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Abstract 
Humans differ greatly in their ability to use language. 
Contemporary psycholinguistic theories assume that individual 
differences in language skills arise from variability in linguistic 
experience and in general cognitive skills. While much 
previous research has tested the involvement of select verbal 
and non-verbal variables in select domains of linguistic 
processing, comprehensive characterizations of the 
relationships among the skills underlying language use are rare. 
We contribute to such a research program by re-analyzing a 
publicly available set of data from 112 young adults tested on 
33 behavioral tests. The tests assessed nine key constructs 
reflecting linguistic processing skills, linguistic experience and 
general cognitive skills. Correlation and hierarchical clustering 
analyses of the test scores showed that most of the tests 
assumed to measure the same construct correlated moderately 
to strongly and largely clustered together. Furthermore, the 
results suggest important roles of processing speed in 
comprehension, and of linguistic experience in production. 
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cognitive skills 

Introduction 
Most people acquire their native language effortlessly, yet 
individuals differ greatly in how they use it (Kidd et al., 
2018). The question what makes someone a good language 
user is intimately connected to that of the cognitive 
architecture that enables language use (McQueen & Meyer, 
2019). Specifically, previous research has established that 
language processing interfaces with non-verbal cognitive 
systems (Bates et al., 1991; McClelland & Rumelhart, 1981) 
rather than being an encapsulated module in the human mind. 
On such an account, individual differences in linguistic 
processing skills are in part the result of variability in 
linguistic experience (leading to variability in knowledge 
about words and grammatical rules) and variability in general 
cognitive skills (Dabrowska, 2018; Kidd et al., 2018). While 
most contemporary theories of language processing are 

consistent with this view, relevant empirical evidence is still 
sparse. This is because most studies of individual differences 
in linguistic processing skills have adopted qualitative 
approaches (e.g., asking ‘is X involved in Y?’) and focused 
on the involvement of just one variable, or a small set of 
variables in linguistic processing (e.g., working memory in 
sentence comprehension; but see Christopher et al., 2012; 
Schmidtke et al., 2018). Such approaches ignore the 
contribution of other potentially relevant variables and do not 
allow for a quantification of the relationships between several 
variables. This, however, is critical for understanding how 
domain-general cognitive skills and linguistic knowledge 
jointly lead to high or low performance on linguistic tasks. 

The present study 
In order to quantify the relationships between linguistic 
knowledge, general cognitive skills and linguistic processing 
skills, a broad approach is needed where the contributions of 
multiple predictors are assessed in concert. The goal of the 
present study was to contribute to such a research program. 
To that end, we re-analyzed a publicly available dataset 
containing the scores of 112 participants on 33 behavioral 
tests (Hintz et al., 2020a). Approximately half of these tests 
assessed participants’ linguistic processing skills on word- 
and sentence-level production and comprehension tasks. The 
other tests assessed five cognitive constructs that have been 
implicated in word and sentence production and/or 
comprehension in earlier work. These were (1) linguistic 
experience, i.e. knowledge of words and grammar, (2) 
processing speed, (3) working memory, (4) inhibition, and 
(5) non-verbal intelligence. With the exception of (5) each 
skill was assessed in multiple tests, thereby alleviating 
concerns about task impurity (Miyake et al., 2000). The 
importance of each of the skills has been amply demonstrated 
in earlier work (for (1), see, for instance, Diependaele et al., 
2013; Mainz et al., 2017; Huettig & Pickering, 2019); for (2) 
Engelhardt et al., 2018; Hintz et al., 2020b; Schubert et al., 
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2015, 2017; for (3) Just & Carpenter, 1992; Baddeley, 2003; 
Martin, 2021; for (4) Shao et al., 2012; for (5) Engelhardt et 
al., 2018; Deary, 2001; Visser et al., 2006). However, no 
study has analyzed the joint impact of all of these variables 
on word or sentence production or comprehension. 

