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Abstract. Cloud properties and their evolution influence Earth’s radiative balance. The cloud microphysical
(CMP) processes that shape these properties are therefore important to represent in global climate models. His-
torically, parameterizations in these models have grown more detailed and complex. However, a simpler formu-
lation of CMP processes may leave the model results mostly unchanged while enabling an easier interpretation
of model results and helping to increase process understanding. This study employs sensitivity analysis of an
emulated perturbed parameter ensemble of the global aerosol–climate model ECHAM-HAM to illuminate the
impact of selected CMP cloud ice processes on model output. The response to the perturbation of a process
serves as a proxy for the effect of a simplification. Autoconversion of ice crystals is found to be the dominant
CMP process in influencing key variables such as the ice water path and cloud radiative effects, while riming of
cloud droplets on snow has the most influence on the liquid phase. Accretion of ice and snow and self-collection
of ice crystals have a negligible influence on model output and are therefore identified as suitable candidates for
future simplifications. In turn, the dominating role of autoconversion suggests that this process has the greatest
need to be represented correctly. A seasonal and spatially resolved analysis employing a spherical harmonics
expansion of the data corroborates the results. This study introduces a new application for the combination of
statistical emulation and sensitivity analysis to evaluate the sensitivity of a complex numerical model to a spe-
cific parameterized process. It paves the way for simplifications of CMP processes leading to more interpretable
climate model results.

1 Introduction

Aerosols and cloud microphysics (CMPs) control cloud
properties and thereby exert a large influence on Earth’s cli-
mate. For example, the cloud water and ice contents de-
termine the cloud albedo and lifetime, and they also con-
trol precipitation formation (Mülmenstädt et al., 2015). In a
changing climate, the correct representation of clouds is es-
pecially important to estimate Earth’s radiation budget (Sun
and Shine, 1995; Tan et al., 2016; Matus and L’Ecuyer, 2017;
Lohmann and Neubauer, 2018). However, clouds and cloud
feedbacks are a major source of uncertainty for projections
of climate sensitivity in global climate models (Cess et al.,
1990; Soden and Held, 2006; Williams and Tselioudis, 2007;
Boucher et al., 2013).

Since cloud microphysical processes such as the riming of
cloud droplets on snowflakes occur on scales much smaller
than the resolution of global climate models (GCMs), they
are parameterized; i.e., only their macroscopic effects at the
scale of the model grid are described. Responding to the chal-
lenge of incorporating these processes in climate models, the
community has added more and more processes into GCMs
(Knutti and Sedláček, 2013) with increasing detail in their
representation (e.g., Archer-Nicholls et al., 2021; Morrison
et al., 2020). As Fisher and Koven (2020) argue for a sim-
ilar situation in land surface modeling, this may be due on
the one hand to scientists’ tendency to focus on their own
area of expertise. On the other hand, it also reflects the fact
that the Earth system is indeed complex and that many pro-
cesses may matter. However, it is doubtful whether more de-
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tail will help us to reduce uncertainty (Knutti and Sedláček,
2013; Carslaw et al., 2018). More complexity also has its
downsides: more parameterized processes lead to more para-
metric uncertainty, which in turn scientists investigate and
try to reduce with large scientific effort (e.g., Rougier et al.,
2009; Lee et al., 2011; Yan et al., 2015; Williamson et al.,
2015; Dagon et al., 2020). In fact, Reddington et al. (2017)
argue that “aerosol–climate models are close to becoming
an overdetermined system with many interacting sources of
uncertainty but a limited range of observations to constrain
them”, referring to the complexity in the representation of
aerosols and their interaction with clouds. This is related to
equifinality, meaning that model versions from different re-
gions of the input parameter space may lead to the same
results that compare well with observations. These models
may simulate a range of aerosol forcings (Lee et al., 2016),
which is not possible to constrain with current observations.
Morrison et al. (2020) diagnose the same problem for CMP
schemes, whose complexity they say is “‘running ahead’ of
current cloud physics knowledge and the ability to constrain
schemes observationally”. Climate models have become so
complex that they are impossible to comprehend by any one
scientist (Fisher and Koven, 2020). More detail means more
heterogeneity between climate models, which increases the
difficulty of a meaningful comparison of their projections
(Fisher and Koven, 2020). But also within a given model, the
attention and detail given to some cloud microphysical pro-
cesses come at the expense of other less accessible processes.
This brings the danger of overinterpreting those processes
that are represented in detail while neglecting the impacts of
poorly represented ones (Mülmenstädt and Feingold, 2018).
Finally, the detail of the aerosol and cloud microphysics in-
creases computational demand and thereby costs (though an-
ticipating the results of Sect. 3.6, the four CMP processes
investigated in this study require negligible computing time).
It can thereby inhibit other advancements such as the move
towards high-resolution simulations (which may themselves
also require adaptations of the CMP schemes) or larger en-
sembles.

In contrast, simple models are easier to interpret and de-
rive understanding from, as long as they represent processes
correctly (Koren and Feingold, 2011; Mülmenstädt and Fein-
gold, 2018). Also, assumptions and their consequences are
more traceable in simpler or more system-oriented models
(Mülmenstädt and Feingold, 2018). For example, concep-
tual cloud models have been used to investigate the impact
of the choice of precipitation particle attributes on the cloud
structure and evolution (Wacker, 1995) or to confirm micro-
physics findings qualitatively (Wood et al., 2009). Simplifi-
cations reduce computational demand, and simplified models
yield themselves to other applications, e.g., the use in inte-
grated assessment models (Ghan et al., 2013). At the same
time, they may produce similarly good results as more com-
plex models. For example, Ghan et al. (2012) developed a
simple yet physical model for the aerosol indirect effect,

whose estimates are comparable to those of complex global
aerosol models. Similarly, Liu et al. (2012) compared two
aerosol modules with seven and three lognormal modes and
find that the simulated aerosol concentrations are remarkably
similar.

The addition of detail and refinement of a model descrip-
tion is a natural response to the challenge of capturing some-
thing as complex as the climate system in a computer model.
This is legitimate and beneficial. For example, it may lead to
a physically more correct representation and reduce the num-
ber of tuning parameters (e.g., Storelvmo et al., 2008). And
for some applications modelers may need as much detail as
possible in one specific module. Hence, scientists tend to call
for more detail in process representations (e.g., Gettelman et
al., 2013, for warm-rain microphysics; Sotiropoulou et al.,
2021, for secondary ice production by break-up from colli-
sions between ice crystals) instead of less. This may in part
be because humans are biased towards searching for additive
pathways as problem solutions while overlooking subtrac-
tive transformations (Adams, 2021). However, due to the rea-
sons mentioned above, a simplified model equifinal to a more
complex model may be more useful for gaining understand-
ing of climate models (equifinal meaning that the two model
versions lead to similar results). One can therefore question
the need for an ever increasing amount of detail, especially
in the face of overdetermination (Reddington et al., 2017). In
this paper, we propose a new methodology to assess where
process parameterizations can be stripped of detail to aid the
development of a simplified model as well as to increase un-
derstanding of the model.

The role of CMPs within GCMs has been investigated pre-
viously: the influence of CMPs has been shown to dominate
over that of aerosol schemes in affecting clouds and precipi-
tation in the Weather Research and Forecasting model (White
et al., 2017), as well as to dampen the influence of aerosol mi-
crophysics on cloud condensation nuclei and ice-nucleating
particles in a regional model (Glassmeier et al., 2017). For
the HadGEM-UKCA global aerosol–climate model, Regayre
et al. (2018) have shown that both aerosol and physical at-
mosphere parameters contribute to uncertainty in aerosol
effective radiative forcing. Diving into the importance of
single processes for the overall CMPs, Bacer et al. (2021)
extracted process rates from the chemistry–climate model
EMAC, which is based on the same CMPs as this study’s
ECHAM-HAM. They found that ice crystal sources in large-
scale clouds are controlled by freezing and detrainment from
convective clouds, while sinks are dominated by autoconver-
sion and accretion. This approach is somewhat similar to a
pathway analysis (e.g., Schutgens and Stier, 2014; Dietlicher
et al., 2019) in that it deepens understanding of immediate
effects but is not able to relate the effect of a process on vari-
ables further down the process chain.

