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ABSTRACT: With photovoltaics becoming a mature, commercially
feasible technology, society is willing to allocate resources for developing
and deploying new technologies based on using solar light. Analysis of
projects supported by the European Commission in the past decade
indicates exponential growth of funding to photocatalytic (PC) and
photoelectrocatalytic (PEC) technologies that aim either at technology
readiness levels (TRLs) TRL 1−3 or TRL > 3, with more than 75 Mio€
allocated from the year 2019 onward. This review provides a summary of
PC and PEC processes for the synthesis of bulk commodities such as
solvents and fuels, as well as chemicals for niche applications. An overview
of photoreactors for photocatalysis on a larger scale is provided. The review
rounds off with the summary of reactions performed at lab scale under natural outdoor solar light to illustrate conceptual
opportunities offered by solar-driven chemistry beyond the reduction of CO2 and water splitting. The authors offer their vision of the
impact of this area of research on society and the economy.

1. INTRODUCTION

With the depletion of fossil fuel reserves,1,2 alternative sources,
such as solar irradiation, grow more important not only for
energy generation but also for the chemical industry, due to
being essentially a cost-free and abundant power source to
drive chemical transformations. A number of bulk products can
be obtained by photocatalytic reaction under sunlight
irradiation, such as hydrogen, syngas, methanol, formaldehyde,
and formic acid.3,4 Nonbulk chemicals, such as pharmaceut-
icals, additives, and reagents, can also be obtained by means of
sunlight irradiation, although the demand and economic
impact for this kind of solar chemistry is much less.
Another important factor influencing the development of

solar photocatalysis is the accumulation of carbon dioxide,
which contributes more and more significantly to the overall
carbon mass in the Earth’s atmosphere. With a current average
concentration in the air between 400 and 500 ppm and an
overall atmospheric mass of around 3200 gigatons,5 CO2

represents a growing threat to the biosphere but also an
attractive carbon reservoir. Photocatalytic fixation of carbon
dioxide in the form of bulk materials and solvents may
contribute to the solution of this problem by decreasing the
rate of production for corresponding petrochemical products,
reducing the overall negative environmental impact of oil
industry, and lowering atmospheric CO2 concentration at the
same time, once an efficient direct air capture (DAC)
technology is developed.

Another alternative carbon source is biomassaround 146
billion metric tons are produced by plants each year,6 making it
a widely available resource lower in price than fossil fuels and
commercial carbon dioxide (liquefied CO2 and dry ice). It also
has some additional key advantages; much like products of the
oil industry, it can be stored for a prolonged amount of time
and provide a broad scope of chemical products.7 Fractiona-
tion of otherwise non-processable biomass, such as wastes of
agriculture and wood processing, provides several products
from cellulose and lignin decay (see Section 4.2.2 of the review
for further discussion). These products can be utilized on their
own as ready-to-use chemicals or may be converted into
biocompatible and biodegradable polymers.
This review is focused on chemical, engineering, and

economic aspects of bulk solar photocatalysis, i.e., CO2 and
biomass processing, including an overview of novel larger-scale
experimental and pilot-scale reactors reported in the past
several years. Some proof-of-concept reports, namely, complex
organic transformations under sunlight and experimental
photocatalytic setups, are also covered with emphasis on
more recent results and precious metal-free catalysts. The aim
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of this work is to cover exclusively natural sunlight-driven
photocatalytic processes as a demonstration of researchers’
intents for potential industrial applications, and thus, examples
under simulated or artificial light use are omitted.

2. IMPACT OF PHOTOCATALYSIS UNDER OUTDOOR
SOLAR LIGHT ON ECONOMY

One of the main arguments for deploying technologies based
on harvesting and utilization of solar light is the amount of
energy that Earth’s surface receives from the sun, which
exceeds the annual demand of the entire population.8

However, the geographic location and portfolio of chemical
goods generated with the aid of solar light will define the
overall economic viability of a certain technology. Solar
irradiance is the highest in the tropical region but decreases
when moving north or south from the equator.9 Therefore,
solar-driven technology will have the highest societal and
economic impact in the regions where solar irradiance is the
strongest and available throughout the year.
Due to the limited permittivity of electromagnetic radiation

into the bulk of a photoreactor (or photoelectrode), as inferred
from the Beer−Lambert law, the productivity of photo-
(electro)chemical reactors scales with their surface area rather
than volume. Different geographic locations have distinct
economic potential defined by the level of their development.
For example, to be economically competitive, 1 m2 of land in a
large urban center must generate goods and services with a
higher value compared to 1 m2 in a rural area. Taking into
account these two facts, bulk commodities and solar fuels,
which are at the origin of the value chain rather than end
products, can succeed only in areas where solar irradiance is
high and land is available. On the other hand, fine chemicals
with much higher market prices are more competitive in the
regions with a higher cost of land and more diluted solar
radiation.
Deploying solar panels and other kinds of solar harvesting

devices might have an environmental impact on the local
ecosystem, considering that these are manufactured objects.10

As solar-driven chemistry attracts more and more attention,
consideration goes beyond only scientific optimization of the
photocatalyst and photoreactor; those focused on economic
viability are necessary to develop and deploy the right
technology at the right place.