 Hintz et al. (2020a) provide pre-processed (e.g., outlier-
excluded) scores of tests tapping into word- and sentence-
level production and comprehension, and the skills 
mentioned above (see Table 1 for an overview). Here, we 
quantified the relationships between these test scores by 
applying correlation (presented as a heatmap) and 
hierarchical clustering analyses (HCAs). HCA is a statistical 
method, which – similar to correlation testing – aims to assess 
the similarity of scores (i.e., clusters). Going beyond 
correlation analysis, HCA builds a hierarchy of clusters. To 
that end, on the agglomerative approach used here, each score 
is initially assigned to its own cluster. The algorithm then 
proceeds iteratively, such that at each stage the two most 
similar clusters are joined, continuing until there is just a 
single cluster left. HCA does not require any a priori choices 
of test groupings and is therefore a suitable tool for an 
unbiased exploration of the quantitative relationships 
between test scores. The most common output of an HCA is 
a dendogram—a diagram representing a hierarchically-
structured tree. Closeness and distance of scores in the tree 
reflect greater and lesser amounts of shared variance, 
respectively. 

Our analyses were exploratory. We expected that scores 
of tests assumed to measure the same cognitive construct 
would show moderate to strong correlations (reflected in 
warm colors in the heatmap) and would cluster together in 
the dendogram. Beyond that, no specific hypotheses were 
formulated. The main issue to be explored was how strongly 
the scores from the word- and sentence-level production and 
comprehension tasks were related to each other and to the 
scores reflecting linguistic experience, general intelligence, 
processing speed, working memory, and inhibition. 

Methods 

Participants 
The dataset provided by Hintz et al. (2020a) contains data 
from 112 participants. Eighty-seven of these were university 
students or graduates (27 male, mean age: 22.6 years, range: 
18 to 29 years); 24 attended or had attended a vocational 
college (12 male, mean age: 21.0 years, range: 18 to 29 
years), and one participant was a high school graduate 
(female, 25 years). All participants were native speakers of 
Dutch. Although higher numbers of participants would be 
desirable for an individual-differences study, 112 participants 
were sufficient to detect correlations of .3 with 80% power. 
Note that the same power calculation applies to the HCA 
since HCA relies on a distance matrix, which in our study was 
just a linear transformation of the correlation matrix for our 
tests into the corresponding Euclidean distances. 
Nevertheless, we assessed the stability of the dendogram by 
means of a permutation test. That is, we randomly permuted 

(n = 1,000) the original distance matrix and each time built a 
dendogram, comparing the predicted classes of the original 
dendrogram to the dendogram based on the randomly-
permuted distance matrix. The mean absolute correlation of 
the original dendrogram to the 1,000 permuted dendrograms 
was .03. In other words, there was a 3% chance of obtaining 
the dendogram below if the clustering of the tests in Hintz et 
al. (2020a) were random. We thus conclude that our HCA 
was sufficiently stable given these data. 

Materials and procedure 
The 33 behavioral tests administered by Hintz and colleagues 
(2020a) required participants to provide speeded and 
unspeeded manual (e.g. button presses or mouse clicks) and 
spoken responses (e.g., picture naming). Administration took 
approximately four hours per participant and was divided into 
four sessions of one hour each (two in the morning and two 
in the afternoon of the same day). The tests and the items 
within each test were presented in a fixed order. To assess the 
tests’ retest reliability, all participants completed the same 
test protocol a second time, approximately four weeks after 
the first test day. For a detailed description of the test 
protocol, the individual test materials and procedures, see 
Hintz et al. (2020a). Table 1 provides an overview of the 
tests, the cognitive construct that each test was assumed to 
measure, the nature of the dependent variables (accuracy- vs. 
RT-based) and key descriptive statistics. Internal consistency 
and test-retest reliability was excellent for most tests, with the 
exception of the Corsi block and Flanker tests. This was 
unexpected, as these are standard frequently used and well 
validated tests. The authors noted that in both tests 
participants were excluded based on task misunderstandings. 
One possibility is thus that poor internal consistency and 
retest reliability are the result of technical issues in the test 
administration. Moreover, descriptive statistics revealed poor 
results for the newly developed monitoring in (non-)word 
lists and sentences-in-noise tests, which – as the authors 
explain – might have been too difficult for the participants. 
This means that no strong conclusions should be drawn from 
results involving those tests. 