A promising method for investigating the effect of model
input on output is the use of perturbed parameter ensembles
(PPEs) (Murphy et al., 2004; Collins et al., 2011). In a PPE
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multiple input parameters are perturbed at the same time. In
this way, PPEs expand upon sensitivity studies that vary one
parameter (e.g., Lohmann and Ferrachat, 2010; He and Pos-
selt, 2015) or multiple parameters at a time (e.g., Ghan et
al., 2013), allowing the investigation of the interaction effects
of perturbations within the whole possible parameter space.
For example, Sengupta et al. (2021) used a PPE to determine
the impact of parameters related to secondary aerosol for-
mation on organic aerosol in a global aerosol microphysics
model. In a next step, parameter ranges can be constrained
when comparing the PPE to observations (Posselt, 2016; van
Lier-Walqui et al., 2014, 2019, note that these studies all used
synthetic observations as constraints). Morales et al. (2021)
built a PPE of CMP process parameters and environmental
conditions, generated using a Markov chain Monte Carlo al-
gorithm, in idealized simulations to then constrain the pa-
rameters with synthetic observations.

Another benefit is that a PPE does not require any ad-
ditional changes to model code, in contrast to a pathway
analysis that requires additional diagnostics and tracers. The
downside is that PPEs require many simulations to sample
the whole parameter space, which is prohibitive given the
cost of global climate model simulations. A remedy is the
combination of a PPE with a surrogate model such as an em-
ulator. The emulator is first fitted to the PPE model output
and then sampled instead of the GCM, which is expensive
to run. This technique has been used, for example, to study
the effect of model parameters such as the entrainment rate
coefficient on climate sensitivity in a GCM (Rougier et al.,
2009) or how model parameters affect forecast model drift
(Mulholland et al., 2017).

Global sensitivity analysis is a method to quantify the ef-
fect of inputs on model output more formally. It allows us
to divide the total variation in output into the direct con-
tributions from variations in independent inputs as well as
from their interactions. For example, Tan and Storelvmo
(2016) used variance-based sensitivity analysis on a gener-
alized model of their PPE to determine that the Wegener–
Bergeron–Findeisen timescale is the most influential param-
eter in determining the cloud-phase partitioning in mixed-
phase clouds. Bernus et al. (2021) have employed sensitivity
analysis of their PPE directly to improve the understanding
of their lake model prior to its implementation into a climate
model.

When dealing with large models that are expensive to run,
a surrogate model that is cheap to run allows for a tight sam-
pling of the whole parameter space which permits for sensi-
tivity analysis on the resulting surface. As such, the combina-
tion of a PPE with a surrogate model upon which sensitivity
analysis is performed has found wide use in cloud simulation
studies (Wellmann et al., 2018; Glassmeier et al., 2019; Well-
mann et al., 2020; Hawker et al., 2021a). For example, Lee et
al. (2011) emulated a global aerosol model and found that the
cloud condensation nuclei concentration in polluted environ-
ments is dominated by sulfur emissions but that in remote re-

gions interactions between different parameters are substan-
tial. In particular, a range of recent studies has employed the
methodology to investigate how uncertainty in input parame-
ters (which are often not well constrained within parameteri-
zations) translates to an uncertainty of climate model output:
quantifying the effect of aerosol parameters on cloud prop-
erties or radiative forcing (Lee et al., 2011, 2012; Carslaw
et al., 2013; Lee et al., 2013; Regayre et al., 2014; Johnson
et al., 2015; Regayre et al., 2015; Yan et al., 2015; Regayre
et al., 2018), but also in various other areas of environmen-
tal modeling (e.g., a land model in Dagon et al., 2020). In
a further step, the effect of an observational constraint on
the model output can be investigated with the emulator as
a surrogate model (Tett et al., 2013; Williamson et al., 2013;
Lee et al., 2016; McNeall et al., 2016; Johnson et al., 2018),
yielding important conclusions about which observations are
needed to constrain climate models and on which parameters
we need to focus research efforts. The approach also lends it-
self to an investigation of tuning parameters since these also
form a parameter space that needs to be explored and con-
strained (Williamson et al., 2015; Hourdin et al., 2020; Cou-
vreux et al., 2021).

Here we propose a new application of the combined PPE
and sensitivity analysis approach to learn about the needed
accuracy in process parameterizations within GCMs. Instead
of varying parameters within parameterizations, we perturb
the processes themselves as a whole. By perturbing we mean
that we vary the effectiveness of a given process, going from
using 50 % to 200 % of a process’s effect in the model. For
example, if a process affects the ice crystal number concen-
tration, the change induced on it is multiplied by a perturba-
tion factor between 0.5 and 2 in each time step. This means
that in the extreme cases it would produce half or twice the
effect on the ice crystal number concentration that it has in
the default model (see Sect. 2.2 for further detail). From the
resulting response surface we infer the sensitivity of model
output to the CMP processes. The thus generated understand-
ing points to processes whose representation needs to be ac-
curate since they have a large influence and suggests simpli-
fying those processes that have little influence on model out-
put. Accepting the notion of equifinality, we aim to identify
the parts of our current model that do not contribute to varia-
tion in output. Thus, we develop a “global sensitivity analysis
that can weed out unimportant parameters” as called for by
Qian et al. (2016).

To avoid misunderstanding, we are using a surrogate
model to learn about sensitivities within the ECHAM-HAM
GCM. We are not aiming to replace CMP parameterizations
with machine learned substitutes (as e.g., Seifert and Rasp,
2020) or substitute model components (e.g., Beusch et al.,
2020) because interpretable, physics-based models should be
preferred (Rudin, 2019). Instead, in line with Couvreux et al.
(2021) we are using emulation and sensitivity analysis as a
tool to generate understanding that allows us to build a more
interpretable model version in a second step. Please note that
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the potential for simplification is evaluated in the current cli-
mate. Thus, any derived simplifications would need to be
evaluated against a reference model for their suitability in
a changed climate state prior to employing it in, e.g., climate
change projections.

In Sect. 2 the CMP processes that we investigate, their
treatment in the ECHAM-HAM GCM, the generation of the
PPE and emulator, and the sensitivity analysis are described.
In Sect. 3 the results from a “one-at-a-time” sensitivity study
that explores the axes of the parameter space (Sect. 3.1),
the emulated PPE (Sect. 3.2), and the sensitivity study on
the fully sampled parameter space (Sect. 3.3) including a
scale dependency (Sect. 3.4) and seasonal analysis (Sect. 3.5)
are presented and discussed. Conclusions and an outlook are
given in Sect. 4.

2 Methods

2.1 Cloud microphysics in ECHAM-HAM

This study employs the global aerosol–climate model
ECHAM6.3-HAM2.3 (Tegen et al., 2019; Neubauer et al.,
2019), with a T63 horizontal spectral resolution and 47 verti-
cal levels. The cloud microphysics consist of a two-moment
prognostic scheme for ice crystals and cloud droplets, with
additional one-moment prognostic representation of snow
and rain (Lohmann and Roeckner, 1996; Lohmann et al.,
1999; Lohmann, 2002; Lohmann et al., 2007; Lohmann and
Hoose, 2009; Lohmann and Neubauer, 2018). The strati-
form cirrus scheme includes homogeneous nucleation of su-
percooled liquid droplets (Kärcher and Lohmann, 2002a, b;
Lohmann, 2003). The stratiform liquid cloud scheme en-
compasses condensation, aerosol activation, autoconversion
of cloud droplets to rain, accretion of cloud droplets by
rain, evaporation of cloud and rainwater, and wet scav-
enging of aerosol particles (for further details and refer-
ences see Neubauer et al., 2019). In stratiform mixed-phase
clouds, various CMP processes are included: heterogeneous
nucleation via immersion and contact freezing, depositional
growth of cloud ice, growth of ice crystals at the expense of
cloud droplets via the Wegener–Bergeron–Findeisen process
(Wegener, 1911; Bergeron, 1935; Findeisen, 1938), and sub-
limation and melting of ice crystals and snow below clouds.
In this study, we are investigating the effect of four differ-
ent CMP processes involving the ice phase (see Fig. 1). Self-
collection of ice is the process of ice crystals sticking to-
gether to form a single ice crystal. Autoconversion also has
two ice crystals sticking together, albeit forming a snowflake.
In accretion, a snowflake collects an ice crystal, resulting
in a larger snowflake. The fourth process is the only one
involving the liquid phase: cloud droplets are riming on a
snowflake, again enhancing its size. The implementation of
these processes in terms of changes to the ice crystal and
cloud droplet mass is detailed in Lohmann and Roeckner
(1996), while the implementation of changes to the ice crys-

Figure 1. The four cloud microphysical processes investigated in
this study, depicted as they are represented in ECHAM-HAM.

tal and cloud droplet number concentration is simply in pro-
portion to the mass changes (except for where the mass con-
centration is unaffected; Lohmann et al., 1999; Lohmann,
2002). The distinction between accretion and autoconversion
is necessary due to the separation between ice crystals and
snowflakes in their representation as categories of ice in the
model. Snowflakes precipitate, while ice crystals are smaller
and sediment but do not survive outside clouds. The four pro-
cesses were chosen for their comparability, as they all rep-
resent particle interactions, to represent a range of assumed
impacts, as well as for their implementation, which is clearly
distinguishable in the code and allowed for easy implemen-
tation of the perturbations (see Sect. 2.2). In this study, we
do not include any ice multiplication processes. Convective
clouds are treated separately from stratiform clouds, except
for the interaction through detrained condensate from con-
vective clouds, which is added to stratiform clouds if they
exist at the respective model level.