3. ADVANTAGES AND LIMITATIONS OF
PHOTOCATALYSIS UNDER OUTDOOR SOLAR
LIGHT

The main advantage of solar photocatalysis is, undoubtedly, an
abundance of a free energy source required to drive the
reaction, which now can be effectively seen as a regular
ambient temperature reaction in terms of energy balance.
Moreover, with precise calculation of light concentration and
dissipation of heat, a desired internal temperature can be
achieved without utilizing external heating devices. However,
using a convenient natural source has its own limitations,
different from those of commercial light sources and solar
simulators. For instance, solar irradiation spectrum intensity is
affected significantly by light absorption of gases in the
atmosphere (N2, O2, CO2, Ar, O3, NOx, SO2, CH4) and air
humidity; aerosol particles also take part in the overall process,
diffusing incoming irradiation.11 The uneven distribution of
irradiation intensity onto the spectral range is also to be taken

into account; most of the output is spread across the visible
and NIR regions with little impact on UV region, directly
affecting reaction design. If a UV photochemical or photo-
catalytic reaction is desirable, the primary concern is the
reactor materials, and among a whole variety of glasses and
plastics, there are only a few which are both transparent below
the 300 nm threshold and stable enough to operate under
outdoor conditions. Highly fluorinated polymers are partic-
ularly good for this purpose, allowing for complex shapes of
absorbing windows; however, they have poor mechanical
characteristics for increased pressure and a flow working
regime. Thus, wall thickness has to be increased, leading to
absorption losses.12 On the other hand, low-iron silica-doped
borosilicate glasses have excellent resistance to outdoor
weather conditions and transparency until 280−285 nm, but
they suffer from “UV solarization”, a process attributed to
changes in the material structure under prolonged high-energy
irradiation, in particular, the oxidation of Fe2+ to strongly
absorbing Fe3+.13 However, increasing use of photoredox
catalysts in the past decade for various kinds of reactions can
assist in neglecting these strict requirements by shifting the
operational range to visible light, which is suitable for a broad
selection of transparent materials.
Additionally, there is a couple of more obvious parameters

related to irradiation, namely, the diurnal light cycle in the
operating area and weather conditions. Effectively, these make
subtropical and tropical countries seem to be the most suitable
areas for solar chemical plants due to optimal insolation, day−
night time ratio, and lack of cloudy days, as cloudiness can
obscure up to 50% of solar irradiance.14

Other factors to consider are chemical kinetics and
thermodynamics, along with flow dynamics and mass transfer.
Scaling up photochemical reactions is much harder than
conventional ones because of the surface-dependent character
of the overall process − light cannot effectively penetrate into
the bulk of concentrated reaction medium. The surface-to-
volume ratio changes in reverse proportion to the linear size
increase, thus rendering batch reactors completely ineffective
for large-scale applications. Furthermore, employing heteroge-
neous photocatalysts provides additional catalysts−reagents
phase interactions that should also be taken into consideration,
as well as some specific problems like fouling (adhesion of
photocatalyst to the reactor surface due to photocorrosion,
surface potential redistribution, or adsorption of tarry by-
products).15 Therefore, an approach to reactor design changes
drastically as new parameters are accounted for.
Several metrics to compare photocatalytic activity exist, and

the ones most frequently used are apparent quantum efficiency
(AQE), also noted as apparent quantum yield (AQY) of the
catalyst, and external quantum efficiency (EQE). AQE refers to
the ratio of reacted molecules to the amount of incident
photons under monochromatic irradiation; meantime, EQE
reflects a spectral irradiation and is a more representative value
for solar photocatalysis. However, occasionally, these values are
used interchangeably.16 EQE values of current photocatalysts
typically do not exceed 30% (visible light wavelengths ≤ 500
nm are usually used as a reference),17−23 but there are a
number of recent papers reporting promisingly high (>60%)
efficiencies for hydrogen evolution.24−26

4. OPERATING AND DEVELOPING TECHNOLOGIES
4.1. Funding Statistics: From Basic Research to

Applied Technology. The European Commission (EC), as
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the major research funding organism in Europe, promotes
innovative green projects to decarbonize the European
economy. The research and innovation projects stretch from
basic principles to technology validation, to pushing them
further toward industrial-scale processes, and finally, to their
commercialization. In alignment with the EC goals, solar-
driven technologies, such as photoelectrocatalysis (PEC) and
photocatalysis (PC), have become more relevant in recent
years due to their proven applications in the production of
value-added chemicals generated by sunlight (solar fuels and
solar raw chemicals).
The increasing relevance of solar-driven technologies can be

monitored by the EC budget allocated per year for PEC- and
PC-based projects. In the past decade, the number of projects
awarded by the EC has significantly increased, and more
notably, the budgets allocated. About 10 years ago (2009−
2010), less than €10 M was assigned to PEC- and PC-based
projects compared to the more than €75 M designated from
2019 onward; the exponential growth of the total budget
allocated biannually is highlighted in Figure 1. With the launch

