→ w≥l+1X
′

10



Moreover, if m < l then this extension is unique (provided that the rows
are fixed).

5. Assume that w′ is a weight structure for a triangulated category C ′. Then
an exact functor F : C → C ′ is weight-exact if and only if F (Cw=0) ⊂
C ′w′=0.

6. If M belongs to Cw≥−n then w≤0M belongs to C [−n,0].

7. If m < l ∈ Z and M ∈ ObjC then for any choice of arrows w≤lM → M
and w≤m(w≤lM)→ w≤lM that can be completed to an l-weight decom-
position and an m-weight decomposition triangle (see Remark 1.2.3(2))
respectively, the composition morphism w≤m(w≤lM) → M can be com-
pleted to an m-weight decomposition of M .

8. Let D ⊂ ObjC be a connective additive subcategory. Then there exists
a unique weight structure wT on T = 〈D〉C such that D ⊂ TwT =0. It is
bounded; its heart equals the Karoubi-closure of D in C. Moreover, T is
Karoubian whenever D is.

Furthermore, if there exists a weight structure w on C such that D ⊂ Hw,
then the embedding T → C is strictly weight-exact, i.e., TwT≤0 = ObjT ∩
Cw≤0 and TwT≥0 = ObjT ∩ Cw≥0.

9. For any M,N ∈ ObjC and f ∈ C(N,M) if M belongs to Cw≥0, then f
factors through (any possible choice of) w≥0N . Dually, if N belongs to
Cw≤0 then f factors through w≤0M .

10. Let D be a (full) triangulated subcategory of C such that w restricts to D;
let M ∈ Cw≤0, N ∈ Cw≥−n, and f ∈ C(M,N). Suppose that f factors
through an object P of D, i.e., there exist u1 ∈ C(M,P ) and u2 ∈ C(P,N)
such that f = u2 ◦ u1. Then f factors through an element of D[−n,0].

Proof. Assertions 1–4 were proved in [Bon10a] (pay attention to Remark 1.2.3(3)!).
Assertion 5 follows immediately from Lemma 2.7.5 of [Bon10b].

Assertion 6 follows immediately from the fact that the classes Cw≥−n and
Cw≤0 are extension-closed (cf. assertion 2).

7. The octahedral axiom of triangulated categories implies that the object
C = Cone(w≤m(w≤lM) → M) is an extension of (the corresponding) w≥l+1M
by w≥m+1(w≤lM). Hence C belongs to Cw≥m+1 (cf. assertion 2 once again);
thus w≤m(w≤lM)→M → C is an m-weight decomposition triangle.

Assertion 8 is given by Remark 2.1.2 of [BoS18b].
Assertion 9 is an easy consequence of assertion 4.
10. Assertion 9 yields that u2 factors through w≥−nP ; thus we can assume

that P belongs to Dw≥−n. Next, the dual to assertion 9 (see assertion 1) yields
that u1 factors through w≤0P . It remains to note that we can choose w≤0P
that belongs to D[−n,0] (see assertion 6).

1.3 Weight structures on localizations
Definition 1.3.1. We call a category A

B the factor of an additive category
A by its full additive subcategory B if Obj

(
A
B

)
= ObjA and (A

B )(X,Y ) =
A(X,Y )/(

∑
Z∈ObjB A(Z, Y ) ◦A(X,Z)).
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Proposition 1.3.2. Let D ⊂ C be a triangulated subcategory of C; suppose
that w restricts to a weight structure wD on D (see Definition 1.2.2(6)). Denote
by l the localization functor C → C/D (the latter category is the Verdier
quotient of C by D) .

Then the following statements are valid.
1. w induces a weight structure on C/D, i.e., the Karoubi-closures of l(Cw≤0)

and l(Cw≥0) in C/D give a weight structure on this category.
2. Suppose (C,w) is bounded, and for X ∈ ObjC assume that l(X) ∈

C/DwC/D≥0.
Then X is an extension of some element of Cw≥0 by an element of DwD≤−1

(see §1.1).
3. The obvious functor Hw

HwD
→ C/D is a full embedding, and the heart

HwC/D of the weight structure wC/D given by assertion 1 is the Karoubi-closure
of the image of Hw

HwD
in C/D.

4. If (C,w) is bounded, then C/D also is.

Proof. Assertions 1,3, and 4 were proved in §8.1 of [Bon10a]; assertion 2 is an
easy consequence of Theorem 3.3.1 of [BoS18c] (as demonstrated by Remark
3.3.2(1) of ibid.).

Remark 1.3.3. 1. Part 2 of our proposition gives the existence of a distinguished
triangle D → X → C → D[1] for some C ∈ Cw≥0 and D ∈ Dw≤−1. Clearly,
this triangle is just a −1-weight decomposition of X. In particular, Proposition
1.2.4(2) (or part 6 of that proposition along with its dual) easily yields the
following: if we also have X ∈ C [r,m] for r ≤ 0 ≤ m then C ∈ C [0,m] and
D ∈ C [r,−1].

2. If w is bounded then all weight structures compatible with it (for D ⊂ C)
come from additive subcategories of Hw (see Proposition 1.2.4(8,5)). Moreover,
in this case the heartHwC/D actually equals the essential image of Hw

HwD
in C/D

(see Proposition 3.3.3(1) of [BoS18c]).
On the other hand, to ensure that there exists a weight structure for C/D

such that the localization functor is weight-exact it actually suffices to assume
that D is densely generated by some set of elements of C [0,1]; see Theorem 3.2.2
of [BoS19] for a more general statement.

1.4 On weight complexes and weight spectral sequences
We will need certain weight complexes below. We define weight complexes of
objects here only; however, we will discuss certain extensions of this definition
in Remark 1.4.3(3,4) below.

Definition 1.4.1. For an object M of C (where C is endowed with a weight
structure w) choose some w≤lM (see Remark 1.2.3(2)) for all l ∈ Z; then con-
nect w≤l−1M with w≤lM using Proposition 1.2.4(4) (i.e., we consider those
unique connecting morphisms that are compatible with idM ). Next, take the
corresponding triangles

w≤l−1M → w≤lM →M−l[l]→ (w≤l−1M)[1] (1.4.1)

(so, we just introduce the notation for the corresponding cones). All of these
triangles along with the corresponding morphisms w≤lM → M are called a

12



choice of a weight Postnikov tower for M , whereas the objects M i along with
the morphisms connecting them (obtained by composing the morphismsM−l →
(w≤l−1M)[1− l]→M−l+1 that come from two consecutive triangles of the type
(1.4.1)) will be denoted by t(M) and said to be a choice of a weight complex for
M .

Let us recall some basic properties of weight complexes. Note that the
boundedness of w is only needed in assertions 5 and 3 below; moreover, a much
weaker restriction on w is sufficient for the latter statement according to Propo-
sition 3.1.8(2) and Theorem 2.3.4(I.1) of [Bon19].

Proposition 1.4.2. Let M ∈ ObjC, where C is endowed with a weight struc-
ture w.

Then the following statements are valid.

1. Any choice of t(M) = (M i) is a complex indeed (i.e., the square of the
boundary is zero); all M i belong to Cw=0.

2. M determines its weight complex t(M) up to a homotopy equivalence.
In particular, if M ∈ Cw≥0 (resp. M ∈ Cw≤0) then any choice of t(M)
is K(Hw)-isomorphic to a complex with non-zero terms in non-positive
(resp. non-negative) degrees only.

3. If t(M) is homotopy equivalent to 0, then M = 0.

4. If M0
f→ M1 → M2 is a distinguished triangle in C then for any possible

choice of t(M0) and t(M1) there exists a choice of t(M2) that completes
them to a distinguished triangle.

Moreover, if M0 ∈ Cw≥0 and M1 ∈ Cw≤0 then there exists t(M2) of the

form · · · → M−2
0 → M−1

0 → M0
0

f0→ M0
1 → M1

1 → . . . . That is, one
can take any choice of t(M1) that is concentrated in non-negative degrees
and put it in the same degrees of t(M2), take a "dual choice" of t(M0),
shift it by [1], and put it inside t(M2) also, whereas f0 is the composed
morphism M0

0 →M0
f→M1 →M0

1 (the unlabeled morphisms in this row
are provided by our construction).

5. If t(M) is homotopy equivalent to a bounded complex (M ′i) then M
belongs to the extension-closure of the set {M ′−i[i]}.

6. Let N ∈ Cw=0, M ∈ Cw≥0; assume that a C-morphism f : N → M
factors through some L ∈ ObjC. Then for any possible choice of L0 (i.e.,
of the zeroth term of t(L)) f can be factored through L0.

7. Let H : Hw → A be an additive functor, where A is an abelian category.
Choose a weight complex t(M) = (M j) for each objectM of C, and denote
by H̃(M) the zeroth homology of the complex H(M i). Then H̃(−) yields
a homological functor from C to A (that does not depend on the choices
of weight complexes for objects); we call a functor of this type a w-pure
one (cf. Remark 3.1.3 below).

8. Let C ′ be a triangulated category endowed with a weight structure w′;
let F : C → C ′ be a weight-exact functor. Then for any choice of t(M)
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the complex (F (M i)) yields a weight complex of F (M) with respect to
w′. Moreover, this observation is "compatible with the construction of
functors" mentioned in the previous assertion, and is natural with respect
to transformations of (weight-exact) functors.

Proof. Assertions 1–4 easily follow from Theorem 3.3.1 of [Bon10a]. Moreover,
Proposition 1.3.4 and Appendix A of [Bon18c] give some more detail for the
proofs.

Next, assertions 8, 7, and 5 are given by Proposition 1.3.4(12), Theorem
2.1.2(1), and Corollary 3.3.3(2) of ibid., respectively.

Assertion 6 was essentially established in the course of proving Proposition
1.2.4(10).

Remark 1.4.3. 1. Moreover, Theorem 3.3.1(VI) of [Bon10a] easily yields that
t induces a bijection between the class of isomorphism classes of elements of
C [0,1] and the corresponding class for K(Hw) (i.e., with the class of homotopy
equivalence classes of complexes that have non-zero terms in degrees −1 and 0
only).

2. The term "weight complex" originates from [GiS96], where a certain
complex of Chow motives W (X) was constructed for a variety X over a charac-
teristic 0 field. The weight complex functor of Gillet and Soulé can essentially
be obtained by composing the "triangulated motivic" weight complex func-
tor DM eff

gm(k,Z) → Kb(Choweff(k,Z)) (or DMgm(k,Z) → Kb(Chow(k,Z)); cf.
Definition 3.1.1 below) with the functorMc of motive with compact support (see
Propositions 6.3.1 and 6.6.2 and Remark 6.3.2(2) of [Bon09]; cf. also Definition
4.1.1(2) and the proof of Proposition 4.1.8(2) below). Note however that in
[GiS96] the so-called contravariant category of Chow motives is considered, i.e.,
all arrows point in the opposite direction.

Certainly, our notion of weight complex is much more general.
3. The basics of our weight complex theory was developed in §3 of [Bon10a];

in §1.3 of [Bon18c] the theory was exposed more carefully (via extending Def-
inition 1.4.1). In ibid. a (canonical) weak weight complex functor t : Cw →
Kw(Hw) was defined; here Cw is a (triangulated) category canonically equiva-
lent to C, andKw(Hw) is a certain "weak homotopy" category ofHw-complexes
(and there exists a natural conservative functor K(Hw)→ Kw(Hw)).

Moreover, throughout this paper one can actually assume that all the weight
complexes we need are given by "compatible" exact strong weight complex func-
tors whose targets are the corresponding Kb(Hw); see Corollary 3.5 of [Sos19],
Remark 1.3.5(3) of [Bon18c], and Proposition 1.3.1 of [Bon20b]. This approach
is also applied in (§1.5 of) [BoK20].

4. All the weight complexes in this paper can be assumed to be bounded,
since for any (w-bounded) object M of C one can take w≤lM = 0 for l small
enough and = M for l large enough. Moreover, we can assume that for any
object M of C a canonical choice t0(M) of its weight complex is fixed; cf. part
3 of this remark.

Now, the possible choices of bounded weight complexes for M are pre-
cisely the bounded Hw-complexes homotopy equivalent to t0(M); see Corollary
3.3.3(1) of [Bon18c].

Let us now recall some of the properties of weight spectral sequences estab-
lished in §2 of [Bon10a].
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Let A be an abelian category. In §2 of [Bon10a] for H : C → A that is
either cohomological or homological (i.e., it is either covariant or contravariant,
and converts distinguished triangles into long exact sequences) certain weight
filtrations and weight spectral sequences (corresponding to w) were introduced.

Definition 1.4.4. Let A be a an abelian category, i ∈ Z, and M ∈ ObjC.
1. If H : C → A is a (covariant) functor then we will write Hi for the functor

H ◦ [−i] : C → A.
2. If H is a contravariant functor from C into A then we write Hi for the

composed functor Hi = H ◦ [−i].
Moreover, we fix a choice of w≥iM and define the weight filtration on H(M)

as W i(H)(M) = Im(H(w≥iM) → H(M)). Recall that W iH(M) is functorial
inM (in particular, it does not depend on the choice of w≥iM); see Proposition
2.1.2(2) of ibid.

Respectively, we will use the notation GriWH(M) for the quotient object
W i(H)(M)/W i+1(H)(M)

Proposition 1.4.5. 1. For a homological functor H : C → A and any M ∈
ObjC there exists a spectral sequence T = Tw(H,M) with Epq

1 (T ) = H−q(Mp),
such that the objectsM i and the boundary morphisms of E1(T ) come from any
choice of t(M). Tw(H,M) is C-functorial in M starting from E2.

It converges to Ep+q
∞ = H−p−q(M) (at least) if M is w-bounded.

2. Dually, if H is a cohomological functor from C into A then for any M ∈
ObjC there exists a spectral sequence T = Tw(H,M) with Epq

1 = Hq(M−p),
for M i and the boundary morphisms of E1(T ) coming from t(M). Tw(H,M)
converges to Hp+q(M) wheneverM is w-bounded; it is C-functorial inM start-
ing from E2, and also functorial with respect to composition of H with exact
functors between abelian categories.

The step of the filtration given by (El,m−l
∞ : l ≥ n) on Hm(M) (for some

n,m ∈ Z) equals (WnHm)(M).

Proof. These statements are essentially contained in Theorems 2.3.2 and 2.4.2
of [Bon10a], respectively (yet take into account Remark 1.2.3(3)!).

Corollary 1.4.6. Let M ∈ Cw≥0, N ∈ Cw=0. Then the following statements
are valid.

1. Choose some t(M) = (M i). Then C(N,M) is isomorphic to the zeroth
homology of the complex (Hw(N,M i)).

2. LetD ⊂ C be a triangulated subcategory of C; suppose that w restricts to
a weight structure wD on D (see Definition 1.2.2(6)). Assume that a morphism
f ∈ C(N,M) vanishes in the Verdier quotient C/D. Then f factors through
some object of HwD.

Proof. 1. We may assume that M i = 0 for i > 0 (see Proposition 1.4.2(2);
note that making a choice here does not affect the homology of the complex
(Hw(N,M∗))). Hence we have a weight spectral sequence for the homological
functor C(N,−) : C → Ab that starts from Epq

1 = C(N,Mp[q]) and converges
to C(N,M [p+q]). Since N ⊥M i[−i] for all i < 0 and N ⊥M i[−i−1] whenever
i < −1, this spectral sequence gives the result.

2. The Verdier localization theory yields that f factors through an object of
D. Hence the assertion follows from Proposition 1.4.2(6).
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2 On motives, their weights, and various (com-
plexes of) Chow groups

In this section we study several motivic categories, Chow weight structures on
them, and certain (complexes of) Chow groups.

In §2.1 we recall some basics on Voevodsky motives with coefficients in a
Z[1/e]-algebra R and introduce some notation.

In §2.2 we introduce and study in detail Chow weight structures on various
versions of DM eff

gm(k,R).
In §2.3 we associate to extensions of k and complexes of Chow motives the

homology of complexes consisting of their Chow groups (of fixed dimension and
"highness"). We prove several properties of these homology theories (and of
motivic homology); however, most of them appear to be standard.

2.1 Some notation and basics on Voevodsky motives
Below k will denote a perfect base field of characteristic p. We set e = 1 if p = 0
and e = p otherwise; that is, e is the exponential characteristic of k.

We will use the term k-variety for reduced separated (possibly, reducible)
schemes of finite type over Spec k; we write Var for the set of all k-varieties.
Respectively, the set of smooth varieties (resp. of smooth projective varieties)
over k will be denoted by SmVar (resp. by SmPrVar), and we do not assume
these schemes to be connected.

Recall that (as was shown in [MVW06] and [BeV08]; cf. also [CiD15] and
[BoK18]) one can do the theory of motives with coefficients in an arbitrary
commutative associative ring with a unit R. One obtains a tensor triangu-
lated category DM eff

gm(k,R) (along with its embeddings into DMgm(k,R) and
into DM eff

− (k,R); see below) that satisfies all the basic properties of the usual
Voevodsky’s motives (i.e., of those with integral coefficients for p = 0). More-
over, we recall that all of the results that were stated in [Voe00] in this case
are currently known for Z[1/e]-motives (also if) p > 0; see [Kel17], [Deg08],
and [Bon11]. Consequently, these properties are also valid for R-linear motives
whenever R is a Z[1/e]-algebra (see [BeV08] and [BoK18]), and we will apply
some statements of this sort below without further mention. We will mostly be
interested in the cases R = Z[1/e] and R = Q.

A basic part of the construction of motives is a functorMR (R-motive) from
the category of smooth k-varieties into DM eff

gm(k,R). Actually,MR extends to
the category of all k-varieties (see [Voe00] and [Kel17]); yet we will mention this
extension just a few times.

We will write pt for the point Spec k (considered as a k-variety); we write
just R forMR(pt).

We write Choweff(k,R) for the Karoubi-closure in DM eff
gm(k,R) of the sub-

category whose objects areR-motives of smooth projective varieties; Choweff(k,R)
will be called the category of R-linear effective homological Chow motives (see
Proposition 2.2.6(1) below or Remark 1.3.2(4) of [BoK18] for a justification of
this terminology).

For c ≥ 0 and M ∈ ObjDM eff
gm(k,R) we write M〈c〉 for the tensor product

of M by the cth tensor power of the Lefschetz motive L (recall that the latter is
characterized by the conditionMR(P1) ∼= L

⊕
R). The relation of this notation
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to the notation for twists in [Voe00] is as follows: M〈c〉 = M(c)[2c] and M(c) =
M〈c〉[−2c].

Next, recall that the twist functor −〈1〉 is a full embedding of DM eff
gm(k,R)

into itself (this fact is often called the Cancellation theorem) that restricts to
an embedding of Choweff(k,R) into itself. −〈1〉 extends to an autoequivalence
of the corresponding category DMgm(k,R) = DM eff

gm(k,R)[〈−1〉] (i.e., we in-
vert the functor −〈1〉 = − ⊗ L); note that this category contains DM eff

gm(k,R)

together with Chow(k,R) = Choweff(k,R)[〈−1〉]. Moreover, DMgm(k,R) is
equipped with an exact Poincaré duality functor −̂ : DMgm(k,R)→ DMgm(k,R)op

(constructed in [Voe00] for p = 0; see Theorem 5.3.18 of [Kel17] or [Bon11]
for the positive characteristic case) that sends MR(P ) into MR(P )〈−d〉 if P
is smooth projective everywhere of dimension d. It restricts to the "usual"
Poincaré duality for Chow(k,R).

Both DM eff
gm(k,R) and DMgm(k,R) are Karoubian by definition.

An important property of motives is the Gysin distinguished triangle (see
Proposition 4.3 of [Deg08] that establishes its existence in the case of an arbi-
trary characteristic p). For a closed embedding Z → X of smooth varieties with
Z is everywhere of codimension c in X, it has the following form:

MR(X \ Z)→MR(X)→MR(Z)〈c〉 →MR(X \ Z)[1]. (2.1.1)

Remark 2.1.1. Some of our formulations below will mention the homotopy t-
structure for the Voevodsky motivic complexes. Respectively we recall that
the methods of [Voe00] yield an embedding DM eff

gm(k,R) into a certain cate-
gory DM eff

− (k,R), and the latter can be endowed with the so-called homotopy
t-structure tRhom (which gives a filtration on DM eff

gm(k,R) ⊂ DM eff
− (k,R) that

we will sometimes call the motivic connectivity one). Furthermore, DM eff
− (k,R)

is a full subcategory of the triangulated category DM eff(k,R) of unbounded
motivic complexes that is closed with respect to arbitrary coproducts. The t-
structure tRhom can be extended to DM eff(k,R) (see §4 of [BeV08] or Corol-
lary 5.2 of [Deg11]), and the corresponding class DM eff(k,R)t

R
hom≤0 equals

DM eff
− (k,R)t

R
hom≤0; it also equals the smallest extension-closed class of objects

of DM eff(k,R) that is closed with respect to coproducts and containsMR(X)
for all smooth X/k.

We will often have to mention base fields distinct from k. It will be conve-
nient for us to use the following notation.

Definition 2.1.2. Assume that K/k be a field extension, X is a k-variety, and
M an object of DMgm(k,R).

1. We will write XK for the K-variety X ×Spec k SpecK.
2. Kperf will denote the perfect closure of K.
3. We will use the notation MK for the image of M with respect to the

extension of base field functor DMgm(k,R) → DMgm(Kperf , R) (cf. Remark
2.2.3 below); see Appendix A of [BoK20] for some information on functors of
this type.

Let us recall a well-known statement related to this convention. Below we
will only apply it for X that is smooth over K (yet cf. Proposition 4.1.2(2) and
Remark 4.1.3 below); in this case it is essentially true by definition.
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Lemma 2.1.3. For a variety X over k we haveMR(X)K ∼=MR(XKperf ) (in
the category DM eff

gm(Kperf , R)).

Proof. The statement is given by Proposition A.1(1) of [BoK20]. Alternatively,
it easily follows from (8.7.1), Corollary 3.2, and Theorem 3.1 of [CiD15] along
with Proposition 4.3.13 of [CiD19].

2.2 Chow weight structures on various motivic categories
Now we note that the arguments used in the construction of the Chow weight
structures in [Bon10a] and [Bon11] can be easily applied to R-motives (for any
Z[1/e]-algebra R).

Proposition 2.2.1. 1. There exists a bounded weight structure wChow on
DM eff

gm(k,R) (resp. on DMgm(k,R)) whose heart equals Choweff(k,R)
(resp. Chow(k,R); recall that we assume these subcategories ofDMgm(k,R)
to be strict). These weight structures on DM eff

gm(k,R) and DMgm(k,R)

are compatible (i.e., the embeddingDM eff
gm(k,R)→ DMgm(k,R) is weight-

exact).

Moreover,DM eff
gm(k,R)wChow≤0 (resp. DMgm(k,R)wChow≤0) is the extension-

closure of the class ∪i≤0 Obj Choweff(k,R)[i] in DM eff
gm(k,R) (resp. of the

class ∪i≤0 Obj Chow(k,R)[i] in DMgm(k,R)); DM eff
gm(k,R)wChow≥0 (resp.

DMgm(k,R)wChow≥0) is the extension-closure of ∪i≥0 Obj Choweff(k,R)[i]
in DM eff

gm(k,R) (resp. of ∪i≥0 Obj Chow(k,R)[i] in DMgm(k,R)).

2. If U ∈ SmVar and dimU ≤ m thenMR(U) ∈ DM eff
gm(k,R)[−m,0].

3. If U → V is an open dense embedding of smooth varieties then the motive
Cone(MR(U)→MR(V )) belongs to DM eff

gm(k,R)wChow≤0.

4. Let k′/k be a field extension. Then the extension of scalars functors −k′ :
DM eff

gm(k,R) → DM eff
gm(k′perf , R) and DMgm(k,R) → DMgm(k′perf , R)

(see Definition 2.1.2) are weight-exact with respect to the corresponding
Chow weight structures.

5. For any n ∈ Z the functor −〈n〉 is weight-exact on DMgm(k,R); the same
is true for DM eff

gm(k,R) if n ≥ 0.

6. If M ∈ ObjDM eff
gm(k,R)〈n〉, n ∈ Z, then there exists a choice of its

weight complex t(M) = (M i) (with respect to the Chow weight structure
for DM eff

gm(k,R); see Definition 1.4.1 and Remark 1.4.3(4)) with M i ∈
Obj Choweff(k,R)〈n〉.

Proof. The first three assertions were stated in Theorem 2.2.1 of [Bon11] in the
case R = Z[1/e]. The proof carries over to the case of a general R without any
difficulty; see Remark 2.1.3(1) of [BoK18] or Proposition 2.3.2 of [BoI15].

The remaining statements are simple as well. Assertions 4 and 5 easily follow
from Proposition 1.2.4(5) along with Lemma 2.1.3, whereas assertion 6 follows
from the previous one by Proposition 1.4.2(8).

