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Abstract
We present a minimal approach to include static Coulomb interactions in Eliashberg theory of
superconductivity from first principles. The method can be easily implemented in any existing
Eliashberg code (isotropic or anisotropic) to avoid the standard use of the semiempirical parameter
µ∗, which adds unnecessary uncertainty to Tc predictions. We evaluate the prediction accuracy of
the method by simulating the superconducting properties of a set of layered superconductors,
which feature unconventional Coulomb effects: CaC6, MgB2, Li-doped β-ZrNCl and YNi2B2C. We
find that the estimated critical temperatures are consistent with those from ab-initio density
functional theory for superconductors, and in close agreement with the experimental values.

1. Introduction

Calculations of the critical temperature (Tc) of conventional superconductors are commonly based on
Eliashberg theory [1–4]. This is, in principle, a comprehensive theory of the superconducting state, including
both electron–phonon and Coulomb effects. The usual application of Eliashberg theory to realistic systems
is, however, oversimplified [5] in that the Coulomb interaction is reduced to a single semi-empirical
parameter µ∗ [4–6]. In recent years the problem of developing a fully ab-initio Eliashberg theory accounting
for Coulomb and phonon interactions on equal footing has been addressed in detail [7–10]. An extension of
the Eliashberg approach to include dynamical Coulomb interactions is computationally very expensive as it
involves the evaluation of slowly converging Matsubara frequency summations. Smart summation
algorithms for the simulation of real materials have been developed, such as those presented in [9] and [10].
Nevertheless, the computational cost is still very high compared to density functional theory for
superconductors (SCDFT) [10, 11] and conventional Eliashberg codes in the µ∗ approximation [12].

On the other hand, for most phonon-driven superconductors plasmonic pairing contributions are
negligible, and accurate predictions can be obtained by a proper treatment of the static Coulomb
interaction [8, 10]. We show that in this case the computationally demanding parts of the Matsubara sums
can be evaluated analytically, similarly to how it is done in SCDFT [10, 11, 13–16]. The approach that we
present follows the lines of a scheme discussed by Scalapino, Schrieffer and Wilkins [5] and corresponds to
the static limit of the hybrid Eliashberg-SCDFT approach by Davydov et al [10]. For classic elemental
superconductors we do not expect this method to lead to significant differences with respect to the µ∗ = 0.1
rule, which was meant to describe these materials [4, 17, 18]. Deviations are foreseen for less common
superconductors where Coulomb interactions have a non-trivial behavior, like Chevrel phases [19], multigap
superconductors [20, 21] and low dimensional systems. In this work we focus on the application of the
method to a set of layered compounds, namely, CaC6, MgB2, Li0.5ZrNCl and YNi2B2C.

The paper is organized as follows: in section 2 we review the anisotropic Eliashberg theory and discuss
our approach for an analytic Matsubara integration of high-energy Coulomb effects (section 2.1). Further
simplifications are introduced by employing suitable isotropic approximations (section 2.2). The isotropic
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approach is used to estimate the superconducting properties of the chosen set of materials. Results are
presented and discussed in section 3.

2. Eliashberg theory with static Coulomb interactions

Eliashberg theory is a many-body Green’s-function approach for the description of conventional
superconductors, where the pairing is driven by the phonon-induced attraction between the electrons [2–5,
12, 22]. For a recent review of conventional Eliashberg theory and its current extensions we refer the reader
to [10]. Here, we use the same notation to summarize the key aspects of the method. Eliashberg theory relies
on Migdal’s theorem to treat the electron–phonon interaction accurately to order ωD/EF, where the phonon
energy scale, set by the Debye frequency ωD, is assumed to be much smaller than the electronic Fermi energy
EF . This amounts to treat the electron self-energy Σ̄(k, iωn) up to second order in the electron–phonon
coupling. On the contrary, there is no small parameter that allows for a satisfactory perturbative treatment of
the Coulomb interaction. The possibility of a plasmon enhancement of Tc is however neglected. The
electronic band structure εk is assumed to be weakly perturbed by the superconducting condensation and
accurately described by normal-state density functional theory [23–25]. Additionally, one has to take into
account a static Coulomb interactionWk,k ′ , which opposes the formation of the superconducting state.
Under these assumptions, the Eliashberg self-energy is usually expressed in terms of the mass
renormalization function Z(k, iωn) and the superconducting order parameter ϕ(k, iωn), through its
decomposition into Pauli matrices (τ0,1) [10]:

Σ̄(k, iωn) = iωn [1−Z(k, iωn)]τ0 +ϕ(k, iωn)τ1, (1)

where k= (k,n) is a combined momentum and band index and ωn are fermionic Matsubara frequencies.
The problem of calculating Σ̄ (and ultimately the one-electron Green’s function) is then reduced to solving
coupled equations for Z and ϕ. These equations are:

Z(k, iωn) = 1+
1

β

∑
k ′,n ′

λk,k ′(iωn − iωn ′)

N(0)

ωn ′Z(k ′, iωn ′)

ωnΘ(k ′, iωn ′)
, (2)

ϕph(k, iωn) =
1

β

∑
k ′,n ′

λk,k ′(iωn − iωn ′)

N(0)

ϕ(k ′, iωn ′)

Θ(k ′, iωn ′)
, (3)

ϕc(k) =− 1

β

∑
k ′,n ′

Wk,k ′
ϕ(k ′, iωn ′)

Θ(k ′, iωn ′)
, (4)

where we have introduced the function:

Θ(k, iωn) = [ωnZ(k, iωn)]
2
+ ε2k +ϕ2(k, iωn), (5)

and split ϕ(k, iωn) into phonon (ϕph) plus Coulomb (ϕc) contributions. Note that, since retardation effects in
the Coulomb repulsion are disregarded, ϕc(k) is frequency independent and Z(k, iωn) is entirely determined
by the phonon-mediated interaction λk,k ′(iνn) [4]. The electron–phonon coupling is usually defined by its
spectral representation,

λk,k ′(iνn) =

ˆ ∞

0
dωα2Fk,k ′(ω)

2ω

ν2n +ω2
, (6)

in terms of the Eliashberg function:

α2Fk,k ′(ω) = N(0)
∑
ν

|gkk ′ν |2δ(ω−ωqν), (7)

where N(0) is the electronic density of states at the Fermi level and gkk ′ν are the electron–phonon matrix
elements for the scattering between electronic states k and k

′
through a phonon with wave vector q= k− k ′

and branch index ν.Wk,k ′ is given by the matrix elements of the screened Coulomb interaction with respect
to the Kohn–Sham orbitals,
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Wk,k ′ = 4π
∑
G,G ′

ϵ−1
GG ′(q)

× ⟨k ′|e−i(q+G)·r|k⟩⟨k|ei(q+G ′)·r|k ′⟩
|q+G||q+G ′|

, (8)

where G are reciprocal lattice vectors and the static approximation for the dielectric matrix ϵ−1
GG ′(q) is made.

2.1. Analytic summation of the Coulomb interaction
Solving the Eliashberg equations becomes computationally affordable if a small cutoff compared to EF can be
introduced in the summations over the Matsubara frequencies. The ωn sums in equations (2) and (3)
converge within an energy scale of the order of a few times (∼ 5 to 10) ωD, that is the upper characteristic
frequency of the electron–phonon spectral function α2Fk,k ′(ω). This enables to set a cutoff Matsubara point
ωnc , above which one can safely assume Z(k, iωn) = 1 and ϕph(k, iωn) = 0. Based on this observation, we
rewrite equation (4) in the following form:

ϕc(k) =− 1

β

∑
k ′

Wk,k ′

[
nc∑

n ′=−nc

ϕ(k ′, iωn ′)

Θ(k ′, iωn ′)

+
∑

|n ′|>nc

ϕc(k ′)

ω2
n ′ + ε2k ′ +ϕc2(k ′)