of the EU Green Deal, this figure is expected to increase even
more, as a surge in projects directed at innovating green
technologies will need to be financed by European agencies.
Regarding technological development, early in the past decade,
awarded solar-driven projects were mainly based on inves-
tigating basic principles of PEC and PC technologies at low
technology readiness levels (TRLs). Meanwhile, due to the
scarcity of proven systems to be validated, TRL > 3 projects
were not available as funding calls focused on alternative green
technologies, such as electrolysis. In later years, PEC- and PC-
based projects that go beyond the proof-of-concept (higher
TRL) have been prioritized and are seeing a sharp increase in
the funding. On the other hand, TRL 1−3 projects have
suffered lesser growth recently.
In the early 2010s, PEC- and PC-based projects funded by

the EC focused on producing solar fuels, namely, water
splitting, to generate hydrogen fuela simpler application of
this technology in comparison with the production of solar
fuels from CO2. However, the need of producing carbon-based
materials for the chemical industry has shifted projects toward
using CO2 as a starting molecule. Recently, solar-driven
awarded projects have centered their attention on the
production of solar chemicals, such as short-chain alcohols

and carbon-based precursors for manufacturing value-added
chemicals. In terms of solar-driven technologies, early in the
past decade, PEC- and PC-based projects were comparably
awarded. Despite the fact that the number of financed projects
has steadily increased throughout the decade, PEC-based
funded projects have seen a slight decline over the last five
years as the focus turns toward PC-based projects, which have
tripled. The discussed trends and a compilation of the PEC-
and PC-based projects funded by the EC since 2009 is
presented in Table S1 in the SI.
Throughout the decade, the attention was first placed on

researching basic principles of PEC- and PC-based technolo-
gies, with limited room for validating the concepts.
PECDEMO, which started back in 2014, was one of the first
TRL > 3 projects using PEC-based technology for hydrogen
fuel production, aiming to build a hybrid PEC−photovoltaic
device capable of splitting water in a solar-driven process.
PECDEMO worked with industry collaborators to scale-up
these devices; however, the solar-to-hydrogen (STH) con-
version efficiencies at large-scale were not good enough for the
devices to be commercially viable. Since then, more projects
have been awarded in order to scale up solar-driven processes
and validate them. In 2019, Bac-to-Fuel began working on the
conversion of CO2 and H2 into biofuels. They aim to produce
renewable hydrogen from the photocatalytic splitting of water.
The produced green hydrogen is then combined with CO2 to
produce cost-effective biofuels using enhanced bacterial media
in an electrobiocatalytic cell. The built prototype will be
validated to TRL 5.
Recently, with the aim to produce green raw materials for

the chemical industry, elaborate carbon-based molecules have
been the goal of PEC- and PC-based projects. Ethylene, one
such chemical of interest, has been the target molecule of two
recently TRL > 3 EU-funded projects. FlowPhotoChem, a
project that commenced in June 2020, aims to construct an
integrated modular system consisting of three different reactors
(PEC, PC, and electrochemical reactors), which will work in
flow to produce ethylene by means of CO2 reduction, as well
as other value-added chemicals, namely, ethanol, ethyl acetate,
and n-propanol. Similarly, Sun2Chem, which began in October
2020, intends to produce ethylene from CO2 using a tandem
PEC device and a PC reactor. Furthermore, other carbon-
based chemical targets have been the focus of TRL > 3 projects
aiming to go beyond the proof-of-concept of these
technologies and scale up the production of green chemicals
by using PEC- and PC-based technologies. The DECADE
project, which began in May 2020, focuses on using a novel
PEC system to produce green solvents, ethyl acetate and ethyl
formate, from waste CO2 and bioethanol. This system will be
scaled up, and a prototype will be designed, manufactured, and
validated to TRL 5. Finally, another project that was launched
in May 2020, SunCoChem, seeks to produce valuable oxygen-
containing green chemicals using a PEC tandem reactor by
reacting CO2 and H2O with olefins, such as butene and
limonene.
As Europe moves toward a decarbonized economy, there is

the need for an increased allocation of funding toward the
application of green technologies, like PEC and PC. In the
short term, it is expected that solar-driven technologies will be
scaled up and validated, so that they can be industrialized in
the midterm and even compete at a commercial level.
Moreover, following the example of the United States and
Japan, the public−private initiative SUNERGY,27 created from

Figure 1. Total budget allocated biannually for PEC- and PC-based
projects in Europe bundled according to the TRL scale. Exponential
line was fitted to the total budget awarded. Data on funded projects
have been taken from CORDIS.
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the coordination support actions ENERGY-X and SUNRISE,
together with the EC, are in the process of finalizing a
European roadmap that will be the base for future funding
calls. At a global level, Mission Innovation 5 on converting
sunlight already published a roadmap on February 2021 with
the objective to link these innovative technologies with a green
circular economy.28

4.2. Main Chemical Targets. 4.2.1. CO2 Reduction
Products. Carbon dioxide is the primary source material for
organic solar fuel research due to the fact that this is a common
and readily available carbon-based compound, which has a
growing tendency to accumulate in the Earth’s atmosphere.29

Therefore, decarbonization becomes one of the main tasks of
solar economy.
At the present moment, there are several approaches for

chemical utilization of atmospheric carbon dioxide relying on
different electrochemical reactions30 (Scheme 1).