Now we deduce some simple corollaries from this proposition. Their formu-
lation requires the following definition, that will be important for us below.
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Definition 2.2.2. 1. For M ∈ ObjDM eff
gm(k,R) and a non-negative integer

r we say that M is r-effective if it has the form N〈r〉 for some N ∈
ObjDM eff

gm(k,R).

2. We say that the dimension of M is not greater than an integer m if M
belongs to 〈MR(P ) : P ∈ SmPrVar, dimP ≤ m〉.
The (full) subcategory of DM eff

gm(k,R) (resp. of Choweff(k,R)) of mo-
tives of dimension at most m is denoted by d≤mDM eff

gm(k,R) (resp., by
d≤m Choweff(k,R); consequently, d≤mDM eff

gm(k,R) = d≤m Choweff(k,R) =
{0} if m < 0).

3. For r ≥ −1 we define the functor lr : DM eff
gm(k,R)→ DMr

gm(k,R) as the
Verdier localization of DM eff

gm(k,R) by DM eff
gm(k,R)〈r + 1〉.

4. We also use the following extension of this notation: Choweff(k,R)〈+∞〉 =
DM eff

gm(k,R)〈+∞〉 = {0}, l+∞ = l+∞−1 will denote the identity func-
tor for DM eff

gm(k,R). Respectively, DMgm(k,R)+∞(k,R) = DM eff
gm(k,R),

and any subclass of objects of DM eff
gm(k,R)〈+∞〉 is zero.

5. If M is an object of Choweff(k,R) or of DM eff
gm(k,R) and j, l ∈ Z then we

define h2j+l,j(M,R) asDMgm(k,R)(R〈j〉[l],M) = DMgm(k,R)(R(j)[2j+
l],M) (cf. Theorem 5.3.14 of [Kel17] or Proposition 4.1.2(3) below where
these groups are related to the corresponding Chow-Bloch groups of vari-
eties).

More generally, for an extension K/k we write h2j+l,j(MK , R) for the
group DMgm(Kperf , R)(R〈j〉[l],MK) (see Definition 2.1.2(1,2)).

Note that the last part of this definition can be naturally extended to
DM eff

− (k,R). When we will use this notation for general (l,M), we will usually
take j = 0 in it.

Remark 2.2.3. We will sometimes mention "ordinary" Chow groups of varieties
over fields that are not necessarily perfect. One can define them in the usual way
(in spite of the conventions described in Definition 2.1.2; cf. also Proposition
4.1.2(3) below) since for any variety X over k and any extension K/k we have
the following isomorphism of Chow groups of cycles of dimension j ≥ 0:

CHj(XK , R) ∼= CHj(XKperf , R).

This fact is probably well-known; it can either be proved similarly to Lemma
1.2 of [Via17] (where the case R = Q is considered; recall that we always assume
that R is a Z[1/e]-algebra) or deduced from Proposition 8.1 of [CiD15].

Corollary 2.2.4. Let c ≥ 1, m ≥ 0.
1. The Chow weight structure restricts to a weight structure wc on the cat-

egory DM eff
gm(k,R)〈c〉 (see Definition 1.2.2(6)). Moreover, DM eff

gm(k,R)wc≤0 =

DM eff
gm(k,R)wChow≤0〈c〉 and DM eff

gm(k,R)wc≥0 = DM eff
gm(k,R)wChow≥0〈c〉.

2. An object M of Choweff(k,R) is c-effective (as an object of DM eff
gm(k,R))

if and only if it can be presented as N〈c〉 for N ∈ DM eff
gm(k,R)wChow=0.

3. The Chow weight structure also restricts to a weight structure on the
category d≤mDM

eff
gm(k,R) (that will also be denoted by wChow). The heart
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of the latter consists of all objects of Choweff(k,R) inside d≤mDM eff
gm(k,R);

these motives are exactly the retracts ofMR(P ) for smooth projective P/k of
dimension at most m.

4. If U → V is an open embedding of smooth varieties such that V \
U is everywhere of codimension c in V , dimV ≤ m, then Cone(MR(U) →
MR(V )) ∈ (d≤m−cDM

eff
gm(k,R))wChow≤0〈c〉.

5. If V is a smooth k-variety of dimension at most m then MR(V ) is an
object of d≤mDM eff

gm(k,R).
6. The Karoubi-closures of the classes lc−1(DM eff

gm(k,R)wChow≤0) and
lc−1(DM eff

gm(k,R)wChow≥0) in DM c−1
gm (k,R) give a bounded weight structure

wc−1
Chow on this category.

Proof. 1. Note that DM eff
gm(k,R)〈c〉 is precisely the subcategory of DM eff

gm(k,R)

densely generated by Obj Choweff(k,R)〈c〉. Hence Proposition 1.2.4(8,2) yields
the result immediately.

2. This is an immediate consequence of the "moreover" part of the previous
assertion (since −〈c〉 gives an equivalence ofDM eff

gm(k,R) withDM eff
gm(k,R)〈c〉).

3. The statement immediately follows from Proposition 1.2.4(8) (once again).
4. There clearly exists a chain of open embeddings U = U0 → U1 → U2 →

· · · → Um = V (for somem ≥ 1) such that Ui\Ui−1 are smooth for all 1 ≤ i ≤ m.
Hence the distinguished triangles (2.1.1) along with Corollary 2.2.4(5) imply (by
induction on m) that Cone(MR(U)→MR(V )) ∈ Obj(d≤m−cDM

eff
gm(k,R))〈c〉.

Thus it remains to combine the equality

((d≤m−cDM
eff
gm(k,R))〈c〉)wc≤0 = ((d≤m−cDM

eff
gm(k,R))wChow≤0)〈c〉

(cf. assertion 1 and its proof) with Proposition 2.2.1(3).
5. The arguments used for the proof of [Bon11, Theorem 2.2.1(1)] give the

result without any difficulty (cf. Corollary 1.2.2 of ibid. and Lemma 4.1.4(4)
below).

6. According to assertion 1, we can apply Proposition 1.3.2(1,4) to obtain
the result in question.

Remark 2.2.5. Let l ∈ Z and c ≥ 1, and assume that there exists a choice of
wChow≤lM that belongs to ObjDM eff

gm(k,R)〈c〉.
1. Proposition 1.2.4(7) implies that we can choose wChow≤l−1M that be-

longs to ObjDM eff
gm(k,R)〈c〉. Then the corresponding choice (see (1.4.1)) of

M−l clearly belongs to DM eff
gm(k,R)wChow=0 as well as to ObjDM eff

gm(k,R)〈c〉
(since DM eff

gm(k,R)〈c〉 is a full triangulated subcategory of DM eff
gm(k,R); see

Proposition 1.2.4(2)). Thus M−l ∈ DM eff
gm(k,R)wChow=0〈c〉.

2. Now supposeM ∈ DM eff
gm(k,R)wChow≤l. ThenM is a retract of wChow≤lM

(since idM factors through wChow≤lM by Proposition 1.2.4(9)). Thus M is an
object of DM eff

gm(k,R)〈c〉 as well.
3. It is easily seen that the weight structure wr

Chow can be extended to the
category Kar(DMr

gm(k,R)) ⊃ DMr
gm(k,R) (see Theorem 2.2.2(II.2) of [BoS18b]

or Remark 1.2.3(4) and Proposition 1.2.4(8 above). Moreover, Kar(DM0
gm(k,Z))

is easily seen to be equivalent to the (geometric) birational motivic category
DMo

gm introduced in Definition 4.2.1 of [KaS17].

Let us prove some more lemmas that will be very important for us below.
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Proposition 2.2.6. Let m, j ≥ 0, c ≥ 1, U, V ∈ SmVar, Q ∈ SmPrVar,
M ∈ Obj Choweff(k,R).

1. If U is of constant dimension d then DM eff
gm(k,R)(MR(U)〈j〉,MR(Q)) is

naturally isomorphic to the group CHd+j(U ×Q,R) of R-linear cycles of
dimension d+ j modulo rational equivalence.

2. Let u : U → V be an open embedding such that V \U is everywhere of codi-
mension at least c in V and dimV ≤ m. Let N ∈ DMgm(k,R)wChow≥0,
and assume that a morphism g ∈ DMgm(k,R)(MR(V )〈j〉, N) vanishes
when composed with MR(u)〈j〉. Then there exists a smooth projective
P/k of dimension at mostm−c such that g factors throughMR(P )〈j+c〉.

3. If Q is of dimension at most m then any morphism q : MR(Q) → M〈c〉
can be factored through MR(P )〈c〉 for some smooth projective P/k of
dimension at most m − c. Moreover, there exists an open embedding
w : W → Q such that Q \W is (everywhere) of codimension at least c in
Q and the composition q ◦MR(w) vanishes.

4. Obj d≤mDM
eff
gm(k,R)∩ObjDM eff

gm(k,R)〈c〉 = Obj(d≤m−cDM
eff
gm(k,R))〈c〉.

In particular, if M〈c〉 is of dimension at most m (in DM eff
gm(k,R)), then

M is of dimension at most m− c (thus it is zero if c > m).

5. Let g ∈ DM eff
gm(k,R)(MR(V )〈j〉,M). Assume that V is connected and

the obvious image of g in the group h2j,j(Mk(V )) (see Definition 2.1.2(3)
and the proof of this assertion) is zero. Then the morphism g can be
factored through an object of Choweff(k,R)〈j + 1〉.

6. If Q is connected then DM j
gm(k,R)(MR(Q)〈j〉,M) ∼= h2j,j(Mk(Q), R).

7. Assume that dim(Q) + j ≤ r and that the dimension of M (see Definition
2.2.2(2)) is not greater than r. Then the group h2j,j(Mk(Q), R) is isomor-
phic to the group of morphisms fromMR(Q)〈j〉 intoM in the localization
d≤rDM

eff
gm(k,R)/((d≤r−j−1DM

eff
gm(k,R))〈j + 1〉) (as well).

Proof. 1. This statement was established in [Voe00] in the case p = 0; in the
general case it follows immediately from the formulae (6.4.2) and (6.7.1) of
[BeV08]; cf. Corollary 6.7.3 of ibid.

2. Clearly, g can be factored through Cone(MR(u))〈j〉. Next, Corollary
2.2.4(4) implies that Cone(MR(u))〈j〉 ∈ DM eff

gm(k,R)wChow≤0〈j + c〉. Hence for
Cone(MR(u)) = N ′〈c〉 we can take wChow≥0(Cone(MR(u))〈j〉) to be equal to
(wChow≥0N

′)〈j+c〉 ∈ Obj Choweff(k,R)〈j+c〉 (see Proposition 1.2.4(6). Hence
applying part 9 of that proposition we conclude the proof.

3. Let Q = tQi be the decomposition of Q into connected components,
whose dimensions will be denoted by mi; clearly, mi ≤ m. Assume that M is
a retract of MR(S) for some smooth projective S/k. By the classical theory
of Chow motives (cf. assertion 1), the morphism q is supported on subvarieties
of dimension mi − c in Qi × S. Hence there exists an open W ⊂ Q such that
Q \W is everywhere of codimension at least c in Q and the "restriction" of q
to W vanishes. Hence q ◦MR(w) = 0 according to assertion 1, and assertion 2
implies that q factors through someMR(P )〈c〉 for a smooth projective P/k of
dimension at most m− c.
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4. The first part of the assertion follows immediately from Theorem 2.2 of
[Bon18a] (see also Remark 2.3(2) of ibid.).

To prove the second part it suffices to recall that any motive in the heart of
d≤m−cDM

eff
gm(k,R)〈c〉 is a retract ofMR(P )〈c〉 for some smooth projective P/k

of dimension at mostm−c (see Corollary 2.2.4(1,3)), and apply the Cancellation
theorem.

5. Clearly, we can assume that M = MR(Q), Q is (smooth projective and
connected) of dimension dQ ≥ 0, and V is of dimension d. Then assertion 1
says thatDM eff

gm(k,R)(MR(V )〈j〉,M) ∼= CHdQ−j(V ×Q,R) (the R-linear Chow
group of codimension dQ − j cycles).

Next, we recall that Chow functors of this type are well-known to be "con-
tinuous"; thus we have CHdQ−j(Qk(V ), R) = lim−→W

CHdQ−j(W × Q,R); here
W runs through open subvarieties of V (cf. Lemma 3.4 of [Via17] and its
proof). Moreover, it is easily seen that CHdQ−j(Qk(V ), R) ∼= CHj(Qk(V ), R) ∼=
CHj(Qk(V )perf , R); see Remark 2.2.3. Thus there exists an open embedding
w : W → Q such that g ◦MR(w)〈j〉 = 0; hence we can apply assertion 2.

6. Denote dimQ by d. Similarly to the proof of the previous assertion, we
have DM eff

gm(k,R)(MR(Q)〈j〉,M) ∼= h2j+2d,j+d(MR(Q) ⊗M,R), and there is
a natural surjective homomorphism

DM eff
gm(k,R)(MR(Q)〈j〉,M) ∼= h2j+2d,j+d(MR(Q)⊗M,R)→ h2j,j(Mk(Q), R).

By Proposition 1.3.2(3), the natural homomorphismDM eff
gm(k,R)(MR(Q)〈j〉,M)→

DM j
gm(k,R)(MR(Q)〈j〉,M) is surjective as well. Thus we should compare the

kernels.
According to Proposition 1.3.2(3), the second of these kernels consists ex-

actly of morphisms that can be factored through Choweff(k,R)〈j+1〉. Hence we
should prove that the first kernel can be described by this criterion as well. Now,
(the rational equivalence class of cycles representing) any morphism that factors
through Choweff(k,R)〈j + 1〉 vanishes in h2j,j(Mk(Q), R) for simple dimension
reasons (cf. Proposition 2.3.3(2) below). Conversely, any morphism that be-
longs to Ker(DM eff

gm(k,R)(MR(Q)〈j〉,M) → h2j,j(Mk(Q), R)) can be factored
through an object of Choweff(k,R)〈j + 1〉 according to the previous assertion.

7. The chain or arguments used for the proof of the previous assertion can
easily be adjusted to yield the result.

Remark 2.2.7. 1. The proof of (part 5) of the proposition uses an abstract ver-
sion of the well-known decomposition of the diagonal arguments (cf. Proposition
1 of [BlS83]). The "usual" way to construct the factorization in question (see
Proposition 3.5 of [Via17] and Lemma 3 of [GoG13]) is to resolve the singular-
ities of V \W . Yet it is somewhat difficult to apply this more explicit method
if p > 0 (at least, for Z[1/e]-coefficients). Moreover, our reasoning is somewhat
shorter than the one of loc. cit. (given the properties of Chow weight structures
that are absolutely necessary for this paper anyway).

2. In the case R = Q the "in particular" part of Proposition 2.2.6(4) was
established in §3 of [Via17] (see Remark 3.11 of ibid.). The general case of the
assertion is completely new.

3. The idea of studying DM j
gm(k,R) and the formulation of part 5 of the

proposition was inspired by Theorem 4.2.2(f) of [KaS17] (where our assertion
was established in the case j = 0).
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2.3 On complexes of Chow groups over various fields
We start with some simple definitions.

Definition 2.3.1. Let K be a field.

1. We say that K is essentially finitely generated if it is the perfect closure
of a field that is finitely generated over its prime subfield.

2. We call K a universal domain if it is algebraically closed and of infinite
transcendence degree over its prime subfield.

3. We say that a field F0 is a field of definition for an objectM ofDM eff
gm(k,R)

(resp. of Kb(Chow(k,R))) if it is a part of a quintuple (F0, k0, i, M0, f)
where k0 is a perfect subfield of F0, i is an embedding k0 → k, M0 ∈
ObjDM eff

gm(k0, R) (resp. M0 ∈ ObjKb(Chow(k0, R))), and f is an iso-
morphism Mk →M (cf. Definition 2.1.2).

4. We call K a rational extension of k if K ∼= k(t1, . . . , tn) for some n ≥ 0.

5. We say that K is a function field over k if K is finitely generated over k.

Remark 2.3.2. 1. Fields of definition for M obviously form a category if we
define a morphism from (F0, k0, i, M0, f) into (F ′0, k

′
0, i

′, M ′0, f
′) to be

a couple as follows: a field embedding F0 → F ′0 that induces an embedding
k0 → k′0 that is compatible with i and i′, and an isomorphism M ′0

∼= M0,k′0
that

is compatible with (f, f ′).
Clearly, for any field of definition ofM as above any field embedding F0 → F ′0

makes F ′0 a field of definition of M (with k′0 = k0) and also gives a morphism
of these fields of definition. Consequently, it is usually sufficient to specify F0

only.
2. Clearly, any function field is a finite extension of a rational extension of k.

Moreover, since k is perfect by our convention, any function field over it is the
function field of some smooth connected variety V/k; recall here that varieties
over perfect fields are generically smooth.

Proposition 2.3.3. Let j, l ∈ Z and r ≥ 0. Then the following statements are
valid.

1. Let N ∈ Obj Chow(k,R). Then

h2j+l,j(NK , R) ∼= DMgm(K,R)(N̂K , R〈j〉[−l])

(see Definition 2.2.2(5)) for any field extension K/k, where N̂ is the Poincaré
dual of N (in Chow(k,R) ⊂ DMgm(k,R)).

2. For any N ∈ Obj Choweff(k,R) and any field extension K/k we have
h2j+l,j(NK〈r〉, R) = {0} if j − r + l < 0.

3. For an object N of DM eff
gm(k,R) (or of DM eff

− (k,R)) we have N ∈
DM eff

− (k,R)t
R
hom≤0 (see Remark 2.1.1) if and only if hl,0(NK , R) = {0} for

all l < 0 and all function fields K/k.
Moreover, these conditions are equivalent to the vanishing of hl−r,−r(NK , R)

for all l < 0, r ≥ 0, and all function fields K/k.
4. Any object either of DM eff

gm(k,R) or of Kb(Chow(k,R)) possesses an
essentially finitely generated field of definition.
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Proof. 1. This is an immediate consequence of Poincaré duality for Voevodsky
motives; see Theorem 5.23 of [Deg08].

2. Obviously, it suffices to establish the statement for N = MR(P ), where
P is as in the previous assertion; consequently, we will now treat this particular
case. Next, recall that motivic cohomology of smooth varieties can be computed
as the (co)homology of certain (Suslin or Bloch) cycle complexes; see Theorem
5.3.14 of [Kel17] (cf. Proposition 4.1.2(3) below). Therefore the group in ques-
tion is a subquotient of a certain group of cycles of Kperf -dimension j − r + l.
The result follows immediately.

3. See the (probably, well-known) Proposition A.1(3) of [BoK20].
4. This fact appears to be well-known; its proof can easily be obtained

using continuity arguments as in Remark 1.3.3 of [Bon20a] (that relies on §4.3
of [CiD19]).

Now let us prove some facts relating (complexes of) higher Chow groups over
various base fields.

Our first statement is rather "classical" (cf. Lemma IA.3 of [Blo80] and §3
of [Via17]; one can also apply the more advanced formalism of [CiD15] to prove
it).

Proposition 2.3.4. Let j, l ∈ Z.
Fix an object (M i) of Kb(Chow(k,R)); for a field of definition F0 of (M i)

denote by G(F0) the zeroth homology of the complex h2j+l,j(M
i
F0
, R) (clearly,

G is functorial with respect to morphisms of fields of definition for (M i); see
Remark 2.3.2(1)).

I. The following statements are valid.
1. Let F0 ⊂ F ′0 be fields of definition for M . Then G(F ′0) is the (filtered)

direct limit of G(K) if we take K running through all finitely generated exten-
sions of F0 inside F ′0; here all these extensions as well as F ′0 are endowed with
the structure of fields of definition for M that "comes from F0" (see Remark
2.3.2(1) once again).

2. Let F1/k
1
0 and F2/k

2
0 be fields of definition for M ; let s : F1 → F2 be

an embedding of fields such that (M1
0 F1

)F2
∼= M2

0 F2
(yet we do not require s to

extend to a morphism of fields of definition). Then s induces a homomorphism
G(F1) → G(F2) that is an isomorphism if s(F1) = F2, and is injective if F1 is
algebraically closed.

II. Let R = Q. Then the following conditions are equivalent.

1. G(K) = {0} for any function field K/k.

2. G(F0) = {0} for some universal domain of definition for M .

3. G(F0) = {0} for any algebraically closed field of definition for M .

4. G(F0) = {0} for any field of definition for M .

III. All the statements above remain valid if we define G(K) as h2j,j(MK , R)
for a fixed M ∈ ObjDMgm(k,R).

Proof. We note (for convenience) that we can pass to the Poincaré duals in all
of these statements (see Proposition 2.3.3(1)). Thus one can express G(K) in
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terms of motivic cohomology instead of motivic homology. We obviously do not
have to track the indices involved.

I. Recall that the motivic cohomology of Chow motives over F0 can be (func-
torially) computed using certain complexes whose components are expressed in
terms of algebraic cycles in fixed F0-varieties. This fact easily yields all our
assertions except the (very) last injectivity one.

In order to verify the remaining statement we note that, for a (Voevodsky)
motive N defined over a perfect field L, the motivic cohomology of NL′ (for a
perfect field extension L′/L) can be (functorially in N) expressed as the filtered
direct limit of the corresponding cohomology of N⊗MR

L(Va) for certain smooth
varieties Va over L. Next, if L is algebraically closed, then the DMgm(L,R)-
morphism R→MR(Va) possesses a splitting given by any L-point of Va. Hence
the homomorphism in question is injective since it can be presented as the direct
limit of a system of (split) injections.

One may also apply ("explicitly") the continuity arguments mentioned in
the proof of Proposition 2.3.3(4) in these proofs.

II. The existence of trace maps for higher Chow groups (with respect to
finite extensions of base fields; see Lemma 1.2 of [Via17]) yields the following:
if F ′0/F0 is an algebraic extension and G(F ′0) = {0}, then G(F0) = {0} as well.
Along with Proposition 2.3.3(4) and assertion I, this observation easily yields
our claim.

III. Note that the motivic (co)homology of any Voevodsky motive can be
computed using certain complexes of algebraic cycles. The existence of these
complexes is immediate from (the R-module analogue of) Theorem 3.1.1 of
[Bon09] (note that this result is valid for any p; this is a consequence of Propo-
sition 5.3.12(iv) of [Kel17]). Hence the arguments above carry over to this
setting without any difficulty.

The following statement appears to be new; yet it will be somewhat less
important for us below.

Proposition 2.3.5. Once again, assume that j, l, r ∈ Z, r > 0, (M i) ∈
ObjKb(Chow(k,R)); let F1 and F2 be function fields over k. Suppose that
there exists a geometric k-valuation of rank r for F2 such that the correspond-
ing residue field is isomorphic to F1. Then there exists a split injection of the
complex h2j+l,j(M

i
F1
, R) into the complex h2j+l−r,j−r(M∗F2

, R).

Proof. Clearly it suffices to verify this statement in the case j = 0.
Once again, we apply Proposition 2.3.3(1) and reduce our assertion to the fol-

lowing statement: for a complex (N i), where N i ∈ Obj Chow(k,R), there exists
a split injection of the complex (DMgm(k,R)(N∗F1

perf , R[−l])) into
(DMgm(k,R)(N∗F2

perf , R〈r〉[−r − l])). Note also that if the schemes SpecFb

(for i = 1, 2) are the inverse (filtered) limits of some systems of smooth varieties
Xb

n/k (cf. Remark 2.3.2(2)) and O ∈ Obj Chow(k,R), then

DMgm(k,R)(OFb
perf , R[s]) ∼= lim−→DMgm(k,R)(MR(Xb

n)⊗O,R[s])

for any s ∈ Z; here we apply the well-known "continuity" of Chow groups similar
to that discussed in the proof of Proposition 2.2.6(5) (cf. also Remark 2.2.3 and
Proposition 8.1 of [CiD15]).

Hence the statement would be proved if we had a motivic category DR ⊃
DMgm(k,R) that contains certain homotopy limits lim←−MR(Xb

n) for b = 1, 2
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(that can be denoted as M(SpecKb)), is equipped with a bi-additive tensor
product bi-functor DMgm(k,R) × DR → DR such that the groups
DR((lim←−MR(Xb

n)) ⊗ O,R[s]) are functorially isomorphic to lim−→(MR(Xb
n) ⊗

O,R[s]), and such that there exists a splitDR-morphism lim←−(MR(X1
n))〈r〉[−r]→

lim←−(MR(X2
n)).

Luckily, the results of previous papers yield the existence of DR having all
these properties. Indeed, for R = Z a certain category of this sort was con-
structed in [Bon10b]. It has suffered from two drawbacks: it only contained
DM eff

gm(k,Z) instead of DMgm(k,Z), and the splitting in question was estab-
lished (see Corollary 4.2.2(2) of ibid.) only in the case where k is countable. Yet
one can easily "correct" that category so that it would contain DMgm(k,R),
and Proposition 5.2.6(8) of [Bon18b] implies that the desired splitting exists for
any perfect k (see Remark 5.2.7(7) of ibid.).