Apart from the perturbations described in the next section,
substantial changes that were applied with respect to the pub-
lished model version ECHAM6.3-HAM2.3 (Neubauer et al.,
2019) are the following.

– Detrained condensate from the convective cloud scheme
produced an unrealistically large amount of ice crystals
at mixed-phase temperatures, which were then removed
with a correction term. The detrained cloud particles
are now assumed to be all liquid at mixed-phase tem-
peratures (0 ◦C<T <−35 ◦C; Dietlicher et al., 2019;
Muench and Lohmann, 2020).

– In line with Muench and Lohmann (2020, Sect. 3.3.1.2),
we now include the immediate, updraft-dependent self-
collection of detrained ice crystals.

– Previously, a fixed minimal cloud droplet number con-
centration (CDNC) was applied, which led to unrealisti-
cally high CDNCs in high-latitude and/or high-altitude
clouds with low liquid water content (LWC) and hence
small droplets. We replace this with a dynamically cal-
culated minimal CDNC, which is calculated from the
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in-cloud water content and a set maximum volumet-
ric cloud droplet radius (set at 15 µm in the simula-
tions conducted for this study). The resulting minimum
CDNC needs to lie between 106 and 4× 107 m−3. Ad-
mittedly, we are replacing the tuning parameter of fixed
minimum CDNC with one for a maximum cloud droplet
radius. The latter is preferred as it is more physical.

– The model version of Neubauer et al. (2019) contains a
mistake in the calculation of the hygroscopicity param-
eter in the aerosol activation parameterization, leading
to an underestimation of the individual aerosol-mode
solubility. The calculation was updated in Friebel et al.
(2019) and subsequently used in Lohmann et al. (2020);
this correction is also applied here.

– In part motivated by the large correction terms high-
lighted in the process rate study of Bacer et al. (2021)
we reduce these if they are unnecessary and/or unphys-
ical. For example, conditions of maximum ice crystal
number concentration (ICNC) were enforced after a few
CMP processes took place in Bacer et al. (2021). We
could reduce the value of that correction term by ap-
plying it after each relevant process. Most importantly,
the diagnosis of multiple correction terms acting on the
same variable led to an artificial increase in corrections.
For example, correction terms would enhance ICNC
concentrations at model points that later were identified
to be outside a cloud (due to the way the code is struc-
tured, the diagnosis of cloud cover happens after, e.g.,
activation and/or nucleation takes place). In turn, ICNCs
outside a cloud were then corrected to be zero, so an
unnecessary correction was in fact counted twice. We
reduce this artifact by correcting the correction terms
themselves. Staying with the example above, the first
correction term is now itself set to zero outside a cloud.

– The sublimation of sedimenting ice crystals appears to
be too weak in ECHAM-HAM. This became apparent
as in-cloud ICNCs were increasing through sedimen-
tation from above, which indicates that sublimation of
ice crystals falling into the cloud-free part of a grid box
is too weak. While the underlying problem of a weak
sublimation needs to be addressed with future efforts,
we introduced a correction of the sedimentation rou-
tine: the gain of ice crystal concentrations in the level k
into which the ice crystals sediment, 1ICNCsed,k , is
restricted to the loss of in-cloud ice crystal number
concentration in the lowest model level above level j
that lost ice crystals by sedimentation. Also, in-cloud
ICNC and the snow formation rate are now set to 0
outside clouds inside the ice crystal sedimentation rou-
tine wherein they were previously set to the grid-mean
values. This contains the implicit assumption that ice
crystals do not survive sedimentation outside a cloud in
ECHAM-HAM.

With the described changes, the model requires retuning.
The tuning procedure follows the one described in Neubauer
et al. (2019), with the final tuning parameters given in Ta-
ble A1 in Appendix A. Model simulations were conducted
with the same tuning for all simulations.

2.2 Perturbations as a proxy for complexity

In order to see the effect of whole processes on model output,
we can turn processes off in sensitivity studies. In the present
study, we achieve this by setting the change that the process
induces on prognostic variables to zero. For example, at ev-
ery model time step t autoconversion impacts the ICNC:

ICNCt+1 = ICNCt +1ICNCautc. (1)

We can turn off the effect of autoconversion by multiplying
1ICNCautc, the change in ICNC due to autoconversion in
one time step, by zero when it is added to the affected vari-
ables.

More generally, instead of setting the changes induced by
a process to zero, we can perturb the process using a newly
defined parameter η.

ICNCt+1 = ICNCt + ηautc ·1ICNCautc (2)

This perturbation of whole processes was introduced by van
Lier-Walqui et al. (2014) to estimate the uncertainty includ-
ing errors in the physical assumptions of process formula-
tions. In our case, the parameters aid understanding the sen-
sitivity of the model to each process: from the response of
model output to variations in ηi , we can extract informa-
tion on how accurately a process i needs to be represented
in the model (see Fig. 2 for a visualization). For example,
if the model output variable (e.g., ice water path, IWP) as
a function of ηi has a slope close to zero at ηi = 1 (green
and purple line in Fig. 2), this suggests that the process i
needs to be represented only approximately and that some
detail could probably be removed from its parameterization
without much of an effect on the model performance. Note
that the perturbations are constant in space and time for each
PPE member, serving as a proxy for understanding the effect
of possible simplifications, which would likely be variable
in time and space. In this study, four cloud microphysical
processes, namely self-collection, autoconversion, accretion,
and riming (see Fig. 1), are perturbed, i.e., i ∈ [1,4]. Com-
bining perturbations of multiple processes allows us to study
and take into account possible interaction effects, such as the
compensation by one process which is perturbed by another
one.

2.3 Generating and emulating the perturbed parameter
ensemble (PPE)

In a first scoping study, we perturb each process one by one
by multiplying its effect with 0< ηi < 1. Multiplicative per-
turbations between zero and 1 correspond to a reduction in
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Figure 2. Sketch of the envisioned interpretation. The shading in-
dicates the area that is of most interest to judge the effect of process
simplifications on the model output. If the slope in this area is small,
this suggests that the process can be simplified (green and purple
lines). A large slope indicates that the process needs to be repre-
sented accurately (orange lines). If no perturbations of the process
in the 0.5 to 2 perturbation parameter range and the suppression of
the process (perturbation parameter of 0, not shown) have a signif-
icant influence on the model output, the process may be removed
entirely (green line).

