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Laughlin states have recently been constructed on fractal lattices, and the charge and braiding
statistics of the quasiholes were used to confirm that these states have Laughlin type topology.
Here, we investigate density, correlation, and entanglement properties of the states on a fractal
lattice derived from a Sierpinski triangle with the purpose of identifying similarities and differences
compared to two-dimensional systems and with the purpose of investigating whether various probes
of topology work for fractal lattices. Similarly to two-dimensional systems, we find that the con-
nected particle-particle correlation function decays roughly exponentially with the distance between
the lattice sites measured in the two-dimensional plane, but the values also depend on the local
environment. Contrary to two-dimensional systems, we find that the entanglement entropy does
not follow the area law if one defines the area to be the number of nearest neighbor bonds that cross
the edge of the selected subsystem. Considering bipartitions with two bonds crossing the edge,
we find a close to logarithmic scaling of the entanglement entropy with the number of sites in the
subsystem. This also means that the topological entanglement entropy cannot be extracted using
the Kitaev-Preskill or the Levin-Wen methods. Studying the entanglement spectrum for different
bipartitions, we find that the number of states below the entanglement gap is robust and the same
as for Laughlin states on two-dimensional lattices.

I. INTRODUCTION

Entanglement plays an important role in gaining in-
sights into the physics of strongly correlated quantum
many-body systems. The entanglement entropy of the
ground state of local, gapped Hamiltonians, typically fol-
lows an area law, which means that the entanglement en-
tropy depends linearly on the size of the boundary of the
considered subsystem [1]. Topological systems are fur-
ther characterized by the topological entanglement en-
tropy, which appears as a constant and universal term in
addition to the linear term in the area law [2–4]. The en-
tanglement spectrum contains more detailed information
about the topology [5–10].

Recently, interest has developed with respect to in-
vestigating topological phases of matter on fractal lat-
tices [11–20], such as the Sierpinski triangle. This is,
in part, motivated by experimental developments, e.g.,
within molecular [21] and electronic [22] fractals. Fractals
are self-similar structures that look the same when zoom-
ing in or out. In fractal lattices with fractional Hausdorff
dimension, there is no clear distinction between bulk and
edge, and they also lack the periodicity present in tra-
ditional lattices. These unusual properties, coupled with
the observation that topological order can be found in
unconventional (e.g., amorphous or quasiperiodic) lat-
tices has naturally led to curiosity about the nature of
topological phases on fractal lattices.

Topological phases of non-interacting systems, includ-
ing integer quantum Hall phases, have been found on
fractal lattices [11, 12, 14, 15, 17, 19, 20]. Recently, frac-
tional quantum Hall models have also been constructed
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and investigated on such lattices [13, 16]. It was shown
in [13] that one can define a trial state on fractal lat-
tices that is closely related to the Laughlin state with
q fluxes per particle, where q is a positive integer. By
computing the charge and braiding properties of quasi-
holes inserted into the state, it was shown for q = 2
and q = 3 that this state has the same topology as the
original Laughlin state. This opens several questions. In
particular, how do the properties of topologically ordered
states on a fractal lattice compare to the properties on
two-dimensional lattices, and how can one detect topo-
logical properties on fractal lattices? The latter is non-
trivial as many of the measures that are commonly used
for two-dimensional systems rely on assumptions that are
not necessarily true for fractal lattices. The fractal lat-
tices do, e.g., not have periodic boundary conditions, and
hence measures such as Chern number and spectral flow
do not translate straightforwardly to fractal lattices.

Here, we take a closer look at the properties of Laugh-
lin states on fractal lattices compared to Laughlin states
on two-dimensional lattices, and we investigate the possi-
bilities to use entanglement measures to detect the topol-
ogy in the states. We first show that the particle den-
sity has more structure on the fractal lattice than for
two-dimensional systems, and that the particle-particle
correlation function decays roughly exponentially with
distance, but also depends on the local lattice structure.
We then investigate the entanglement entropy. We find
that the dependence of the entanglement entropy on the
number of particles in the state shows oscillations that
are not present for two-dimensional square lattices. We
also find that the area law is generally not fulfilled on
the fractal lattice, if we define the size of the boundary
to be the number of nearest neighbor bonds that cross
the edge of the selected subsystem. This means that we
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cannot extract the topological entanglement entropy us-
ing the Kitaev-Preskill or the Levin-Wen methods. The
entanglement spectrum, in contrast, has the same struc-
ture as for the two-dimensional systems and can hence
provide information about the topology.