As seen from this scheme, there are multiple opportunities
for proton-coupled electron transfer (PCET) processes leading
to methane (full reduction), methanol, formaldehyde, and
acetic acid (partial reductions); however, they require multiple
electron transfer reactions to proceed and thus demand catalyst
design to be efficient and selective toward a certain product.
Reduction without C−H bond formation produces carbon
monoxide, which could be then mixed with hydrogen on site to
form syngas, a valuable precursor for numerous bulk
chemicals31 which is generally obtained otherwise by coal
gasification or methane steam reforming.32 Additionally, there
is a competitive process of hydrogen evolution typically
accompanying CO2 reduction at lower pH values, interfering
with the main reaction and decreasing the catalyst
efficiency.33,34 Finally, the structure and morphology of a
catalyst itself are other determining factors for selectivity, as
CO2 and water need to be adsorbed first on its surface prior to
be photoactivated, and distribution of local charges and
vacancies is crucial in this matter.35 Common heterogeneous
catalysts currently studied for carbon dioxide photoreduction
include metal (primarily copper) oxides and chalcogenides
systems,36,37 carbon nitrides,38 graphene materials,39 MOFs,40

and MXene-based cocatalytic tandems.41

Recent studies42 propose a key role of solar energetics in
solving the CO2-fixation problem by converting it into
methanol or longer atom chain carbohydrates, such as
Fischer−Tropsch fuels (directly as C2+ fraction or via syngas)

and polymers. Moreover, several later pilot plant projects
relying on DAC technology demonstrate that there is a
significant demand for solar fuels in the market; nonetheless,
they do not employ photo(electro)chemical processes: the
future Synhelion plant in Jülich, Germany, will utilize a solar
concentrating thermal setup designed in ETH Zürich (Figure
2) with a solar-to-work efficiency of 67.3%,43,44 while a pilot
SOLETAIR setup (Figure 3) in Lappeenranta University of
Technology can simultaneously reduce CO2 and electrolyze
water being driven by photovoltaic power with syngas
cofeeding.45 So far, it is safe to conclude that the main
bottleneck of the industrial photo(electro)chemical approach
is the absence of efficient commercial photocatalysts and
reactor designs that can handle this process at an economically
feasible rate in comparison to the established process of
photothermal reduction.46 Currently, there are several research
initiatives working on resolving this particular problem.47,48 An
additional issue is that a series of CO2 reduction products,
mainly methanol and syngas (as an intermediate for C2+
products), possess significant market value, and their formation
processes are competitive and rely on multiple factors,49,50

which imply division of selective transformations with
differently designed catalysts for each setup, depending on
the desired process, rather than formation of a mixture of
valuable products with further separation. Another perspective
industrial CO2-harvesting approach is the exploiting of the
natural mechanism of photosynthesis in microalgae, although
current technologies yield biodiesels too costly to be
competitive on the market.51

In the literature, examples of natural sunlight utilization for
CO2 reduction are quite scarce. Testing under standardized
AM1.5 solar simulators is usually the option of choice since
they allow the researchers to get more accurate and
reproducible results for the scientific community. Nonetheless,
for designing genuine pilot setups, tests under actual sunlight
are crucial for obtaining information on productivity in their
working conditions. In Table 1, selected reports on CO2
reduction under sunlight are summarized. In these works,
the reaction is performed on various types of heterogeneous
catalysts, including titania,52,53 graphitic carbon nitride (g-
CN),54 metal−organic frameworks (MOFs),55,56 and metal
phosphides;57 the research is focused on selectively yielding
either syngas or methanol. There is, however, a notable
example of obtaining a mixed C2 gas fraction from carbon
dioxide and water on a pilot solar concentrator setup52 (Figure
4), giving acetylene and ethylene as major products with small
methane impurity. The batch reactor chamber with a
transparent window is mounted in the focus of a round
parabolic mirror, allowing for concentration rates up to 800,
according to the authors. Despite the current low conversion,
with a batch reactor scheme and production rates lower than 1
mmol g−1 h−1 for individual compounds, this approach may
have the potential to emerge actual C2+ solar fuel technology.

4.2.2. Biomass Valorization Products. Unlike readily
available small molecules, biomass and its wastes are composed
of various kinds of biopolymers (mostly lignin and cellulose).
This feedstock provides a challenging target for selective
reforming through a chemical pathway since they have no strict
composition, and therefore, biotechnology seems a more
efficient solution. Numerous photocatalytic approaches exist,
although overall TRL for these transformations is still low, and
pyrolysis and bioprocessing reactors could stay predominant
for a while.58−60

Scheme 1. Reactions of CO2 Reductions and Their
Electrochemical Potentialsa

aAdapted with permission from ref 30. Copyright 2009, Royal Society
of Chemistry.
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The key transformations of cellulose biomass are shown on
Scheme 2. First, the polymer chain is broken during hydrolytic
pretreatment into glucose monomers, which can then be
oxidized to lower-chain acids, such as acetic, formic, or glycolic
acids; alternatively, chain shortening, terminal carbon
oxidations, or rearrangement products are possible, including
5-hydroxymethylfurfural (HMF). The latter is another valuable
precursor to a number of furan-based building blocks, as
demonstrated in Scheme 2.61

