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Architecture stands as a paradigm for the develop-
ment of structural entities, which define functionality
from the nanoscale to entire buildings. However, the
distinction between structure and material becomes
totally blurred in biological systems where it is impos-
sible to distinguish between material and device or
organ. A tree stem, as a prototypical example, is both
material and plant organ with specific biological func-
tions. Partially inspired by this, there are recent par-
allel movements—in materials development as well
as in architectural design—towards the merging of
materiality, structure and function into one integral
construction system [1].

The concept is illustrated in figure 1 that shows
the currently tallest wooden building with its architec-
ture, together with the internal architecture of wood
based on micrometric wood cells and nanometric cel-
lulose fibrils. This spans dimensions from the diam-
eter of the cellulose fibrils of less than 3 nm to the
height of the building of the order of 85 m (that is
about 30 billion times larger). Many architectural lev-
els carry the mechanical stability of the cellulose up to
the building dimensions.

Bioinspiration in conjunction with new digitally
based design and fabrication methods is starting to
transform both disciplines, architecture and materi-
als science, towards a fundamentally novel approach.
On the one hand, material systems and structures
can now be designed specifically for a purpose and
become active elements utilizing material properties
to their full capacity. On the other hand, new con-
cepts for structural building elements or functional
facade devices aim at efficient solutions for material
use. As building activities, and accordingly energy and
material consumption, will rise dramatically with the
growth of our global population, bioinspired con-
cepts that deploy material in an efficient way will be
key to a more sustainable approach.

Material properties are traditionally defined by
chemical composition and processing of the material.
In recent years, additional structures have been intro-
duced by three-dimensional fabrication and other
techniques to create architected materials with new
types of properties. Examples of architected materials
are smart composites, metamaterials, cellular mate-
rials, trusses, granular or digital materials and many
more [4] (see figure 2). The consequence of this devel-
opment is that, except for a matter of scale, there is
potential convergence of materials science and archi-
tectural design through the interplay of materiality
and structure.

This special issue focuses on the various aspects
of bioinspired architectural and architected materi-
als, defining functionality through structures at all
scales. A wide range of properties, from mechani-
cal strength and toughness, thermal management and
aerodynamic properties, lead to bioinspired build-
ing and product concepts and even to the parallel
of such structural concepts in the world of musical
composition.

1. Natural architected materials

Many natural materials have a hierarchical structure
whereby building blocks are assembled into larger
units in several successive steps, from molecules to
fiber, layers and larger units [6]. Structural motifs
can be related to mechanical performance in a wide
range of natural protein materials, for example in
[7]. Besides wood, bamboo is a traditional build-
ing material with exceptional mechanical properties.
In addition to high tensile strength, this allows for
extraordinary large deflection due to its hierarchically
structured materiality. The contribution to this col-
lection by Chen et al [8] quantifies these properties
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Figure 1. Multiscale architectures. Left: the wooden tower of Lake Mjøsa, Norway Reproduced with permission from [1]. © Voll
Arkitekter AS & Ricardo Foto. Right: the internal structure of wood based on parallel tube-like wood cells with diameters in the
range of tens of microns (shown for several wood species from top to bottom). The white arrow points to a sketch where
nanometer thick cellulose fibrils are indicated by black lines [2] John Wiley & Sons. © 2020 The Authors. Published by
Wiley-VCH GmbH.

Figure 2. Different principles of architected materials, which by structuting obtain new properties that are not inherent to the
materials’ chemistry Reproduced from [4]. CC BY 4.0.

and relates them to the inner architecture of the bam-
boo culm. Bone is another example of a natural mate-
rial that is structured over multiple length scales. The
contribution by Tertuliano et al [9] analyses the role
of different structural levels, such as layers and fibers,
in the fracture resistance of this material.