The article is structured as follows. In Sec. II, we in-
troduce the fractal lattice and the Laughlin states that
we consider in this article. In Sec. III, we compare the
particle density for fractal and two-dimensional lattices.
In Sec. IV, we show that the particle-particle correlations
decay roughly exponentially with distance. In Sec. V, we
study the entanglement entropy of the states. We first
establish that the entropy converges both in the infinite
generation limit and in the thermodynamic limit. We
then quantify how the entropy depends on the number of
particles in the system and the size of the subsystem. We
also show that the methods to compute the topological
entanglement entropy proposed by Kitaev and Preskill
and by Levin and Wen fail. In Section VI, we compute
the entanglement spectrum and show that the number
of states below the entanglement gap is the same as for
Laughlin states on two-dimensional lattices. Section VII
summarizes the conclusions.

II. LAUGHLIN STATES ON FRACTAL
LATTICES

We consider the lattice illustrated in Fig. 1(a), which is
obtained by putting one lattice site at the center of each
of the triangles making up a Sierpinski triangle. The
lattice consists of N = 3g sites, where g is the generation
of the fractal lattice. In physical systems, the generation
is always finite. Here, we are primarily interested in a
regime, where there are several particles in the system,
but several lattice sites available for each particle. We
shall therefore typically take 1 � M � N , where M is
the number of particles.

We consider Laughlin type states on this lattice. Such
states have the property that the wavefunction amplitude
goes to zero, when two particles approach each other, and
the particles therefore tend to stay away from each other.
When we increase the generation of the fractal lattice by
one, we effectively split each lattice site into three lattice
sites. If the distance between neighboring lattice sites is
already much smaller than the typical distance between
the particles, however, this will not change the physics
significantly. It does also not make a significant differ-
ence, whether the sites are points or small triangles, since
there will anyway be at most one particle on each trian-
gle. As pointed out also in [13], this means that if we
are in the regime where 1 � M � N , the physics is
effectively the physics of the state defined on the infi-
nite generation Sierpinski triangle, which has Hausdorff
dimension D = ln(3)/ ln(2) ≈ 1.585. We provide an ex-
ample of this convergence in Sec. V A below.

Following [13], we define the Laughlin type trial states

|ψ〉 =
∑

n1,...,nN

ψ(n1, . . . , nN )|n1, . . . , nN 〉, (1)

ψ(n1, . . . , nN ) ∝ δn
∏
i<j

(zi − zj)qninj

∏
k 6=l

(zk − zl)−ηnl ,

where zj is the position of the jth site in the two-
dimensional plane written as a complex number, nj ∈
{0, 1} is the number of particles on the jth site, q is a
positive integer giving the number of flux lines per par-
ticle, and the delta function δn is one for terms with
M ≡

∑
j nj = ηN/q particles and zero otherwise. The

particles are fermions for q odd and hardcore bosons for
q even.

The exponent −ηnl appearing in (1) is not necessarily
an integer. Different choices of the roots lead to wave-
functions that differ by a simple, unitary transformation.
All the properties we compute below are, however, inde-
pendent of the choice. The density and particle-particle
correlations only depend on the norm of the wavefunc-
tion, the factors involving η cancel in the fraction appear-
ing in the expression (5) for the entropy, and the Schmidt
coefficients in (6) from which the entanglement spectrum
is obtained are also not affected. We shall hence not
make a particular choice here.

The states in (1) are unchanged if all zi are multiplied
by the same factor, which corresponds to scaling and/or
rotating the lattice in the complex plane. This result
can be derived by utilizing that n2i = ni and that

∑
i ni

is a constant. We also note that renumbering the sites
leaves the state unchanged for q even, while for q odd,
renumbering the sites corresponds to choosing a different
ordering of the fermion creation operators in the basis
states. The numbering can hence be chosen after conve-
nience.

The states in (1) differ from the Laughlin states in the
two-dimensional plane in two ways. First, the particles
are only allowed to be on the lattice sites, rather than
anywhere in the plane. Second, the uniform magnetic
field in the two-dimensional plane is replaced by a mag-
netic field going through the lattice sites only. This is
natural, since the latter corresponds to a uniform mag-
netic field on the fractal lattice. It follows from the rela-
tion M = ηN/q that ηN is the total magnetic flux. The
parameter η is hence the magnetic flux through one site.
We note that exact parent Hamiltonians for the states in
(1) are provided in Ref. [23].

It has already been demonstrated for q = 2 and q = 3
in [13] that the states (1) defined on the fractal lattice
illustrated in Fig. 1(a) have the same topological proper-
ties as the Laughlin states in the two-dimensional plane.
This was done by showing that one can insert quasiholes,
which have the same fractional charge and braiding prop-
erties as quasiholes in the Laughlin states. In the fol-
lowing sections, we investigate several further properties
of the states and find both similarities and differences
compared to the properties of Laughlin states on two-
dimensional lattices.
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FIG. 1. (a) The fractal lattice considered in this article (here
shown for generation g = 5). The color of the jth site shows
〈nj〉−M/N , where 〈nj〉 is the expectation value of the number
of particles on the jth site for the Laughlin state (1) computed
from Monte Carlo simulations and M/N is the average num-
ber of particles on a site. The lattice has N = 243 sites, there
are M = 27 particles in the system, and the number of flux
units per particle is q = 3. (b) The same, but for a triangular
lattice with 253 sites and 28 particles.