To this day, there are few examples of photocatalytic
biomass and biomass-derived molecules processing performed
under actual solar irradiation, and the research is mostly

centered around biomass-to-hydrogen conversion and trans-
formation to small furan molecules.
Cellulose biomass (i.e., rice husk) was utilized as a sacrificial

electron donor for hydrogen evolution accompanied by
humins formation in the presence of a Pt/TiO2 photocatalyst.
The yield of hydrogen varies from 4 to 8 μmol h−1 with 2 g L−1

catalyst loading; humin yields are not specified.62

Diformylfuran (DFF), an important monomer and a small
molecules precursor, was prepared by Marci ̀ et al., from HMF
using thermally etched polymeric carbon nitride (CN) as a
photocatalyst; the product was obtained with 20% yield and
88% selectivity after 4 h in the case of a catalyst adduct with
hydrogen peroxide, while CN alone produced DFF with 47%

Figure 2. Rendered schematics and photos of (a) solar tracking parabolic concentrator and (b) mounted solar reactors for photothermal CO2
reduction in ETHZ. Reprinted with permission from ref 44. Copyright 2018, Elsevier.

Figure 3. Outer view of SOLETAIR CO2 processing setup modules. Reprinted with permission from ref 45. Copyright 2018, Elsevier.
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yield and 38% selectivity.63 Another publication from Marci ̀ et
al. reports improved conversion rates up to 73% over
porphyrin-impregnated CN under similar conditions; however,
the selectivity for DFF dropped to 37%.64

Degradation of lignin is another attractive process for
researchers as it allows access to several aromatic ring-
containing products. For instance, 95% depolymerization in
dioxane in 60−90 min was achieved with soft-template
Zn0.95Bi0.05O nanocomposites obtaining various products,
such as phenol (21%), 2-methoxy-4-methylphenol (16%),
syringaldehyde, sinapyl alcohol, phthalates, and 4-hydroxy-
benzoic acid.65

Recent results demonstrate both biomass processing and
CO2 reduction combined in a single system using a cobalt(II)
terpyridine catalyst immobilized on titanium dioxide. Carbon
dioxide was reduced to CO, and pretreated cellulose was
converted to formate with syngas: HCO2H ratio close to 1 and
up to 39% yield based on cellulose. However, this reaction was
only tested under a solar simulator.66

5. PROOF-OF-CONCEPT RESEARCH ON ORGANIC
SMALL MOLECULES

Since the 1990s, a significant amount of research was put into
the photocatalytic or photochemical synthesis of valuable
organic compounds, such as pharmaceutical building blocks
and even final target molecules, under direct solar irradiation.67

Despite the efforts, the overall strategy seems less attractive in
terms of economic feasibility than bulk small molecules or
hydrogen due to a number of factors. First, the demand for
these products is not nearly as high as for CO2 reduction or
water splitting.68 Second, the insufficient TRL of pilot setups
delays their implementation into the actual industrial
production pipeline, hence the inability to provide enough
experimental data for scaling up. Finally, there is a problem of
reactor versatility for the processes that impose different
parameters, such as light concentration factor, operational
wavelength window (some reactions may require special
optical filters or photon up-converters for UV or high-energy
visible range), and compatibility of multiple phases in a
concerted action. For instance, the setups for homogeneous
monophasic processes and heterogeneous catalyst-mediated
aerobic oxidation would change drastically due to the necessity
to control dispersibility of the catalyst, gas−liquid mixing, flow
mode, and more.69 Therefore, this section only covers a few
selected reactions of potential value that have been tested
under actual solar irradiation on a mmol scale in conventional
lab equipment and cannot be considered as a technology ready
for implementation; its purpose is to demonstrate the potential
of a solar-to-chemical photocatalysis concept for future
applications. The focus is set on net-oxidative and redox-
neutral photocatalytic reactions, as they appeal most to the
principles of green chemistry, meaning no costly sacrificial
electron donors or acceptors are necessary for the process to
occur.

5.1. Net-Oxidative Reactions. In net-oxidative photo-
catalytic reactions, the redox cycle usually serves to either
implement oxygen atoms into a molecule (“oxygenase” type
reactions) or to abstract protons from it, introducing new
bonds (“oxidaze” type reactions).70 Photocatalytic oxidation is
attracting researchers’ attention as it allows one to use
atmospheric oxygen directly as a terminal oxidant, essentially
rendering the whole process “green” and more cost -efficient.T
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Oxidation of alcohols, especially primary ones, is one of the
most desired applications for organic photoredox catalysis due
to the fact that it conventionally requires toxic and/or
relatively expensive reagents to be selective toward carbonyl
products, such as pyridinium chlorochromate (PCC) and
Dess−Martin periodinane (DMP).71,72 Otherwise, multistep
procedures are employed, including Swern-type DMSO-
mediated oxidation reactions.73 These methods are often
necessary to prevent overoxidation products when targeting
aldehyde formation. Therefore, obtaining aldehydes and
ketones by aerobic oxidation appears attractive in terms of
cost efficiency and atom economy, resulting in the production

of benzaldehydes from corresponding alcohols becoming one
of the most popular “benchmark reactions” for testing novel
photocatalysts. For example, solar oxidation of some benzyl
alcohols was performed using MOFs as catalysts (Scheme 3).74