Remark 2.3.6. 1. Since a function field can be presented as a finite separable
extension of k(t1, . . . , td) (see Remark 2.3.2(2)), it is also a residue field for a
(rank 1) geometric valuation of k(t1, t2, . . . , td+1). Thus one may say that it
suffices to compute these stalks at rational extensions of k only!

2. One can also verify that h2j+l−r,j−r(M∗K , R) contains (as a retract) the
sum of any finite number of h2j+l,j(M

∗
km
, R), where km are residue fields for

distinct geometric valuations of K of rank r. Hence the homology groups of
h2j−l−r,j−r(M∗K , R) can be quite huge. Consequently, we will not try to calcu-
late them in general (at least, in the current paper; yet cf. §5.1); we will rather
be interested in their vanishing.

3 On Chow-weight homology of "general" mo-
tives

In this section we prove the central motivic results of this paper; their appli-
cations to (motives and cohomology with compact support of) varieties will be
described later. The main results of this section are Theorems 3.2.1, 3.3.3, and
3.6.4, and Corollary 3.4.2, whereas the relation to cohomology is discussed in
§3.5. Most of the results of this section will be illustrated by Theorems 4.2.1
and 4.2.3 below.

In §3.1 we introduce (using the weight complex functor) the main homology
theories of this paper and prove several of their properties.

In §3.2 we relate Chow-weight homology to the c-effectivity of motives and
their weights. A very particular case of these result yields: a cone of a morphism
h of Chow motives is c-effective if and only if h induces isomorphisms on Chow
groups of dimension less than c.

In §3.3 we generalize the aforementioned results to obtain equivalent criteria
for the vanishing of Chow-weight homology in a certain "range" (we introduce
the term "staircase set" for this purpose); we also note that the corresponding
"decompositions" of motives can be assumed not to increase their dimension.
We demonstrate the utility of our Theorem 3.3.3 by applying it to morphisms
of Chow motives.

In §3.4 we prove that the properties of motives studied in the previous sub-
section can also be "detected" through higher Chow-weight homology. As a
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consequence, we relate the vanishing of Chow-weight homology of a motive M
to that for its higher degree (zero-dimensional) motivic homology.

In §3.5 we relate the vanishing properties of the Chow-weight homology
of M to the weight factors of the cohomology H∗(M) (for various cohomology
theories). The fact that "motivic effectivity" conditions imply the corresponding
effectivity of the factors of the weight filtration on H∗(M) is immediate from
the general theory of weight spectral sequences. We also prove that a pair of
(more or less) "standard" motivic conjectures gives the converse implication for
singular cohomology (of motives with rational coefficients).

In §3.6 we study in detail the question when the higher Q-linear Chow-weight
homology of an "integral" motiveM vanishes (using the results of [BoS18c]). In
particular, we prove that if the Chow-weight homology (or motivic homology;
see Corollary 3.6.5(II)) groups of M are torsion in higher degrees then their
exponents are finite.

3.1 Chow-weight homology: definition and basic proper-
ties

Let us define the main homology theories of this paper; see Definition 2.2.2(5)
for the notation that we use here.

Definition 3.1.1. Let M be an object of DMgm(k,R).
1. We write tR(M) for a choice of a weight complex for M ; recall that one

can assume tR to be an exact functor DMgm(k,R)→ Kb(Chow(k,R)).
In the case M ∈ ObjDM eff

gm(k,R) we will always assume that tR(M) is an
object of Kb(Choweff(k,R)).

2. Let j, l, i ∈ Z; let K be a field extension of k.
For tR(M) = (Ms) we define the abelian group CWHi

j(MK , R) (resp.
CWHi

j(MK , l, R)) as the 0-th homology of the complex h2j,j(M
s+i
K , R) (resp.

of h2j+l,j(M
s+i
K , R)) obtained from tR(M).2 We will often omit R in this nota-

tion when its choice is clear.

Let us prove some basic properties of these functors.

Proposition 3.1.2. Let l, i, j,K be as above, r ≥ 0.
1. Then CWHi

j(−K , l, R) yields a homological functor on DM eff
gm(k,R) (that

does not depend on any choices). Moreover, this functor factors through the
base field change functor DM eff

gm(k,R)→ DM eff
gm(Kperf , R).

2. Assume r ≥ j + l. Then CWHi
j(−K , l, R) kills DM eff

gm(k,R)〈r + 1〉;
consequently, CWHi

j(−K , l, R) induces a well-defined functor DMr
gm(k,R) →

Ab (see Definition 2.2.2(3)).
3. Suppose N ∈ DMr

gm(k,R)wChow≥0. Then for any smooth projective
connected variety P/k the group DMr

gm(k,R)(lr(MR(P )〈r〉), N) is isomorphic
to CWH0

r(Nk(P ), R); note that the latter group is well-defined according to the
previous assertion.

4. Assume N ∈ DMr
gm(k,R)wr

Chow≥−n (see Corollary 2.2.4(6) for the nota-
tion) for some n ∈ Z. Then CWHi

j(NK , l) = {0} for all i > n, j ≤ r − l.
2Consequently, CWHi

j(−K , R) = CWH0
j (−K , R) ◦ [i]. Note that we do not follow the

convention introduced in Definition 1.4.4(1) here; yet this should not cause any confusion
since we write i as an upper index.
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5. Assume 0 ≤ m ≤ r; let N be an element of DM eff
gm(k,R)wChow≥−i (resp.

of DMr
gm(k,R)wr

Chow≥−i) and assume CWHi
j(NK) = {0} for all 0 ≤ j ≤ m and

all function fields K/k. Then for any fixed choice of a −i-weight decomposition
wChow≤−iN

g→ N → wChow≥1−iN (resp. wr
Chow≤−iN

g→ N → wr
Chow≥1−iN) of

N (see Remark 1.2.3(2)) the morphism g[i] can be factored through an object
of Choweff(k,R)〈m + 1〉 (resp. through an image of an object of this sort in
DMr

gm(k,R)).

Proof. 1. The first part of the assertion is just a particular case of Proposition
1.4.2(7). The second part follows immediately from the weight-exactness of this
base field change functor (provided by part 4 of that proposition along with
Lemma 2.1.3) along with Proposition 1.4.2(8).

2. Recall that DM eff
gm(k,R)〈r〉 is densely generated by Obj Choweff(k,R)〈r〉

(as a triangulated subcategory of DM eff
gm(k,R)). Hence the statement follows

immediately from Proposition 2.3.3(2).
3. By Proposition 2.2.6(6), CWH0

r(Nk(P )) is isomorphic to the zeroth homol-
ogy of the complex DMr

gm(k,R)(lr(MR(P )〈r〉), N∗) (where N∗ are the terms
of a weight complex for N). Hence it remains to apply Corollary 1.4.6(1).

4. Clearly, we can assume that the weight complex of N is concentrated in
degrees at most n (see Proposition 1.4.2(2)). Next, recall that any object of
Hwr

Chow is a retract of a one coming from Choweff(k,R)(⊂ DM eff
gm(k,R)); see

Proposition 1.3.2(3). Hence the statement follows from Proposition 2.3.3(2).
5. Obviously, we can assume i = 0.
The motive wChow≤0N belongs to DM eff

gm(k,R)wChow=0 (resp. wr
Chow≤0N ∈

DMr
gm(k,R)wr

Chow=0); consequently, this motive is a retract ofMR(P ) (resp. of
lr(MR(P ))) for some P ∈ SmPrVar.

Hence it suffices to check the following for any 0 ≤ j ≤ m and P j ∈
SmPrVar: any morphism gj in the set DM eff

gm(k,R)(MR(P j)〈j〉, N) (resp. in
DMr

gm(k,R)(lr(MR(P j)〈j〉), N)) can be factored through MR(P j+1)〈j + 1〉
(resp. through lr(MR(P j+1)〈j + 1〉)) for some P j+1 ∈ SmPrVar.

By Corollary 1.4.6(2) applied to lj (resp. to the localization functor ljr :
DMr

gm(k,R) → DM j
gm(k,R)), to achieve the goal it suffices to verify that the

image of gj in DM j
gm(k,R) is 0. It remains to note that Im gi is an element of

DM j
gm(k,R)(lj(MR(P j)〈j〉), lj(N)) (resp. DM j

gm(k,R)(lj(MR(P j)〈j〉), ljr(N))),
whereas the last group is zero according to assertion 3 along with our assump-
tions on CWH∗j (Nk(Pj)).

Remark 3.1.3. Recall that functors constructed by means of Proposition 1.4.2(7)
are called pure ones. The reason for this is their relation to Deligne’s purity
of singular and étale cohomology; see Remark 2.1.3(3) of [Bon18c]. It is easily
seen (from Proposition 1.4.5(1); see Theorem 2.1.2 of ibid.) that a homological
functor onDM eff

gm(k,R) is pure with respect to wChow if and only if it annihilates
Choweff(k,R)[i] for all i 6= 0.

Other interesting functors that are pure with respect to Chow weight struc-
tures were considered in [KeS17] and [Bac17]. Note also that the "purification"
of the zeroth homotopy functor on SH with respect to the spheric weight struc-
ture on it (see [Bon18c, §4.2]) is isomorphic to the (zeroth) singular homology
functor on this category; see Theorem 4.2.1(2) of loc. cit.
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For some of the less important statements below we will also need the fol-
lowing assertions.

Lemma 3.1.4. Let K be an extension of k, and j, l ≥ 0.
1. If N ∈ ObjDM eff

gm(k,R)∩ObjDM eff
− (k,R)t

R
hom≤0 (see Remark 2.1.1) and

i > j + l, then CWHi
j(NK , l) = {0}.

2. If N ∈ DM eff
gm(k,R)wChow≥0 then CWH0

j (NK , R) ∼= h2j,j(NK , R).

Proof. 1. Clearly, ObjDM eff
gm(k,R) ∩DM eff

− (k,R)t
R
hom≤0 = ObjDM eff

gm(k,R) ∩
DM eff(k,R)t

R
hom≤0 (see Remark 2.1.1).

Now, in [BoD17] the following statement was proved (see Theorem 2.4.3
and Example 2.3.5(1) of ibid.): DM eff(k,R)t

R
hom≤0 is the smallest extension-

closed subclass of ObjDM eff(k,R) that is closed with respect to coproducts
and contains Obj Choweff(k,R)〈a〉[b− a] for all a, b ≥ 0.

Next recall that wChow can be extended (from DM eff
gm(k,R)) to DM eff(k,R)

in a way that "respects coproducts" (weight structures of this type are called
smashing; see Theorem 3.2.2 of [Bon18c] or Proposition 1.7(1) of [Bon18a]).
Hence Chow-weight homology (as well as any other wChow-pure homology theory
whose target is an AB4 abelian category) can be extended to a homological
functor DM eff(k,R) → Ab that respects coproducts (see Theorem 3.2.2(5) of
[Bon18c]).

Hence it suffices to verify the vanishing in question an object N of
Choweff(k,R)〈a〉[b−a] (for some a, b ≥ 0). Thus it remains to apply Proposition
2.3.3(2).

More detail for this argument can be found in the proof of [BoK20, Propo-
sition 2.1.2(6)] (along with the pre-requisites to loc. cit.).

2. Proposition 2.2.1(4) (combined with Proposition 1.4.2(8)) allows us to
assume that K = k. Thus it remains to apply Corollary 1.4.6(1) (once again).

3.2 Relating Chow-weight homology to c-effectivity and
weights

Now we start proving the central results of this paper; consult §2.1, Proposition
2.2.1(1), and Definition 3.1.1 (along with Definition 2.2.2(5)) for the notation.

Theorem 3.2.1. Let M ∈ ObjDM eff
gm(k,R), c > 0, n ∈ Z.

Then the following statements are valid.
1. M belongs toDM eff

gm(k,R)〈c〉 (i.e.,M is c-effective) if and only if CWHi
j(MK) =

{0} for all i ∈ Z, 0 ≤ j < c, and all function fields K/k.
2. More generally, CWHi

j(MK) = {0} for all 0 ≤ j < c, n < i, and all
function fields K/k if and only if there exists a choice of wChow≤−n−1M (see
Remark 1.2.3(2)) that belongs to DM eff

gm(k,R)〈c〉.
3. CWHi

j(MK) = {0} for all j ≥ 0, i > n, and all function fields K/k, if and
only if M belongs to DM eff

gm(k,R)wChow≥−n.

Proof. 1. If M is an object of DM eff
gm(k,R)〈c〉 then CWHi

j(MK) = {0} for all
j, i, and K as in the assertion by Proposition 3.1.2(2).

Conversely, assume that M satisfies the corresponding Chow-weight homol-
ogy vanishing assumptions. Since the weight structure wc−1

Chow is bounded (see
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Corollary 2.2.4(6)), it suffices to prove that lc−1(M) belongs toDM c−1
gm (k,R)wc−1

Chow≥r
for any r ∈ Z. Hence this assertion reduces to the next one.

2. Assume that there exists a choice of wChow≤n−1M that belongs to
DM eff

gm(k,R)〈c〉. Then the object lc−1(M) clearly belongs toDM c−1
gm (k,R)wc−1

Chow≥−n
.

Hence the vanishing of Chow-weight homology groups in question is immediate
from Proposition 3.1.2(2,4).

Conversely, assume that our Chow-weight homology vanishing assumptions
are fulfilled. Clearly, there exists an integer q such that lc−1(M) ∈
DM c−1

gm (k,R)wc−1
Chow≥q

. By Proposition 1.3.2(2), it suffices to verify the following:
if lc−1(M) belongs to DM c−1

gm (k,R)wc−1
Chow≥t

for some t < −n, then lc−1(M) also
belongs to DM c−1

gm (k,R)wc−1
Chow≥t+1.

Let us take a t-weight decomposition

wc−1
Chow≤tl

c−1(M)
g→ lc−1(M)→ wc−1

Chow≥t+1l
c−1(M)

of lc−1(M). Proposition 3.1.2(5) implies g = 0. Hence lc−1(M) is a retract of
an element ofDM c−1

gm (k,R)wc−1
Chow≥t+1; thus it belongs toDM

c−1
gm (k,R)wc−1

Chow≥t+1

itself.
3. If M belongs to DMgm(k,R)wChow≥−n then the previous assertion yields

the vanishing of CWHi
j(MK) = {0} for all j ≥ 0, i > n, and all function fields

K/k.
Conversely, it suffices (similarly to the previous argument) to check the

following: if M belongs to DMgm(k,R)wChow≥t for some t < −n then M ∈
DMgm(k,R)wChow≥t+1. Again, we can fix a t-weight decomposition wChow≤tM

g→
M → w≥t+1M and check that g = 0. Assume that wChow≤tM [−t] is (a Chow
motive) of dimension at most s for some s ≥ 0. By Proposition 3.1.2(5), our
Chow-weight homology assumptions yield that g[−t] can be factored through
Choweff(k,R)〈s+ 1〉. Hence Proposition 2.2.6(3) implies that g = 0.

Remark 3.2.2. We make some simple remarks.

1. In the case R = Q Proposition 2.3.4(II) implies that, instead of checking
whether the corresponding CWHi

j(MK) = {0} for all function fields K/k,
it suffices to take K to be a single universal domain containing k; see
Proposition 3.4.1(3) below.

Moreover, in all the statements of this paper where it is said R = Q (and
no realizations of motives are mentioned) it suffices to assume that R is
a Q-algebra. This generalization may be relevant for studying motives
similar to those considered in [Wil09].

2. As a very particular case of the theorem, we obtain the following fact: for
a morphism h of effective Chow motives the complex Cone(h) is c-effective
(i.e., it is homotopy equivalent to a cone of a morphism of c-effective Chow
motives) if and only if h induces isomorphisms on the corresponding Chow
groups of dimension less than c; cf. Remark 3.3.5 below. Another equiv-
alent condition is that "h possesses an inverse modulo cycles supported
in codimension c"; see Corollary 3.3.9 and Remark 3.3.10 below for more
detail.
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We will prove an extension of this equivalence statement in Corollary 3.3.9
below. Even for R = Q these particular cases of the theorem haven’t been
previously stated in the literature.

3. The Chow-weight homology groups are rather difficult to calculate (and
they tend to be huge; cf. Remark 2.3.6(2) and §5.1). Still they are some-
what easier to treat than the (ordinary) motivic homology groups. In
particular, CWH∗∗ can be (more or less) explicitly computed for any mo-
tive that belongs to the subcategory of DM eff

gm(k,R) densely generated by
the class ∪j≥0((d≤1DM

eff
gm(k,R))〈j〉), whereas the 0-dimensional motivic

homology is very difficult to compute already for CP2. We will say more on
the comparison of Chow-weight homology with motivic one in §3.4 below.

4. According to Proposition 1.3.2(2), the (equivalent) conditions of Theorem
3.2.1(2) are fulfilled if and only if M is an extension of an element of
(DM eff

gm(k,R))wChow≥−n by an element of DM eff
gm(k,R)wChow≤−n−1〈c〉; cf.

Theorem 0.2(3).

3.3 A generalization (in terms of staircase sets)
To generalize Theorem 3.2.1 we need the following technical definition.

Definition 3.3.1. Let I be a subset of Z× [0,+∞) (see §1.1).
We call it a staircase set if for any (i, j) ∈ I and (i′, j′) ∈ Z× [0,+∞) such

that i′ ≥ i and j′ ≤ j we have (i′, j′) ∈ I.
For i ∈ Z the minimum of j ∈ [0,+∞] such that (i, j) /∈ I will be denoted

by aI,i.

Remark 3.3.2. 1. Obviously, I ⊂ Z× [0,+∞) is a staircase set if and only if it
equals the union of the strips

⋃
(i0,j0)∈I

Ii0,j0 , where I(i0,j0) = [i0,+∞) × [0, j0]

(see §1.1).
2. Let us give a simple illustration for these sets. If I = I(2,2) then

CWHi
j(MK) = {0} for all (i, j) ∈ I and all function fields K/k if and only

if M is an extension of an element of (DM eff
gm(k,R))wChow≥−1 by an element of

DM eff
gm(k,R)wChow≤−2〈2〉; see Theorem 3.2.1(2).
Similarly, the condition for a motive M (in DM eff

gm(k,R)) to belong to
ObjDM eff

gm(k,R)〈c〉 corresponds to I = Z× [0, c−1] (see part 1 of the theorem),
and M ∈ (DM eff

gm(k,R))wChow≥−n corresponds to I = [n+ 1,+∞)× [0,+∞).
Other relevant staircase sets are introduced in Definition 3.3.6 and Corollary

3.4.2 below; the picture in the latter corollary illustrates our term.

Now we prove a generalization of Theorem 3.2.1; consequently, the reader
may consult §2.1, Proposition 2.2.1(1), and Definitions 3.1.1 and 2.2.2(5) for the
notation used in the formulation.

Theorem 3.3.3. Let I ⊂ Z × [0,+∞), M ∈ ObjDM eff
gm(k,R). Then the

following statements are valid.
1. The vanishing of CWHi

j(MK) for all function fields K/k and all (i, j) ∈ I
is equivalent to the same vanishing for all field extensions K/k.

2. Suppose that I is a staircase set. Then the following conditions are
equivalent.
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A. CWHi
j(MK) = {0} for all function fields K/k and all (i, j) ∈ I.

B. The object lj(M) (see Definition 2.2.2(3)) belongs toDM j
gm(k,R)wj

Chow≥−i+1

whenever (i, j) ∈ I.
C. For any i ∈ Z there exists a choice of wChow≤−iM (see (1.2.1)) that

belongs to DM eff
gm(k,R)〈aI,i〉.

D.M belongs to the extension-closure of ∪i∈Z(Obj Choweff(k,R)[−i]〈aI,i〉).3
E. There exists a choice of a weight complex (see §1.4) for M such that its

i-th term is j + 1-effective whenever (i, j) ∈ I.
3. For any staircase set I and M ∈ DM eff

gm(k,R)[a,b] (for some a ≤ b ∈ Z)
the (equivalent) conditions of the previous assertion are fulfilled if and only if
M belongs to the extension-closure of ∪−b≤i≤−a(Obj Choweff(k,R)[−i]〈aI,i〉).

Proof. Assertion 1 follows from Proposition 2.3.4 immediately.
2,3. We apply Remark 3.3.2(1). According to Theorem 3.2.1(2) (cf. also

its proof), the vanishing of CWHi
j(MK) for all function fields K/k and (i, j) ∈

I(i0,j0) is equivalent to lj0(M) ∈ DM j0
gm(k,R)

w
j0
Chow≥−i0+1

. The combination of
these equivalences for all (i0, j0) ∈ I yields the equivalence of Conditions A and
B in assertion 2.

Next, Condition B implies Condition C for a fixed i ∈ Z if aI,i < +∞
according to Theorem 3.2.1(2) (since (i, aI,i − 1) ∈ I; cf. also Proposition 4.2.1
of [BoS18c]). If aI,i = +∞ then one should apply Theorem 3.2.1(3) instead.

Now assume that M satisfies Condition C and belongs to DM eff
gm(k,R)[a,b]

for some a ≤ b ∈ Z. Then M is also an object of DM eff
gm(k,R)〈aI,b〉 (see

Remark 2.2.5(2)). Thus we can modify the choices of wChow≤−iM coming from
Condition C (for −i /∈ [a, b − 1]) by setting wChow≤−iM = 0 for −i < a and
wChow≤−iM = M for −i ≥ b. Then the corresponding triangles (1.4.1) yield
that (for the motives M i coming from this choice of a Chow-weight Postnikov
tower for M) we have M i ∈ DM eff

gm(k,R)wChow=0〈aI,i〉 (see Remark 2.2.5(1)),
and we obtain Condition E. Next, Proposition 1.4.2(5) yields thatM belongs to
the extension-closure of ∪−b≤i≤−a Choweff(k,R)[−i]〈aI,i〉 (i.e., we have proved
the corresponding implication from assertion 3); we clearly also obtain Condition
D.

Finally, assume that tR(M) = (M i) for M i as in Condition E (i.e., M i ∈
Obj Choweff(k,R)〈aI,i〉). Since (for any (i, j)) the group CWHi

j(MK) is a sub-
quotient of h2j,j(M

i
K , R), and the latter group vanishes whenever (i, j) ∈ I (by

Proposition 2.3.3(2)), we obtain Condition A.
This finishes the proof.

Let us also verify that one can "bound dimensions" in our theorem.

Proposition 3.3.4. Assume that M is of dimension at most r ≥ 0 (see Def-
inition 2.2.2(2)) and that I is a staircase set. Then the (equivalent) condi-
tions of Theorem 3.3.3(2) are also equivalent to the following modifications of
Condition C (resp. D): there exists a choice of wChow≤−iM that belongs to
Obj(d≤r−aI,iDM

eff
gm(k,R))〈aI,i〉 (resp. M belongs to the extension-closure of

∪i∈Z(Obj d≤r−aI,i Choweff(k,R)[−i]〈aI,i〉)).
Moreover, a similar modification can also be made in Theorem 3.3.3(3).

3In this theorem we use the convention of Definition 2.2.2(4) in the case aI,i = +∞.
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Proof. According to Proposition 2.2.6(4), it suffices to verify that in the condi-
tions listed in Theorem 3.3.3(2,3) one may replace the classes ObjDM eff

gm(k,R)〈aI,i〉
and Obj Choweff(k,R)[−i]〈aI,i〉 by their intersections with Obj d≤rDM

eff
gm(k,R).

As can be easily seen from the proof of these two assertions, to establish
the resulting statement it suffices to verify the corresponding versions of The-
orem 3.2.1(2,3). The latter can be easily achieved via replacing the usage of
Proposition 2.2.6(4) in their proofs (thus actually the corresponding modifica-
tion should be made for Proposition 3.1.2(5)) by the application of Proposition
2.2.6(7).

Remark 3.3.5. The reader can easily check that everywhere in the proofs of
Theorems 3.2.1, 3.3.3, and Proposition 3.3.4 (and in the prerequisites to them)
we could have replaced DM eff

gm(k,R) by Kb(Choweff(k,R)). Certainly, then we
would have to replace DM j

gm(k,R) by the localization Kb(Choweff(k,R))/

(Kb(Choweff(k,R))〈j+1〉), whereas the Chow weight structure forKb(Choweff(k,R))
is just the stupid weight structure mentioned in Remark 1.2.3(1). The main ob-
servation here is that the heart of the corresponding weight structure on this
localization is equivalent to Hwj

Chow (see Proposition 1.3.2(3) above and The-
orem 4.1 of [BoV20]); thus the corresponding version of Proposition 2.2.6(6) is
valid.

The resulting statements may be said to be more general than theirDM eff
gm(k,R)-

versions since there can exist objects of Kb(Choweff(k,R)) that cannot be pre-
sented as weight complexes of motives. Besides, these results are easier to un-
derstand for the readers that are not well-acquainted with Voevodsky motives.
Their disadvantage is that they hardly can be used for controlling "substantially
mixed" motivic phenomena; this includes motivic homology (cf. Corollary 3.4.2
below).