III. DENSITY

We first consider the particle density. The particle
density 〈ni〉 of the Laughlin states on two-dimensional
lattices is constant in the bulk and show oscillations near
the edge [24]. Figure 1 shows the deviation of the particle
density from the average density for the fractal lattice
and for comparison also for a triangular lattice with a
triangular edge. We have obtained these results through
Metropolis Monte Carlo simulations of

〈ni〉 =
∑

n1,...,nN

ni|ψ(n1, . . . , nN )|2. (2)

Oscillations in the density are seen on the three edges of
the triangular lattice, while the density takes the average
value M/N in the bulk. An important difference between
the triangular lattice and the fractal lattice is that the
fractal lattice has edges everywhere. This leads to a more
complicated density pattern. The three corner sites have
a density of 0.0327, which is significantly below the aver-
age M/N = 1/9, but the density on all other sites varies
at most 25% from the average value. We observe similar

density patterns for larger generations, e.g. g = 6, and
for different values of M and q.

IV. CORRELATIONS

To quantify over how long distances the particles sense
each other, we next compute the particle-particle corre-
lation function

Cij = 〈ninj〉 − 〈ni〉〈nj〉 (3)

through Metropolis Monte Carlo simulations of

〈ninj〉 =
∑

n1,...,nN

ninj |ψ(n1, . . . , nN )|2. (4)

For Laughlin states on two-dimensional lattices, the
particle-particle correlation function decays exponen-
tially with a correlation length of order 1 [25]. Results
for the fractal lattice with N = 243, M = 27, and q = 3
are shown in Fig. 2. The particle-particle correlations
are seen to roughly decay exponentially with distance,
although there is also some dependence on the local lat-
tice structure. For correlations with the corner site, the
correlation length obtained from the plot is about 2.2,
while it is about 1.6 for the sites that are not at the cor-
ners. We also note that the correlations are negative for
short distances, which expresses the repulsion between
the particles in the Laughlin states.

V. ENTANGLEMENT ENTROPY

The entanglement entropy is another important quan-
tity to characterize the behavior of quantum many-body
systems. Here, we study the Rényi entropy with index
two, since it can be computed with Monte Carlo simu-
lations using the replica trick [26, 27]. It is defined as
SA = − ln

[
Tr
(
ρ2A
)]

, where ρA = TrB(|ψ〉〈ψ|) is the re-
duced density operator of a subsystem A containing NA
sites, and B is the part of the system not belonging to
A. The replica trick is to note that

e−SA =∑
n,m,n′,m′

ψ(n,m′)ψ(n′,m)

ψ(n,m)ψ(n′,m′)
|ψ(n,m)|2|ψ(n′,m′)|2, (5)

and compute the right hand side using Monte Carlo sim-
ulations. Here, n = {n1, n2, . . . , nNA

} is a basis for sub-
system A, m = {nNA+1, nNA+2, . . . , nN} is a basis for
subsystem B, and n′ and m′ are independent copies of
n and m. We always choose the numbering of the sites
such that the sites in A are numbered from 1 to NA, and
the sites in B are numbered from NA + 1 to N . This is
important for fermions, but does not make a difference
for bosons.

The entanglement entropy of Laughlin states on two-
dimensional lattices satisfies an area law, SA = αL − γ,
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FIG. 2. (a-c) The particle-particle correlation function Cij in (3) between a fixed lattice site i and all other lattice sites j for
N = 243, M = 27, and q = 3. The site i is shown in black and is also indicated with an arrow. The value of Cij is shown
with color for all j 6= i. (d-f) Logarithm of the absolute value of the correlation function ln(|Cij |) versus the distance |zi − zj |
for the three choices of i considered above. We here measure distances in units of the distance between nearest neighbor sites.
The blue circles with error bars are the values computed from Monte Carlo sampling, while the black solid line is a fit of the
form a − |zi − zj |/ξ to the shown data points, where the constant a and the correlation length ξ are the fitting parameters.
The correlation lengths extracted from the fits are (d) ξ = 2.16, (e) ξ = 1.62, and (f) ξ = 1.56, respectively.

where L is the length of the boundary, α is a nonuniversal
constant, and γ is the topological entanglement entropy,
which is a universal constant providing information about
the topology of the system [2, 3]. For Laughlin states
the topological entanglement entropy is γ = ln(q)/2. Ki-
taev and Preskill [2] and Levin and Wen [3] proposed two
similar methods to extract the value of γ by dividing the
system into different regions and adding and subtracting
entropies of these regions in a particular pattern. It has
also been observed in [25], that the entropy has the sym-
metry SA(M) = SA(N −M), i.e., replacing empty sites
with filled sites and filled sites with empty sites does not
change the entropy.