Data analysis 
We harmonized the scores such that for all tests higher scores 
reflected better performance. No pre-processing was applied 
to the data other than that done by Hintz et al. (2020a). The 
dataset had some missing values, which were missing at 
random. Over the 112 participants, 0.46 values were missing 
on average (min = 0, max = 5); over the 35 scores, 1.46 values 
were missing on average (min = 0, max = 7). This amounted 
to a total of 1.30% of missing data. We imputed missing data 
points using MICE (van Buuren & Groothuis-Oudshoorn, 
2011), as implemented in the function  
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 ‘mice’ from the eponymous R package. The resulting data 
matrix was submitted to a correlation analysis. We 
additionally transformed the correlation matrix into a 
Euclidean distance matrix, using the function ‘cor2dist’ from  

R package psych. The Euclidian distance matrix served as 
input to the HCA, which was performed using R function 
hclust using the complete-linkage method. 
 

Construct measured Test DV N Skew. Kurt. Intern. 
consist. 

Retest 
reliab. 

Linguistic knowledge Peabody Acc. 112 -0.43 -0.79 0.96 0.91 
Linguistic knowledge Antonym production Acc. 111 -0.28 -0.34 0.70 0.74 
Linguistic knowledge Spelling Acc. 112 -0.43 -0.37 0.83 0.85 
Linguistic knowledge Author recognition Acc. 112 0.62 0.47 0.93 0.95 
Linguistic knowledge Idioms Acc. 112 -0.33 0.03 0.53 0.78 
Linguistic knowledge Prescriptive grammar Acc. 112 0.04 -0.65 0.74 0.86 
Processing speed Auditory simple RT RT 112 -1.36 3.10 0.90 0.59 
Processing speed Auditory choice RT RT 112 -0.60 0.15 0.96 0.76 
Processing speed Letter comparison RT 107 0.65 0.47 0.89 0.83 
Processing speed Visual simple RT RT 112 -0.54 0.51 0.86 0.58 
Processing speed Visual choice RT RT 112 0.88 0.73 0.95 0.78 
Working memory Digit span forward Acc. 112 0.26 -0.74 0.81 0.75 
Working memory Digit span backward Acc. 110 0.22 -0.56 0.72 0.70 
Working memory Corsi forward Acc. 111 -0.08 0.25 0.53 0.39 
Working memory Corsi backward Acc. 108 -0.04 -0.15 0.71 0.49 
Inhibition Flanker RT 106 -0.57 2.77 0.98 0.50 
Inhibition Antisaccade Acc. 111 -2.09 6.40 0.89 0.71 
Non-verbal IQ Ravens Acc. 112 -0.48 -0.33 0.87 0.87 
Word production Picture naming RT 111 -0.28 0.76 0.88 0.69 
Word production Verbal fluency (Semantic categories) Acc. 106 0.04 -0.18 - 0.72 
Word production Verbal fluency (Letters) Acc. 112 0.15 0.55 - 0.71 
Word production Maximal speech rate RT 106 -0.24 -0.07 - 0.88 
Word production Word pronunciation Acc. 111 -0.12 -0.57 0.46 0.79 
Word production Non-word pronunciation Acc. 111 0.26 0.60 0.88 0.88 
Word comprehension Non−word monitoring in noise Acc. 112 -2.11 7.87 - 0.59 
Word comprehension Word form monitoring in noise Acc. 112 -2.47 9.98 - 0.49 
Word comprehension Meaning monitoring in noise Acc. 109 -1.02 2.48 - 0.53 
Word comprehension Rhyme judgment RT 109 -0.49 0.10 0.94 0.79 
Word comprehension Lexical decision RT 112 0.61 0.72 0.97 0.69 
Word comprehension Semantic categorization RT 109 -0.90 0.72 0.96 0.62 
Sentence production Phrase generation RT 112 0.47 0.80 0.82 0.79 
Sentence production Sentence generation Acc. 112 -1.14 0.98 0.95 0.67 
Sentence comprehension Gender prediction RT 105 0.45 -0.95 0.88 0.88 
Sentence comprehension Verb prediction RT 112 0.62 -0.72 0.86 0.76 
Sentence comprehension Sentence monitoring in noise Acc. 112 -0.67 0.16 - 0.30 