We will apply the Kb(Choweff(k,R))-version of Theorem 3.3.3 to complexes
of length 1. Note that we could have considered these complexes as objects of
DM eff

gm(k,R) (see Remark 1.4.3(1)); yet looking at Kb(Choweff(k,R)) instead
makes our argument somewhat "more elementary".

Now we consider two relevant particular cases of our theorem, and deduce a
nice general corollary from it.

We will look at a certain filtration on the class DM eff
gm(k,R)wChow≥0 (each of

whose steps contains DM eff
gm(k,R)wChow≥1).

Definition 3.3.6. For any c ≥ 0 we will use the notation DM eff
gm(k,R)

〈c〉
≥0

for the DM eff
gm(k,R)-envelope (see §1.1) of the set (∪i>0 Choweff(k,R)[i]) ∪

Choweff(k,R)〈c〉.
Respectively (cf. Corollary 3.3.7(I)) we write I〈c〉0 for the staircase set

[1,+∞)× [0,+∞) ∪ {0} × [0, c− 1].

Corollary 3.3.7. I. For M ∈ ObjDM eff
gm(k,R) and c ≥ 0 the following condi-

tions are equivalent.

1. M belongs to DM eff
gm(k,R)

〈c〉
≥0.

2. CWHi
j(MK) = {0} for all function fields K/k and (i, j) ∈ I〈c〉0 .
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3. M is an extension of an element of DM eff
gm(k,R)wChow≥1 by an object of

Choweff(k,R)〈c〉.

4. M belongs to DM eff
gm(k,R)wChow≥0 and h2j,j(MK) = {0} (see Definition

2.2.2(5) for this notation) for all function fields K/k and 0 ≤ j < c.

II. If c1, c2 ≥ 0 thenDM eff
gm(k,R)

〈c1〉
≥0 ⊗DM eff

gm(k,R)
〈c2〉
≥0 ⊂ DM eff

gm(k,R)
〈c1+c2〉
≥0 .

III. Assume that Ij are staircase sets for j running through some index set J .
Then for a fixed M the (equivalent) conditions of Theorem 3.3.3(2) are fulfilled
for I = Ij (for all j ∈ J) if and only if they are fulfilled for I = ∪jIj .

Proof. I. The equivalence of conditions I.1 and I.2 is immediate from Theorem
3.3.3(2) (see conditions 2.A and 2.D of the theorem). Furthermore, these con-
ditions are equivalent to the assumption that we can take wChow≤−1M = 0 and
wChow≤0M ∈ ObjDM eff

gm(k,R)〈c〉. Thus M belongs to DM eff
gm(k,R)wChow≥0;

hence Proposition 1.2.4(6) implies that the aforementioned choice of wChow≤0M
belongs to DM eff

gm(k,R)wChow=0∩ObjDM eff
gm(k,R)〈c〉 = DM eff

gm(k,R)wChow=0〈c〉
(see Corollary 2.2.4(1)). Therefore the corresponding choice of weight decom-
position of M gives condition I.3 for M . Next, condition I.3 clearly implies
condition I.1.

Now, we have just checked that M belongs to DM eff
gm(k,R)wChow≥0 when-

ever it belongs to DM eff
gm(k,R)

〈c〉
≥0. Thus CWH0

j (MK) = h2j,j(MK) for all K/k
and j ≥ 0 (see Lemma 3.1.4(2)); hence conditions I.1 and I.2 together imply
condition I.4. Conversely, if condition I.4 is fulfilled then CWHi

j(MK) = {0} for
all K/k and all (i, j) ∈ [1,+∞)× [0,+∞) according to Theorem 3.2.1(3) and it
remains to apply Lemma 3.1.4(2) once again to obtain condition I.4.

II. Obvious from our definitions.
III. Obviously, ∪j∈JIj is a staircase set. Thus it suffices to note that the

equivalence statement in question is obviously fulfilled for condition A in The-
orem 3.3.3(2).

Remark 3.3.8. Part III of our Corollary says that the intersections of subclasses
of ObjDM eff

gm(k,R) corresponding to the staircase sets Ij is "as small as pos-
sible". This statement appears to be interesting and quite non-trivial if one
describes these subclasses using condition D in Theorem 3.3.3(2). The authors
have no idea how to prove it avoiding our results.

Next we apply Remark 3.3.5 to cones of morphisms of Chow motives.

Corollary 3.3.9. Let h : N → O be a Choweff(k,R)-morphism and 0 ≤ r1 ≤
r2 ∈ Z. Then the following conditions are equivalent.

1. h2j,j(−K , R)(h) is a bijection for j ∈ [0, r1 − 1] and is a surjection for
j ∈ [r1, r2 − 1] for all function fields K/k.

2. The complex N → O is homotopy equivalent (i.e., Kb(Choweff(k,R))-
isomorphic) to a complex N ′〈r1〉 → O′〈r2〉 for some N ′, O′ ∈ Obj Choweff(k,R).

3. There exists h′ ∈ Choweff(k,R)(O,N) such that the morphism idO −h◦h′
factors through Choweff(k,R)〈r2〉, and idN −h′◦h factors through Choweff(k,R)〈r1〉.

Proof. (1) ⇐⇒ (2). We take M = Coneh ∈ ObjKb(Choweff(k,R)) (or in
DM eff

gm(k,R); we put N in degree −1 and put O in degree 0), and consider the
index set I = [−1,+∞)× [0, r1 − 1] ∪ [0,+∞)× [r1, r2 − 1] (see §1.1).
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We immediately obtain the equivalence of our condition 1 to the vanishing
of CWHi

j(MK) for i ∈ I. Combining the equivalence of Conditions A and D
in Theorem 3.3.3(2) (in the version mentioned in Remark 3.3.5) with Remark
1.3.3(1), we obtain the result.

(2) =⇒ (3). We have lr2−1(M) ∼= lr2−1(N ′〈r1〉[1]). Next, this isomor-
phism clearly gives a similar isomorphism in the category Kb(HwChowr2−1).
Hence M (considered as a HwChowr2−1 -complex) is homotopy equivalent to
N ′〈r1〉[1]; denote the corresponding morphisms M → N ′〈r1〉[1] → M by f
and g, respectively. Since idM is HwChowr2−1-homotopic to g ◦ f , there exists
h′′ ∈ HwChowr2−1(O,N) such that idN −g ◦ f = h′′ ◦ h and h ◦ h′′ = idO. Lift-
ing h′′ to a morphism h′ ∈ Choweff(k,R)(O,N) (see Proposition 1.3.2(3)), we
obtain the desired implication.

(3) =⇒ (1). Arguing as above, we see that in the category Kb(HwChowr2−1)
the morphism idM factors through an object of Choweff(k,R)〈r1〉[1]. The de-
sired Chow-weight homology vanishing conditions follow immediately (cf. the
proof of Theorem 3.2.1(2)).

Remark 3.3.10. 1. If N =MR(Q) and O =MR(P ) for some P,Q ∈ SmPrVar
then condition 3 of the corollary can be easily translated into the following
assumption: the cycle idO −h ◦ h′ in P × P (here clearly idO is represented
by the diagonal) is rationally equivalent to a cycle supported on P ′ × P , and
idN −h′◦h is rationally equivalent to a cycle supported on Q′×Q, where P ′ ⊂ P
and Q′ ⊂ Q are some closed subvarieties of codimensions r2 and r1, respectively
(see Proposition 2.2.6(1–3) and its proof).

Moreover, if h comes from a morphism Q→ P then the cycle class h ◦ h′ is
clearly supported on the product of P by the image of h.

2. Assume thatM belongs to d≤mKb(Choweff(k,R)) (for somem ≥ 0; this is
certainly the case if N and O are of dimension at mostm). Then CWHi

j(MK) =
{0} for j greater than m (and all i ∈ Z). Thus if r2 is greater than m then
our result yields that h splits; if r1 > m then h is an isomorphism. The first of
these observations generalizes Theorem 3.18 of [Via17] (where the case R = Q
was considered).

3.4 Higher Chow-weight homology criteria and motivic
homology

Now we invoke Proposition 2.3.5.

Proposition 3.4.1. For a subset I of Z × [0,+∞) consider the following as-
sumptions on an object M of DM eff

gm(k,R) .

1. For a function fM : I → [0,+∞) we have CWHi
j−fM (i,j)(MK , fM (i, j), R) =

{0} for all (i, j) ∈ I and all function fields K/k.

2. CWHi
j(MK , R) = {0} for all (i, j) ∈ I and all function fields K/k.

3. For all rational extensionsK/k and all (i, j) ∈ I we have CWHi
j−1(MK , 1) =

{0}.

4. CWHi
0(MK , j) = {0} for all (i, j) ∈ I and all function fields K/k.
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5. CWHi
a(MK , j − a) = {0} for all (i, j) ∈ I, a ∈ Z, and all field extensions

K/k.

Then the following statements are valid.
1. Condition 5 implies conditions 4 and 3, either of the latter two conditions

implies condition 2, whereas the first two conditions are equivalent.
2. Suppose that I is a staircase set (in the sense of Definition 3.3.1). Then

our conditions 1–5 are equivalent.
3. Assume R = Q. Then our conditions are also equivalent to the vanishing

of CWHi
j(MK0) for a single universal domain K0 containing k and all (i, j) ∈ I.

Proof. 1. Clearly, condition 5 is the strongest of the five, whereas condition
1 follows from condition 2 and 4. The remaining implications are given by
Proposition 2.3.5 (see also Remark 2.3.6(1)).

2. Since the first two conditions are equivalent, it suffices to verify that
condition 2 implies condition 5.

By Theorem 3.3.3(2),M satisfies Condition D of this theorem. Hence Propo-
sition 3.1.2(4) yields the implication in question (cf. the proof of Theorem
3.3.3(2), D =⇒ A).

3. This is an easy combination of assertion 2 with Proposition 2.3.4.

Now we describe an interesting particular case of the proposition; recall that
the homotopy t-structure tRhom was mentioned in Remark 2.1.1.

Corollary 3.4.2. Let M ∈ ObjDM eff
gm(k,R). Then the following conditions

are equivalent.
1. M belongs to DM eff

− (k,R)t
R
hom≤0 (= DM eff(k,R)t

R
hom≤0; one may say

that M is motivically connective).
2. hl,0(MK , R) = {0} for all l < 0 and all function fields K/k.
3. Conditions 1–5 of the previous proposition for I = {(i, j) : i > j ≥ 0} are

fulfilled (note that it suffices to verify only one of these conditions); the points
of I are marked in grey on the following picture:

j

i

4. M belongs to the extension-closure E of (∪a>0DM
eff
gm(k,R)wChow=−a〈a〉)∪

DM eff
gm(k,R)wChow≥0 (in ObjDM eff

gm(k,R)).
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Proof. The first condition is equivalent to the second one by Proposition 2.3.3(3).
(Each of) these two conditions also imply the third condition (i.e., all of the
equivalent conditions from Proposition 3.4.1) by Lemma 3.1.4(1). Next, our
condition 2 is the corresponding case of condition 2 of Proposition 3.4.1. Hence
it yields our condition 4 by Theorem 3.3.3(2) (see Condition D in that theorem;
note that aI,i for i ∈ Z equals max(i, 0) in this case).

Finally, our assumption 4 implies assumption 1 since for any a ≥ 0 the classes
DM eff

gm(k,R)wChow=−a〈a〉 and DM eff
gm(k,R)wChow=a lie in DM eff

− (k,R)t
R
hom≤0 (cf.

the proof of Lemma 3.1.4(1)).

3.5 Relation of effectivity conditions to cohomology
Now we relate our effectivity conditions on motives to the properties of Chow-
weight filtrations and spectral sequences TwChow

(H,M).

Proposition 3.5.1. Let H be a cohomological functor from DM eff
gm(k,R) into

an abelian category A, M is an object of DM eff
gm(k,R), and l,m ∈ Z.

1. Then (Gr−lWHm−l)(M) (see Definition 1.4.4(2)) is a subquotient of E−l,m2 T (M)
for T (M) = TwChow

(H,M), and isomorphic to it if T (M) degenerates at E2.
2. Assume that M satisfies the equivalent conditions of Theorem 3.3.3(2)

(for some staircase set I; see Definition 3.3.1). Then both E−l,m2 T (M) and
(Gr−lWHm−l)(M) are subquotients of Hm(MR(P )〈aI,l〉) for some P ∈ SmPrVar
whenever aI,l < +∞; these two objects vanish if aI,l = +∞.

Moreover, if M is of dimension at most r ∈ Z (see Definition 2.2.2(2)) then
we can assume here that dimP ≤ r − aI,l.

Proof. 1. Immediate from Proposition 1.4.5(2).
2. According to Theorem 3.3.3(2), we may assume that the lth term M l of

t(M) belongs to Obj Choweff(k,R)〈aI,l〉 for the first part of the assertion and to
Obj(d≤r−aI,l Choweff(k,R))〈aI,l〉 for its "moreover" part (recall that this means
M l = 0 if aI,l = +∞). Thus it remains to apply assertion 1.

Remark 3.5.2. 1. Clearly, here and in Theorem 3.5.4 and Proposition 3.5.5
below one may consider homology instead of cohomology; see Proposi-
tion 1.4.5(1). We chose to concentrate on cohomology here due to the
occurrence of cohomology with compact support in §4.

2. We obtain that the study of the weight filtration on the (co)homology ofM
can yield the non-vanishing of certain Chow-weight and motivic homology
groups (see Corollary 3.4.2 for the latter); cf. Theorem 3.5.4 below. This
is quite remarkable since the corresponding cycle class maps (see Remark
5.1.3 of [BoS14]) are far from being surjective in general.

Let us now discuss concrete (Weil) cohomology theories.
We need some definitions.

Definition 3.5.3. Let c ∈ [0,+∞], ` be a prime distinct from p, and denote
the absolute Galois group of k by G.

1. Then we say that a mixed Hodge structure V (we will consider Q-linear
Hodge structures only in this paper; thus one should take R = Q in Definition
3.1 of [PeS08]) is c-effective and write V ∈ ObjMHSc

eff whenever either c ∈ Z
and F cVC = VC or if c = +∞ and V = 0.
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2. Let k be an essentially finitely generated field (see Definition 2.3.1(1)).
Then we will say that a (finite dimensional) mixed Q`-Galois representation V
(certainly, V is a finite dimensional space over Q` endowed with an action of G)
is c-effective whenever either c ∈ Z and any (geometric) Frobenius eigenvalue
coming from a residue field isomorphic to Fq (see Example 6.8 of [Jan90] and
§1.2 of [Del80]; cf. the proof of Proposition 4.2.4(1) below) is divisible by qc/2

as an algebraic integer, or if c = +∞ and V = 0.
3. For V of any of these two types and m ∈ Z we write WDmV for the mth

step of the (Deligne’s) weight filtration, and GrWD
m V = WDmV/WDm−1V .

4. For ` 6= p we write Het,Q`
for the restriction to DM eff

gm(k,Q) of the
functor H0

et(−kalg ,Q`) : DMgm(k,Q)op → Q`[G]−Mod of the zeroth ’etale Q`-
cohomology (of −kalg ). Here we define H0

et(−kalg ,Q`) as the composition of the
exact realization functor RHet(−kalg ,Q`) : DMgm(k,Q) → Db(Q`[G] −Mod)
provided by Theorem 7.2.24 and Proposition 7.2.21 of [CiD16] with the Poincare
duality on DMgm(k,Q) and the zeroth homology functor on Db(Q`[G]−Mod).

Moreover, if k is a subfield of C then we write H = Hsing : DM eff
gm(k,Q)op →

MHSeff for the (zeroth) singular cohomology functor provided by Theorem
2.3.3 of [Hub00].

Theorem 3.5.4. Assume M ∈ ObjDM eff
gm(k,Q) and l,m ∈ Z.

Moreover, suppose that either k is a subfield of C and H = Hsing or that k
is an essentially finitely generated field, char k 6= `, and H = Het,Q`

.
Then the following statements are valid.
1. The spectral sequence T (M) = TwChow

(H,M) degenerates at E2.
2. The subobject (W lHm)(M) ⊂ Hm(M) equals WDm−lH

m(M) and
(GrlWHm)(M) = GrWD

m−lH
m(M) ∼= El,m−l

2 T (M); here (GrlWHm)(M) =

(W lHm)(M)/(W l−1Hm) (note here that Proposition 3.5.1 easily implies that
the values of Het,Q`

are mixed Q`-Galois representations in our case).
3. Consequently, ifM satisfies the equivalent conditions of Theorem 3.3.3(2)

(for some staircase set I) then the objects GrWD

m+lH
m(M) and

Hm(M)/WDm+l−1H
m(M) are aii,l-effective.

Thus if M belongs to DM eff
gm(k,R)

〈c〉
≥0 (see Definition 3.3.6) then Hm(M) =

WDmH
m(M) and Hm(M)/WDm−1H

m(M) is c-effective.

Proof. 1,2. This is a standard weight argument. Recall that effective Chow
motives are retracts of motives of smooth projective varieties, and that the
object Hq(MR(P )) is (pure) of Deligne weight q for both of these cohomology
theories, any P ∈ SmPrVar, and q ∈ Z (cf. Proposition 4.1.8 below). Hence the
object Esq

r T (M) is of Deligne weight q in both cases, for any r > 0 and s, q ∈ Z.
Since there are no morphisms between objects of distinct weights, we obtain
the degeneration at E2 (compare the weights of the domains and the targets
of boundaries). Moreover, assertion 2 follows the definition of convergence of
spectral sequences easily.

3. Proposition 3.5.1(2) implies that the object GrWD
r Hm(M) is aI,r−m-

effective for any r ∈ Z (note here that the conventions of +∞-effectivity in
Definitions 2.2.2(4) and 3.5.3(1,2) are compatible). Since I is a staircase set,
aI,s ≥ aI,l if s ≥ l. Thus the objects GrWD

r Hm(M) are aI,l-effective if r ≥ m+l.
Since weight filtrations are bounded both on mixed Hodge structures and on
mixed Galois representation, and the aI,l-effective subcategories are extension-
closed in the corresponding "mixed" categories, we obtain the first part of the
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assertion.
Lastly, it remains to recall that for the set I〈c〉0 in Definition 3.3.6 we have

aI〈c〉0 ,l
= +∞ if l > 0 and aI〈c〉0 ,0

= c.

Now we will study the question whether the c-effectivity restrictions on
H∗(M) as in Theorem 3.5.4(3) are equivalent to the conditions of Theorem
3.3.3(2).

Proposition 3.5.5. Assume k ⊂ C and that the following conjectures hold.
A. The Hodge conjecture.
B. Any morphism of Chow motives (over C) that induces an isomorphism

on their singular cohomology is an isomorphism.
Suppose also that for some staircase set I and an object M of DM eff

gm(k,Q)
one of the following conditions is fulfilled: either for all m, l ∈ Z the Hodge
structures Hm(M)/WDm+l−1H

m(M) is aI,l-effective, or GrWD
m+1H

m(M) is so
(for all m, l ∈ Z). Then the motive M satisfies the (equivalent) conditions of
Theorem 3.3.3(2) (cf. Theorem 3.5.4(3)).

Proof. Since I is a staircase set, our two assumptions on M are easily seen to
be equivalent (cf. the proof of Theorem 3.5.4(3)).

By the virtue of Theorem 3.3.3(2), it suffices to verify that M belongs to
the extension-closure of ∪i∈Z(Obj Choweff(k,R)[−i]〈aI,i〉). So we fix certain
(i, j) ∈ I and argue similarly to the proof of [Bon09, Proposition 7.4.2]. We
choose the smallest n ∈ Z such that lj(M) ∈ DM j

gm(k,Q)wj
Chow≥−n

. We should
check that n < i.

Assume that the converse holds (i.e. n ≥ i). Applying Proposition 1.3.2(2)
we obtain that M is an extension of an element of DM eff

gm(k,Q)wChow≥−n by
that of DM eff

gm(k,Q)wChow≤−n−1〈j + 1〉. According to Proposition 1.4.2(4),
this gives a choice of a weight complex t(M) = (Ms) of M such that Ms ∈
Obj Choweff(k,Q)〈j + 1〉 for s > n. Moreover, we can assume that Mn =
MQ(P ) for some P ∈ SmPrVar (since one can add a summand of the form
· · · → 0 → N

idN−→ N → 0 → . . . to t(M), with N placed in degrees n − 1 and
n).

Next, recall that for any q ∈ Z we have

E−n,q2 T (M) ∼= Ker(Hq
sing(dn−1

M ))/Coker(Hq
sing(dnM ));

here d∗M : M∗ → M∗+1 are the boundaries of t(M). Since E−n,q2 T (M) ∼=
GrWD

q Hq−n(M) by Theorem 3.5.4(2), it is j + 1-effective by our assumptions;
recall that j + 1 ≤ aI,l ≤ aI,n. Since the motive Mn+1 is j + 1-effective, we
obtain that the Hodge structure Ker(Hq

sing(da−1
M )) is j + 1-effective as well.

Now we need a more or less "standard" Hodge-theoretic argument to obtain
a certain motivic splitting.

Our assumption A implies that the generalized Hodge conjecture (see Con-
jecture 7.5. of [PeS08]) is fulfilled for P (such thatMa =MQ(P )); see Corollary
7.9 of [PeS08]. Hence there exists an open subvariety U of P such that the va-
riety Z = P \ U is of codimension more than j in P , and Ker(Hq

sing(Mn) →
Hq

sing(Mn−1)) is supported on Z for all q ≥ 0, that is, Ker(Hq
sing(dn−1

M )) ⊂
Ker(Hq

sing(P ) → Hq
sing(U)). Now, the motive C = Cone(MQ(U) → MQ(P ))

belongs to DM eff
gm(k,Q)wChow≤0〈j + 1〉 according to Corollary 2.2.4(4). Next,
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there exists a choice of C ′ = wChow≤0C that belongs to Obj Choweff(k,Q)〈j+1〉
(see part 1 of the corollary). Since the morphismMQ(P )→ C factors through
C ′ (see Proposition 1.2.4(9)), we obtain that Ker(Hq

sing(dn−1
M )) ⊂ Im(Hq

sing(h))

for some morphism h ∈ Choweff(k,Q)(Mn, C ′) and all q ≥ 0.
Next, recall that the category of polarizable pure Hodge structures is semi-

simple (here one can either consider the direct sum of the corresponding cate-
gories for all weights q ≥ 0 or treat the weights separately). Since the Hodge
conjecture implies that any morphism between (the "total") Hsing-cohomology
of Chow motives lifts to a morphism of these motives, we obtain the existence
of a morphism h′ ∈ Choweff(k,Q)(Mn,Mn−1

⊕
C ′) that fulfils the following

conditions for all q ≥ 0: the morphisms Hq
sing(h′) are injective, and they induce

injections of Im(Hq
sing(dn−1

M )) into Hq
sing(Mn−1) that split the surjections in-

duced by Hq
sing(dn−1

M ). Moreover, there also exists h′′ ∈ Choweff(k,Q)(C ′,Ma)

such that Hq
sing(dn−1

M

⊕
h′′) splits Hq

sing(h′) for all q ≥ 0. Thus the composi-
tion (dn−1

M

⊕
h′′) ◦ h′ is an automorphism of Ma according to our assumption

B. Thus we can calculate a choice of a weight complex tj of lj(M) as follows
(according to Proposition 1.4.2(8)):

tj ∼= · · · →Mn−1
j →Mn

j → 0→ . . . ∼= (Mn−1
⊕

C ′)j
(dn−1

M

⊕
h′′)j−→ Mn

j → 0→ . . . ,

where the lower index j means that we apply the induced functor Choweff(k,R)→
HwChowj (recall that C ′ ∈ DM eff

gm(k,Q)wChow=0〈j + 1〉). Since the morphism
dn−1
M

⊕
h′′ splits, the same is true for its image (dn−1

M

⊕
h′′)j . Applying Propo-

sition 1.4.2(5) we obtain that lj(M) ∈ DM j
gm(k,Q)wj

Chow≥1−n, contrary to our
assumption.

Remark 3.5.6. 1. This proposition suggests that one can look for motives with
"interesting" Chow-weight homology using singular and étale (co)homology.

2. Clearly, our assumption B is a particular case of the well-known conser-
vativity conjecture (that predicts the following: if H∗(M) = 0 for H = Hsing or
H = Het,Q`

and M ∈ ObjDM eff
gm(k,Q), then M = 0).