Below, we first show that the entropy of the states
on the fractal lattice converges in the infinite generation
limit and in the thermodynamic limit. We then study
the dependence of the entropy on the particle number,
observing the symmetry mentioned above, but also os-
cillations that do not occur for two-dimensional square
lattices. Investigating the dependence of the entropy on
the subsystem size, we find that the system does not
follow the area law. Instead, if we choose a subsystem
whose boundary cuts two nearest neighbor bonds, we find
a close to logarithmic increase in the entropy with the
number of sites in the subsystem. This result means that
we are not able to obtain the topological entanglement

entropy from the Kitaev-Preskill or Levin-Wen method.
We nevertheless do the computation and find results that
are significantly below the topological entanglement en-
tropy for Laughlin states.

A. Infinite generation limit

To show that the physics does not depend on whether
the generation of the fractal lattice is finite or infinite as
long as the generation is large enough, we calculate the
entropy for a region containing a fixed fraction NA/N of
the lattice as shown in Fig. 3(a). We keep M fixed and
vary the generation g, which corresponds to adding fur-
ther and further detail to the lattice. From the results in
Fig. 3(b-c), which are computed for M = 12, q = 3, and
g ∈ {3, 4, 5, 6}, we observe that the Rényi entropy SA
converges as the generation increases. The same conclu-
sions are obtained for different values of q and M . Hence,
when the generation is large enough, it does not make a
significant difference whether the generation is increased
even further.
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FIG. 3. Convergence of the entropy SA in the infinite genera-
tion limit. (a) We consider a bipartition, in which subsystem
A (the sites above the horizontal line) consists of NA = 3m

sites, where m is a positive integer. (b) SA as a function of N
and NA and (c) SA as a function of g for q = 3 and M = 12.
For fixed M and fixed NA/N , SA is seen to converge as the
generation g increases, i.e., increasing the amount of detail of
the lattice does not change the entropy.

B. Thermodynamic limit

We next show that the entropy also converges in the
thermodynamic limit. For this purpose, we consider a
region with a fixed number of sites NA as shown in
Fig. 4(a), and we keep the number of particles per lat-
tice site M/N fixed as we increase the generation of the
lattice. Results for M/N = 1/9 and q = 3 are shown in
Fig. 4(b-c), and it is seen that SA converges as the ther-
modynamic limit is approached by increasing the gener-
ation g. We also find convergence of the entropy in the
thermodynamic limit for other values of NA, M/N , and
q.

C. Dependence on particle number

The entropy SA as a function of the number of particles
M for N = 81, q = 3, and two different bipartitions is
shown in Fig. 5. In Ref. [25], it was noted that the Laugh-
lin states defined on two-dimensional square lattices have
the symmetry that the entropy is the same for M parti-
cles and for N −M particles, i.e. SA(M) = SA(N −M).
Figure 5 shows that this symmetry is also present for the
fractal lattice.

While the entropy varies quite smoothly with M for
the q = 4 state on a two-dimensional square lattice on a
cylinder (see Fig. 3 in [25]), we observe, yet unexplained,
oscillations in Fig. 5 with period δM = 9 for the subsys-
tem with 9 sites and period δM = 3 for the subsystem
with 27 sites. Thus for the results shown in Fig. 5, the
product of NA and the spacing between local minima
δM is always the total number of sites: NA × δM = N .
Furthermore, when we remove one or two sites from the
subsystem A and do the same calculations, the oscillation
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FIG. 4. Convergence of the entropy SA in the thermodynamic
limit. (a) We consider a bipartition, in which subsystem A
(the sites above the horizontal line) consists of a fixed number
of sites NA. We also take the ratio M/N between the number
of particles and the number of lattice sites to be constant. (b)
SA as a function of N and NA and (c) SA as a function of g
for M/N = 1/9 and q = 3. For fixed M/N and fixed NA, it
is seen that SA converges in the limit of large N = 3g, i.e.,
the entropy of a local region is not affected by how large the
lattice is.

(a)

(b)

FIG. 5. Rényi entropy SA versus particle number M for a
fractal lattice with N = 81 sites and q = 3. In (a), the
subsystem A is the top 9 sites of the fractal lattice, and in
(b), the subsystem A is the top 27 sites. In (a), local minima
are observed for M = 9n, where n is a positive integer, while
in (b), local minima are observed for M = 3n. In addition,
we observe the symmetry SA(M) = SA(N −M).
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behavior of SA against M still exists. We obtain similar
results for q = 2 and for larger generations.