the effectiveness of the process. However, to take into ac-
count interactions, all ηi values need to be varied at the same
time, thereby creating a multidimensional input parameter
space in a second step. In addition, the range of ηi is ex-
panded to values up to ηi = 2 to imitate an overestimation of
a given process due to an inaccurate description. As we are
most interested in the space around ηi = 1, and to sample the
over- and underestimation equally, we vary ηi from 0.5 to 2
in the multidimensional input parameter space. If the process
uncertainty were known, it would influence the extent of the
perturbation range, which could be different for each process.
The perturbations and the procedure described in the follow-
ing are visualized in Fig. 3. To probe the multidimensional
input parameter space effectively, the sets of input param-
eter combinations (η1, η2, η3, η4) to be simulated with the
model were generated with Latin hypercube sampling (LHS,
using the Python library PyDOE, tisimst, 2021), which max-
imizes the spacing between inputs and provides good cov-
erage of the parameter space, even when only a few input
parameters are important (Morris and Mitchell, 1995). The
LHS was applied to the logarithmically scaled input range
to account for the multiplicative behavior of the ηi . Each of
the LHS-generated input combinations was then used as in-
put for a 1-year ECHAM-HAM model simulation, creating a
perturbed parameter ensemble (PPE) with 48 members. This
is in line with the suggestion of Loeppky et al. (2009) to use
10 times as many training runs as the number of input param-
eters for such a computer experiment. To estimate the inter-

annual variability, the control simulation with all processes
at full effectiveness (ηi = 1∀i) spanned 10 years. This esti-
mate is used to judge whether perturbations observed in the
PPE are significantly larger than the interannual variability
and therefore contain a signal that originates from the per-
turbation in ηi . As the interannual variability exhibited no
strong variations throughout the probed phase space in the
one-at-a-time sensitivity studies, the 1-year simulations for
the PPE members in combination with the control simula-
tion estimate of the variability were deemed sufficient for the
analysis. All the simulations were performed with climato-
logical sea surface temperatures and sea ice extents, as well
as aerosol emissions representative for the year 2003. These
simulations were not nudged to meteorological data but ran
freely so that the full effect of perturbing the processes could
be observed. Each simulation included 3 months of spin-up
that was not included in the analysis.

Using the PPE output as input for the creation of a sur-
rogate model, we can construct a smooth response surface
over the whole parameter space (see Fig. 3e). As a surrogate
model, we choose a Gaussian process emulator (O’Hagan,
2006; Rasmussen and Williams, 2006), which has found
wide use in atmospheric and climate science (Lee et al.,
2011; Carslaw et al., 2013; Johnson et al., 2015). We prefer
the Gaussian process emulator over, e.g., a neural network
because of its demonstrated suitability and need for fewer
input data (see Watson-Parris et al., 2021, for a more in-
depth discussion). Using a recent Python package for emulat-
ing Earth system models (Watson-Parris and Williams, 2021;
Watson-Parris et al., 2021), the implementation is straight-
forward. From the PPE, we can construct a surrogate model
for every output variable that we are interested in by train-
ing a separate emulator for each output variable (ice crys-
tal and cloud droplet number concentration, ice and liquid
water path, shortwave and longwave cloud radiative effect,
cloud cover, surface precipitation, ice, liquid, and mixed-
phase cloud cover). For the kernel (or covariance function,
Watson-Parris et al., 2021), an additive combination of the
linear, polynomial, bias, and exponential kernels was used
as this performed best in preliminary tests (not shown, Du-
venaud, 2014). Other model specifics were set as default in
Watson-Parris and Williams (2021). As the emulation oper-
ates best on standardized data with zero mean and unity vari-
ance, the mean was removed from the input data, which was
then scaled by dividing it by the standard deviation, prior to
emulation. With the cheap surrogate model a variance-based
sensitivity analysis (see Sect. 2.5) becomes feasible (Oakley
and O’Hagan, 2004), picking 3000 samples from the emula-
tor as input. This approach is similar to Johnson et al. (2015),
except that they perturbed CMP parameters, while we vary
the effectiveness of whole CMP processes. It allows us to
identify the importance of the different ηi for the variables in
question and thereby the processes which require a detailed
representation.
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Figure 3. Sketch of the employed methodology: we move from (a) one-dimensional sensitivity studies wherein one process is perturbed by
varying the parameter η (Sect. 3.1) to (b) a multidimensional parameter space. (c) The input parameter space is filled with Latin hypercube
sampling and supplied as input to ECHAM-HAM. The simulations form the perturbed parameter ensemble (PPE). The (d) PPE output is
(e) fitted using a Gaussian process emulator for each variable of interest to generate a smooth response surface, upon which sensitivity
analysis can be applied. Note that this is an illustrative sketch of the method for a PPE with two input dimensions, whereas our PPE has four
dimensions, and that the data used to generate it are only illustrative as well. The shading in (d) illustrates depth only.

2.4 Validation

To make sure that the chosen emulators are a fair representa-
tion of the model output, we validate them according to Bas-
tos and O’Hagan (2009) except for using leave-one-out vali-
dation, as visualized in Fig. 4 for the IWP. In Fig. 4a and b,
the individual standardized errors, Ysim−Yemu√

Vemu
(with Ysim and

Yemu as the output of the ECHAM-HAM simulations and the
emulated output, respectively, and Vemu the emulator vari-
ance), are plotted against the emulated output and input pa-
rameters. We observe only a few errors larger than 2, which
would signal a conflict.

We employ a Q–Q plot to determine whether the normal-
ity assumption of a Gaussian process is met in the emu-
lator (Bastos and O’Hagan, 2009). The plot compares the
quantiles of the standardized errors against those of a Stu-
dent’s t distribution. Figure 4 c indicates that the normality
assumption holds and that the predictive variability is well
estimated by the emulator (Bastos and O’Hagan, 2009). In
a direct comparison of emulated and simulated ECHAM-
HAM model output (Fig. 4d), the points should lie close to
the line of equality, with the 95 % confidence bounds on the
emulator predictions crossing it. This should be the case for
95 % of the validation points. In our emulations, the number
of points with confidence bounds that do not cross the line
of equality is sometimes larger (up to 27 %), depending on
the variable. We attribute this to the disruptive changes that
the CMP process perturbations induce compared to, e.g., the
aerosol and CMP parameter changes applied by Johnson et
al. (2015) (which did not include ice crystal autoconversion
and perturbed parameters only within uncertainty bounds in-

stead of whole processes), as well as to the fact that the sim-
ulations were not nudged. The difficulty in emulating the re-
sponse surface for some of the variables was also apparent
in computational limitations: some of the leave-one-out val-
idation emulations were not possible to compute because of
numerical instabilities in the computations when construct-
ing the emulator. As these were only a few cases (up to two
for global means and four for seasonal means in 48 valida-
tion emulations), the validation for those variables as a whole
is still deemed valid.

The good qualitative agreement with the line of equality
and the lack of systematic errors are sufficient for a valida-
tion of the emulator, especially considering that we are not
aiming for exact quantitative estimates as results of the pre-
sented analysis. Rather, we are looking for a conceptual un-
derstanding of the need for an accurate description of CMP
processes, for which this emulator validation is sufficient.

For the variables which passed the leave-one-out valida-
tion, the final emulator used for the sensitivity analysis was
trained on all PPE members (note that in a few cases only
47 PPE members were used due to numerical instabilities in
the computations when constructing the emulator). Note that
the setup of the emulator includes design choices such as the
kernel combination to use. Therefore, the present emulator is
only one of multiple possible emulators that could be used to
represent the model data. However, as it is shown to validate
well, other setups are expected to lead to the same conclu-
sions as this one in the analysis.
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Figure 4. Leave-one-out validation of the emulator for global annual mean IWP. Each point corresponds to the training of the emulator on all
points except one and then testing on exactly that point. Individual standardized errors are plotted against (a) emulator output and (b) input
parameters (colors according to Fig. 5: autoconversion – blue, accretion – purple, riming – green, self-collection – orange). The dashed lines
are drawn at an individual standardized error of zero and 2, which is the threshold discussed in Bastos and O’Hagan (2009). (c) Q–Q plot
of the individual standardized errors against a Student’s t distribution. (d) Emulator against model output, with the error bars indicating the
95 % confidence interval on the emulator predictions. Predictions for which the model result lies outside that interval are marked red.