Moreover, assumption B is essentially equivalent to Theorem I of [Ayo18]
(and formally a particular case of loc. cit.), whereas the full conservativity
follows from Conjecture II of loc. cit.4

3. In this argument one can certainly replace singular cohomology by any
other cohomology theory satisfying similar properties. A natural candidate here
is the so-called mixed motivic (co)homology corresponding to the conjectural
motivic t-structure on DM eff

gm(k,Q) ⊂ DMgm(k,Q). One can easily see that the
"standard" expectations on this functor (see §5.10A in [Bei87] and [Bon15, Def-
inition 3.1.1(4) and Proposition 4.1.1]) imply that the conclusion of our propo-
sition follows from them (over a perfect field k of arbitrary characteristic).

3.6 Comparing integral and rational coefficients: bound-
ing torsion of homology

Let r denote a fixed non-zero integer divisible by e. We deduce some conse-
quences from our results by comparing Z[1/e]-motives with Q-linear and Z[1/r]-

4Currently the proofs of the main results of ibid. contain a gap. Hopefully, it will be closed
eventually.
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linear ones.

Definition 3.6.1. We say that an object M of DM eff
gm(k,Z[1/e]) is torsion

(resp. r-torsion) if there exists EM > 0 (resp. d > 0) such that the morphism
EM idM is zero (resp. rd idM = 0).

Theorem 3.2.1 easily yields the following statement.

Proposition 3.6.2. Set R′ = Q (resp. = Z[1/r]). Then the following state-
ments are valid.

I.1. DM eff
gm(k,R′) is isomorphic to the Karoubi envelope of the localization

of DM eff
gm(k,Z[1/e]) by its subcategory of torsion (resp., r-torsion) objects. We

write −⊗R′ for the connecting functor DM eff
gm(k,Z[1/e])→ DM eff

gm(k,R′); then
for any X ∈ SmVar we haveMZ[1/e](X)⊗R′ =MR′(X).

2. − ⊗ R′ is weight-exact with respect to the Chow weight structures on
DM eff

gm(k,Z[1/e]) and DM eff
gm(k,R′) (respectively).

II.1. There exist natural isomorphisms

CWHi
j(−K ⊗R′, R′) ∼= CWHi

j(−K ,Z[1/e])⊗Z[1/e] R
′

(for all field extensions K/k, i ∈ Z and j ≥ 0).
2. Let M ∈ ObjDM eff

gm(k,Z[1/e]), (n, c) ∈ Z × [0,+∞). Then the groups
CWHi

j(MK) are torsion (resp. r-torsion) for all i ≥ n, 0 ≤ j < c, and all
function fields K/k, if and only if lc−1

R′ (M ⊗R′) ∈ DM c−1
gm (k,R′)wc−1

Chow≥−n+1.
5

Proof. I.1. This result was proved in [Kel12] (see §A.2 of ibid.; cf. also the proof
of Proposition 5.3.3 of [Kel17] and Proposition 1.3.3 of [BoK18]).

2. The statement is immediate from the previous assertion by Proposition
1.2.4(5).

II.1. The statement follows immediately from assertion I.2 (by the definition
of Chow-weight homology).

2. The statement is immediate from Theorem 3.2.1(2–3) (see also Theorem
3.3.3(2)) applied to M ⊗R′ (using the previous assertion).

Remark 3.6.3. The weight-exactness of − ⊗ R′ yields that the Chow weight
structure on DM eff

gm(k,R′) is "determined" by the one on DM eff
gm(k,Z[1/e]).

Thus it may be treated using the localization methods developed in [BoS18a]
and [BoS19].

Now we proceed to prove a drastic improvement of Proposition 3.6.2(II.2).
Once again, one may consult §2.1, Proposition 2.2.1(1), and Definition 3.1.1

(along with Definition 2.2.2(5)) for other notation used in the following formu-
lation.

Theorem 3.6.4. Let M ∈ ObjDM eff
gm(k,Z[1/e]), I ⊂ Z× [0,+∞).

I. Then the group CWHi
j(MK) is torsion for any function field K/k and all

(i, j) ∈ I if and only if CWHi
j(MK0) is torsion for all (i, j) ∈ I, and a single

universal domain K0 containing k.
5Recall that lc−1 for c ∈ [0,+∞] denotes the localization functor DMeff

gm(k,R) →
DMeff

gm(k,R)/DMeff
gm(k,R)〈c〉 for the corresponding R; consequently, it is the identity of

DMeff
gm(k,R) if c = +∞.
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II. Assume in addition that I is a staircase set (in the sense of Definition
3.3.1) and r is a non-zero integer (that we assume to be divisible by p if p > 0).

Then the following conditions are equivalent.
A. The groups CWHi

j(MK) are torsion (resp. r-torsion) for all function fields
K/k and all (i, j) ∈ I.

B. EM · CWHi
j(MK) = {0}, where EM is a fixed non-zero integer (resp. a

fixed power of r) for all field extensions K/k and all (i, j) ∈ I.
D. For any integers n, n′ there exists a distinguished triangle T → M →

N → T [1] satisfying the following conditions: T is a torsion motive (resp. an r-
torsion motive), and there exists a triangle Q→ N → N ′ → Q[1] such that Q ∈
DM eff

gm(k,Z[1/e])wChow≥−n′+1 and such that for some choice of wChow≥−nN
′ (see

Remark 1.2.3(2)) we have CWHi
j(wChow≥−nN

′
K) = {0} for all field extensions

K/k and all (i, j) ∈ I.
E. For any integers n, n′ there exists a distinguished triangle T → M →

N → T [1] along with a choice t(N) = (N i) of a weight complex of N such that
N i is (j+ 1)-effective whenever (i, j) ∈ I ∩ ([n′, n]× [0,+∞)) and T is a torsion
motive (resp. an r-torsion motive).

E’. For any integers n, n′ there exists a distinguished triangle T → M →
N → T [1] satisfying the following conditions: T is a torsion motive (resp. an
r-torsion motive) and CWHi

j(NK) = {0} if (i, j) ∈ I ∩ ([n′, n]× [0,+∞)).

Proof. I. The statement is immediate from Proposition 2.3.4(II) applied toM⊗
Q.

II. Clearly, Condition B implies Condition A.
Now assume D. We apply Proposition 4.2.1(2) of [BoS18c] for the following

data: C = DM eff
gm(k,Z[1/e]), K is the subcategory of torsion (resp. r-torsion)

objects (it corresponds to J = Z \ {0} or to J = {r} in the notation of loc.
cit., respectively), Di = DM eff

gm(k,Z[1/e])〈i〉, and ai = aI,i. Combining this
proposition with Theorem 3.3.3(2) we obtain that for any integers n and n′

there exists a distinguished triangle T → M → N → T [1] such that T is a
torsion motive (resp. r-torsion motive) and N is an extension of an object
of DM eff

gm(k,Z[1/e])wChow≥n+1
, an object of DM eff

gm(k,Z[1/e])wChow≤n′−1
, and an

element N ′ such that laI,i−1(N ′) ∈ DMaI,i−1
gm (k,Z[1/e])

w
aI,i−1

Chow ≥−i+1
.6 By the

definition of aI,i, we obtain lj(N ′) ∈ DM j
gm(k,Z[1/e])wj

Chow≥1−i for any (i, j) ∈
I. Clearly, a weight complex of any element of DM eff

gm(k,Z[1/e])wChow≥n+1
and

DM eff
gm(k,Z[1/e])wChow≤n′−1

can be chosen so that all of its terms in the range
[n, n′] are trivial (see Proposition 1.4.2(2)). Hence for any choice of a weight
complex of N ′ we can choose a weight complex of N whose terms are the same
as those of N ′ in the range [n, n′] (see part 4 of that proposition). By Theorem
3.3.3(2) there is a choice of a weight complex for N ′ such that its i-th term is
j + 1-effective whenever (i, j) ∈ I. Thus we obtain E.

Proposition 3.1.2(2) easily yields that E implies E’.
Next, if T is a torsion (resp. an r-torsion) motive then there exists a non-zero

integer (resp. a power of r) nT such that nT ·idT = 0. Hence all the Chow-weight
homology groups of T are killed by (the multiplication by) nT . Now assume that
M belongs to DM eff

gm(k,Z[1/e])[−n+1,−n′−1] and E’ is fulfilled. Then the long

6Note that DM−1
gm(k,Z[1/e]) is the zero category. Thus here and below the conditions on

the images of motives with respect to l−1 are assumed to be vacuous; this corresponds to the
case aI,i = 0.

42



exact sequences for CWHi
j(−K) coming from the distinguished triangle T →

M → N → T [1] (where CWHi
j(NK) = {0} for all (i, j) ∈ I ∩ [n′, n] × [0,+∞)

and T is torsion) yield that CWHi
j(MK) is killed by the multiplication by nT

whenever i ≤ n and (i, j) ∈ I. Moreover, CWHi
j(MK) = {0} if i ≥ n+ 1; hence

it is also killed by the multiplication by nT . Thus Condition E’ implies B.
It remains to prove that Condition A implies D. Assume Condition A. Ac-

cording to Proposition 3.6.2 (combined with Theorem 3.3.3(2)), for any i ∈ Z we
have laI,i−1

R′ (M ⊗R′) ∈ DMaI,i−1
gm (k,R′)

w
aI,i−1

Chow ≤−i
(for R′ = Q or R′ = Z[1/r],

respectively). Hence Proposition 4.2.1(2) of [BoS18c] yields that there exists
a distinguished triangle T → M → N → T [1] satisfying the following condi-
tions: T is a torsion motive (resp. an r-torsion motive), and there exists a
triangle Q → N → N ′ → Q[1] such that Q ∈ DM eff

gm(k,Z[1/e])wChow≥−n′+1

and N ′ is an extension of an element N ′′ ∈ DM eff
gm(k,Z[1/e])wChow≥−n

such that
laI,i−1(N ′′) ∈ DMaI,i−1

gm (k,Z[1/e])
w

aI,i−1
Chow ≥−i+1

for any (i, j) ∈ I, by an element
of DM eff

gm(k,Z[1/e])wChow≤−n+1
. Since N ′ is an extension of N ′′ by an element

DM eff
gm(k,Z[1/e])wChow≤−n+1

, N ′′ is a choice of wChow≥−nN
′. By Theorem 3.3.3,

CWHj
i,K(wChow≥−nN

′) = CWHj
i,K(N ′′) = {0} for all field extensions K/k and

(i, j) ∈ I. Thus we obtain condition D.

Now we combine this theorem with the results of §3.4.

Corollary 3.6.5. LetM ∈ ObjDM eff
gm(k,Z[1/e]) andK0 be a universal domain

containing k.
I. Let I be a staircase set. Then the "main" versions of the (equivalent)

Conditions A–E’ of Theorem 3.6.4(II) (i.e., we ignore the versions in brackets
that mention r) are also equivalent to each of the following assertions.

1. For all rational extensions k′/k and all (i, j) ∈ I the group CWHi
j−1(Mk′ , 1,Z[1/e])

is torsion.

2. The group CWHi
j(MK0 ,Z[1/e]) is torsion for all (i, j) ∈ I.

3. There exists an integer EM > 0 such that EM CWHi
j−a(Mk′ , a,Z[1/e]) =

{0} for all (i, j) ∈ I, a ∈ Z, and all field extensions k′/k.

II. The following conditions are equivalent.

1. M ⊗Q ∈ DM eff
− (k,Q)t

Q
hom≤0.

2. hl,0(MK0
,Q) = {0} for all l < 0.

3. CWHi
j−a(Mk′ , a,Q) = {0} for all a ∈ Z, i > j, and all field extensions

k′/k.

4. There exists an integer EM > 0 such that EM CWHi
j−a(Mk′ , a,Z[1/e]) =

{0} for all a ∈ Z, i > j, and all field extensions k′/k.

5. There exists an integer E′M > 0 such that E′Mhl,0(Mk′ ,Z[1/e]) = {0} for
all l < 0 and all field extensions k′/k.

III. Assume thatM belongs to DM eff
gm(k,Z[1/e])wChow≥0. Then for any c ≥ 0

the following conditions are equivalent.
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1. M ⊗Q ∈ DM eff
gm(k,Q)

〈c〉
≥0 (see Definition 3.3.6).

2. h2j,j(MK0
,Q) = {0} whenever 0 ≤ j < c.

3. There exists EM > 0 such that EMh2j,j(Mk′ ,Z[1/e]) = {0} for all 0 ≤
j < c and all field extensions k′/k.

Proof. I. Applying Proposition 3.4.1 to M ⊗ Q we obtain that our conditions
I.1–2 are equivalent to Condition A of Theorem 3.6.4(II). It remains to note
that Condition D of the theorem easily yields our condition I.3 (since the proof
of the implication D =⇒ B in the theorem carries over to higher Chow-weight
homology without any difficulty).

II. First we combine assertion I with Corollary 3.4.2 for the case R = Q
(and with M replaced by M ⊗Q). We obtain that our conditions II.1, II.3, and
II.2 are equivalent. Moreover, the last of these condition is clearly weaker than
condition II.5.

Next, condition II.3 implies condition II.4 according to our assertion I (we
take I = {(i, j) : i > j} in it). Thus it remains to verify that condition II.4
implies condition II.5.

Now we take the (Chow-) weight spectral sequence T (M,k′) converging to
the (zero-dimensional) motivic homology of M over k′:

Epq
1 (T (M,k′)) = CH0(Mp

k′ ,−q,Z[1/e]) =⇒ CH0(Mk′ ,−p− q,Z[1/e])

(where tR(M) = (Mp)). Clearly, Epq
2 (T (M,k′)) = CWHp

0(Mk′ ,−q,Z[1/e]).
Since M is wChow-bounded, condition II.4 implies that a high enough power of
EM (that depends on M only) kills hl,0(Mk′ ,Z[1/e]) for all l and k′.

III. Applying Corollary 3.3.7(I) to the motive M ⊗Q we obtain the equiva-
lence of conditions III.2 and III.3. It remains to combine Theorem 3.6.4(II) with
Lemma 3.1.4(2) to obtain that these conditions are also equivalent to condition
III.3.

Remark 3.6.6. 1. It is quite remarkable that certain Chow-weight homology
groups have finite exponents. Note that (in general) Chow-weight homology
groups (as well as motivic homology ones) can certainly have really "weird"
torsion.

In particular, our results can be applied to the case M = Cone(h), where
h is a Choweff(k,R)-morphism (cf. Corollary 3.3.9); the resulting statement
appears to be quite non-trivial and absolutely new.

2. In the case where the set I satisfies some additional assumptions, there
exist nicer re-formulations of the rather clumsy conditions II.D–E’ in Theorem
3.6.4. They are given by Theorem 3.6.5(III–V) of [BoS14]; see also Condition
II.C in loc. cit. and Condition II.2 in Corollary 3.6.6 of ibid. These statements
follow from the results of [BoS18c, §4.2] easily (as well; cf. the proof of Theorem
3.6.4(II)).

4 Applications to motives and cohomology with
compact support

In §4.1 we recall the theory of motives with compact support (of arbitrary
varieties); in particular, their motivic homology gives Chow groups of varieties.
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In §4.2 we use these results to obtain the main applications of our results
to (motives and cohomology with compact support of) varieties. We relate the
vanishing of lower (rational) Chow groups of varieties to the effectivity of the
higher weight factors of their cohomology with compact support (see Theorems
4.2.1 and 4.2.3). We also obtain that the exponents of certain Chow groups (as
well as of cokernels of certain homomorphisms between them) if these groups
are torsion (cf. Theorem 3.6.4). Furthermore, in the case where k is finite we
relate the effectivity conditions for motives (that can be checked using Chow-
weight homology) to the number of points of varieties over k (modulo powers
of q = #k).

In §4.3 we study conditions ensuring that lower Chow groups of a smooth
proper k-variety X are supported on its subvarieties of "small" dimension. In
contrast to the case of a general X that was considered in §4.2, we are able to
express these conditions in terms of certain decompositions of the diagonal of
X×X (considered as an algebraic cycle). Consequently, we re-prove and extend
the corresponding results of [Par94] and [Lat96]; this section also demonstrates
the relation of our methods to earlier (and "more cycle-theoretic") ones.

In §4.4 we consider tensor products of motives. Combining the properties of
motives with compact support with Corollary 3.3.7(II) we easily obtain that the
vanishing ranges of lower Chow groups add when varieties multiply. Moreover,
the conjectures mentioned in Proposition 3.5.5 imply several funny results es-
sentially in the converse direction over characteristic 0 fields (both for varieties
and motives). In particular, one may say that the "effectivity and connectivity"
of the tensor product of (rational geometric) motives over a characteristic 0 field
cannot exceed the sums of the effectivities and connectivities of the multipliers,
respectively.

4.1 On motives with compact support and their relation
to Chow groups

Corollary 3.3.9 (along with Remark 3.3.10) can certainly be applied to mor-
phisms of Chow motives that come from (closed) embeddings of smooth pro-
jective varieties. This gives conditions equivalent to the assumption that all
algebraic cycles of dimension less than r1 on a smooth projective variety X are
"supported" on a smooth closed subvariety Z of X. However, we would like to
demonstrate that our results can also be applied in the case where X or Z is
singular.

For this purpose we need some basics on motives with compact support. We
will start with the following definitions.

Definition 4.1.1. 1. We will write SchPr for the wide subcategory of the
category of k-varieties whose morphisms are the proper ones.

2. If R is a unital Z[1/e]-algebra then we will use the notationMc
R (motive

with compact support) for the composition of the functor Mc
Z[1/e] : SchPr →

DM eff
− (k,Z[1/e]) provided by Definition 5.3.1 of [Kel17] (cf. also §4.1 of [Voe00])

with the natural connecting functor − ⊗ R : DM eff(k,Z[1/e]) → DM eff(k,R)
(see Proposition 1.3.3 of [BoK18]).7

7Below we will usually take R that is a localization of Z[1/e]. In this case Proposition
3.6.2(I) is sufficient for our purposes; see Proposition 4.1.2(1).

45



Proposition 4.1.2. Assume that k′ is a perfect field extension of k. Then the
functorMc

R (motive with compact support) satisfies the following properties.

1. Mc
R(P ) = MR(P ) whenever P ∈ SmPrVar. Moreover, Mc

R(X) is an
object of DM eff

gm(k,R) for any X ∈ Var.

2. The k′-motiveMc
R(X)k′ is isomorphic toMc

R(Xk′).

3. For any j ≥ 0, X ∈ Var, and any smooth quasi-projective k-variety U we
haveMR(U)〈j〉 ⊥ Mc

R(X)[i] for any i > 0.

Moreover, if i ∈ Z and U is of (constant) dimension d then the group
DM eff

gm(k′, R)(MR(Uk′)〈j〉,Mc
R(X)[i]k′) is naturally isomorphic to the higher

Chow group CHj+d(U ×Xk′ ,−i, R) (cf. Theorem 5.3.14 of [Kel17] for the
Z[1/e]-version of this notation); in particular, if i = 0 then this group is
isomorphic to the Chow group CHj+d(U × Xk′ , R) of R-linear cycles of
dimension j + d on U ×Xk′ (cf. Remark 2.2.3).

4. If i : Z → X is a closed embedding of k-varieties and U = X \ Z then
there exists a distinguished triangle

Mc
R(Z)

Mc
R(i)−→ Mc

R(X)→Mc
R(U)→Mc

R(Z)[1]. (4.1.1)

5. If X,Y ∈ Var thenMc
R(X × Y ) ∼=Mc

R(X)⊗Mc
R(Y ).

6. If Y is an affine bundle of dimension r ≥ 0 over X then Mc
R(Y ) ∼=

Mc
R(X)〈r〉.

Proof. In Definition 5.3.1, Lemma 5.3.6, Proposition 5.3.5, and Proposition 5.3.8
of [Kel17], respectively, the obvious Z[1/e]-linear analogues of assertions 1, 4,
and 5 were justified. Then the R-linear results in question follow immediately
since the functor −⊗R : DM eff(k,Z[1/e])→ DM eff(k,R) in Definition 4.1.1(2)
is an exact tensor functor that sends MZ[1/e](Z) into MR(Z) for any X ∈
SmVar; see Proposition 1.3.3 of [BoK18].

Similarly, it suffices to prove the Z[1/e]-linear version of assertion 6. In the
case where Y = Ar × X it is given by Corollary 5.3.9 of [Kel17]. To prove it
in general we note that there exists a stratification of X = ∪Xl such that for
the preimages Yl of Xl in Y we have Yl ∼= Ar × Xl. Hence one can apply the
aforementioned Proposition 5.3.5 of ibid. (cf. (4.1.1)) along with the canonical
comparison morphisms provided by Proposition 5.3.12(ii) of ibid. to prove the
statement by induction on the number of strata.8

Next, assertion 2 easily follows from description of motives with compact sup-
port provided by Proposition 8.10 of [CiD15]; see Proposition A.1(2) of [BoK20].

Lastly, combining Proposition 5.3.12(i) with Theorems 5.2.20, 5.2.21, and
5.3.14 of [Kel17] one easily obtains assertion 3 in the case k′ = k. It remains to
invoke assertion 2 to obtain the general case of the assertion.

Remark 4.1.3. Actually,MR(X) =Mc
R(X) whenever X is proper.

Now we relate motives with compact support to the weight structure wChow.

Lemma 4.1.4. Let X ∈ Var.
8Note also that this assertion is mentioned in §5 of [Tot16].
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1. Then Mc
R(X) ∈ DM eff

gm(k,R)wChow≥0. Moreover, if X is smooth and
proper thenMc

R(X) =MR(X) ∈ DM eff
gm(k,R)wChow=0.

2. For any j ≥ 0 and any field extension k′/k the group CWH0
j (Mc

R(X)k′)
is naturally isomorphic to CHj(Xk′ , R).

3. If X is of dimension at most r (for some r ≥ 0) thenMc
R(X) is an object

of d≤rDM eff
gm(k,R).

4. For any Z ∈ Var there exists a smooth projective k-variety Y along with
a morphism h : MR(Y ) = Mc

R(Y ) → Mc
R(Z) such that dimY = dimZ

and h can be completed to a weight decomposition triangle forMc
R(Z).

5. Let M ∈ DM eff
gm(k,R)wChow=0 and N ∈ DM eff

gm(k,R)wChow≥0. Then a
morphism h : M → N gives a weight decomposition triangle for N if and
only if the homomorphisms h2j,j(hK , R) are surjective for all j ≥ 0 and
all function fields K/k.

Proof. 1. The first part of the assertion is immediate from Proposition 4.1.2(3)
(see Proposition 1.2.4(3,2)).

To get the "moreover" part it remains to recall Proposition 4.1.2(1) and
Proposition 2.2.1(2).

2. The statement is immediate from the previous assertion combined with
Lemma 3.1.4(2); cf. Remark 2.2.3.

3. Proposition 4.1.2(4) implies that it suffices to prove the statement un-
der the assumption that X is smooth. Moreover, obvious induction allows
us to assume that Mc

R(U) ∈ d≤r−1DM
eff
gm(k,R) whenever U is of dimen-

sion at most r − 1. Hence Mc
R(X ′) ∈ d≤rDM

eff
gm(k,R) whenever X ′ is a

smooth variety of dimension r that either possesses a smooth compactification
(see Proposition 4.1.2(1)) or contains an open dense subvariety U ′ such that
Mc

R(U ′) ∈ Obj d≤rDM
eff
gm(k,R).

Now, assume that R = Z(`), where ` is an arbitrary prime distinct from p.
Then Corollary 1.2.2(1) of [Bon11] implies that (for any smooth X of dimension
r) there exists an open dense U ⊂ X such thatMR(U) is a retract ofMR(U ′),
where dimU ′ = r and U ′ possesses a smooth compactification. Next, the duality
provided by Theorem 5.3.18 of [Kel17] immediately implies that Mc

R(U) is a
retract ofMc

R(U ′) under these assumptions.
Thus we obtain our assertion in the case R = Z(`). Applying this statement

for all ` ∈ P \ {p} along with Corollary 0.2 of [BoS15] and Proposition 3.6.2(I.1)
(cf. also Appendix A.2 of [Kel12]) we obtain the result in question for R = Z[1/e]
as well. Applying Proposition 1.3.3 of [BoK18] once again we conclude the proof.

4. Immediate from assertions 1 and 3.
5. Clearly, h yields a weight decomposition of N if and only if for C =

Cone(h) we have C ∈ DM eff
gm(k,R)wChow≥1. Next, Theorem 3.2.1(3) says that

the latter assumption is fulfilled if and only if CWHi
j(CK) = {0} for all i, j ≥ 0

and all function fields K/k. Moreover, we have CWHi
j(MK) = CWHi

j(NK) =

{0} if j ≥ 0 and i ≥ 1, and CWHi
j(MK) = {0} also if i < 0 (and j ≥ 0). Thus

the long exact sequences relating Chow-weight homology ofM , N , and C yields
that h satisfies the condition in question if and only if the homomorphisms
CWH0

j (hK) are surjective for all j ≥ 0. Hence it remains to apply Lemma
4.1.4(2).
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Let us now concentrate on the case R = Q (yet cf. Remark 3.2.2(1)).

Lemma 4.1.5. Let K0 be a universal domain containing k, X,Y, Z ∈ Var.