The second most prominent process for solar organic
synthesis is endoperoxide formation. Artemisinins are a class of
semisynthetic polycyclic endoperoxides that have been on the
frontline of antimalarial therapy for the last decades.75 Despite
the developing resistance to this type of drug, artemisinin and
its derivatives are still in high demand on the market. While the
biosynthetic route by plants Artemisia annua or modified
microorganisms is dominating production, a couple of

Figure 4. Solar concentrator setup for batch photocatalytic CO2 reduction (left) and close up of its reaction chamber (right). Reprinted with
permission from ref 52. Copyright 2021. AIP Publishing.

Scheme 2. Pathways of Cellulose Biomass Processing. Adapted with permission from ref 61. Copyright 2021, Frontiers

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c00178
Energy Fuels 2022, 36, 4625−4639

4631

https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00178?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00178?fig=sch2&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c00178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


alternative chemical pathways exist, including photochemical
1,2,4-trioxane ring formation from artemisinic acid, a
biosynthetically available precursor. The process developed
by Sanofi involves the generation of singlet oxygen by
tetraphenylporphyrin (TPP) under irradiation by mercury
vapor lamps in a semibatch fashion producing up to 370 kg at a
time;76 however, the production cost of the final product is still
too high to compete with natural source-derived substance.
One of the lab-scale attempts to improve the reaction used a
flow luminescent solar concentrator photomicroreactor and
methylene blue as a catalyst under outdoor solar irradiation,
producing artemisinin with up to 78% yield.77

Atmospheric photocatalytic oxygenation under sunlight has
also been employed in the synthesis of small building block
molecules. For instance, a series of 5-formyl-1,3-oxadiazoles
were prepared by oxidative cyclization of N-propargyl amides
under sunlight and an air atmosphere; elemental iodine played
a dual role as both sensitizer and intermediate forming a
catalyst, in this case, producing valuable aldehyde moieties with
only slightly less yields than under monochromatic LED
irradiation (80% under sunlight after 16 h, 83% and 86% under
450 and 395 nm LEDs, respectively, in screening con-
ditions).78 Another example demonstrated the preparation of
1-oxoesters, multifunctional precursors from readily available

1-bromoesters, using a Ru(II) photocatalyst, with reaction time
under sunlight being shortened from 24 h to 9 h to achieve the
same yield as with a 24W fluorescent bulb.79 Oxidation of
heteroatoms is possible as well; a recent publication proved the
conversion of protected thiophenols to other valuable sulfur-
containing molecules (in the case of solar irradiation, sulfonyl
chlorides) by a poly(heptazine imide) carbon nitride catalyst;
again, implementation of sunlight allowed shortening the
reaction time 4-fold compared to a 50W 465 nm LED.80

Sunlight oxidation is not limited to oxygenation reactions
and is occasionally employed for aerobic dehydrogenation
reactions. One notable example is the use of 2D-COFs as solar
photocatalysts in the synthesis of 1,2,4-thiadiazoles by
cyclization of corresponding N-guanyl thioureas, N-imidoyl
thioureas, and N-imidoyl thioamides, employing atmospheric
oxygen as a terminal oxidant.81 The role of the oxidant here is
to abstract two protons, forming new N−S-bonds. Another
reaction of particular interest is the splitting of vicinal diols into
corresponding benzaldehydes by carbon nitrides in up to 20
mmol scale runs. This process may serve as a model reaction
for photocatalytic lignin transformation.82

5.2. Redox-Neutral Reactions. Redox-neutral reactions
here are represented by cross-coupling reactions (including
both halide substitution and C−H functionalization reactions),

Scheme 3. Proof-of-Concept Sunlight-Driven Net-Oxidative Photocatalytic Reactions Used in Organic Synthesis
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multiple bond additions, and cycle expansions, which allow
obtaining complex value-added chemicals with efficiency
competitive to more traditional transition metal catalysis
protocols (Scheme 4).
Sunlight was employed to drive diverse cross-coupling

processes, including trifluoromethylation of indoles with the
aid of dihydrophenazine sensitizers,83 C−C-coupling of
diazonium salts with nonfunctionalized arenes using natural
dye as a photocatalyst,84 and a dual Ni-photoredox reaction
between aryl iodides and disubstituted phosphine oxides.85 A
distinct feature of these protocols is that they either allow C−
H functionalization with only one of the blocks containing
leaving groups or replace the palladium(0) catalyst with nickel
complexes, making overall transformations more sustainable.
Another notable example demonstrated a regioselective
introduction of a primary alkyl chain to quinoxalinones by
ring opening of cyclic O-activated oximes with yields
comparable to those achieved with LED light sources.86

Regarding ene addition reactions, integration of perfluor-
oalkanes into aliphatic chains to make functionalized blocks is
a study of immediate interest; fluoroalkylated ethers87 and
alkyl iodides88 were successfully obtained using solar photo-
catalysis. There are also examples of nonfunctionalized carbon
addition to vinylpyridines to make N-formyl aminoalkylpyr-
idines, including artificial flavors, using tetrabutylammonium
decatungstate. In this case, natural sunlight outperformed a

solar simulator (84% yield versus 77%); however, the yield was
still higher for a 10 × 15W fluorescent lamp setup (94%).89