 , (9)

where the summation for | ωn ′ |> ωnc in the second term has been simplified by replacing Z(k, iωn) with
unity and ϕ(k, iωn) with ϕc(k). We note that the reduced Matsubara-frequency dependence of the argument
allows for a semianalytic evaluation of this sum by using the relation:

1

β

∑
n

1

ω2
n +A

=
1

2

tanh
[
β
√
A

2

]
√
A

. (10)

Handling equation (9) by means of equation (10) leads to the expression:

ϕc(k) =−
∑
k ′

Wk,k ′

{
1

2

tanh

[
1
2β

√
ε2k ′ +ϕc2(k ′)

]
√
ε2k ′ +ϕc2(k ′)

+
1

β

nc∑
n ′=−nc

[
ϕ(k ′, iωn ′)

Θ(k ′, iωn ′)
− ϕc(k ′)

ω2
n ′ + ε2k ′ +ϕc2(k ′)

]}
, (11)

where the remaining Matsubara frequency summation is restricted, for both phonon and Coulomb
contributions, to a narrow energy window. Equation (11) represents a huge simplification, because it
effectively separates the low-energy scale at which the electron–phonon coupling is active, from the
high-energy scale associated with Coulomb renormalization effects. Concerning the summation over k

′
, this

can be carried out differently depending on the value of εk ′ . The integration over low-energy states would
benefit from the use of smart interpolation algorithms, such as that developed by R. Margine and
coworkers [26–28], which allows for a very fine yet efficient sampling of the electron–phonon scattering
processes near the Fermi surface. Less accuracy is needed while integrating over high-energy states, as these
essentially contribute via Coulomb effects, which are weakly k-dependent. Hence, the summation over k

′
can

be limited to a sparse set of points, e.g. by means of the energy-dependent random sampling used in
SCDFT [13]. Actually, one might even resort to a simplified isotropic treatment of the Coulomb interaction
(see section 2.2), justified by the fact that anisotropy effects inWk,k ′ are expected to average out over a large
energy scale.

2.2. Isotropic approximation
Despite the simplifications introduced so far, solving the Eliashberg equations still involves the significant
cost of performing a k-integration able to resolve the properties of the electron–phonon coupling near the
Fermi surface, and to account for the full extent of the Coulomb interaction. In order to overcome this
numerical issue, most Eliashberg codes resort to a simplified approach by neglecting the k-dependence in

3
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both λk,k ′ andWk,k ′ . For the electron–phonon coupling, the isotropic approximation is defined by averaging
equation (7) over the Fermi surface:

α2F(ω) =
1

N(0)2

∑
k,k ′

α2Fk,k ′(ω)δ(εk)δ(εk ′), (12)

which, through equation (6), yields the isotropic kernel λ(iνn). Results show that this approximation is quite
accurate for the estimation of Tc. In fact, the anisotropy in the electron–phonon coupling turns out to have
no relevant effect on Tc for the majority of bulk superconductors, possibly being truly essential only to
describe MgB2 [29–31]. On the other hand, it affects, often crucially, all those superconducting properties
which depend on the excitation spectrum (such as tunneling behavior, thermodynamic properties and
magnetic response) [32–34].

Handling the k-dependence of the Coulomb interaction is a more subtle problem. Formally, this
dependence cannot be simply neglected because the integration in equation (4) would diverge
logarithmically. For this reason the µ∗ approach, which involves the isotropic approximation, relies on the
introduction of an arbitrary high-energy cutoff (usually chosen as EF) [4, 5, 35, 36]. The most sensible
strategy [8, 10, 31] is to approximateWk,k ′ by its average over surfaces of constant energy (ε) in k-space, i.e.:

W(ε,ε ′) =
1

N(ε)N(ε ′)

∑
k,k ′

Wk,k ′δ(εk − ε)δ(εk ′ − ε ′), (13)

where N(ε) =
∑

k δ(εk − ε). By averaging over k equations (2), (3) and (11), we obtain the following
isotropic Eliashberg equations:

Z(iωn) = 1+
π

β

nc∑
n ′=−nc

λ(iωn − iωn ′)ωn ′Z(iωn ′)

ωn

√
[ωn ′Z(iωn ′)]

2
+ϕ2(0, iωn ′)

, (14)

ϕph(iωn) =
π

β

nc∑
n ′=−nc

λ(iωn − iωn ′)ϕ(0, iωn ′)√
[ωn ′Z(iωn ′)]

2
+ϕ2(0, iωn ′)

, (15)

ϕc(ε) =−
ˆ

dε ′W(ε,ε ′)N(ε ′)

{
1

2

tanh

[
β
2

√
ε ′2 +ϕc2(ε ′)

]
√
ε ′2 +ϕc2(ε ′)

+
1

β

nc∑
n ′=−nc

[
ϕ(ε ′, iωn ′)

Θ(ε ′, iωn ′)
− ϕc(ε ′)

ω2
n + ε ′2 +ϕc2(ε ′)

]}
, (16)

where

ϕ(ε, iωn) = ϕph(iωn)+ϕc(ε), (17)

and

Θ(ε, iωn) = [ωnZ(iωn)]
2
+ ε2 +ϕ2(ε, iωn). (18)

The resulting scheme is formally similar to the static limit of the hybrid SCDFT-Eliashberg method recently
introduced in [10]. The main difference lies in equations (14) and (15), where the energy dependence of
ϕc(ε) and N(ε) has been neglected to allow for an analytic integration over ε, as in usual applications of
conventional Eliashberg theory [4]. For the numerical tests discussed in section 3 we solve
equations (14)–(18), with the only exception of MgB2, for which we use a 2-band generalization [37].

3. Superconducting properties of layered compounds within ab-initio Eliashberg theory

For most conventional superconductors the role of Coulomb interactions is almost trivial, as it is reduced to
a scaling of the superconducting gap at the Fermi energy. This is due to the fact that by integratingW(ε,ε ′)
over a large energy scale, specific material properties are often washed out and the resulting effect is nearly
material independent. The striking evidence for this is that the McMillan formula for Tc, which depends on
the single Coulomb parameter µ∗, works reasonably well for many materials, with the only caveat that
µ∗ ≃ 0.1 should be used for sp-electron systems and µ∗ ≃ 0.14 for d-electron systems [4, 36]. However,
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peculiarities in the electronic band structure may lead to significant exceptions. An interesting case recently
discussed are Chevrel phases, where the band character changes abruptly close to the Fermi level,
significantly weakening the Coulomb renormalization [19], and for which a naive application of the
McMillan formula gives a Tc more than 50% larger than the experimental value. Anomalous Coulomb
effects are likely to occur when the Fermi level is close to Van Hove singularities causingW(ε,ε ′) to suddenly
drop or increase. A typical example is the proximity of the Fermi level to a band gap, as in weakly doped
insulators [48, 49], or to a sharp peak in the density of state, like in high pressure sulphur hydride [7, 50].
From purely theoretical arguments, an enhancement of Coulomb interactions is more likely to occur in low
dimensional systems, because of the reduced metallic screening [51]. In this work we test our method on
four layered systems, which have been formerly investigated within SCDFT [16, 21, 31, 34, 38, 52, 53]. The
coupling parameters used in the calculations are collected in table 1: electron–phonon couplings are taken
from the literature [31, 38, 39], while the Coulomb interactionW is computed within the RPA
approximation using the Elk code [54].

3.1. CaC6
CaC6 is an intercalated graphite compound with an experimental critical temperature of 11.5 K [40].
Superconductivity arises from the strong electron–phonon coupling provided by both C and Ca phonon
modes [55]. This coupling is strongly anisotropic with C- and Ca-related phonons acting selectively on the
multiple Fermi surface sheets of the system [22, 56]. This leads to a strong anisotropy of the superconducting
gap [34], but has a rather small effect on Tc (of the order of 1 K). The µ∗ approach to the Coulomb
interaction is relatively accurate, although a µ∗ = 0.14 needs to be used in order to reproduce the
experimental Tc, whereas the conventional value of 0.1 yields an overestimation of 40%.