1. Let M ∈ DM eff
gm(k,Q)wChow=0 and N ∈ DM eff

gm(k,Q)wChow≥0. Then a
morphism h : M → N yields a weight decomposition of N if and only if
the homomorphisms h2j,j(hK0 ,Q) are surjective for all j ≥ 0.

2. If g : Y → Z is a proper surjective morphism and h = Mc
Q(g) then the

homomorphisms CHj(gK0
,Q) and CWH0

j (hK0
,Q) are surjective.

Moreover, if Y is smooth and proper then h gives a weight decomposition
ofMc

Q(Z).

3. Assume that X is proper. Then for any g as above, any closed embedding
i of Z into X, and U = X \ Z there exists a choice of t(Mc

Q(U)) of the

form . . .MQ(Y )
MQ(i◦g)−→ MQ(X) → 0 → . . . (where MQ(X) is in degree

0).

Proof. 1. This is an easy combination of Lemma 4.1.4(5) with Proposition
2.3.4(II); cf. Remark 3.2.2(1).

2. According to Lemma 4.1.4(2), the surjectivity of CWH0
j (hK0

,Q) is equiv-
alent to that of CHj(gK0

,Q). The latter surjectivity is rather obvious, since
for any Zariski point z of ZK0

one can choose a point y of YK0
that is of finite

degree over z.
To obtain the "moreover" part of the assertions it remains to invoke assertion

1.
3. Applying Proposition 4.1.2(1,3) along with Proposition 1.4.2(4) we obtain

that it suffices to find a choice of wChow≤0Mc
Q(Z) and calculate the composed

morphism wChow≤0Mc
Q(Z)→Mc

Q(Z)
Mc

Q(i)
−→ Mc

Q(X). Hence it suffices to apply
the functoriality ofMc

Q along with assertion 2.

Now we combine our lemmata with Corollary 3.3.7.

Proposition 4.1.6. Assume that r ∈ [0,+∞], K0 is a universal domain con-
taining k, g : Y → X is a proper morphism of k-varieties, Z = Im g, U = X \Z.

DenoteMc
Q(g) by h, M = Cone(h), and C =Mc

Q(U).
Then the following conditions are equivalent.

1. M belongs toDM eff
gm(k,Q)

〈r〉
≥0 (see Definition 3.3.6; here we setDM eff

gm(k,Q)
〈+∞〉
≥0 =

DM eff
gm(k,Q)wChow≥1).

2. The homomorphisms CHj(gK0 ,Q) are surjective for 0 ≤ j < r.

3. CHj(UK0
,Q) = {0} for 0 ≤ j < r.

4. C ∈ DM eff
gm(k,Q)

〈r〉
≥0.

Proof. Let j ≥ 0. Lemma 4.1.4(1,2) implies that the motivesMc
Q(Y ),Mc

Q(Z),
Mc

Q(X),M , and C belong toDM eff
gm(k,Q)wChow≥0. Moreover, CWH0

j (JK0
,Q) ∼=

h2j,j(JK0
,Q) if J equals eitherMc

Q(Y ),Mc
Q(Z), orMc

Q(X), and CWHi
j(JK0

,Q) =
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{0} for all these motives and i > 0. Thus CWHi
j(M) = CWHi

j(C) = {0} for all
i > 0 and there is a long exact sequence

· · · → CWH−1
j (Mc

Q(X))→ CWH−1
j (MK0

,Q)→ CHj(YK0
,Q)

CHj(gK0
,Q)

−→ CHj(XK0
,Q)→ CWH0

j (MK0
,Q)→ {0}.

(4.1.2)

We combine it with Corollary 3.3.7(I) if r < +∞, and with Theorem 3.2.1(3)
if r = +∞ (see also Remark 3.2.2)1)); this immediately gives the equivalence
of our conditions 1 and 2. Similarly, these statements imply the equivalence of
conditions 3 and 4.

Next, Proposition 4.1.2(4) implies that for the corresponding embedding
i : Z → X we have Cone(Mc

Q(i)) ∼= C. Thus we obtain a long exact sequence

· · · → CHj(ZK0
,Q)→ CHj(XK0

,Q)→ CWH0
j (CK0

)→ {0},

and arguing as above we obtain that our condition 4 is equivalent to the sur-
jectivity of the homomorphism CHj(i,Q). Lastly, Lemma 4.1.5(2) implies that
for the corresponding g′ : Y → Z the homomorphism CHj(g

′,Q) is surjective.
Hence the surjectivity of CHj(i,Q) is equivalent to condition 2.

Remark 4.1.7. 1. Note that the empty scheme is a variety by our convention.
Its Chow groups are zero; thus if Y = ∅ in Proposition 4.1.6 then U = X

and we obtain that the motive Mc
Q(U) belongs to DM eff

gm(k,Q)
〈r〉
≥0 if and

only if hj(UK0
,Q) = {0} for 0 ≤ j < r. We will often mention this case

of the proposition below.

More generally, it is easily seen that for any coefficient ring R the motive
Mc

R(U) belongs to DM eff
gm(k,R)

〈r〉
≥0 if and only if hj(UK , R) = {0} for

0 ≤ j < r and all function fields K/k.

2. One can easily construct rich families of examples for part 1 of this remark.
This clearly gives examples for Proposition 4.1.6 as well, and one can take
Y and Z to be non-empty in them.

Let T ∈ Var, r > 0, and U is an affine bundle of dimension r over T (say,
U = T×Ar). Then combining Proposition 4.1.2(6,4) with Lemma 4.1.4(1)
and Corollary 2.2.4(1) we obtain Mc

R(U) ∈ DM eff
gm(k,R)wChow≥0〈r〉 ⊂

DM eff
gm(k,R)

〈r〉
≥0 for any R. Moreover, the aforementioned statements easily

imply that for any open dense embedding U ′ → U the motive Mc
R(U ′)

belongs to DM eff
gm(k,R)

〈r〉
≥0 wheneverMc

R(U) does.

Moreover, Remark 4.1.5(3) of [BoS14] describes certain X ∈ Var such that
forM =Mc

R(X) we have CWHi
j(MK , R) = {0} for all function fieldsK/k

and all (i, j) that belong to a given staircase set I.9

3. In the case Y = Z = ∅ (see part 1 of this remark) the equivalent con-
ditions of Proposition 4.1.6 can also be re-formulated as follows: there
exists a smooth projective k-variety P of constant dimension s ≥ 0 and
a Q-linear algebraic cycle η of dimension s + r in P × X that (if con-
sidered as a correspondence via Proposition 4.1.2(3)) induces a surjection

9Actually, in loc. cit. the case R = Q is considered; yet this assumption is not necessary.
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CHj−r(PK0
,Q)→ CHj(XK0

,Q) for all j ≥ 0; here we set CHj−r(PK0
,Q) =

{0} if j < r. Indeed, the "if" implication is obvious (see condition 3 of
Proposition 4.1.6) and it suffices to combine Corollary 3.3.7(I) (see condi-
tion 3 in it) with the obvious "correspondence version" of Lemma 4.1.5(1)
to obtain the converse implication.

We will give a "decomposition of the diagonal" re-formulation of this con-
dition in the case where X is smooth (and possesses a smooth compacti-
fication) in §4.3 below.

4. It is easily seen not to be sufficient to assume that g : Y → Z is (proper
and) surjective to claim that h = Mc

R(g) gives a weight decomposition
of Mc

R(Z) (see Lemmata 4.1.4(4) and 4.1.5(2)) in the case of a general
coefficient ring R.

Hence one needs some more restrictive assumptions on the morphism g to
ensure that all the R-linear versions of the conditions in Proposition 4.1.6
are equivalent (i.e., to ensure that condition 3 implies condition 2).

We need some more preparation for the next subsection. To relate our
results to "the usual" cohomology with compact support we need the following
statement.

Proposition 4.1.8. 1. For the cohomological functor H = Het,Q`
mentioned

in Definition 3.5.3(4), any X ∈ Var, i ∈ Z, and M = Mc
Q(X) (see Definition

4.1.1(2)) the Q`[G]-moduleHi(M) = H(M [−i]) is canonically isomorphic to the
module Hi

c,et(Xkalg ) of i-th étale cohomology of Xkalg with compact support.
Moreover, these isomorphisms are SchPr-natural.

2. Assume that k is a subfield of C. Then for any X ∈ Var the factors of
the Deligne weight filtration on the MHS-valued singular cohomology of XC
with compact support are SchPr-naturally isomorphic to the weight factors of
H∗sing(Mc

Q(X)) (see Definition 3.5.3(3)).

Proof. 1. Recall that Het,Q`
is the restriction to DM eff

gm(k,Q) of the coho-
mological functor H0

et(−kalg ,Q`) from DMgm(k,Q) into Q`[G] −Mod coming
from Proposition 7.2.21 and Theorem 7.2.24 of [CiD16]. Now, Het(−kalg ,Q`)
possesses the corresponding "compact support" property by loc. cit.; see here
Proposition 8.10 of [CiD15] for the "six functor" description of motives with
compact support.

2. Theorem 3 of [GiS96] says that the factors of the weight filtration on
Hi

c,sing(XC) are functorially isomorphic (as pure Hodge structures) to the cor-
responding E2-terms of their weight spectral sequences (similarly to Theorem
3.5.4(2)). Now, these E2-terms in loc. cit. are expressed (cf. Proposition
1.4.5(2)) in terms of their weight complex W (X) of X as provided by Theorem
2 of ibid. (cf. Remark 1.4.3(2)). Thus it remains to apply Theorem 3.1 of
[KeS17] (or recall that the composition t ◦Mc

Q is essentially isomorphic to the
weight complex functor of ibid. according to Proposition 6.6.2 of [Bon09]; cf.
Remark 1.4.3(2)).

Remark 4.1.9. The authors do not know whether the known properties of singu-
lar cohomology of motives are sufficient to verify that the singular cohomology
of Mc

Q(X) is isomorphic to the corresponding cohomology of X with compact
support as mixed Hodge structures. Yet this statement is most probably true.
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4.2 On cohomology with compact support and the num-
ber of points of varieties

Let us apply results of previous sections to motives with compact support of
varieties.

Theorem 4.2.1. Let U ∈ Var, r ≥ 0, K0 is a universal domain containing k,
and assume that CHj(UK0 ,Q) = {0} for 0 ≤ j < r.

1. Then there exists E > 0 such that E CHj(Uk′ ,Z[1/e]) = {0} for all
0 ≤ j < r and all field extensions k′/k.

2. If k is a subfield of C then the q-th (Deligne) weight factor of Hq
c (UC) of

the (Q-linear) singular cohomology of U with compact support is r-effective as
a pure Hodge structure (see Definition 3.5.3(1)).

Moreover, the same property of Deligne weight factors of Q`-étale cohomol-
ogy Hq

c (Ukalg ) is fulfilled (in the sense of Definition 3.5.3(2)) if k is an essentially
finitely generated field (see Definition 2.3.1(1)) and ` 6= p.

In particular, these factors are zero if q < 2r.
3. Assume that U = X \ Z, where Z is the image of a proper morphism

g : Y → X of k-varieties. Then there exists E > 0 such that the cokernel of the
homomorphism CHj(gk′ ,Z[1/e]) is annihilated by E whenever 0 ≤ j < r and
k′/k is a field extension. Moreover, if k and H are as in assertion 2 then the
object Ker(WDqH

q
c (X)→WDqH

q
c (Y )) is r-effective (in the sense of Definition

3.5.3).
4. The motiveMc

Q(U) (see Definition 4.1.1(2)) is an extension of an element
ofDM eff

gm(k,Q)wChow≥1 (see Proposition 2.2.1(1)) by an object of Choweff(k,Q)〈r〉
(see §2.1).

Proof. All of these statements are rather easy implications of earlier results.
We take M = Mc

Z[1/e](U) (this corresponds to R = Z[1/e] in Definition
4.1.1(2)). Then M belongs to DM eff

gm(k,Z[1/e])wChow≥0 by Lemma 4.1.4(1).
Moreover,Mc

Z[1/e](T ) belongs to DM eff
gm(k,Z[1/e])wChow≥0 whenever T is equal

either to X, Y , or Z in assertion 3. Furthermore, Proposition 4.1.6 implies that
M ⊗ Q = Mc

Q(U) ∈ DM eff
gm(k,Q)

〈r〉
≥0. Hence assertion 1 follows from Corollary

3.6.5(III) (see condition 3 in it); see also Proposition 4.1.2(3) and Remark 2.2.3.
Given assertion 1, assertion 2 easily follows from Theorem 3.5.4(3) combined

with (the corresponding parts of) Proposition 4.1.8; note also that r-effective
pure Hodge structures and Galois representations are of weight at least 2r.

Next, assertion 4 follows from Corollary 3.3.7(I).
To prove assertion 3 we argue similarly to the proof of Proposition 4.1.6.

Firstly we complete the morphismMc
Z[1/e](Y )→Mc

Z[1/e](Z) to a distinguished
triangle

Mc
Z[1/e](Y )→Mc

Z[1/e](Z)→ J →Mc
Z[1/e](Y )[1]. (4.2.1)

Then for any j ≥ 0 and k′/k we have a long exact sequence · · · → CHj(Yk′ ,Z[1/e])→
CHj(Zk′ ,Z[1/e])→ h2j,j(Jk′ ,Z[1/e])→ {0}.Next, J⊗Q ∈ DM eff

gm(k,Q)wChow≥1

according to Lemma 4.1.5(2) (combined with Proposition 4.1.6; one should
take r = +∞ in it). Applying Theorem 3.6.4(II) we obtain that the groups
h2j,j(Jk′ ,Z[1/e]) ∼= Coker(CHj(Yk′ ,Z[1/e])→ CHj(Zk′ ,Z[1/e])) are annihilated
by some constant E′ > 0 (and E′ does not depend on j and k′). Similarly, the
functorM 7→ GrWD

q Hq(M) is cohomological (forH that that equals eitherHsing

ir Het,Q`
and q ≥ 0); since WDqH

q(Mc
Q(Y )[1]) = 0 (apply Theorem 3.5.4(3)
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once again), we obtain that WDqH
q(Mc

Q(Y )) surjects onto WDqH
q(Mc

Q(Z)).
Thus it suffices to verify that the cokernels of homomorphisms CHj(Zk′ ,Z[1/e])→
CHj(Xk′ ,Z[1/e]) are annihilated by some constant E′′ (for all field extensions
k′/k), and that the object Ker(WDqH

q
c (X) → WDqH

q
c (Z)) is r-effective for H

that is either étale or singular cohomology (here we invoke Proposition 4.1.6 once
again). Hence considering the long exact sequences · · · → CHj(Zk′ ,Z[1/e]) →
CHj(Xk′ ,Z[1/e])→ CHj(Uk′ ,Z[1/e])→ {0} and 0→WDqH

q
c (U)→WDqH

q
c (X)→

WDqH
q
c (Z)→ . . . we reduce assertion 3 to assertion 2.

Remark 4.2.2. 1. We did not formulate all possible statements of this sort
above. In particular, we could have considered Chow-weight homology for
various staircase sets I; cf. Theorems 3.3.3 and 4.2.3.
Moreover, in §5.1 below we study the (more general) case where certain
Q-linear Chow and Chow-weight homology groups are finite dimensional.
In particular, Corollary 5.1.6(2) below generalizes parts 2 and 4 of our
theorem.

2. Recall also that the assumption of the r-effectivity of the q-th (Deligne)
weight factor of Hq

c (UC) of the singular cohomology of U with compact
support is conjecturally equivalent to the vanishing of CHj(U,Q) for 0 ≤
j < r; one should just combine our theorem with Proposition 3.5.5.

3. Recall that a large family of examples to our theorem can be constructed
by means of Remark 4.1.7(2); however, these examples may also be treated
"directly".
So it may be more interesting to apply our theorem to the case where g
is (proper and) surjective (and for any r > 0; see Lemma 4.1.5(2)); the
resulting statement appear to be new.

Applying part II of Corollary 3.6.5 instead of its part III (that was used in
the proof of Theorem 4.2.1) we easily obtain the following statement (in which
the vanishing of lower Chow groups condition is replaced by the vanishing of
higher Chow groups of 0-cycles).

Theorem 4.2.3. Let U, r,K0 be as in Theorem 4.2.1, and assume CH0(UK0
, j,Q) =

{0} (cf. Theorem 5.3.14 of [Kel17]) for 0 ≤ j < r.
1. Then there exists E > 0 such that E CH0(Uk′ , j,Z[1/e]) = {0} for all

0 ≤ j < r and all field extensions k′/k.
2. If k is a subfield of C then for any q, s ≥ 0 the q − s-th (Deligne) weight

factor of Hq
c (U) of the singular cohomology of U with compact support and

is r-effective as a pure Hodge structure. Furthermore, the same property of
Deligne weight factors of Hq

c (U) is fulfilled for the Q`-étale cohomology of Ukalg

with compact support if k is an essentially finitely generated field (see Definition
2.3.1(1)) and ` 6= p.

Proof. The proof is quite similar to that of Theorem 4.2.1(1–2); one should only
recall that CH0(Uk′ , j,Q) ∼= hj,0(Mc

Z[1/e](U)k′ ,Z[1/e]) = {0} if j < 0, and apply
Corollary 3.6.5(II) to the motiveMc

Z[1/e](U)[−r].

Now we discuss the relation of our results to the number of points of varieties
over finite fields. The following proposition is essentially a combination of The-
orem 3.2.1 with the consequences of the Grothendieck-Lefschetz trace formula
that are probably well-known to experts in the field.
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Proposition 4.2.4. 1. Assume that k is a subfield of the finite field Fq. Then
there exists a function Cardq from ObjDM eff

gm(k,Q) into the ring A of integral
algebraic numbers such that for any distinguished triangle M → N → O →
M [1] in DM eff

gm(k,Q) we have

Cardq(N) = Cardq(M) + Cardq(O) (4.2.2)

and for any X ∈ Var and M = Mc
Q(X) we have Cardq(M) = #X(Fq) (the

number of Fq-points of X).
Moreover, for any M in DM eff

gm(k,Q)〈1〉 the number Cardq(M) is divisible
by q in A.

2. Assume that X is a proper k-variety; take the morphism h : M =
MQ(X) = Mc

Q(X) → Q = Mc
Q(pt) corresponding to the projection X →

Spec k (see Definition 4.1.1(2)) and set M̃ = Cone(h). Then Cardq(X) ≡ 1
mod q whenever either of the following equivalent conditions is fulfilled:

(i) M̃ ∈ ObjDM eff
gm(k,Q)〈1〉;

(ii) CWHi
0(M̃K0

,Q) = {0} (see Definition 3.1.1) for all i ∈ Z and a universal
domain K0 containing k;

(iii) CWH0
0(MK0

,Q) = Q and CWHi
0(MK0

,Q) = {0} for all i 6= 0.

Proof. 1. We use the étale cohomology functor Het,Q`
= Het,Q`

(−F) mentioned
in Definition 3.5.3(4), where F is the algebraic closure of Fq. Let us recall
that for any X ∈ Var and i ∈ Z the Q`-vector spaces Hi

et,Q`
(XF) are well-

known to be finite-dimensional and almost all of them (when i varies) are zero;
hence the same is true for the corresponding cohomology of Chow motives.
Since the subcategory Choweff(k,Q) densely generates DM eff

gm(k,Q), we obtain
that these finiteness properties extend to {Hi

et,Q`
(MF), i ∈ Z} for any M ∈

ObjDM eff
gm(k,Q) as well.

We will write Frobq : x 7→ xq for the (arithmetic) Frobenius automorphism
of F. Our candidate for Cardq(M) will be the trace of the action of the ge-
ometric Frobenius automorphism g = Frob−1

q ∈ G on the (finite dimensional
Q`-vector space)

⊕
i∈ZH

i
et,Q`

(MF); a priori we have Cardq(M) ∈ Q`. Since H
is a cohomological functor, it converts distinguished triangles into long exact
sequences; this obviously implies the property (4.2.2).

Now we study the values of Cardq. Theorem 5.2.2 of [DeK73] says that
the eigenvalues of the action of g on Hi

c,et(XF) are integral algebraic numbers
(i.e., belong to A) for any X ∈ Var and i ∈ Z. Hence these properties are also
fulfilled for Hi

et(MF) for anyM ∈ Obj Choweff(k,Q); thus they are valid for any
M ∈ ObjDM eff

gm(k,Q) as well. To conclude the proof it obviously suffices to
note that for any objectM of DM eff

gm(k,Q) we have Cardq(M〈1〉) = qCardq(M)

(once again, it suffices to verify this equality for M ∈ Obj Choweff(k,Q) only).
2. The previous assertion implies that 1 − #X(Fq) = Cardq(M̃). More-

over, if condition (i) is fulfilled then this (integral!) number is divisible by q.
Next, conditions (ii) and (iii) are obviously equivalent. It remains to note that
condition (i) is equivalent to condition (ii) according to Theorem 3.2.1(1).

Remark 4.2.5. 1. Recall that in (Theorem 1.1 of) [Esn03] essentially a par-
ticular case of Proposition 4.2.4(2) was established (actually, K0 equal to the
algebraic closure of k(X) instead of being a universal domain was considered;
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yet one can easily look at our proofs and note that this is a minor distinc-
tion that does not affect any applications; cf. Proposition 5.2.3(1) below). X
was assumed to be smooth projective; hence CWHi

j(MK0
,Q) = {0} for i 6= 0

and CWH0
0(MK0 ,Q) ∼= h0,0(MK0 ,Q) ∼= CH0(XK0 ,Q). Next, the corresponding

statement was applied to smooth rationally chain connected varieties, that is,
one assumes that (for K0 as above) any two closed points of XK0

can be linked
by a connected chain of rational projective curves (cf. Definition IV.3.2.1, Ex-
ercise IV.3.2.5, Corollary IV.3.5.1, and Proposition IV.3.6.2 of [Kol96]); recall
that this condition is fulfilled for Fano varieties.

Certainly, our proposition (and actually the whole paper) says nothing new
on this number on points matter when restricted to the case where X is (proper
and) smooth.

However (as demonstrated by J. Kollár’s example in [BlE08, §3.3]) the situ-
ation becomes more complicated if X is allowed to be singular. Consequently,
we suggest to look at the negative degree Chow-weight homology of M (or M̃)
in the case where X is a non-smooth rationally chain connected variety.

2. More generally, if k is a subfield of Fq and g : X → Y is a proper
morphism then for M̃ ′ = Cone(Mc

Q(g)) we clearly have the following: if M̃ ′ ∈
ObjDM eff

gm(k,R)〈r〉 for some r > 0 then #X(Fq) ≡ #Y (Fq) mod qr. Thus it
does make sense to consider (also, higher-dimensional) Chow-weight homology
of motives M̃ ′ of this sort.

Recall also that in the case where g is a dominant morphism of smooth
proper varieties (consequently, Chow-weight homology ofMc

Q(X) andMc
Q(Y )

vanishes in non-zero degrees once again) and r = 1 this statement essentially
coincides with Corollary 1.3 of [FaR05]. However, one can clearly "multiply" any
example of this sort by an arbitrary k-variety V . Then clearly M̃ ′ ×Mc

Q(V ) ∈
ObjDM eff

gm(k,R)〈1〉 and #X × V (Fq) ≡ #Y × V (Fq) mod q; yet one cannot
deduce these facts from the properties of Chow groups of X × V and Y × V
directly (unless V is smooth and proper).

3. We could have based our proof on Theorem 8.1 of [Kah09] (cf. also
Theorem 9.1 of ibid.); then we would obtain that all the values of our function
Cardq are actually integral.

4.3 On the support of Chow groups of proper smooth va-
rieties

Now we study in detail the case where X is proper and smooth in the setting of
Proposition 4.1.6. The point is that in this case the endomorphisms ofMc

R(X)
can be expressed in terms of algebraic cycles onX×X; consequently, we are able
to prove certain (partially new) statements that are formulated in this language.

Proposition 4.3.1. Let r > 0; assume thatK0 is a universal domain containing
k.

Let g : Y → X be a morphism of smooth proper k-varieties, Z = Im g,
U = X \ Z (cf. Proposition 4.1.6), and denoteMc

Q(g) by h.
Then the following conditions are equivalent.

1. CHj(UK0
,Q) = {0} for 0 ≤ j < r.

2. The equivalent conditions of Corollary 3.3.9 are fulfilled for the morphism
MQ(Y )

h→MQ(X) of Chow motives, c1 = 0, and c2 = r.
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3. The diagonal of X×X (considered as a cycle on it) is rationally equivalent
to the sum of a cycle supported on Z×X and a cycle supported on X×X ′,
where X ′ ⊂ X is a closed subvariety of codimension r.

Proof. According to Proposition 4.1.6, condition 1 is equivalent to the surjec-
tivity of the homomorphisms CHj(gK0

,Q) for 0 ≤ j < r, i.e., to condition 1 of
Corollary 3.3.9; thus conditions 1 and 2 are equivalent.