The most notable reported case of ene reactions is polymer-
ization of a brominated malonic ester “starter” and acryl
monomers, where xantheno[2,1,9,8-klmna]xanthene photo-
catalysts are used to maintain chain propagation to give a
mass of several kDa for product polymers without utilizing
toxic and dangerous radical initiators, although the reaction
performed better under blue LED irradiation.90

The production of ethylene carbonates from oxiranes and
CO2 is an important industrial process for making bulk
solvents and synthetic blocks.91 In a recent publication, carbon
dioxide is inserted into an epichlorohydrin cycle photocatalyti-
cally using zirconium-thiamine-doped graphitic carbon nitride
to produce chloropropylene carbonate with good yield and
selectivity and 2 times shorter reaction times than for a 250W
Hg lamp.92

5.3. Outline of Catalytic Systems Used for Photo-
redox Transformations. From the examples discussed
above, some trends of current organic photocatalysis can be
outlined. First and foremost, the researchers’ focuses somewhat
shift from ruthenium- and iridium-based photocatalysts toward
cheaper, more sustainable, and abundant alternatives. More
and more photoredox-active compounds find their applica-
tions, ranging from well-studied molecules, such as methylene
blue and iodine, to natural dyes, synthetic polyaromatic

Scheme 4. Proof-of-Concept Sunlight-Driven Redox-Neutral Photocatalytic Reactions and Cross-Coupling Used in Organic
Synthesis
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systems, and polytungstate anionic clusters, which can allow
for comparable performance without utilization of precious
metals.
Another key feature of modern photoredox studies is

implementation of heterogeneous semiconductors as recycla-
ble photocatalysts with multiple times usage. One of the most
widely known is titanium dioxide, an abundant natural white
pigment with a half century history of photocatalytic
applications,93 that still attracts close attention due to its
ability to be easily sensitized or doped with different elements
to yield materials with significantly altered band structure and
light absorption, which can be used for fine-tuning of its
properties.94−96 Nonetheless, in the past two decades, other
perspective classes of materials appeared, including carbon-
based catalysts and 2D nanomaterials.
Carbon surfaces and composites are emerging materials that

can be prepared from numerous organic precursors in an
environmentally friendly way, providing very high surface areas
and good photophysical properties. These materials are yet to
find their applications in organic photocatalysis, and current
research is mostly focused on different applications such as
water splitting97 and oxidative waste treatment.98

Two-dimensional nanomaterials are a broad class of
semiconductors with a layered sheet structure that provides
additional possibilities for doping and modification along with
enhanced charge separation and migration.99 These semi-
conductors are represented mostly by 2D covalent and metal
organic frameworks (2D-COFs, 2D-MOFs) and carbon
nitrides, which are established to be versatile materials for
carrying out net-oxidative, net-neutral, net-reductive, and dual
photoredox transformations.100−102

6. OVERVIEW OF REACTORS: EXAMPLES OF USING
REACTORS TO ENABLE PHOTOCATALYTIC
REACTIONS

At the present moment, there are less than a dozen gram-scale
solar photoreactors that have been applied for multiple
reactions, and some of them are still operational. These setups
(SOLFIN, SOLARIS/PROPHIS, Sunflow, and more) and
targeted transformations have been already covered extensively
in several reviews on solar photocatalysis;67,103,104 therefore,
this section only focuses on more recent reports and emerging
technologies.

Integrated photoelectrochemical (IPEC) devices are com-
monly utilized in experimental setups for hydrogen evolution,
where a photoabsorber is separated from an electrolyte by a
thin conductive layer(s) in a flat pack cell. This integrated
system of IPEC allows for efficient external cooling and limits
energy losses in comparison to divided cells. The compact size
of the reactor cells simplifies solar device construction. In
EPFL, an IPEC device has been operational since 2019
coupled with a so-called “solar dish”, which mimics radio
telescope and satellite dish construction; the mirror concen-
trates light in a focal spot where IPEC is mounted (Figure
5).105 The major benefit of such a design is that the setup
could be made more rotationally mobile and be able to track
the sun during the whole day, and the reflecting dish provides
higher concentration rates per reactor area than linear
concentrators. The scale-up of this setup, however, seems a
challenging task considering the chip-to-dish surface ratio, the
amount of occupied space, and the limited productivity of a
compact reactor design. It is also important to note that these
particular and similar setups are usually employed for hydrogen
evolution and water splitting, so the possibilities of utilizing
IPEC devices for organic transformations or CO2 reduction are
still uncertain and are a subject of further research.
Despite the efficiency of solar concentrators in terms of

providing higher photon flux per surface unit, their
implementation sets certain limitations upon the device
construction, making it more complex and harder to maintain
in proper condition. To achieve higher productivity with lower
cost for a solar chemistry product, concentrators ideally should
be avoided by employing a more efficient and stable
photocatalyst. A battery of test water-splitting inclined plate
collectors (IPCs) was set up recently at the University of
Tokyo to support this hypothesis, using the same principles as
various water treatment panels (Figure 6).106 Each reactor
consists of a 625 cm2 glass sheet coated with SrTiO3:Al
particles (<1 μm), which is encapsulated into a UV-transparent
casing. The setup is inclined at an angle of 30° from the
ground, and water is fed into the bottom part through a 0.1
mm gap between the window and the photocatalytic sheet.
During water splitting, it forms a moist hydrogen−oxygen
mixture that leaves through an exhaust tube on top of the setup
and then is combined with output from other cells and
processed in a central unit to remove moisture and oxygen,
producing hydrogen with greater than 95% purity. The panel