Table 1: Overview of the tests provided by Hintz et al. (2020a), the cognitive constructs measured and key descriptive 
statistics for each dependent variable. 

Note. DV = dependent variable, Skew. = skewness, Kurt. = kurtosis, Intern. consist. = internal consistency, Retest reliab. 
= retest reliability 
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Figure 1: Relationships between test scores. Panel A: Correlation matrix presented as a heatmap. Warm colors represent 
strong correlations. Scale ranges from weakest to strongest correlation observed. Correlation coefficients from the same 

cognitive construct enclosed in green triangles. Panel B: Dendogram. Statistically similar scores form clusters. 
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Results and discussion 
Figure 1 summarizes the results of the correlation analysis 
(Panel A) and the HCA (Panel B). Correlations between test 
scores ranged between -.19 and .73. As expected, tests 
assumed to measure the same cognitive construct generally 
correlated positively with each other, moderately to strongly, 
as reflected in warm-color cells (e.g., orange-yellow) 
enclosed within the green triangles along the gray diagonal in 
the heatmap. In addition to the tests with poor descriptive 
statistics mentioned above (Corsi, Flanker, (non-)word and 
sentence monitoring), which correlated only weakly with 
other tests assumed to measure the same cognitive construct, 
we observed that the letter comparison test correlated less 
strongly with the other processing speed tests, that picture 
naming was correlated less strongly with the other word 
production tests, and that phrase and sentence generation tests 
were not strongly correlated. 

Turning to the hierarchical representation of the 
relationships between the test scores, in the dendogram, the 
first split divided the tree into two main branches: One branch 
consisted of three sub-clusters (II, III, and IV); the other 
branch (sub-cluster I) featured seven test scores that were 
grouped together by the algorithm but were completely 
unrelated to the remaining tests. These latter tests, i.e. 
monitoring in noise, Flanker, and Corsi Block tests, were thus 
unrelated to other tests assumed to measure the same 
cognitive construct (i.e., word and sentence comprehension, 
inhibition and working memory) and did not show 
relationships with tests measuring other cognitive constructs 
either. The most likely explanation for this separation is – as 
mentioned earlier – the tests’ poor performance on internal 
consistency and test-retest reliability. This sub-cluster of tests 
is not considered further here. 

As expected and also shown in the heatmap, the tests 
assumed to tap a common construct generally appeared close 
together in the cluster structure. That is, the tests of 
processing speed occurred together in cluster II, the 
remaining domain-general skills in cluster IV, and the 
linguistic experience tests in cluster III. 

More interestingly, the word and sentence production tasks 
did not appear in close proximity in the dendogram, but were 
distributed over different sub-clusters. This reflects that they 
depended to differing degrees on specific domain-general 
skills and linguistic experience. Specifically, the phrase 
generation task, where participants were familiarized with a 
small set of common objects, which they subsequently named 
in noun and adjectival phrases of increasing complexity, was 
strongly affiliated with the processing speed tasks. By 
contrast, sentence generation, where participants produced 
transitive sentences in active and passive voice, and picture 
naming, where they had to retrieve the high and low 
frequency names of pictures, were closest to the linguistic 
knowledge tasks. This is plausible (at least with the wisdom 
of hindsight), because the phrase generation task only 
required participants to rapidly order a small set of known 
words, whereas picture naming required the retrieval of 
lexical knowledge. This clustering is consistent with the 

entrenchment hypothesis (e.g., Diependaele et al., 2013), 
according to which linguistic experience facilitates lexical 
access. The remaining word production tasks, including the 
verbal fluency tasks, clustered together with the tests of 
working memory, again (for verbal fluency tasks) consistent 
with earlier work (Shao et al., 2011). 