Next, the easy arguments described in Remark 3.3.10(1) immediately yield
that condition 2 is equivalent to 3.

Remark 4.3.2. 1. Recall that for any closed subvariety Z of X there exists some
proper g : Y → X such that Y is smooth and Im g = Z according to the seminal
result of de Jong (cf. the stronger Gabber’s Corollary 2.1.15 of [Kel17]). Note
also that here we can choose Y whose dimension equals that of Z.

2. Now we demonstrate that our proposition implies Proposition 6.1 of
[Par94].

So, for a smooth projective k-variety X, closed subvarieties Vj of X for
0 ≤ j < r, and K0 as above we assume that CHj((X \ Vj)K0

,Q) = {0} for
0 ≤ j < r. Then we can take Z = ∪0≤j<rVj and apply Proposition 4.3.1; hence
condition 3 says that the diagonal in X ×X is rationally equivalent to the sum
of a cycle supported on Z ×X and a cycle supported on X ×X ′, where X ′ is
of codimension r in X. Decomposing the first of these cycles into the sum of
cycles supported on Vj ×X (for 0 ≤ j < r) we obtain loc. cit.

3. Certainly, the authors would like to suggest the readers to study the
negative degree Chow-weight homology of C =Mc

Q(U) as well (note that com-
putations of this sort are closely related to cohomology; cf. Theorem 3.5.4 and
Proposition 3.5.5 and Theorem 4.2.1). Obviously, one can argue similarly to
Corollary 3.3.9 and Remark 3.3.10(1) to obtain certain equivalent conditions in
terms of algebraic cycles provided that the weight complex t = t(C) or (equiv-
alently) t′ = t(Mc

Q(Z)) is known.
Thus it makes sense to recall that t can be expressed in the (more or less)

obvious way in terms of an arbitrary smooth proper hypercover of Z (here one
can apply the h-topological Q-linear version of [Kel17, Theorem 4.0.7] noting
that the arguments in the proof of loc. cit. give this modification without any
difficulty); cf. also Remark 1.4.3(2).

In particular, if {Zi} are irreducible components of Z and (all Zi and) the
intersections of all subsets of {Zi} are smooth then one can take the −n-th term
of t to be equal to

⊕
J⊂I, #J=nMQ(∩i∈JZi) and the boundary morphisms to

be the obvious ones; cf. Proposition 6.5.1 of [Bon09].
Recall also that any smooth U can be presented in this form (i.e., as X ′ \

(∪Z ′i) for some smooth proper X ′ and a normal crossing divisor ∪Z ′i) if p = 0.
One can also say something about tR(C) in the case R 6= Q (even if p < 0);

see Remark 4.3.2(4) of [BoS14].

Now we want to discuss certain conditions that are equivalent to (com-
binations of) collections of support assumptions (motivated by Theorem 1.7 of
[Lat96]). Our methods allow us to study the case of a general R here (in contrast
to ibid.); however, in this case we need the following substitute of Proposition
4.3.1.
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Lemma 4.3.3. Assume that X is smooth and proper, and for a closed subva-
riety Z of X and U = X \ Z the groups CHj(UK , R) vanish for 0 ≤ j < r (for
some r > 0) and all function fields K/k.

ThenMR(X) is a retract ofMR(Y )
⊕
MR(Q)〈r〉 for some Y,Q ∈ SmPrVar

with dimY = dimZ.

Proof. According to Lemma 4.1.4(4), there exists a smooth projective k-variety
Y with dimY = dimZ along with a morphism h :Mc

R(Y )→Mc
R(Z) such that

dimY = dimZ and h gives a weight decomposition of Mc
R(Z); hence the ho-

momorphisms CHj(hK) are surjective for all function fields K/k and j ≥ 0 (see
Lemma 4.1.4(5)). Next, the long exact sequence (4.1.1) yields that CHj(ZK)
surjects onto CHj(XK) for all function fields K/k and 0 ≤ j < r. Thus the com-
posed morphism h′ :Mc

R(Y )→Mc
R(X) gives a surjection of the corresponding

Chow groups as well. Applying Corollary 3.3.9 for c1 = 0 and c2 = r we obtain
conclude that the morphism idh factors throughMR(Y )

⊕
MR(Q)〈r〉 for some

Q ∈ SmPrVar (cf. Remark 0.5).

Proposition 4.3.4. Let X be a smooth proper variety, r ≥ 0, and c > 0.
Then the following conditions are equivalent.

1. The motive M = MR(X) is a retract of a Chow motive of the form⊕
0≤j≤cMR(Pj)〈j〉, where Pj ∈ SmPrVar for all j and dimPj ≤ r for

j < c.

2. There exist closed subvarieties Vj ⊂ X for 0 ≤ j < c such that for all
j we have dimVj ≤ j + r and CHj((X \ Vj)K , R) = {0} (i.e., the group
CHj(XK , R) is "supported on" Vj,K) for all field extensions K/k.

3. The diagonal ∆ of X × X (considered as an algebraic cycle on it) is
rationally equivalent to the sum

∑c
j=0 ∆j , where the cycle ∆j is supported

on Wj × Vj for j < c and on Wc ×X for j = c and Vj (for 0 ≤ j < c) are
closed subvarieties of X of dimension at most j+r and Wj (for 0 ≤ j ≤ c)
are closed subvarieties of X of codimension at least j.

Moreover, if R = Q then one can take a single universal domain K0 contain-
ing k for K in condition 2.

Proof. Once again, Proposition 2.3.4(II) implies that in the case R = Q condi-
tion 2 is equivalent to its K0-version.

Thus it suffices to prove the main part of the statement. We fix some X, r,
and c as above, and recall that M =MR(X) is a Chow motive itself according
to Lemma 4.1.4(1).

First we prove that condition 1 implies 2. Assume that condition 1 is fulfilled;
we will check the support condition for certain j = j0, 0 ≤ j0 < c. Denote by p
the corresponding split surjective morphism p :

⊕
0≤j≤cMR(Pj)〈j〉 → M ; pK

clearly gives a surjection of the h2j0,j0-groups. Moreover, h2j0,j0(MR(PjK)〈j〉,Q) =
{0} whenever j > j0; hence for Nj0 =

⊕
0≤j≤j0MR(Pj)〈j〉 the corresponding

retract pj0 of p is converted by the functor h2j0,j0(−K , R) into a surjection as
well.

Now we choose a presentation of pj0 as an algebraic cycle onQj0 = (t0≤j≤j0Pj)×
X; this cycle is supported on a subvariety Rj0 of Qj0 of dimension at most
r + j0. Then the definition of the action of correspondences on cycles implies
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that CHj0(XK) is supported on the image of Rj0,K in XK (with respect to the
projection Qj0,K → XK). Since the latter has dimension not greater than that
of Rj0 (and comes by base change from the corresponding k-variety), we obtain
the implication in question.

Next we prove that condition 3 implies condition 2 by an argument rather
similar to the one that we have just used. We fix j0, 0 ≤ j0 < c, and find a
support k-variety for CHj0(XK) (for all K). Arguing similarly to the proof of
Proposition 2.2.6(3) we easily obtain that for any j > j0 the endomorphism
hj of M corresponding to the cycle ∆j factors through Choweff(k,R)〈j〉; hence
its action on the group CHj0(XK) is zero. Therefore it suffices to note that
for 0 ≤ j ≤ j0 the elements of hj∗(CHj0(XK)) are supported on Vj,K (by the
classical theory of correspondences), and the dimensions of these Vj are at most
j0 + r.

Now we prove that condition 2 implies condition 1. Assume that condition 2
is fulfilled (for our X, r, and c). Then Lemma 4.3.3 implies that for each j, 0 ≤
j < c, the morphism idM may be factored throughMR(Yj)

⊕
MR(Qj)〈j+1〉 for

some Yj , Qj ∈ SmPrVar such that dimYj ≤ j+r (for all j). We "compose these
factorizations" starting from the last one, i.e., we factor idM through the chain of
objectsM →MR(Yc−1)

⊕
MR(Qc−1)〈c〉 →MR(Yc−2)

⊕
MR(Qc−2)〈c−1〉 →

. . .MR(Y0)
⊕
MR(Q0)〈1〉 → M . This gives a decomposition of idM into 2c

summands el such that each of these endomorphisms factors either through
MR(Yc−i)

⊕
MR(Qc−i)〈c − i + 1〉 at the "ith step". It obviously suffices to

verify that each of el factors through certainMR(P )〈j〉 such that P ∈ SmPrVar
and either j = c or 0 ≤ j < c and dimPj ≤ r. Now we choose one of these el
and consider the smallest i such that el factors throughMR(Qc−i)〈c − i + 1〉.
If there is no such i then el factors through MR(Y0); thus we can take j = 0
and P = Y0. If this minimal i equals 1 then we can take j = c and P = Qc. In
other cases the morphism el factors firstly through MR(Yc−i+1) and through
MR(Qc−i)〈c− i+1〉 after that; thus Proposition 2.2.6(3) implies that el factors
throughMR(P )〈c− i+ 1〉 for some P of dimension at most dimYc−i+1 − (c−
i+ 1) ≤ r.

Lastly we prove that condition 1 implies condition 3. It clearly suffices to
verify for 0 ≤ j ≤ c that an endomorphism hj of M that factors through
MR(Pj)〈j〉, where Pj ∈ SmPrVar and dimPj ≤ r if j < c, can be presented by
a cycle ∆j that satisfies the support assumptions of condition 3. Consequently,
we present hj as a composition M

a→ MR(Pj)〈j〉
b→ M . Now, Proposition

2.2.6(3) gives the existence of an open embedding w : W ′ → P such that
Wj = P \W ′ is of codimension j in P and a◦MR(w) = 0. Hence we can choose
a presentation of a as an algebraic cycle supported on Wj . Next (similarly to
the proof (1) =⇒ (2)), we consider the support variety Rj for some cycle in
Pj ×P that represents b, and take Vj to be the image of Rj in P . Obviously, Vj
is of dimension at most j + r if j < c. It remains to note that the composition
b ◦ a = hj is clearly supported on Wj × Vj as an algebraic cycle.

Remark 4.3.5. 1. In the case K = K0 and R = Q our conditions 3 and 2 are
precisely conditions (i) and (ii) of [Lat96, Theorem 1.7].

2. Now let us discuss possible variations of the argument that we used to
deduce condition 1 from condition 2.
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One can certainly re-formulate it inductively to obtain the following:
condition 1 is fulfilled if and only if M is a retract both of a motive
of the form

⊕
0≤j≤c−1MR(P ′j)〈j〉, where P ′j ∈ SmPrVar for all j and

dimP ′j ≤ r for j < c− 1, and also ofMR(Yc−1)
⊕
MR(Qc−1)〈c〉 for some

Yc−1, Qc−1 ∈ SmPrVar such that dimYc−1 ≤ c+ r− 1 (see Lemma 4.3.3).

Now we pass to a "triangulated" version of the equivalence of these con-
ditions. The proof of this result is also somewhat similar to the aforemen-
tioned part of the proof of Proposition 4.3.4.

Proposition 4.3.6. Let M ∈ ObjDM eff
gm(k,R), r ≥ 0, and c > 0.

Then the following conditions are equivalent.

1. M is an object of the subcategory Dr,c of DM eff
gm(k,R) densely generated

by Obj Choweff(k,R)〈c〉 ∪ (∪0≤j<c Obj(d≤r Choweff(k,R))〈j〉).

2. M is an object both ofDr,c−1 and of the category Er,c = 〈Obj Choweff(k,R)〈c〉∪
Obj(d≤r+c−1 Choweff(k,R))〉.

3. M is an object of Er,j for all 0 < j ≤ c.

Proof. Obviously, condition 1 implies condition 2, and the latter implies con-
dition 3. Moreover, obvious induction (cf. Remark 4.3.5(2)) implies that it
suffices to verify that condition 2 implies condition 1 for all c > 0 (whereas we
can assume r to be fixed).

So we assume that condition 2 is fulfilled. Similarly to Corollary 2.2.4(1,3),
Proposition 1.2.4(8) implies that that the Chow weight structure onDM eff

gm(k,R)
restricts to Dr,j and Er,j for any j ≥ 0, and the corresponding hearts HDr,j and
HEr,j are the Karoubi-closures in Choweff(k,R) of the sets Obj Choweff(k,R)〈j〉

⊕
(
⊕

0≤l<j Obj(d≤r Choweff(k,R))〈l〉) and of Obj Choweff(k,R)〈j〉
⊕

Obj(d≤r+j−1 Choweff(k,R)), respectively.
Now, Proposition 2.2.6(3) easily implies that any morphism from HEr,c

into HDr,c−1 factors through HDr,c (cf. the proof that condition 2 implies 1 in
Proposition 4.3.4). Thus applying Proposition 1.9 of [Bon18a] (cf. also Remark
2.3(2) of ibid.) we obtain the result in question.

Remark 4.3.7. 1. The authors do not know of any "nice" if and only if criteria for
M ∈ ObjDM eff

gm(k,R) to be an object of the subcategory Er,j ⊂ DM eff
gm(k,R)

(see the previous proposition). However,M is clearly an object of Er,j whenever
it is an extension of an object of M1 of d≤r+j−1DM

eff
gm(k,R) by an object

M2 of DM eff
gm(k,R)〈j〉. Moreover, we can check whether M2 is an object of

DM eff
gm(k,R)〈j〉 by looking at its Chow-weight homology; see Theorem 3.2.1(1).
2. Furthermore, Proposition 4.1.2(4) says that the motive M = Mc

R(X)
for X ∈ Var is an extension of M2 = Mc

R(X \ Z) by M1 = Mc
R(Z) whenever

Z is a closed subvariety of X. Now, M1 is an object of d≤r+j−1DM
eff
gm(k,R)

if Z is of dimension at most r + j − 1 by Lemma 4.1.4(3); thus to prove that
M is an object of the subcategory Er,j it suffices to suppose in addition that
CWHi

r(M2,K) = {0} for all i ∈ Z, 0 ≤ r < j, and all function fields K/k.
Note also that one can check whether a motive M1 is an object of

d≤r+j−1DM
eff
gm(k,R) by looking at its Chow-weight cohomology; see Proposi-

tion 5.2.1 below.
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3. Clearly, all the "motivic" conditions of this subsection (see condition 2
in Proposition 4.3.1, condition 1 in Proposition 4.3.4, and Proposition 4.3.6(1))
easily imply certain properties for (co)homology ofM ; cf. Proposition 3.5.1 and
Theorem 3.5.4.

4.4 On (tensor) products
First we deduce a simple corollary from Corollary 3.3.7(II).

Corollary 4.4.1. Assume that U = U1 × U2, where U1, U2 ∈ Var, and for
some r1, r2 ≥ 0 and a universal domain K0 ⊃ k we have hj(UiK0

,Q) = {0} for
0 ≤ j < ri and i = 1, 2.

Then hj(UK0
,Q) = {0} for 0 ≤ j < r1 + r2.

Proof. According to Proposition 4.1.6 (see Remark 4.1.7(1)), our vanishing as-
sumptions imply thatMc

Q(Ui) ∈ DM eff
gm(k,Q)

〈ri〉
≥0 for i = 1, 2. Hence Corollary

3.3.7(II) along with Proposition 4.1.2(5) imply that Mc
Q(U1 × U2) belongs to

DM eff
gm(k,Q)

〈r1+r2〉
≥0 . It remains to apply the converse implication in Remark

4.1.7(1).

Remark 4.4.2. 1. Corollaries 4.4.1 and 4.4.5 are quite non-trivial since there
certainly cannot exist any Künneth-type formulae for Chow groups (or Chow-
weight homology) of general varieties and motives.

2. One can easily prove the following R-linear version of Corollary 4.4.1 (for
any Z[1/e]-algebra R): if hj(UiK , R) = {0} for all 0 ≤ j < ri, all function fields
K/k, and i = 1, 2, then hj(UK , R) = {0} for 0 ≤ j < r1 + r2 and all K of this
sort.

Indeed, these vanishing assumptions are equivalent toMc
R(Ui) ∈ DM eff

gm(k,R)
〈ri〉
≥0 ;

see Remark 4.1.7(4).

Now we will try to deduce some curious statements on motives and vari-
eties from simple properties of Hodge structures. Unfortunately, this requires
assumptions A and B of Proposition 3.5.5 (and confines us to Q-linear motives).

Proposition 4.4.3. Assume that p = 0, assumptions A and B of Proposi-
tion 3.5.5 are fulfilled, M1,M2 ∈ ObjDM eff

gm(k,Q), and r1, r2 > 0. Then the
following statements are fulfilled.

1. If M1 /∈ ObjDM eff
gm(k,Q)〈r1〉 and M2 /∈ ObjDM eff

gm(k,Q)〈r2〉 then M1 ⊗
M2 /∈ ObjDM eff

gm(k,Q)〈r1 + r2 − 1〉.
2. IfM1 /∈ ObjDM eff

gm(k,Q)t
Q
hom≤r1 andM2 /∈ ObjDM eff

gm(k,Q)t
Q
hom≤r2 then

M1 ⊗M2 /∈ DM eff
gm(k,Q)t

Q
hom≤r1+r2+1.

3. If M1 belongs to DM eff
gm(k,Q)wChow≥0 \DM eff

gm(k,Q)
〈r1〉
≥0 and M2 ∈

DM eff
gm(k,Q)wChow≥0 \DM eff

gm(k,Q)
〈r2〉
≥0 then M1 ⊗M2 /∈ DM eff

gm(k,Q)
〈r1+r2−1〉
≥0 .

Proof. Firstly we note that both M1 and M2 are defined over some countable
subfield k′ of k (see Proposition 5.2.3(1)). Next, all the conditions on motives
in this proposition can be "detected" by (the vanishing of the corresponding)
Chow-weight homology of CK0

, where C either M1, M2, or M1 ⊗M2, and K0

is a universal domain that contains k; see Corollaries 3.3.7(I) and 3.4.2 along
with Proposition 3.4.1(3). Thus we can assume k = k′; hence there exists an
embedding of k into C.
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Recall now that the "total Hodge" version of singular cohomology as pro-
vided by Theorem 2.3.3 of [Hub00] is a tensor exact functor. Consequently, for
any m ∈ Z we have a (Künneth) filtration on Hm

sing(M1 ⊗M2) whose factors
are H l

sing(M1) ⊗ Hm−l
sing (M2) for l running through integers, where Hsing is the

"mixed Hodge" version of singular cohomology (see Definition 3.5.3(4)). Next,
if F c1V 1

C 6= V 1
C and F c2V 2

C 6= V 2
C for (effective) mixed Hodge structures V 1 and

V 2 and c1, c2 > 0 then F c1+c2−1(V 1⊗V 2)C 6= (V 1⊗V 2)C; see Examples 3.2(2)
of [PeS08].

Now we apply Proposition 3.5.5. The assumptions of assertion 1 imply
(see Theorem 3.2.1(1)) that there exist q1, q2 ∈ Z such that F r1Hq1

sing(M1) 6=
Hq1

sing(M1) and F r2Hq2
sing(M2) 6= Hq1

sing(M2). Hence F r1+r2−1Hq1+q2
sing (M1⊗M2) 6=

Hq1+q2
sing (M1 ⊗M2). Thus M1 ⊗M2 /∈ ObjDM eff

gm(k,Q)〈r1 + r2 − 1〉 indeed by
Theorem 3.5.4(3); this gives assertion 1.

The proofs of assertions 2 and 3 are similar.
Recall that for any r ∈ Z if N ∈ ObjDM eff

gm(k,Q)t
Q
hom≤r then N fulfils all

the conditions of Theorem 3.3.3(2) for I being the staircase set I[−r] = {(i, j) :
i − r > j ≥ 0}; see Corollary 3.4.2. Thus Proposition 3.5.5 implies that there
exist q1, q2, w1, w2 > 0 such that Fwi(Hqi−ri

sing (Mi)/WDqi+wi−1H
qi−ri
sing (Mi)) 6=

Hqi−ri
sing (Mi)/WDqi+wi−1H

qi−ri
sing (Mi) for i = 1, 2. Hence the mixed Hodge struc-

ture V = (Hq1−r1
sing /WDq1+w1−1)(M1) ⊗ (Hq2−r2

sing /WDq2+w2−2)(M1) is not w1 +
w2−1-effective. Now, the definition of the tensor product of mixed Hodge struc-
tures (see loc. cit.) easily implies that V is a quotient of V ′ = Hq1−r1

sing (M1) ⊗
Hq2−r2

sing (M2)/WDq1+w1+q2+w2−1(Hq1−r1
sing (M1) ⊗ Hq2−r2

sing (M2)) . Looking at the
Künneth filtration of Hq1−r1+q2−r2

sing (M1 ⊗M2) and applying Theorem 3.5.4(3)
once again we conclude the proof of assertion 2.

Lastly, the assumptions of assertion 3 imply (cf. Theorem 3.5.4(3)) that
there exist q1, q2 ∈ Z such that both Hqi(Mi)/WDqi−1H

m(Mi) are not ri-
effective. It follows that Hq1+q2(M1 ⊗ M2)/WDq1+q2−1H

m(M1 ⊗ M2) is not
r1 + r2 − 1-effective. Thus M1 ⊗ M2 /∈ DM eff

gm(k,Q)
〈r1+r2−1〉
≥0 according to

Theorem 3.5.4(3).

Remark 4.4.4. 1. Clearly, no analogue of this proposition holds for motives with
integral coefficients, since Z/lZ ⊗ Z/mZ = 0 in DM eff

gm(k,Z) for any mutually
prime integers m and l.

2. Surprisingly, it appears that Proposition 4.4.3 does not extend to the case
p > 0. Indeed, to demonstrate this it suffices to find objects of Choweff(k,Q)
that are not 1-effective whereas their product is. Now, R. van Dobben de
Bruyn’s answer [RvD20] hints that tensor powers of (retracts of) motives of
abelian varieties over finite fields can give an example of this sort.

3. One can easily prove some more statements similar to the parts of
our proposition. In particular, one can prove the following strengthening of
Proposition 4.4.3(3): if Mi /∈ DM eff

gm(k,Q)
〈ri〉
≥0 for i = 1, 2 then M1 ⊗ M2 /∈

DM eff
gm(k,Q)

〈r1+r2−1〉
≥0 . We leave this claim as an exercise to the reader since we

will not apply it below.

Now we can establish a certain "converse" to Corollary 4.4.1.

Corollary 4.4.5. Assume that U = U1 × U2, where U1, U2 ∈ Var, r1, r2 ≥ 0,
K0 ⊃ k is a universal domain, and assumptions A and B of Proposition 3.5.5
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are fulfilled. Suppose hj(UiK0
,Q) = {0} for 0 ≤ j < ri and i = 1, 2, and

hri(UiK0
,Q) 6= {0}.

Then hr1+r2(UK0 ,Q) 6= {0} as well.

Proof. By Corollary 4.4.1, hi(UK0 ,Q) = {0} for i < r1 + r2.
Next take Mi = Mc

Q(Ui) for i = 1, 2. Then Mi ∈ DM eff
gm(k,Q)

〈ri〉
≥0 \

DM eff
gm(k,Q)

〈ri+1〉
≥0 by Proposition 4.1.6. ThusM1⊗M2 /∈ DM eff

gm(k,Q)
〈r1+r2+1〉
≥0

according to Proposition 4.4.3(3). Lastly, applying Proposition 4.1.6 once again
(see also Remark 4.1.7(1)) we conclude that hr1+r2(UK0

,Q) 6= {0} indeed.

5 Supplements: small Chow-weight homology, Chow-
weight cohomology, and remarks

In this section we deduce some more implications from the previous results.
In §5.1 we consider motives in DM eff

gm(k,Q) whose Chow-weight homology
groups in a "staircase range" I are finite dimensional (over Q); thus we extend
Theorems 3.3.3(2) in the case R = Q. We also prove a motivic criterion for the
lower Q-linear Chow groups of a variety X (over a universal domain) to be finite
dimensional; it follows that the corresponding weight factors of the singular or
étale cohomology of X with compact support are Artin-Tate ones (cf. Theorem
4.2.1).

In §5.2 we dualize Theorem 3.2.1; this allows to bound the dimensions of
motives and also their weights (from above) via calculating their Chow-weight
cohomology. We also note that to verify the vanishing of Chow-weight homology
of M (in higher degrees) over arbitrary extensions of k it suffices to compute
these groups over (rational) extensions of k of bounded transcendence degrees.

In §5.3 we make some more remarks on our main results. In particular, we
propose (briefly) a "sheaf-theoretic" approach to our results, and discuss their
possible extensions to motives over a base.

5.1 On motives with "small" Chow-weight homology
Definition 5.1.1. We write either AT eff or AT eff

k for the class {MQ(k′)〈j〉},
where j ≥ 0 and k′ runs through finite extensions of k, and EAT eff = ∪i∈ZAT eff [i].