D. Dependence on subsystem size

To explore the entanglement structure further, we next
divide the system as shown in Fig. 6(a). Here, we cut
the system by a horizontal line and move this line ver-
tically down layer-by-layer such that subsystem A in-
creases layer-by-layer. We call this bipartition for layer
cut bipartition. Let Nbond denote the number of nearest-
neighbor bonds that cross the boundary of the selected
subsystem. For the layer cut bipartition, the value of
Nbond varies from 2 to 2g, and different subsystems A
can have the same value of Nbond. For the chosen divi-
sion, Nbond is equal to the number of sites in the layer
just below the boundary.

The entropy SA as a function of the number of sites
NA in subsystem A is shown in Fig. 6(b), where differ-
ent values of Nbond are indicated with different types of
markers. For comparison, we also show results for SA
for the triangular lattice using the layer cut bipartition
in Fig. 6(c-d). While SA depends linearly on Nbond for
the triangular lattice, this is not the case for the fractal.
For the fractal, SA may take quite different values for
different data points corresponding to the same value of
Nbond. Looking at Fig. 6(b), we see a certain sequence of
data points that restarts at every blue dot (correspond-
ing to Nbond = 2) and becomes longer and longer as NA
increases. This is a result of the self-similar nature of
the fractal lattice, and it leads to the repetitions of pat-
terns, such as those inside the rectangles. Considering
the two data points with Nbond = 4 inside the leftmost
rectangle, it is not surprising that the entropy is not the
same for the two data points, as the distribution of lat-
tice sites close to the boundary is quite different in the
two cases. If the area law applied, however, we would
expect points at the same position in the repeating se-
quences to have the same entropy, if NA is not too small.
The blue dots (corresponding to Nbond = 2) is such a set
of points, and we plot these data points as a function of
log3(NA) in Fig. 7 together with the corresponding data
points for a lattice with 729 sites. We observe that SA
increases approximately linearly with log3(NA) instead
of being constant as predicted by the area law. The area
law is hence not followed. The curves bend slightly, but
the bending is less for the larger system, so the bending
could be due to the finite size of the considered lattices.

Taking a closer look at Fig. 6(b), we observe that local
minima of SA occur at NA ∈ {3, 9, 27, 45, 81, 99, 135}.
At these values, the boundary lies directly above cer-
tain numbers of blocks of 9 sites. The local maxima lie
at NA ∈ {5, 19, 37, 65, 91, 119}, which correspond to one
layer above the divisions that produce the minima of SA.
To investigate the origin of the maxima and minima, we
check the robustness of these peaks and troughs by com-
puting SA for different parameters. While the value of

1

(a)

1

(b)

1

(c)

1

(d)

1

FIG. 6. (a) Illustration of the layer cut bipartition. Subsys-
tem A consists of the sites above the red line, and subsystem
B consists of the sites below the red line. The red line is al-
ways horizontal and is moved downwards layer by layer. (b)
Rényi entanglement entropy SA as a function of the number of
sites NA in subsystem A using the layer cut bipartition with
q = 3, N = 243, and M = 27. The value of Nbond is indicated
with different types of markers. (c) We also consider the layer
cut bipartition for a triangular lattice with a triangular edge.
(d) Rényi entanglement entropy SA for the triangular lattice
with N = 136 sites and M = 27 particles. The lines are lin-
ear least squares fits of the form SA = αNbond − γ′, where
the fitting parameters are α = 0.1275 and γ′ = −0.1965 for
q = 2 and α = 0.1602 and γ′ = −0.03423 for q = 3. Although
the data points fall on straight lines, the topological entangle-
ment entropy cannot be extracted from the fits, because the
presence of the edges lead to corrections to the term αNbond

that are of the same order as γ.

SA at the peaks and troughs varies, the position of the
maxima and minima are robust for a range of different
choices of M , N , and q. Therefore, this structure is due
to the intrinsic properties of the fractal lattice.

E. Topological entanglement entropy

Since we observed above that the entropy of the Laugh-
lin states on the fractal lattice does not follow the area
law, we are not able to compute the topological en-
tanglement entropy by using the Kitaev-Preskill or the
Levin-Wen methods. We nevertheless do the computa-
tion to see how far the results are from the topological
entanglement entropy ln(q)/2 for the Laughlin states.
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FIG. 7. The entropy SA for two fractal lattices with q = 3 and
the same number of particles per site. The region A is chosen
to consist of NA = 3m sites from the top of the fractal, where
m is taken to be an integer. For this choice, the boundary
of subsystem A always cuts two nearest-neighbor bonds. The
entropy is seen to increase slightly slower than linear with
log3(NA). The curve for N = 729 is straighter than the one
for N = 243, so the deviation from a linear scaling may be
due to the finite system size. This shows that the area law
does not apply, as the area law predicts SA to be independent
of log3(NA).