2. Designing architectural materials

Prospective scarcity of resources demands novel sus-
tainable material concepts in architecture. Granular
materials are random loose assemblies of particles,
such as sand piles for example. If the particles have
non-convex shapes they will entangle and reach topo-
logical interlocking. The contribution by Dierichs and
Menges [10] shows how the assembly of particles can
actually be used to design reconfigurable granular
building elements at an architectural scale. Further,
Thomsen and Tamke [11] report on bio-design as
a material practice that challenges the paradigm of

stability and predictability in architecture by explor-
ing the heterogeneity of designed, harvested and liv-
ing materials as a positive attribution for properties
and performance.

3. Architected thermal exchange
and insulation

Heat exchange is an important property of skin-like
boundaries at all dimensions, such as for wearable
devices or for building skins. The contribution by
Grinham et al [12] shows that an optimized design of
the channel architecture within a flexible and trans-
parent heat exchanger can significantly improve its
functional properties. Another approach to heat man-
agement is evaporative cooling. In their contribu-
tion, Rupp and Gruber [13] show that optimizing the
design of surface structures inspired by the geometries
of plant leaves may improve mass transfer, especially
considering aerodynamic effects related to air move-
ments. The proof of concept includes ceramic tiles for
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architectural application. Porous silica ceramic mate-
rials with a lamellar structure and high anisotropy,
fabricated by a freezing method, are shown in the
contribution by Zhao et al [14] to provide both ther-
mal insulation (across the layers) and high strength
(along the layers) with application potential for build-
ing insulation.

4. Architected shape change and motion
design

Textile technology is a traditional approach to addi-
tive manufacturing where new properties emerge
through a combination of fiber entangling (or inter-
locking according to the scheme of figure 2) and
weaves that may be considered mechanical metama-
terials (figure 2). The paper by Guiducci et al [15],
investigates the shape-generating effect of internal
stresses generated by printing rigid rod-like struc-
tures onto a pre-stretched textile, which generates
an architected material with potential applications in
architecture. Another contribution by Shafiei et al
[16] shows that, with an appropriate design, scaled
skins serving as flexible armors for example, acquire
increased flexibility in compression by allowing the
formation of wrinkles and folds. The paper provides
insights into how wrinkles can form reliably based
on stable buckling of the scaled skin. Water absorp-
tion by cellulosic materials such as wood confers
shape-change properties to seed dispersal systems,
for example. The contribution by Tahouni et al [17]
shows how additive manufacturing can be used to
generate architected materials that show sequential
motion steps based on different levels of responsive-
ness to humidity.

5. Metamaterials for acoustic control
and aerodynamic properties

The contribution by Zhilayev et al [18] investigates
how artificial wings for flying robotic devices can
be designed based on periodic honeycomb patterns.
The authors start from the designs observed in insect
wings and then use multi-parameter optimization to
improve the flapping flight dynamics and the sound
of a robotic drone.

6. From musical composition
to biological material design

Architected materials use patterns instead of chem-
ical composition to modify the physical properties
of materials. The contribution by Milazzo et al [19]
shows how the patterns of musical composition trans-
late into a three-dimensionally folded protein struc-
ture and this structure back into music.

7. Conclusion

This collection of a dozen papers shows the enor-
mous potential of structure at multiple scales to reveal
properties and functions that are not inherent to
homogeneous materials. The role models for this type
of approach are natural materials that nearly always
have a multiscale structure where building blocks are
assembled into respectively larger units over several
length scales. Architectural design typically addresses
a size range similar or beyond humans, while materi-
als science makes use of smaller dimensions. Recent
efforts explore the inner structure of architectural
materials as a means of interacting with their environ-
ments at building dimensions. This collection gives
an overview over the whole scale from nanometers to
meters covering disciplinary approaches that are still
not likely to interact but may clearly profit from each
other. The analysis of nature leads to design princi-
ples, but also the analysis of a design principle like a
musical composition can lead to a new scientific view-
point [19]. The scope of approaches identifies a wide
range of possible applications in the field of façade,
construction, clothing or products with architected
properties and performance. The multidisciplinary
contributions open up resilient and sustainable per-
spectives for shaping our future environment.
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