Theorem 5.1.2. Assume that K0 is a universal domain containing k, I is
a staircase set (see Definition 3.3.1), and M ∈ DM eff

gm(k,Q)wChow≥i0 for some
i0 ∈ Z. Then the groups CWHi

j(MK0
,Q) are finite-dimensional Q-vector spaces

for all (i, j) ∈ I if and only if M belongs to the envelope (see §1.1) of the set
∪i≤−i0(Obj Choweff(k,Q)〈aI,i〉 ∪AT eff)[−i].

Proof. Clearly, for any object N of Obj Choweff(k,Q)[−i]〈aI,i〉 we have
CWHi′

j′(NK0
,Q) = {0} for all (i′, j′) ∈ I. Moreover, the only non-zero Chow-

weight homology group of the motive T = MQ(Spec k′)〈j〉[−i] (over K0; here
k′ is a finite extension of k) is CWHi

j(TK0 ,Q) = Q[k′:k]. Since Chow-weight
homology functors are homological, we obtain that any element of the envelope
in question does have finite-dimensional CWHi

j-homology over K0 for (i, j) ∈ I.
Now we verify the converse implication. Clearly, the number of non-zero

Chow-weight homology groups of M is finite.
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Assume that k = K0; then any element of CWHi
j(MK0

) gives a mor-
phism Q〈j〉[−i] → t(M). Thus in this case there exists a Kb(Choweff(k,Q))-
morphism

⊕
l>0 Q〈jl〉[−il] → t(M) for some il ≤ −i0 and jl ≥ 0, such that

for its cone C we have CWHi
j(C) = {0} for all (i, j) ∈ I ∪ [1 − i0,+∞) ×

[0,+∞). Applying the Kb(Choweff(k,Q))-version of Theorem 3.3.3(2) (see
Remark 3.3.5) we obtain that C belongs to the Kb(Choweff(k,Q))-extension-
closure of ∪i≤−i0(Obj Choweff(k,Q)[−i]〈aI,i〉). Hence there exists a choice of
t(M) = (Ms) such that Ms = 0 if s > i0 and Ms = Es〈aI,−s〉

⊕
(
⊕

l Q〈jsl 〉)
for some Chow motives Es and jsl ≥ 0; see Proposition 1.4.2(4). It remains to
apply Proposition 1.4.2(5) to conclude the proof in this case.

Now we prove our assertion in the general case step-by-step. Firstly, the
"if" implication that we have just proved implies that it suffices to verify the
"only if" implication in the case where K0 is of infinite transcendence degree
over k. Hence Lemma 5.1.3 below (this is a rather easy Suslin rigidity-type
statement) implies that the aforementioned morphism

⊕
l>0 Q〈jl〉[−il]→ t(M)

is defined over the algebraic closure of k. Arguing as above we obtain that
Mkalg belongs to the envelope (and actually, also the extension-closure) of the
set ∪i≤−i0(Obj Choweff(kalg,Q)〈aI,i〉 ∪AT eff

kalg )[−i].
Next, the "continuity" of motivic categories discussed in Remark 1.3.3(4)

of [Bon20a] easily yields the existence of a finite extension K/k such that MK

belongs to the envelope of ∪i≤−i0(Obj Choweff(K,Q)〈aI,i〉∪AT eff
K )[−i] (actually,

Artin-Tate motives can be replaced by Tate motives here).
It remains to apply a rather standard descent argument. Denote the cor-

responding morphism SpecK → Spec k by f . Then Remark 1.2 and Corollary
3.2(2) of [CiD15] (cf. also Appendix A of [BoK20] or sections A.5 and C in the
introduction to [CiD19]) give the existence of (the "effective geometric" version
of) the functor f∗ that is right adjoint to the functor −K in Definition 2.1.2(3).
Moreover, the composition f∗◦−K is isomorphic to the functorMQ(SpecK)⊗−,
and for a variety X over K we have f∗MQK(X) ∼= MQ(X) (we consider X
as a Spec k-scheme in the right hand side). Thus applying the functor f∗ to
the fact that MK belongs to the envelope of ∪i≤−i0(Obj Choweff(K,Q)〈aI,i〉 ∪
AT eff

K )[−i] we obtain that f∗(MK) ∼= M ⊗MQ(SpecK) belongs to the envelope
of ∪i≤−i0(Obj Choweff(k,Q)〈aI,i〉 ∪ AT eff)[−i]. It remains to note that Q is a
retract ofMQ(SpecK) (this is an easy property of Artin motives); hence M is
a retract of M ⊗MQ(SpecK) and we obtain the result.

To conclude the proof we need the following statement.

Lemma 5.1.3. Let k be an algebraically closed field.
1. Denote the category of smooth connected affine schemes by SmAffVar,

and suppose that F is a functor SmAffVar op → Q − Mod that satisfies the
following condition (*): F (f) is injective whenever f is an SmAffVar-morphism
that is either an open embedding or finite and flat.

Assume in addition that there exists an algebraically closed field extension
K0/k of infinite transcendence degree over k such that F̃ (SpecK0) is finite
dimensional over Q; here F̃ is the natural extension of F to pro-smooth affine
connected k-schemes (that is, we set F̃ (lim←−Xi) = lim−→F (Xi), where Xi is any
projective system of smooth connected affine varieties; cf. §1.4 of [Deg11]).

Then F is a constant functor; thus for the morphism p0 : SpecK0 → pt the
homomorphism F̃ (p0) is bijective.
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2. Condition (*) of assertion 1 is fulfilled whenever F equals the Nisnevich
sheafification of the presheaf G : X 7→ H0((h2j+l,j(M

i ⊗ MQ(X),Q))) (the
zeroth homology of this complex) for any fixed j, l ∈ Z and any complexM i as in
Proposition 2.3.4. Moreover, F̃ (SpecK) is isomorphic to H0((h2j+l,j(M

i
K ,Q)))

whenever K is an extension of k.

Proof. 1. Assume that F̃ (SpecK0) ∼= Qd (for some d ≥ 0). Arguing as in
the proof of Proposition 2.3.4(I) we easily obtain that F̃ (Spec(i)) is injective
whenever i is a k-linear embedding of algebraically closed extensions of k, and
there exists an (algebraically closed ) extension K1/k of finite transcendence
degree such that F̃ (SpecK1) ∼= Qd. Moreover, applying (*) we obtain that
Q-dimension of F̃ (Y ) is at most d if Y is either a smooth affine variety or (the
spectrum) of its generic point; moreover, there exists Y0 ∈ SmAffVar such that
F (Y0) ∼= Qd. Being more precise, the homomorphisms F (Y )→ F (Spec k(Y ))→
F (SpecK0) are injective for any Y ∈ SmAffVar and any k-linear field embedding
k(Y )→ K0.

Since any C ∈ SmAffVar has a k-rational point, the homomorphism F (c ×
idY0

) is bijective for the structure morphism c of any C ∈ SmAffVar. It obviously
follows that for any two SmAffVar-morphisms f1, f2 : C1 → C2 we have F (f1 ×
idY0

) = F (f2 × idY0
). Since Y0 has a k-point, it follows that F (f1) = F (f2). In

particular, for (C, c) as above and a morphism i : Spec k → C (coming from any
point of C) both F (i ◦ c) and F (c ◦ i) are identical.

Therefore F is constant indeed. It obviously follows that F̃ (p0) is bijective.
2. This is a rather simple motivic exercise. Let us consider the functors F

and G, as well as the functors Gi below, as presheaves on the Nisnevich site
SmVarNis of all smooth k-varieties; note that this extension of the domain is
compatible with the Nisnevich sheafification.

Since for any i ∈ Z the functor Gi : X 7→ h2j+l,j(M
i ⊗ MQ(X),Q) is

additive and factors throughMQ, it yields a homotopy invariant presheaf with
transfers; see Definitions 2.4 and 2.15, and Theorem 14.11 of [MVW06]. Since
the category of homotopy invariant presheaves with transfers is abelian, and the
forgetful functor from it into presheaves on SmVarNis is well-known to be exact,
G yields a homotopy invariant presheaf with transfers as well. By Theorems 13.1
and 13.8 of ibid., it follows that F comes from a homotopy invariant (Nisnevich)
sheaf with transfers.

Now let us recall that any homotopy invariant sheafH with transfers satisfies
condition (*). Firstly, if f is flat then Lemma 2.3.5 of [SuV00] immediately
implies that H(f) is injective.10 Moreover, Lemma 22.8 of [MVW06] implies
that F (f) is injective whenever f is a (dense) open embedding of smooth k-
varieties.

Lastly, the zeroth homology of the complex (h2j+l,j(M
i
K ,Q)) is clearly iso-

morphic to G̃(SpecK). It remains to recall that spectra of fields give points in
the Nisnevich topology; thus G̃(SpecK) ∼= F̃ (SpecK).

Remark 5.1.4. 1. Our arguments in the proof of Theorem 5.1.2 also yield
that a motive M ∈ DM eff

gm(k,Q)wChow≥i0 satisfies its assumptions if and
only if M is a retract of M ′ that belongs to the extension-closure of the
set ∪i≤−i0(Obj Choweff(k,Q)〈aI,i〉 ∪AT eff)[−i].

10Actually, this statement holds for any presheaf with transfers. The authors are deeply
grateful to prof. D.-Ch. Cisinski for this argument.
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2. Since geometric motives are wChow-bounded below, we obtain that for any
objectM ofDM eff

gm(k,Q) the groups CWHi
j(MK0

,Q) are finite-dimensional
Q-vector spaces for all (i, j) ∈ I if and only if M belongs to the envelope
of the set (∪i∈Z(Obj Choweff(k,Q)〈aI,i〉)[−i]) ∪ EAT eff .
On the other hand, one can easily generalize our theorem and establish
for any staircase sets I and I ′ a similar envelope criterion for the groups
CWHi

j(MK0 ,Q) to vanish if (i, j) ∈ I ′ and to be Q-finite dimensional
if (i, j) ∈ I. The formulation of Theorem 5.1.2 corresponds to the case
I ′ = [1− i0,+∞)× [0,+∞).

3. One can define another notion of "smallness" of Chow-weight homology
using certain "Chow-weight" cycle classes into singular and étale homol-
ogy (and asking whether they are injective); this matter is discussed in
Remark 5.1.3 and Proposition 5.1.4 of [BoS14]. Loc. cit. gives a certain
generalization of [Voi14, Theorem 3.18].

4. The proof of Lemma 5.1.3(1) was inspired by [Sus83]; this is a certain
"rigidity" statement.

Let us now relate Theorem 5.1.2 to étale and singular cohomology; cf. The-
orem 3.5.4.

Definition 5.1.5. 1. We say that a (pure) object of weight m of the category
MHSeff is an Artin-Tate one if it is a direct sum of copies of the pure Hodge
structures Q((−m)/2).11

2. Let k be an essentially finitely generated field; G is the absolute Galois
group of k. Then we will say that a pure object V of weight m (see Definition
3.5.3(2)) in the category Q`[G]−Mod is an Artin-Tate one if there exists a finite
extension K/k such that V becomes a direct sum of copies of the representation
Ql((−m)/2) as a Q`[Gal(K)]-module.

Corollary 5.1.6. Assume that either k is a subfield of C and H = Hsing or
that k is an essentially finitely generated field and H = Het,Q`

(for ` 6= p; see
Definition 3.5.3(4)).

1. Suppose that I is a staircase set and an objectM of DM eff
gm(k,Q) satisfies

the equivalent conditions of Theorem 5.1.2.
Then for allm, l ∈ Z the object GrWD

m+lH
m(M) vanishes (resp. an Artin-Tate

one, see Definition 5.1.5) if m+ l is less than 2aii,l and is odd (resp. even), and
it is aii,l-effective if m+ l ≥ 2aii,l.

2. Assume that X ∈ Var, K0 is a universal domain containing k, and r > 0.
Then the vector spaces CHj(XK0

,Q) are finite dimensional if j < r if and
only if the motiveMc

Q(X) belongs to the envelope of (∪i>0 Obj Choweff(k,Q)[i])∪
Obj Choweff(k,Q)〈r〉 ∪AT eff (see Definition 5.1.1).

Moreover, if these conditions hold then for any 0 ≤ m ≤ r the object
GrWD

m+lH
2m−1
c (X) vanishes andGrWD

2m H2m
c (X) (this is the corresponding Deligne

weight factor of the cohomology of X with compact support; see Definition
3.5.3(3) and Theorem 4.2.1(2)) is an Artin-Tate one.

Proof. 1. This is an easy combination of Proposition 3.5.1(1) with Theorem
3.5.4(2) (that relates Deligne’s weight filtration to the Chow-weight one); one

11It would be certainly more natural to call these Hodge structures Tate ones. Our reason
to call them Artin-Tate ones is just to make the formulation of Corollary 5.1.6 shorter.
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should only note that (m+ l)/2-effective (pure) Hodge structures and pure rep-
resentations of weight q are zero if q < m+ l (cf. Theorem 4.2.1(2)).

2. Recall that the motive M =Mc
Q(X) belongs to DM eff

gm(k,Q)wChow≥0 and
CHj(XK0 ,Q) ∼= CWH0

j (MK0 ,Q) for all j ≥ 0; see Lemma 4.1.4(1,2) . Thus our
finite dimensionality assumption is fulfilled if and only if CWHi

j(MK0 ,Q) is finite
dimensional over Q for (i, j) ∈ I〈r〉0 (see Definition 3.3.6). Applying Theorem
5.1.2 in the case i0 = 0 we obtain the equivalence part of this assertion.

Combining it with assertion 1 of this proposition we obtain the cohomological
part of the assertion as well.

5.2 Chow-weight cohomology and the dimension of mo-
tives

Now we dualize (parts 1 and 3 of) Theorem 3.2.1 along with some other prop-
erties of Chow-weight homology.

To this end we note that Proposition 2.2.1(1) yields the following: the
Poincaré duality for DMgm(k,R) "respects" wChow, i.e., the image under the
duality functor of DMgm(k,R)wChow≤0 is DMgm(k,R)wChow≥0 (and also vice
versa). Moreover, the categorical duality (cf. Proposition 1.2.4) essentially re-
spects weight complexes (at least, for motives; see Remark 1.5.9(1) of [Bon10a]
and Corollary 3.5 of [Sos19] along with its proof which is essentially self-dual).
Thus one easily obtains the following results.

Proposition 5.2.1. For an object M of DMgm(k,R), j, l, i ∈ Z, (M∗) that
is a choice of a weight complex for M , and a field extension K/k let us define
CWCj,i(MK , R) as the ith homology of the complexDMgm(Kperf , R)(M−∗, R〈j〉).

I. The following properties of these cohomology theories are valid.

1. CWCj,i(−K , R) yields a cohomological functor on DMgm(k,R).

2. CWCj,i(−K) vanishes on d≤nDM eff
gm(k,R) ⊂ DMgm(k,R) if j − i > n.

II. Assume that M is an object of d≤nDM eff
gm(k,R) for some n ≥ 0. Then

M belongs to d≤n−sDM
eff
gm(k,R) (for some s ∈ [1, n]) as well if and only if

CWCj,i(MK , R) = {0} for all i ∈ Z, j ∈ [n − s + 1, n], and all function fields
K/k.

III. For M as above and q ∈ Z M belongs to DM eff
gm(k,R)wChow≤q if and

only if CWCj,i(MK) = {0} for all i > q, j ∈ [1, n], and all function fields K/k.
IV. Now let R = Q. Then it suffices to verify any of the assertions in parts

II and III of the proposition for a single universal domain K containing k.

Proof. We recall that the Poincaré dual of d≤nDM eff
gm(k,R) is d≤nDM eff

gm(k,R)〈−n〉,
and that the dual to Obj d≤n−sDM

eff
gm(k,R) can (also) be described as

Obj d≤nDM
eff
gm(k,R)〈s− n〉 ∩Obj d≤nDM

eff
gm(k,R)〈−n〉

(see Proposition 2.2.6(4)). Along with the observations made prior to this propo-
sition, this easily reduces our assertions I–III to their duals given by Proposition
3.1.2(1,2) and Theorem 3.2.1(1,3), respectively.

Lastly, assertion IV easily follows from Proposition 2.3.4(II); cf. Proposition
3.4.1(3).
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Remark 5.2.2. 1. Certainly, one can dualize Theorems 3.3.3 and 3.5.4, Propo-
sitions 3.5.1 and 3.5.5, and the results of §3.4 in a similar way as well.

Moreover, one may consider higher Chow-weight cohomology groups of mo-
tives; see Proposition 5.2.1 of [BoS14] (and Proposition 3.4.1).

2. Since Chow-weight cohomology yields a mighty tool for computing the
dimension of an (effective) motive, it makes all the more sense to make the main
"arithmetical" observation of this subsection (that appears to be more interest-
ing either if R 6= Q or if we study motives over essentially finitely generated
fields).

3. One can define dimensions of not necessarily effective motives as follows:
for m ∈ Z and M ∈ ObjDMgm(k,R) we say that M is of dimension at most
m if M belongs to 〈MR(P )〈c〉, P ∈ SmPrVar, c ∈ Z,dimP ≤ m − c〉. This
definition is easily seen to be coherent with the formulations of this section.

Now let M be an object of d≤nDM eff
gm(k,R) (for some n ≥ 0). We recall

that in the proof of Theorem 3.2.1(2) we have studied the question whether
g : wc−1

Chow≤tl
c−1(M)→lc−1(M) is zero. By our assumption onM , we can choose

wc−1
Chow≤tl

c−1(M) to be of dimension at most d (in DM c−1
gm (k,R)). Hence the

corresponding application of Proposition 3.1.2(5) reduces the verification of g =
0 to the vanishing of the corresponding CWHi

j(Mk(P )), whereas the dimension
of Pj not greater than n− j.

Thus we obtain the following statement; we will call the transcendence de-
grees of function fields over k their dimensions in it.

Proposition 5.2.3. Let M be an object of d≤nDM eff
gm(k,R) (for some n ∈ Z).

Then the following statements are valid.
1. To verify any of the conditions in Theorem 3.2.1 (resp. condition 4 in the

setting of Proposition 3.4.1(2), resp. condition 2 of Corollary 3.4.2) it suffices to
compute the corresponding CWHi

j(MK) (resp. motivic homology groups over
Kperf ) for K running through function fields of dimension at most d− j (resp.
for K/k of dimension at most d) only.

2. In Proposition 3.4.1(2) it suffices to verify condition 3 for rational exten-
sions K/k of transcendence degree at most d− j + 1.

3. For R = Q, in the assertions mentioned in part 1 of this proposition
it suffices to take K to be the algebraic closure of k(t1, . . . , td−j) (resp. of
k(t1, . . . , td)) instead.

Remark 5.2.4. 1. Thus, if M does not satisfy the (motivic) equivalence condi-
tions of the statements mentioned in the previous proposition, there necessarily
exists a function field K/k of "small dimension" such that (at least) one of the
corresponding Chow-weight homology (resp. motivic homology) groups does
not vanish over K.

Note also that it is actually suffices to consider dimensions of fields over a
field of definition for M (that certainly may be smaller than k).

2. The question whether these dimension restrictions are the best possible
ones seems to be quite difficult in general (especially if we consider geometric
motives only). Note however that in the case d = 1, R = Q, and a finite
k it is clearly not sufficient to compute Chow-weight homology over algebraic
extensions of k only.
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5.3 Some more remarks; possible development
We make some more remarks on our main results; some of them concern torsion
phenomena. Possibly the matters mentioned below will be studied in consequent
papers.

Remark 5.3.1. 1. It would certainly be interesting to relate the results of
this paper to earlier statements on effectivity of cohomology (of singular
varieties); cf. Theorem 1.2 of [BEL05].

2. The results of the current paper can be easily combined with the main
statements in [Bac18] and [Bon20a] to obtain certain Chow-weight homol-
ogy criteria for the effectivity and connectivity of motivic spectra (that is,
objects of the R-linear version SHR(k) of the stable homotopy category
SH(k), where R is a localization of Z[1/e]); see §5.3 of [BoS14].

3. The main formulations of this paper are easier to apply when R = Q (or
R is a Q-algebra). Now we describe some ideas related to motives and
homology with integral and torsion coefficients.

Firstly we note that a bound on the dimension of a motive clearly yields
some information on its (co)homology. In particular, the Z`-étale homol-
ogy H of an object M of Choweff(k,R) of dimension at most d is concen-
trated in degrees [−2d, 0] (here we take a prime ` 6= p, a coefficient ring
not containing 1/`, and consider the étale homology over an algebraically
closed field of definition; we apply our convention for enumerating ho-
mology). Moreover, considering the relation between Z`-homology and
Z/`Z-one one obtains that H−2d(M) is torsion-free.

One can use these simple remarks for studying the E2-terms of Chow-
weight spectral sequences for H; cf. Theorem 3.5.4. In particular, the
latter of them can be applied for "comparing M with M ⊗Q"; cf. [Voi14,
Remark 3.11]. Note however that the groups E∗∗2 T (H,M) cannot be re-
covered from the weight filtration on H∗(M) in general; see [GiS96, §3.1.3]
(cf. the proof of Proposition 4.1.8(2)).

4. In the current paper we treat Chow-weight homology (of a fixed objectM
of DM eff

gm(k,R)) as functors that associate to field extensions of k certain
R-modules. Yet one can apply a "more structured" approach instead; it
seems to be especially actual for R 6= Q.

For any U ∈ SmVar and tR(M) = (M∗), j, l ∈ Z, one can consider the
homology of the complex DMgm(k,R)(MR(U)〈j〉[l],M∗). Next the func-
tors obtained can be sheafified with respect to U ; this yields a collection of
certain Chow-weight homology sheaves (for any (j, l)). Moreover, if j ≥ 0
then the sheafifications of U 7→ DMgm(k,R)(MR(U)〈j〉[l],M i) (that were
called the Chow sheaves of M i in [KaL10]) are birational (in U , i.e., they
convert open dense embeddings of smooth varieties into isomorphisms; see
Remark 2.3 of [HuK06]). Hence the corresponding Chow-weight homology
sheaves are birational as well.

Moreover, these observations can probably be extended to the setting of
motives (with rational coefficients) over any "reasonable" base scheme
S; one should study the corresponding dimensional homotopy invariant
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Chow sheaves for S-motives (recall that those are conjecturally Rost’s
cycle modules over S) and apply the results of [BoD17].

5. Choweff(k,R)-complexes of length 1 yield a simple counterexample to the
natural analogue of Theorem 3.2.1(3) for motives whose Chow-weight ho-
mology vanishes in degrees less than n (along with the corresponding
analogues of Theorem 3.2.1(2) and Theorem 3.3.3(2)). Assume R = Q,
k ⊂ K = C (actually, any K that is not an algebraic extension of a fi-
nite field is fine for our purposes); take a smooth projective P/k (say,
an elliptic curve) that possesses a 0-cycle c0 of degree 0 that is ratio-
nally non-torsion. We also use the notation c0 for the corresponding
morphism Q = MQ

gm(pt) → MQ
gm(P ); let M be the cone of c0 (i.e.,

M = . . . 0→ Q c0−→MQ(P )→ 0→ . . . ;MQ(P ) is in degree 0).

Since c0 is rationally non-trivial (as a cycle with Q-coefficients), h00(c0,Q)
is an injection (and h2j,j(c0,K ,Q) is injective for any j ≥ 0 and K/k
as well). Hence CWHi

j(MK ,Q) = {0} whenever i 6= 0 (and any field
extensionK/k). On the other hand, c0 does not split since it is numerically
trivial as a cycle. Thus M does not belong to Kb(Choweff(k,Q))wChow≤0

(or to DM eff
gm(k,Q)wChow≤0 if we "put it into" DM eff

gm(k,Q)). Hence the
vanishing of the Chow-weight homology in negative degrees does not imply
that the weights of a motive M are non-negative.

Moreover, tensor products of examples of this type behave "even worth"
from this point of view; see Remark 5.4.1(6) of [BoS14] for more detail.
Thus Chow-weight homology cannot be used for bounding weights from
above. On the other hand, the argument used in the proof of Proposition
3.5.5 can easily be modified to prove that the weight filtration on singular
homology does yield bounds of this sort (if one assumes conjectures A and
B in the proposition); the corresponding version of Theorem 3.5.4 is valid
as well.

6. In the current paper we mostly study geometric Voevodsky motives; these
are certainly the most important ones. Yet in [BoK20] some of our main re-
sults are extended to wChow-bounded below objects ofDM eff

− (k,R). These
generalizations allow treating slices of motives (in §2.3 of ibid.); note that
slices of geometric motives do not have to be geometric. As an applica-
tion, a generalization of Corollary 3.4.2 (that is new for geometric motives
as well) was obtained. Possibly, some more properties of slices can be
obtained using our methods. The authors are deeply grateful to prof.
M. Levine for the suggestion to study this problem (and for mentioning
Theorem 7.4.2 of [KaL10] as an interesting example of the calculation of
slices).
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