The Kitaev-Preskill method [2] considers three subsys-
tems A, B, and C such as those shown in Fig. 8(a,c).
Each subsystem should be large compared to the corre-
lation length, which is the case here. One then computes
−SA−SB−SC +SA∪B+SB∪C +SC∪A−SA∪B∪C , which
converges to the topological entanglement entropy γ in
the limit of large subsystem sizes if the system fulfils the
area law.

Our results for this combination of entanglement en-
tropies are shown in Fig. 8(b,d), where we also show the
topological entanglement entropy for the Laughlin states
in two dimensions as horizontal lines. As expected, there
are large discrepancies, and the discrepancies are seen
both for the lattice with 81 sites and for the lattice with
243 sites. In contrast, we find that the numerical value
of γ computed for a square lattice at half filling with
16× 16 sites, employing the same approach, matches the
expected value. It remains an interesting open question,
whether one can find different methods to extract the
topological entanglement entropy from entropies com-
puted on the fractal lattice.

VI. ENTANGLEMENT SPECTRUM

In [5], Li and Haldane postulated and demonstrated
numerically the use of the low-lying part of the entan-
glement spectrum as a fingerprint of topological order in
fractional quantum Hall systems. Although it has turned
out to sometimes be difficult to interpret the results [28],
there are several examples where the entanglement spec-
trum shows interesting structures [6–10].

The entanglement spectrum can be obtained from the

1

(a)

1

(b)

1

(c) (d)

FIG. 8. (a) Subsystems A, B, and C for the fractal lattice
with N = 81 sites. (b) Numerical results for −SA−SB−SC+
SA∪B+SB∪C +SC∪A−SA∪B∪C for N = 81 and different val-
ues of M and q. The topological entanglement entropies for
the Laughlin states in two dimensions, γ = ln(2)/2 ≈ 0.3466
for q = 2 and γ = ln(3)/2 ≈ 0.5493 for q = 3, are shown as
horizontal lines. As explained in the text, we do not expect
the numerical values to agree with the topological entangle-
ment entropies for the Laughlin states, since the states on
the fractal do not follow the area law. (c-d) The same as (a-
b), but for a fractal with N = 243 sites. The conclusion is
unchanged.

Schmidt decomposition as follows. If the system is in a
state |ψ〉, and we can write the Hilbert space H as HA⊗
HB , where A and B form a bipartition of the system, we
can perform a Schmidt decomposition

|ψ〉 =
∑
j

e−(1/2)ξj |ψjA〉 ⊗ |ψ
j
B〉, (6)

where |ψjA〉 and |ψjB〉 are orthonormal bases in HA and
HB , respectively. We have exp(− 1

2ξj) ≥ 0. The ξj are
referred to as the entanglement spectrum. The entangle-
ment spectrum is a collection of numbers as opposed to
the entanglement entropy, which is a single number, and
so potentially contains more information about the state.

In this section, we study the entanglement spectrum
of the Laughlin state on the fractal lattice and compare
it to the entanglement spectrum of the Laughlin state
on two-dimensional square and triangular lattices. We
find that the number of states in the low-lying part of
the entanglement spectrum is consistent across all these
lattices and for different bipartitions.

As the Laughlin state contains a well-defined number
of particles and has a well-defined angular momentum
for lattices with rotational symmetry, we can group the
entanglement eigenvalues based on MA and Lz,A, where
MA is the number of particles in part A and Lz,A is the
angular momentum of part A. If we only group with re-
spect to MA, we can compare the entanglement spectra
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across all three kinds of lattices and consider various bi-
partitions, as long as the sizes of both subsystems A and
B are large enough. When we group the entanglement
eigenvalues with respect to both MA and Lz,A, however,
we can only compare the fractal and triangular lattices,
since only these two lattices share a C3 rotational sym-
metry about their centers. Also, one can only consider
subsystems, which have the same rotational symmetry as
the whole lattice in addition to the constraints mentioned
above.

We also do the computation for a randomly chosen
state. For this state we find that the number of states
below the entanglement gap is much larger than for the
Laughlin state, and the number of states below the en-
tanglement gap changes with the choice of lattice and bi-
partition. The consistency of the number of states below
the entanglement gap for the Laughlin state and a differ-
ent behavior for a randomly chosen state is the behavior
expected from the Li-Haldane conjecture. We hence con-
clude that the topology of the Laughlin states on the
fractal lattice can be seen in the entanglement spectrum.