Figure 5. Schematic of integrated PEC unit (left) and illustration of “solar dish” light concentrator device at EPFL (right). Reprinted with
permission from ref 105. Copyright 2019, Springer Nature.
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field is arranged from 1600 reactor units, which is 100 m2 in
total, with peak STH efficiency of 0.76% and output of up to
3.7 L min−1 of hydrogen. The productivity of this setup can be
further increased by utilizing improved catalysts.
Previously, there were successful attempts to utilize ICP/

flatbed reactors for organic synthesis, but the concentrator-
based process remains dominating in the field.107 A similar
reactor is also operational in JCU in Townsville, Australia,
using reflecting back surface and homogeneous catalysts.108

Still, there is a significant gap between current state-of-the-art
flatbed photoreactors for organic syntheses and their industrial
implementation as there are issues with poor mass transfer in
laminar flow (in general) and in contact between the liquid
phase and a catalyst (for reactors with heterogeneous catalyst
bed).
Challenges and Perspectives. Today, the main common

obstacle for wide implementation of solar photocatalysis is still
a lack of catalysts that can provide commercially acceptable
yields and production rates of target compounds. While the
hydrogen evolution process is steadily transferred into pilot
photocatalytic setups, carbon dioxide reduction is still more of
an emerging concept, rather than a ready-to-market technol-
ogy, which is currently outpaced by a simpler photothermal
reduction. To be commercially successful, CO2 reduction
photocatalysts require very high selectivity toward a certain
product, either syngas or methanol, along with structural
stability and stable efficiency upon direct air capture
technology, and current materials are still to match all these
requirements.
Another challenge to be solved in the future is the reactor

design; there are competing paradigms for setup organization
and scale-up issues. Currently, two main approaches for solar
reactor design exist, depending on whether solar concentrators
are used or not. This seemingly minor change dictates the

properties of the catalyst and some more technical details of
the process. Solar photocatalytic panels can uilize a significant
amount of irradiation per catalyst mass but require higher
efficiency of the latter, while tubular, chamber, and chip
devices with solar concentrators are less demanding to catalysts
but seem to require more careful phase flow design.
Establishing an optimal technological balance between these
issues would lead to commercial setups in the fututre.
In the case of complex organic transformations, solar

photocatalysis is currently more of a lab-scale, proof-of-concept
method; multiple gram-scale runs were reported in the past but
never yielded any commercial process. Lack of flexibility and
versatility to carry out multiple processes without significant
reassembling is the key factor preventing wide implementation
of universal reactors for organic synthesis under sunlight, at
least at a pilot scale. Regarding actual industrial processes, for
example, pharmaceuaticals, sunlight photocatalysis would be
the most beneficial for high demand bestselling drugs, as it
would allow for significant cost reduction for irradiation.
However, this still requires very high efficiency and low capital
costs of the photochemical or photoredox process. The notable
example is the Sanofi artemisinin process discussed above; the
photochemical process was not able to compete with a plant-
derived product cost wise, and the whole plant was later sold
after a couple years of operation.109 One promising solution to
resolve this problem would be to eventually shift from
ruthenium and irirdium complexes to organic dye photo-
catalysts and semiconductors for the sake of sustainability and
recyclability.
Nonetheless, achieving a stable sunlight economy is far from

impossible, as low-cost energy for the chemical industry is an
extremely desirable concept with lots and lots of investment
provided for this kind of research, which is gradually increasing
each year. While it may seem now that current state-of-the-art
technology does not satisfy our demands, with this rate of
progress, we may reach the first solar plants rather soon,
probably by the end of the decade.

■ CONCLUSION

Despite significant efforts in solar fuel research, sunlight
photocatalysis can still be considered an emerging industry not
mature enough for proper commercialization, and examples of
high TRL prototypes and pilot setups are scarce. Recent
successes in solar hydrogen evolution and CO2 reduction are
inspiring, and solar fuel projects tend to receive increased
funding. However, demand for catalysts with sufficient
efficiency and stability is still not satisfied and thus hinders
further progress in these fields, along with uncertainty in the
setup design. If these challenges are to be overcome, the future
of solar fuels (at least for hydrogen and bulk chemicals) seems
quite promising.
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Figure 6. Experimental photocatalytic hydrogen evolution setup at
the University of Tokyo. (a) Individual reactor unit (625 cm2). (b)
Schematic of reactor unit positioning from the side. (c) Overhead
view of the entire 100 m2 hydrogen production system. Reprinted
with permission from ref 106. Copyright 2021, Springer Nature.
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