Turning to the comprehension test scores, the speeded 
word comprehension tasks (i.e., lexical decision, semantic 
categorization, rhyme judgment) clustered together with the 
processing speed tasks, whereas the sentence comprehension 
tasks, where participants had to predict upcoming words 
based on gender cues and verb semantics, clustered together 
with other domain-general processing tasks, i.e. the Raven 
non-verbal intelligence test, the digit span working memory 
tests and the antisaccade test, as well as the majority of word 
production tests. The presence of the antisaccade test in that 
cluster is unexpected and not straightforwardly motivated by 
prior research or models of sentence comprehension. 
Mediating influences of working memory on visually-aided 
auditory prediction tasks, on the other hand, have previously 
been reported (Huettig & Janse, 2016). Moreover, prominent 
theories have linked prediction during comprehension to 
word production (Dell & Chang, 2014; Pickering & Garrod, 
2007; see Hintz et al., 2017, and Rommers et al., 2015, for 
experimental evidence for a link between prediction and 
production abilities). 

The scattering of the word and sentence production and 
comprehension tasks over different clusters shows, first, that 
they are not as closely related as one might have thought (cf. 
Chater et al., 2016), and second, that they draw to differing 
degrees on domain-general skills and linguistic knowledge. 
Given the nature and complexity of the tasks, this not 
surprising. In evaluating the present findings, it is important 
to keep in mind that linguistic processing, in particular 
sentence comprehension, was only assessed by a small set of 
tasks. Therefore, general conclusions about the relationships 
between the production and comprehension system and their 
reliance on linguistic knowledge and domain-general skills 
can only be drawn on the basis of further work. The present 
study illustrates how such work could proceed in the future, 
and what can be gained by individual-differences studies that 
simultaneously assess multiple skills in each participant. 

Conclusion 
The present re-analysis of the public dataset by Hintz et al. 
(2020a) was exploratory. We expected that scores of tests 
assumed to measure the same cognitive construct would 
cluster together. The main issue to be explored was how 
strongly the scores from the production and comprehension 
tasks were related to each other and to the scores reflecting 
linguistic experience, non-verbal intelligence, processing 
speed, working memory and inhibition. We observed a strong 
association between processing speed and word 
comprehension, and between linguistic experience and 
production.  Interestingly, we saw separate sub-clusters for 
comprehension and production, suggesting that these 
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processes are less strongly related than one might have 
thought. 

References  
Baddeley, A. (2003). Working memory and language: An 

overview. Journal of Communication Disorders, 36(3), 
189-208. 

Bates, E., Bretherton, I., & Snyder, L. S. (1991). From first 
words to grammar: Individual differences and dissociable 
mechanisms (Vol. 20). Cambridge University Press. 

van Buuren, S. & Groothuis-Oudshoorn, K. (2011). mice: 
Multivariate imputation by chained equations in R. Journal 
of Statistical Software, 45(3), 1-67. Chater, N., McCauley, 
S. M., & Christiansen, M. H. (2016). Language as skill: 
Intertwining comprehension and production. Journal of 
Memory and Language, 89, 244-254. 

Christopher, M. E., Miyake, A., Keenan, J. M., Pennington, 
B., DeFries, J. C., Wadsworth, S. J., ... & Olson, R. K. 
(2012). Predicting word reading and comprehension with 
executive function and speed measures across 
development: a latent variable analysis. Journal of 
Experimental Psychology: General, 141(3), 470-488. 

Dąbrowska, E. (2018). Experience, aptitude and individual 
differences in native language ultimate attainment. 
Cognition, 178, 222-235. 

Deary, I. J. (2001). Human intelligence differences: A recent 
history. Trends in Cognitive Sciences, 5, 127–130. 

Dell, G. S., & Chang, F. (2014). The P-chain: Relating 
sentence production and its disorders to comprehension 
and acquisition. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 369: 20120394. 