A. Results

Figure 9 gives an example of the spectra we obtain
when Nφ = qM is less than about 16 and N is around 27.
We see an entanglement gap separating a low-lying, dis-
crete part from the higher, more continuous part. While
the number of states in the higher part changes with the
choice of bipartition, the number of states below the gap
is robust. If we change the lattice from a fractal to a two-
dimensional triangular or square lattice (which requires
changing the total number of sites N) while keeping q
and M constant, the number of states below the gap still
remains the same.

The results for the number of states below the entan-
glement gap for different values of q and M are listed in
Tab. I. The counting in the MA sectors is given in the
second to last column. From left to right, the numbers
denote the number of states below the gap, starting from
MA = 0 to MA = M . The last column indicates how
each number in the preceding column is divided into the
three possible Lz,A values (0, 2π/3, 4π/3). For q = 2 and
M = 3, e.g., the counting of states below the gap in the
MA sectors is 1 5 5 1, as shown in Fig. 9. The first
state, corresponding to MA = 0 has an angular momen-
tum of 0. The five states in the MA = 1 sector consist of
one state with Lz,A = 0, three states with Lz,A = 2π/3,
and one state with Lz,A = 4π/3.

We have also computed the entanglement spectrum for
a state with randomly chosen coefficients but all other
parameters and the lattice kept the same. In this case,
the number of states below the gap is different and varies
with respect to the chosen bipartition. This points to the
conclusion that the counting we have obtained is a salient
feature of the Laughlin state and signifies its topological
nature.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

FIG. 9. Entanglement spectrum for the fractal lattice with
N = 27 sites and M = 3 particles. The selected region con-
sists of the 12 sites marked in Fig. 10. The counting sequence
1, 5, 5, 1 of eigenvalues below the gap is robust with respect
to the choice of bipartition and to the nature of the lattice.

FIG. 10. The region of the fractal lattice used for computing
the entanglement spectrum as a function of angular momen-
tum consists of the sites inside the triangle. Both the com-
plete fractal lattice and the two subsystems have a three-fold
rotation symmetry around the point indicated by the red dot.

VII. CONCLUSION

We have studied density, correlation, and entangle-
ment properties of Laughlin states on fractal lattices de-
rived from the Sierpinski triangle and identified several
similarities and differences compared to the correspond-
ing properties of Laughlin states on two-dimensional lat-
tices. Laughlin states on two-dimensional lattices have
a uniform density in the bulk, exponentially decaying
particle-particle correlation functions, area law entangle-
ment entropy, and a particular counting of states be-
low the entanglement gap. On the fractal lattices, there
is more structure in the density patterns, although the
density still stays roughly uniform, except for the cor-
ner sites. The particle-particle correlation functions also
decay roughly exponentially on the fractal lattice. The
entanglement entropy, however, does not follow the area
law. Instead we find that the scaling of the entangle-
ment entropy with the subsystem size is close to loga-
rithmic for subsystems with similar boundaries. This also
means that the topological entanglement entropy cannot
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q M Nφ Counting(MA) Counting(MA,Lz,A)

2 1 2 1 1 1 0 0 – 0 0 1

2 2 4 1 3 1 1 0 0 – 1 1 1 – 0 0 1

2 3 6 1 5 5 1 1 0 0 – 1 3 1 – 1 3 1 – 0 1 0

2 4 8 1 7 15 7 1 1 0 0 – 2 4 1 – 5 9 1 – 2 4 1 – 0 1 0

2 5 10 1 9 28 28 9 1 1 0 0 – 3 5 1 – 9 14 5 – 9 14 5 – 3 5 1 – 0 1 0

2 6 12 1 11 45 84 45 11 1 1 0 0 – 3 7 1 – 16 18 11 – 29 31 24 – 16 18 11 – 3 7 1 – 0 1 0

q M Nφ Counting(MA) Counting(MA,Lz,A)

3 1 3 1 1 1 0 0 – 0 0 1

3 2 6 1 4 1 1 0 0 – 1 2 1 – 0 0 1

3 3 9 1 7 7 1 1 0 0 – 2 4 1 – 2 4 1 – 0 1 0

3 4 12 1 10 28 10 1 1 0 0 – 3 6 1 – 9 14 5 – 3 6 1 – 0 1 0

q M Nφ Counting(MA) Counting(MA,Lz,A)