2.5 Sensitivity analysis

In our framework, the question of how detailed the repre-
sentation of a given process i needs to be translates to the
question of how sensitive the model output is to a variation
of the perturbation parameter ηi . For an answer, we employ
variance-based sensitivity analysis, following Saltelli (2008).
In contrast to derivative-based local methods (Errico, 1997),
global variance-based sensitivity analysis allows for an in-
vestigation of sensitivities within the whole input parameter
space. Its main metrics are the first- and total-order sensitiv-
ity indices (Si and STi, respectively). The first-order sensitiv-
ity index of ηi measures the contribution of variance in ηi to
the variance in an output variable Y . It is constructed as

Si =
Vηi (Eη∼i (Y |ηi))

V (Y )
. (3)

E is the average over Y with all η except ηi (η∼i) being al-
lowed to vary while ηi is kept fixed at η∗i . Then Vηi is the

variance over that average for varying η∗i . Si is always be-
tween 0 and 1, and high values signal an important variable.
For additive models all first-order terms add up to 1, i.e.,∑
iSηi = 1. In non-additive models (e.g., a climate model)

interaction terms also have to be taken into account. How-
ever, in models with many input parameters the computation
of all interaction sensitivities can be cumbersome. The total
effect sensitivity index STi offers a remedy in that it sum-
marizes all direct and interactive effects a parameter’s vari-
ance has on the total variance in output (Homma and Saltelli,
1996; Saltelli, 2008). It is defined as

STi =
Vη∼i (Eηi (Y |η∼i))

V (Y )
. (4)

Here all but ηi (η∼i) are kept fixed at η∗
∼i and only ηi is

allowed to vary for the average Eηi . Then the variance of
that average over varying η∗

∼i is computed and divided by
the variance in output Y . Saltelli et al. (1999) argue that the
first and total sensitivity index suffice for a meaningful global
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sensitivity analysis. To compute these indices via the Sobol
method, we make use of the Python library SALib (Herman
and Usher, 2017).

3 Results and discussion

3.1 One-at-a-time sensitivity studies

In a first scoping experiment, we perturbed each process sep-
arately, which one can imagine as tracing the edges of the
cube shown in Fig. 3. The results are presented in Fig. 5.
Of the four perturbed processes, turning off autoconversion
has the largest effect on model output: the global annual
mean ice water path (IWP) is more than doubled, and the in-
crease in cloud cover and decrease in precipitation dwarf the
changes induced by turning off the other three processes. In
fact, the perturbations induced by perturbing accretion and
self-collection are mostly insignificant compared to the in-
terannual variability. As autoconversion is a removal process
for ice crystals, it is reasonable that its suppression leads
to an increase in ice in the atmosphere (note that the IWP
in ECHAM-HAM only counts ice crystals and not snow).
Similarly, riming is a removal process for liquid droplets,
so the liquid water path (LWP) increases with its suppres-
sion. However, surprisingly the suppression of autoconver-
sion induces a similarly large increase in LWP as that of
riming, even though autoconversion includes no direct in-
teraction with liquid droplets. The shape of the model re-
sponse to the gradual perturbation of the processes holds ad-
ditional information: while the generated model response is
mostly gradual, for low ηautc the response is more abrupt.
This behavior, which we call a threshold response, is most
striking for the global annual mean LWP, for which the sig-
nal for ηautc ≥ 0.25 is not significantly different to that of
accretion and self-collection. When autoconversion is com-
pletely suppressed, the LWP increases dramatically and the
signal becomes stronger than that for riming, which had in-
creased consistently and gradually. This behavior can be ex-
plained by autoconversion acting as a catalytic process for
accretion and riming, creating a threshold behavior when it
is turned off. As can be seen from Fig. 1 it is the only pro-
cess that generates snowflakes. Accretion and riming need
the snowflakes to be able to act upon them. Therefore, when
autoconversion is turned off, accretion and riming are con-
sequently suppressed as well. In this way, the suppression of
autoconversion can strongly influence even the liquid phase.
The simulations in which we perturb autoconversion while
having riming and accretion turned off confirm this hypoth-
esis (light blue line in Fig. 5): throughout most of the phase
space, turning off accretion and riming reinforces the signal
from phasing out autoconversion. However, when autocon-
version is turned off, turning off accretion or riming does not
change the model output any further. That is because they are
both suppressed when autoconversion is turned off and does
not generate any snow for them to act upon.

Figure 6 further elucidates the reaction of the model to a
suppression of autoconversion: the snow formation rate de-
creases dramatically, and with increased ice concentrations
in the atmosphere, the other removal processes of sedimen-
tation and melting subsequently increase. Again the suppres-
sion of riming and accretion only influences the model out-
put when autoconversion is active. When autoconversion is
turned off, accretion and riming have no influence.

From this one-at-a-time example, one can already see the
benefit of the perturbation approach: in classical sensitivity
studies, wherein processes are only turned on and off, only
the large signal induced by autoconversion would have been
visible. However, here it was the peculiar shape of the model
response to the whole perturbations that hinted at the thresh-
old effect of autoconversion. The implications for possible
simplifications are different: seeing only the large difference
between a simulation with and without autoconversion, one
would think that this is an immensely important process.
Recognizing it as a threshold process and seeing the gradual
response to small deviations from 1.0 in ηautc (similar to the
purple curve in Fig. 2), it appears that there is potential for
a less accurate description of autoconversion in the model. It
has also become clear that interaction effects need to be taken
into account as well to explain the model behavior. This is
what the PPE expands upon in the next section.

3.2 PPE of global mean variables

Conducting a 1-year simulation with ECHAM-HAM for
each of the 48 input parameter combinations generates the
PPE which is then emulated (see Fig. 3). Figure 7 illus-
trates the resulting response surface with points sampled
from that emulation of the annual global mean IWP. To gen-
erate the multidimensional response surface 48 1-year simu-
lations were needed compared to the 21 simulations that were
needed to investigate the response along only a few of the pa-
rameter space edges in Sect. 3.1. This illustrates the value of
the chosen approach: the emulated PPE provides more infor-
mation while needing only roughly twice as many simula-
tions. The surface shows an ordered ascent with decreasing
ηautc, while the other dimensions exert no control over the
value of the IWP. Only for accretion is a slight influence vis-
ible from the tilted contours in the phase space shared with
autoconversion. Increased accretion depletes the IWP since
it converts ice crystals to snowflakes. Figure 8 shows that
the LWP is dominated by ηrime, with an additional influence
of autoconversion. The LWP decreases with increasing ηrime
and increasing ηautc. This is because riming depletes the at-
mosphere of cloud droplets and a decrease in autoconversion
suppresses riming. The panels in Figs. 7 and 8 exhibiting
no order in their parameter space distribution indicate that
the processes in question exert no influence on the respective
output variable. Similar to the LWP, the CDNC is dominated
by riming, and for other cloud variables the dominant influ-
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Figure 5. Model response to perturbations of four CMP processes: autoconversion, accretion, riming, and self-collection (as illustrated in
Fig. 1) in terms of global annual mean IWP, liquid water path (LWP), cloud cover (CC), precipitation (Prcp), and shortwave and longwave
cloud radiative effect (SCRE, LCRE). An additional experiment was conducted to highlight interactive effects between the perturbation of
autoconversion and the suppression of riming and accretion (light blue). The points and line indicate the mean, and the shading indicates
2 times the standard deviation of annual mean values of a 5-year simulation. Classical sensitivity studies would only show ηi = 0 and ηi = 1.
Note that we added an extra simulation at ηautc = 0.1 to better illustrate the threshold behavior discussed in the text and that for the IWP the
shading is hidden behind the lines.

ence of autoconversion is confirmed as well (see Fig. B1 in
Appendix B).

The ranges in the global annual mean model variables that
we observe are mostly larger than what Lohmann and Fer-
rachat (2010) find for varying uncertain tuning parameters,
indicating that whole processes exhibit a larger influence on
the model response than those single parameters. Only for
LWP do Lohmann and Ferrachat (2010) find a larger range
of about 50gm−2 when they multiply the autoconversion rate
with a factor between 1 and 10. As this warm-rain process is
not included in the present analysis, it is reasonable that the
observed variation for LWP is smaller.

3.3 Sensitivity analysis

A global variance-based sensitivity analysis allows us to
quantify the qualitative sensitivities obtained from the graph-
ical representations of the emulated surfaces in the previ-
ous section. The results for the first-order (Si) and total ef-
fect (ST) sensitivity indices are presented in Fig. 9. Indeed,
the qualitative results are confirmed: the global annual mean
LWP and CDNC are dominated by riming, while all other

variables are dominated by autoconversion in both first-order
and total effect.

The observed sensitivities are different from what Bacer et
al. (2021) find in their investigation of EMAC ICNC process
rates. They find that autoconversion contributes about twice
as much as accretion to the ICNCs, while self-collection has
a negligible role. In our analysis, the influence of autocon-
version dwarfs that of accretion in terms of sensitivity in-
dices as well as for the process rates (see Fig. 6). The sen-
sitivity indices are not directly comparable to Bacer et al.
(2021). However, for the default simulation the process rates
are diagnosed as in Bacer et al. (2021) and thus comparable.
We attribute the observed differences to the slightly different
model version used in Bacer et al. (2021), which goes along
with a different tuning.