Diependaele, K., Lemhöfer, K., & Brysbaert, M. (2013). The 
word frequency effect in first-and second-language word 
recognition: A lexical entrenchment account. Quarterly 
Journal of Experimental Psychology, 66(5), 843-863. 

Engelhardt, P. E., Nigg, J. T., & Ferreira, F. (2017). 
Executive function and intelligence in the resolution of 
temporary syntactic ambiguity: an individual differences 
investigation. Quarterly Journal of Experimental 
Psychology, 70(7), 1263-1281. 

Hintz, F., Dijkhuis, M., Van 't Hoff, V., McQueen, J. M., & 
Meyer, A. S. (2020a). A behavioural dataset for studying 
individual differences in language skills. Scientific Data, 7: 
429. 

Hintz, F., Jongman, S. R., Dijkhuis, M., Van 't Hoff, V., 
McQueen, J. M., & Meyer, A. S. (2020b). Shared lexical 
access processes in speaking and listening? An individual 
differences study. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 46(6), 1048-1063. 

Hintz, F., Meyer, A. S., & Huettig, F. (2017). Predictors of 
verb-mediated anticipatory eye movements in the visual 
world. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 43(9), 1352-1374. 

Huettig, F., & Pickering, M. J. (2019). Literacy advantages 
beyond reading: Prediction of spoken language. Trends in 
Cognitive Sciences, 23(6), 464-475. 

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of 
comprehension: individual differences in working 
memory. Psychological Review, 99(1), 122-149. 

Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). 
Individual differences in language acquisition and 
processing. Trends in Cognitive Sciences, 22(2), 154-169. 

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive 
activation model of context effects in letter perception: I. 
An account of basic findings. Psychological Review, 88(5), 
375. 

Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A. S. (2017). 
Vocabulary knowledge predicts lexical processing: 
Evidence from a group of participants with diverse 
educational backgrounds. Frontiers in Psychology, 8: 
1164. 

Martin, R. C. (2021). The critical role of semantic working 
memory in language comprehension and production. 
Current Directions in Psychological Science, 30(4), 283-
291. 

McQueen, J. M., & Meyer, A. S. (2019). Key issues and 
future directions: Towards a comprehensive cognitive 
architecture for language use. In P. Hagoort (Ed.), Human 
language: From genes and brain to behavior (pp. 85-96). 
Cambridge, MA: MIT Press. 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., 
Howerter, A., & Wager, T. D. (2000). The unity and 
diversity of executive functions and their contributions to 
complex “frontal lobe” tasks: A latent variable analysis. 
Cognitive Psychology, 41(1), 49-100. 

Pickering, M. J., & Garrod, S. (2007). Do people use 
language production to make predictions during 
comprehension?. Trends in Cognitive Sciences, 11(3), 105-
110. 

Rommers, J., Meyer, A. S., & Huettig, F. (2015). Verbal and 
nonverbal predictors of language-mediated anticipatory 
eye movements. Attention, Perception & Psychophysics, 
77(3), 720-730. 

Schubert, A. L., Hagemann, D., Voss, A., Schankin, A., & 
Bergmann, K. (2015). Decomposing the relationship 
between mental speed and mental abilities. Intelligence, 
51, 28-46. 

Schubert, A. L., Hagemann, D., & Frischkorn, G. T. (2017). 
Is general intelligence little more than the speed of higher-
order processing?. Journal of Experimental Psychology: 
General, 146(10), 1498-1512. 

Schmidtke, D., Van Dyke, J. A., & Kuperman, V. (2018). 
Individual variability in the semantic processing of English 
compound words. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 44(3), 421-439. 

Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of 
individual differences in the speed of naming objects and 
actions: The contribution of executive control. Quarterly 
Journal of Experimental Psychology, 65(10), 1927-1944. 

Visser, B. A., Ashton, M. C., & Vernon, P. A. (2006). Beyond 
g: Putting multiple intelligences theory to the test. 
Intelligence, 34(5), 487-502.  

  

2496