4 1 4 1 1 1 0 0 – 0 0 1

4 2 8 1 5 1 1 0 0 – 1 3 1 – 0 0 1

4 3 12 1 9 9 1 1 0 0 – 3 5 1 – 3 5 1 – 0 1 0

4 4 16 1 13 45 13 1 1 0 0 – 4 8 1 – 16 18 11 – 4 8 1 – 0 1 0

TABLE I. The number of states below the entanglement gap in the sectors with fixed MA and fixed Lz,A. The column
labeled Counting(MA) gives the number of states below the entanglement gap for MA = 0, 1, . . . ,M , and the column labeled
Counting(MA,Lz,A) gives the number of states below the entanglement gap for given MA and Lz,A. The dashes separate
different MA values, and for each MA value there are three possible values of the angular momentum. As an example, the
second row of the first table should be read as follows. There is one state below the entanglement gap with MA = 0, three states
below the entanglement gap with MA = 1, and one state below the entanglement gap with MA = 2. The state with MA = 0
has angular momentum Lz,A = 0, the states with MA = 1 have angular momenta Lz,A = 0, Lz,A = 2π/3, and Lz,A = 4π/3,
respectively, and the state with MA = 2 has angular momentum Lz,A = 4π/3.

be obtained from the Kitaev-Preskill or the Levin-Wen
approach. In addition, we observe oscillations of the en-
tropy as a function of M that are not observed for Laugh-
lin states on two-dimensional square lattices. Finally, we
find that the number of states below the entanglement
gap is the same for the fractal and the two-dimensional
lattices. We have here considered Laughlin trial states
because they allow us to investigate particularly large
systems and hence obtain a clearer picture, but we ex-
pect similar results to hold more broadly.

A number of tools have been developed to detect topo-
logical properties of quantum many-body systems defined
on two-dimensional lattices. The results presented here
provide information about which of these tools can be
used for fractal lattices and which cannot. Demonstrat-
ing the ability of the states to host anyons is a direct way
to detect topology, and this approach was used already
in [13] to confirm the topology of the Laughlin states on
fractal lattices. On the other hand, Chern number and
spectral flow do not translate naturally to fractals, as
the fractal lattices do not have periodic boundary condi-
tions. The present work, which considers fractals derived
from the Sierpinski triangle, shows that the entanglement
spectrum can be used to probe topology for such frac-
tals, while standard methods to extract the topological
entanglement entropy that rely on the area law fail for

such fractals. We expect the former conclusion to hold
more generally, while the latter conclusion may depend
on, e.g., the dimension or ramification of the fractal lat-
tice. The fewer tools available to detect topology in sys-
tems defined on fractals motivates the search for further
tools and poses the challenge to find out whether known
methods that do not immediately work for fractals can
be modified in a way that nevertheless make them appli-
cable to fractals.

A key motivation for constructing fractional quantum
Hall type models on fractal lattices is to find systems
with combinations of properties that are not seen else-
where. The results obtained here indeed show that the
Laughlin states on fractal lattices have important differ-
ences compared to Laughlin states on two-dimensional
lattices. They do, e.g., provide the opportunity to ob-
tain fractional quantum Hall physics in systems without
area law entanglement. This encourages the search for
further unusual properties of systems on fractal lattices.

ACKNOWLEDGMENTS

This work has been supported by the Independent Re-
search Fund Denmark under grant number 8049-00074B
and the Carlsberg Foundation under grant number CF20-



10

0658.

[1] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium:
Area laws for the entanglement entropy, Rev. Mod. Phys.
82, 277 (2010).

[2] A. Kitaev and J. Preskill, Topological entanglement en-
tropy, Phys. Rev. Lett. 96, 110404 (2006).

[3] M. Levin and X.-G. Wen, Detecting topological order in a
ground state wave function, Phys. Rev. Lett. 96, 110405
(2006).

[4] H.-C. Jiang, Z. Wang, and L. Balents, Identifying topo-
logical order by entanglement entropy, Nature Physics 8,
902 (2012).

[5] H. Li and F. D. M. Haldane, Entanglement spectrum as
a generalization of entanglement entropy: Identification
of topological order in non-Abelian fractional quantum
Hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
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Phys. Rev. Research 2, 013044 (2020).
[16] S. Manna, C. W. Duncan, C. A. Weidner, J. F. Sherson,

and A. E. B. Nielsen, Laughlin-type topological order on
a fractal lattice with a local Hamiltonian, arXiv preprint
arXiv:2106.13816v1 (2021).

[17] S. Sarangi and A. E. B. Nielsen, Effect of coordination on
topological phases on self-similar structures, Phys. Rev.
B 104, 045147 (2021).

[18] G. Zhu, T. Jochym-O’Connor, and A. Dua, Topological
order, quantum codes and quantum computation on frac-
tal geometries, arXiv preprint arXiv:2108.00018 (2021).

[19] S. Fischer, M. van Hooft, T. van der Meijden, C. M.
Smith, L. Fritz, and M. Fremling, Robustness of chiral
edge modes in fractal-like lattices below two dimensions:
A case study, Phys. Rev. Research 3, 043103 (2021).

[20] M. N. Ivaki, I. Sahlberg, K. Pöyhönen, and T. Oja-
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