The almost binary results for the sensitivity indices are
surprising, as in other studies the sensitivity indices were
more evenly distributed (Lee et al., 2011; Wellmann et al.,
2018, 2020). However, these studies usually employed a
wider suite of input parameters, whereas here only pro-
cesses from the limited system of ice particle interactions
are included. We expect that with additional cloud micro-
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Figure 6. Global annual mean vertically integrated process rates for four experiments that illustrate the suppression of snow formation
through turning off autoconversion (mean of a 5-year simulation). The rates are diagnosed similarly to Bacer et al. (2021), but correction
terms were themselves subtracted from process rates where appropriate, i.e., where the correction belongs to the logical entity of the process
rate (see Sect. 2.1). The process rates are deposition (dep), heterogeneous and homogeneous freezing (frz), detrainment (detr), deposition
in the Wegener–Bergeron–Findeisen process (WBF), correction terms (corr), autoconversion (autc), accretion (accr), sedimentation (sedi),
sublimation (subl), ice nucleation in the cirrus scheme (nucl), melting (melt), immediate self-collection of ice crystals when the ICNC is
larger than a maximal threshold (immsci), and evaporation (evap).

physical processes included, the sensitivities would be more
evenly distributed as well. The binary signal is due to the
strong dominance of autoconversion throughout the param-
eter space and not due to the threshold behavior upon sup-
pression of autoconversion as analyzed in Sect. 3.1. This was
excluded from the sensitivity analysis as only the input pa-
rameter space with ηautc ≥ 0.5 was taken into consideration.

The dominance of autoconversion is hypothesized to orig-
inate from the nonlinearity in its parameterization. In con-
trast to the other processes, the conversion rate of autocon-
version has a squared dependency on the cloud ice content
(see Lohmann and Roeckner, 1996), increasing feedback ef-
fects between the two.

Additional reasons for the large role of autoconversion
may lie in its role as a tuning parameter in ECHAM-HAM.
For tuning, uncertain parameters of the model are used
(Neubauer et al., 2019). Historically, the scaling factor for
the stratiform snow formation rate by autoconversion, γs,
has been used as it represents a counterpart to the scaling
factor for the stratiform rain formation rate by autoconver-
sion. To reach the tuning goals as detailed in Neubauer et al.
(2019), it is brought to unrealistically high values (see Ta-
ble A1). This enhances the changes induced by perturbing
autoconversion in this study using ηautc. Additionally, struc-
tural problems in the model may enhance the role of auto-
conversion artificially. For example, by accounting for het-
erogeneous nucleation in the cirrus scheme, which increased
ice crystal sizes, Gasparini et al. (2018) were able to re-

duce γs by an order of magnitude compared to the reference
ECHAM-HAM version (Blaž Gasparini, personal communi-
cation, 2021). This in turn would be expected to reduce the
importance of autoconversion in the present analysis. More-
over, the design choices of the CMP scheme, e.g., the order
in which processes are called, may also influence the results.
However, learning about the properties of CMP processes in
the ECHAM-HAM model is important, no matter whether
they are physically based or artificially introduced through
model design.

A caveat to these results is of course that only CMP pro-
cesses were investigated here. Parameters or processes from
other parts of the climate model, e.g., the dynamics, might
exhibit an even larger influence on the investigated model
output if they were allowed to be varied. For example, Well-
mann et al. (2020), using idealized COSMO simulations,
found that environmental conditions are more influential
for the diabatic heating rates than microphysical processes.
However, for the research question at hand, namely how ac-
curate the representation of these four processes within the
CMPs needs to be, the comparison of the processes between
each other is sufficient. Indeed, the negligible sensitivity of
model output to variations in accretion and self-collection of
ice suggests that their representation may be simplified (Lee
et al., 2012). Due to the small deviations in the considered
variables in response to variations around ηi = 1 for riming
and autoconversion (purple line in Fig. 2), there is potential
for simplifications of their formulations. In the grand scheme
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Figure 7. Two-dimensional projections of the IWP values sampled from the four-dimensional parameter space of the emulated PPE. Each
perturbed process is a dimension, and the color bar denotes the global annual mean ice water path for each input parameter combination.

of CMP parameterization development, however, autocon-
version as the most dominant process of the four is a key
process to scrutinize given the possibly troubling origin of
this dominance in its role as a tuning factor.

3.4 Scale dependency analysis

The analysis of global annual mean values yields clear con-
clusions, but climate models need to simulate not only global
mean values correctly but also their spatial and temporal evo-
lution. Since the emulation and subsequent analysis of grid-
point-level data is tedious and error-prone due to the small
signal and large noise, we compress the information in the
data to a space of lower dimensionality. Choosing to reduce
the dimensionality but still represent the whole global data
rather than picking certain regions allows for a more ob-
jectified and unbiased analysis. This is similar to Holden et
al. (2015), who also reduce their high-dimensionality out-
put, albeit with singular value decomposition, and Ryan et
al. (2018), who use principal component analysis. However,

as the model data are complete and on a sphere, a spherical
harmonics expansion is our method of choice.

Mathematically, the model data can be represented as a lin-
ear combination of the orthogonal spherical harmonics basis
functions as follows:

f (θ,φ)=
∞∑
l=0

l∑
m=−l

Fml Y
m
l (θ,φ). (5)

The data represented by f are then a function of the longi-
tude θ and latitude φ, with Yml a spherical harmonics func-
tion of degree l and order m (l and m are integers, with
−l ≤m≤ l). The complex coefficients Fml can be computed
as

Fml =

∫
�

f (θ,φ)Yml (θ,φ)d.�. (6)

The coefficients make up the angular power spectrum Sff :

Sff (l)=
1

4π

l∑
m=−l

|Fml |
2, (7)
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Figure 8. Same as Fig. 7 but for the global annual mean liquid water path. Results for additional variables are presented in Fig. B1 in
Appendix B.

where the sum over the angular power spectrum
∑
∞

l=0Sff (l)
is the variance of the data. In principle, an expansion up to or-
der 95 would represent the model data at their resolution of
96 latitudinal and 192 longitudinal points perfectly, as they
are equidistant in spherical coordinates. In practice, we trun-
cated the expansion at the degree l where it represents 95 %
of the total data variance

∑
∞

l=0Sff (l). Thereby we represent
the data with as few as possible but as many as necessary ba-
sis functions. Note that in principle, a principal component
analysis could yield the same representation with fewer ba-
sis functions. However, these functions would depend on the
investigated dataset, while the use of spherical harmonics al-
lows for intercomparability.

Figure 10 illustrates that a spherical harmonics expansion
of the data can serve as an accurate representation, while all
the information can be stored in the coefficients up to l = 20
instead of on the global grid (see Fig. 10c). Thus, confident
that the expansion represents the data accurately, we can con-
duct a spatially resolved sensitivity analysis in the spheri-
cal harmonics space. For each variable and degree l a sepa-

rate emulator was trained on the angular amplitude spectrum√
Sff , from which samples were drawn as input to the sensi-

tivity analysis. The validation procedure was the same as de-
scribed in Sect. 2.4. Spherical harmonics members of degree
l were excluded from the sensitivity analysis when the emu-
lator was found to be defaulting to an equal prediction over
the phase space (see Appendix D). This was the case mostly
for degrees l for which the coefficients could already be seen
to have less amplitude in the angular amplitude spectrum. A
total of 5 out of 11 variables had to be excluded because too
many members were defaulting or because their variations
were too small to be sensibly emulated.

The results are displayed in Fig. 11. For those variables
that had total sensitivity indices for autoconversion of over
0.9 (IWP, longwave cloud radiative effect, and ICNC) the
dominant effect of autoconversion is present on all length
scales. Accretion is of secondary importance for the IWP,
as indicated by the global sensitivity analysis. The LWP and
CDNC are dominated by riming on all regional scales and on
the global scale.
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Figure 9. First-order (a) and total effect (b) sensitivity indices for the emulated response surface of global annual mean cloud cover (CC),
liquid cloud cover (LCC, T > 0 ◦C), mixed-phase cloud cover (MCC, 0 ◦C<T <−35 ◦C), ice cloud cover (ICC, T <−35 ◦C), longwave
cloud radiative effect (LCRE), shortwave cloud radiative effect (SCRE), liquid water path (LWP), ice water path (IWP), and total precipita-
tion. As described in Sect. 2.5, the indices are always between 0 and 1, and high values signal an important variable. Since the climate model
is non-additive, the terms do not add up to 1 as interactions have to be taken into account.

The emulated surfaces for the spherical harmonics are
more uncertain than those for the global mean values (see
Appendix D). This is expected as the training data are more
noisy and indicate a less detectable signal on smaller length
scales than on the global one. In addition, the separate em-
ulation for different degrees l ignores correlations between
signals included in multiple degrees l, which may lead to the
loss of signals that are small in the different l but correlated,
and should therefore be addressed in future studies. How-
ever, as the results of the sensitivity analysis are clear in that
variability is dominated by autoconversion (see Fig. 11), we
can conclude that the results of the global sensitivity analysis
also hold on regional scales.

Finally, this analysis demonstrates that spherical harmon-
ics expansion is a viable tool to evaluate model output on
all length scales in an efficient and objective manner. Future
studies may use it to compare results, e.g., from different
models. As most expansion degrees are physically difficult
to interpret, the method may be expanded to use physically
meaningful modes such as the land–sea contrast instead.

3.5 Seasonal analysis

Similar to a regional analysis, we use a temporally resolved
sensitivity analysis to address the concern that conclusions
drawn from annual mean values might not hold on a sea-
sonal scale. Figure 12 shows the results of the same sensitiv-
ity analysis as in Fig. 9, but split by seasons (one emulator
per variable was trained and validated for each season; note
that in a few cases only 47 PPE members were used as with
the 48th member the computational constraint was too tight
for the emulator). Due to a weaker or less consistent signal in

Table 1. Share of the computing time taken up by the cloud micro-
physical processes investigated here. In turn, the CMP computing
time represents 4.7 % of total computing time (excluding diagnos-
tics; all values averaged over a 12-month control simulation with
ηi = 1∀i). The time in the subroutine cold precipitation formation
that is not attributed to the four processes is used for common ini-
tializations and subsequent processing.

Process Share of CMP
routine cost

(%)

Riming 1.8
Autoconversion 0.62
Accretion 0.46
Self-collection 0.046
Subroutine cold precipitation formation 4.8

the data on seasonal scales, one variable (mixed-phase cloud
cover in MAM) did not pass the validation procedure as the
emulator was found to be defaulting (as described for the
spherical harmonics above and in Appendix D). Figure 12
reveals that indeed the sensitivities to process perturbations
are much the same as for the annual mean analysis. This con-
firms that the conclusions drawn for model simplifications
also hold on a seasonal scale. The model is not sensitive to
accretion and self-collection of ice, and therefore these pro-
cesses can be simplified, while autoconversion and riming
dominate the model response.
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Figure 10. Spherical harmonics expansions for one illustrative PPE
member (ηautc ≈ 0.87, ηaccr ≈ 1.43, ηrime ≈ 0.81, ηsci ≈ 1.89).
(a) Global annual mean IWP and (b) expansion of spherical har-
monics representing the same data as (a), generated from the coeffi-
cients of the expansion displayed as an angular amplitude spectrum
in (c) as a function of the degree l (with m independent solutions,
where modes of m= 0 most strongly resemble rotationally sym-
metric physical patterns of the Earth system such as a north–south
contrast). Note that the variability explained by each degree l in
general decreases with increasing l, which allows us to truncate the
expansion at the degree l where it represents 95 % of the total data
variance.

3.6 Process costs and implications for simplification

The previous analysis shows that the response of ECHAM-
HAM to a suppression of self-collection or accretion is neg-
ligible, while for riming and autoconversion a less accurate
representation may be appropriate. A potential benefit could
lie in the reduction of CPU time per model simulation. Ta-
ble 1 lists the CPU time spent in the CMP routines of the
four processes. The timings represent an estimate of how
much time could be gained by removing a process from the
model. They show that, at most, with naively removing (the
most drastic simplification) the whole cold precipitation for-
mation routine, only about 0.2 % of total computing time

Figure 11. First-order sensitivity indices for the emulated angular
amplitude spectrum as a function of the spherical harmonics de-
gree l for the variables as described for Fig. 9. As detailed in the
text, emulators that were found to be defaulting in the validation
procedure were not subjected to the sensitivity analysis so that the
results for those l are missing here. The results for the total sensi-
tivity index are shown in Fig. C1 in Appendix C.

can be saved (since the cold precipitation formation rou-
tine makes up 4.8 % of the 4.7 % of computing time that the
whole CMPs take up, see Table 1). In a 10-year simulation
this would allow for 1 additional week of simulation, which
is negligible in comparison to the computing needs of, e.g.,
increases in model resolution.

Within the CMP routine there are other physical processes
that take up time, but the calculations of diagnostics and
preparatory calculations also contribute. Of course, if nu-
merous CMP processes and interactions with aerosols were
simplified, this would allow for more drastic steps such as
fewer prognostic aerosol variables as those could become re-
dundant. Subsequently, significant reductions in model cost
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Figure 12. Same as Fig. 9 but with seasonal means (a: DJF, b: MAM, c: JJA, d: SON) and only first-order sensitivity indices shown. The
results for the total sensitivity index are shown in Fig. C2 in Appendix C.

could be achieved. Yet by itself, the isolated removal or sim-
plification of CMP processes provides small leverage for a
decrease in computing time. However, as detailed in Sect. 1,
there are numerous benefits in simplification that are inde-
pendent of the associated computing cost, such as a gain in
compactness and interpretability.

4 Summary, conclusions, and outlook

This study conducted a sensitivity analysis with an emulated
PPE to illuminate the impact of selected CMP processes on
model output. Different from previous studies (e.g., Well-
mann et al., 2020; Hawker et al., 2021b), we perturb the
four CMP processes of autoconversion, riming, accretion,
and self-collection of ice as a whole. This is achieved by mul-
tiplying their process rates with a factor between 0.5 and 2.
The resulting response surface of model output and its devi-
ation from results with the default setup serve as a proxy for
how accurately a process needs to be represented.

Perturbing only one process at a time reveals that ice crys-
tal autoconversion acts as a threshold process: perturbing it
causes the model to deviate, but when it is turned off the de-
viation is immense. This is because it is the only process that
converts ice crystals to snow and as such accretion and rim-
ing depend on it. Using only roughly twice as many simula-
tions as in the one-at-a-time perturbations to generate a PPE,
we can generate the whole response surface using Gaussian
process emulation. A sensitivity analysis of global and sea-
sonal annual means reveals that for cloud cover, ice water
path, and number concentration as well as shortwave and
longwave radiative effect, the perturbation of autoconversion
has the most dominant impact by far. Accretion and riming
assume a secondary role. As riming is the only investigated
process that directly affects the liquid phase, riming has a
dominant effect on the liquid water path and cloud droplet
number concentration. Self-collection of ice has a negligible
impact on the investigated global annual mean variables. Re-
solving smaller horizontal scales using a spherical harmonics
expansion of the output variables corroborates the results of
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the global annual mean analysis, as does a seasonal analysis.
These results, as well as the shape of the response surface,
suggest that the parameterization of self-collection and ac-
cretion can be readily and drastically simplified. While auto-
conversion and riming have a large impact on the model out-
put considering the whole investigated phase space, the shal-
low slope of the response surface around the default ηi = 1
hints that slight modifications of their representations may
leave the model output unchanged. The strength of the PPE
approach is that interactions are already taken into account,
meaning that all four processes could be simplified at the
same time. If one wants to develop the CMP scheme fur-
ther, autoconversion is the process to scrutinize as it has the
largest leverage in the model and therefore the most urgent
need to be represented correctly.

As we find that the processes themselves use a negligi-
ble fraction of the overall model computing time, simplifi-
cations are proposed as a means to make the model more
interpretable, not cheaper (see Sects. 1 and 3.6). Our analy-
sis shows that the representation of the four investigated mi-
crophysical processes leaves room for simplification. How-
ever, in deciding how drastic these simplifications should be,
process uncertainty should also be considered. At the least,
when new parameterizations are included in climate mod-
els we should also question their implementation regarding
the complexity they add, looking for their consistency, in-
terpretability, simplicity, and comprehensiveness (Mülmen-
städt and Feingold, 2018; Touzé-Pfeiffer et al., 2021). Of
course, more drastic simplifications than process reformu-
lations would provide more leverage on interpretability and
computing cost. For example, CMP schemes that contain
only one category for ice, e.g., the predicted particle prop-
erties (P3) ice microphysics scheme (e.g., Morrison and
Milbrandt, 2015; Eidhammer et al., 2017; Dietlicher et al.,
2018, 2019; Tully et al., 2021), are more physical as well
as more interpretable. From this perspective it might seem
troubling that in the current CMP scheme the autoconversion
process, which is a transfer mechanism between the two ar-
tificial classes, is so dominant in its importance. However,
while the categories are artificial, the process itself is not: ac-
cretion of ice crystals forming larger ice crystals would be the
equivalent process with only one ice category. Still, autocon-
version is also difficult to constrain in observations (Morri-
son et al., 2020) because it is not a distinct physical process,
so moving towards a scheme with evolving instead of pre-
defined ice categories seems advisable (see, e.g., Milbrandt
and Morrison, 2016; Jensen et al., 2017).

This study introduces the methodological framework to
study the sensitivity of a climate model to the representa-
tion of CMP processes. To complete it, the analysis needs to
be expanded to include other CMP processes in the model:
for cold CMP ice formation, regional modeling studies have
demonstrated cloud susceptibility to the choice of the ice nu-
cleation parameterization (Levkov et al., 1995; Hawker et al.,
2021b), whereas in ECHAM-HAM heterogeneous immer-

sion freezing in mixed-phase clouds has been shown to be
rather inefficient (Villanueva et al., 2021). More generally the
heterogeneous ice formation pathway in mixed-phase clouds
is small in ECHAM-HAM (Dietlicher et al., 2019; Bacer et
al., 2021), hinting at simplification potential. In a sensitivity
study of CMP parameters, Tan and Storelvmo (2016) found
that the timescale of the Wegener–Bergeron–Findeisen pro-
cess explains a large variance in supercooled cloud fractions,
suggesting that as a whole it may be a dominating process as
well. Secondary ice formation (Korolev and Leisner, 2020)
may interact with the ice crystal source processes, allowing
for interactive sensitivities (Hawker et al., 2021b), and should
therefore be included, even though only the Hallett–Mossop
process is optionally included in ECHAM-HAM (Neubauer
et al., 2019). Moreover, for a complete CMP process investi-
gation, of course the warm-rain processes need to be included
as well (Wood et al., 2009; Gettelman et al., 2013).

One might argue that our analysis neglects the influence of
other factors external to the CMPs on our conclusions. How-
ever, as our simulations span the whole globe and a whole
year, they cover a range of dynamical situations, and the re-
sults are therefore robust in the current climate. Whether the
conclusions hold, e.g., in a future changed climate will have
to be evaluated in a future study. It is important to stress
that while we propose that simplifications to the CMP rep-
resentation are possible, care needs to be taken to leave them
physically based to ensure that the model can correctly rep-
resent differing climates. We emphasize that our findings are
conditional on the design of the ECHAM-HAM model, in-
cluding the implementation of other processes and parame-
ters that were not varied in the current study. Another factor
that has not been investigated here is the model resolution
that may affect the CMP behavior in the model and thereby
our conclusions on the importance of single processes (San-
tos et al., 2021). The implementation and design choices of
the CMP scheme in ECHAM-HAM may also influence the
results, e.g., in the order of processes that are called, the sep-
aration between ice and snow, and the employed tuning strat-
egy. Thus, the results as such are only applicable to this CMP
scheme and cannot be transferred to the significance of the
investigated processes in other schemes let alone in reality.

Nevertheless, learning about the representation of CMP
processes in ECHAM-HAM and how sensitive the model is
to their representation helps us to interpret and improve the
model, especially when comparing the results to experimen-
tal studies. To this end, it will also be fruitful to compare our
findings to sensitivities in other models using different CMP
schemes.
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Appendix A: Tuning

Table A1. Tuning parameters that differ between this study and the
reference of Neubauer et al. (2019). γr is the scaling factor for the
stratiform rain formation rate by autoconversion. γs is a scaling fac-
tor for the stratiform snow formation rate by autoconversion. With
the changes described in Sect. 2.1 the tuning parameter of the maxi-
mum cloud droplet radius, rCDNC, replaces the previous minimum
cloud droplet number concentration, CDNCmin. The tuning param-
eter for immediate autoconversion of detrained ICNC, γd, is newly
introduced.

Parameter ECHAM-HAM this study reference

γr 5 10.6
γs 600 900
rCDNC 15× 10−6 m –
CDNCmin – 40× 10−6 m−3

γd 5 –

Appendix B: PPE results for more variables

Figure B1. Visualization of the multidimensional response surfaces
of the emulated PPEs for multiple variables. Each process is a di-
mension, and the color bars denote the global annual mean values.
In principle, each surface could be displayed by a full matrix plot
as in Figs. 7 and 8, but here only the panels that include the domi-
nating process are shown (autoconversion, except for CDNC in the
last row, where riming is the dominant process).
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Appendix C: Total sensitivity index

Figure C1. Same as Fig. 11 but for the total sensitivity indices.

Figure C2. Same as Fig. 12 but for the total sensitivity indices.

Appendix D: Validation of the spherical harmonics
sensitivity analysis

The validation of the spherical harmonics emulation was car-
ried out as described in Sect. 2.4. Larger uncertainties in the
emulation were apparent for almost all variables and degrees
l (see Fig. D1 for an example) than for the global mean val-
ues. However, some emulations were also found to be de-
faulting, meaning that they predicted a similar output value
for the whole phase space (see Figs. D2 and D3 for an ex-
ample). As this behavior points to a missing signal in the
input, these points were excluded from further analysis if the
following two criteria were not fulfilled (excluding the emu-
lated outliers that are marked red, e.g., in Fig. 4).

– The uncertainty in the prediction is smaller than the
spread of the variable; i.e., the smallest error bar in
Fig. D1d is smaller than 0.91Ysim.

– The predictions are significantly different from each
other; i.e., there is one pair of predictions whose error
bars do not overlap.
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Figure D1. Validation of the emulated angular amplitude spectrum of degree l = 6 for the LWP.

Figure D2. Same as Fig. 7 but for the LWP spherical expansion angular amplitude spectrum of degree l = 3. In this case, the emulator was
found to be defaulting; it therefore failed the validation and was not included in the subsequent sensitivity analysis. The points enclosed by
black circles denote the PPE member results used to train the emulator.
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Figure D3. Validation of the emulated angular amplitude spectrum of degree l = 3 for the LWP (see Fig. D2), which failed because of
diagnosed defaulting.

Code and data availability. The ECHAM-HAMMOZ model is
freely available to the scientific community under the HAMMOZ
Software License Agreement, which defines the conditions under
which the model can be used (https://redmine.hammoz.ethz.ch/
projects/hammoz/wiki/2_How_to_get_the_sources, last access:
5 April 2022). The specific version of the code used for this study
is archived in the ECHAM-HAMMOZ SVN repository at https:
//svn.iac.ethz.ch/external/echam-hammoz/echam6-hammoz/tags/
papers/2022/Proske_et_al_2022_ACP_2 (last access: 25 February
2022). More information can be found on the HAMMOZ website
(https://redmine.hammoz.ethz.ch/projects/hammoz, last access:
17 September 2021; HAMMOZ, 2022). Analysis and plotting
scripts are archived at https://doi.org/10.5281/zenodo.5506588
(Proske et al., 2022). Generated data are archived at
https://doi.org/10.5281/zenodo.5506533 (Proske et al., 2022). The
PyDOE library (tisimst, 2021; https://github.com/tisimst/pyDOE,
last access: 28 March 2022) was used for Latin hypercube
sampling, ESEm was used (Watson-Parris and Williams,
2021, https://doi.org/10.5281/ZENODO.5196631; Watson-
Parris et al., 2021, https://doi.org/10.5194/gmd-14-7659-2021)
for the construction of the emulator, SALib (Usher et al.,
2020; https://doi.org/10.5281/ZENODO.598306) was used
for the sensitivity analysis, and PySphereX (Staab, 2021;
https://doi.org/10.5281/ZENODO.5520635) was used for the
construction of the spherical harmonics expansion.
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