By solving equations (14)–(18) using the ab-initio calculated couplings of figures 1(a)–(d), we obtain an
excellent Tc estimate of 10.7 K. This value is essentially identical to that provided by SCDFT and the
full-scale Eliashberg equations of [10]. The unusually strong Coulomb renormalization effect is due to the
block-matrix structure of the screened Coulomb interactionW(ε,ε ′), which effectively restricts the
Coulomb renormalization to a 5 eV energy window [56], instead of employing the full valence bandwidth of
20 eV. This block structure is clearly visible in figure 1(b).

3.2. MgB2
MgB2 is probably the most remarkable phononic superconductor. It has a Tc of 39 K and the unique feature
of two, electronically well-distinguished superconducting gaps. The highest gap occurs in the hole-doped
strongly covalent σ bands, while the lowest gap arises from the π bands of the B electrons. Electronic [57, 58]
and phononic [59–61] properties of this material have been discussed in detail in a number of excellent
theoretical studies. Due to the different nature of σ and π states crossing the Fermi level, the Coulomb
interaction acts differently on the two bands. Both states contribute significantly to metallic screening [20,
21], however, electrons in the more spatially constrained σ states feel a 30% stronger Coulomb repulsion.
The most simplified approach to MgB2 needs to account for this two-band anisotropic structure in both the
electron–phonon coupling and the screened Coulomb repulsion. Solving the Eliashberg equations with the
coupling functions shown in figures 1(f)–(p), we obtain a Tc of 33.5 K, which is about 15% smaller than the
experimental value. A similar underestimation resulted from previous SCDFT calculations [31]. We note
that such an error in the predicted Tc by means of ab-initiomethods is relatively common, and overall quite
good, owing to the number of approximations involved. In the present case this underestimation is probably
related to some inaccuracy in the calculated electron–phonon coupling. In fact, the average coupling that we
compute (λ= 0.7) turns out to be smaller than that provided by a likely more accurate Wannier-function
approach [62].

3.3. YNi2B2C
The next system in our set is the quaternary borocarbide YNi2B2C, whose crystal structure is shown in
figure 1(o). The peculiarity of this material is the pinning of the Fermi energy to a Van Hove singularity,
which leads to an extremely sharp peak (less than 100 meV wide) in the density of states (figure 1(n)). This
unique feature of YNi2B2C challenges the validity of the adiabatic approximation [1], the neglect of
dynamical Coulomb effects [10, 53], and the use of an energy independent electron–phonon coupling.
Nevertheless, we have tested our approach on this system. The first problem that one encounters is the choice
of the lattice parameters. Most ab-initio simulations are either carried out at the ab-initio relaxed lattice
(typically in the local or semi-local density approximation [25]) or at the experimental lattice. Usually, the
latter approach is slightly more accurate, but results do not depend critically on the choice. However, it turns
out that for YNi2B2C this is not the case. By simulating the system at the experimental lattice we obtain an
integrated electron–phonon coupling λ= 0.86, whereas using the LDA relaxed lattice gives λ= 0.56, that is a
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Figure 1. Couplings and crystal structures of the layered systems: CaC6 ((a)–(e)), MgB2 ((f)–(j)), YNi2B2C ((k)–(o)) and
Li0.5ZrNCl ((p)–(t)). Panels (a),(f),(k),(p): α2F electron–phonon function [31, 38, 39]. Panels (b),(g),(l),(q): Coulomb function
W(ε,ε ′); a diagonal cut (ε= ε ′) and a Fermi surface cut (ε ′ = 0) ofW(ε,ε ′) are displayed in panels (c),(h),(m),(r). Panels
(d),(i),(n),(s): electronic density of states per unit cell. Crystal structures are sketched in panels (e),(j),(o),(t).

large discrepancy. We do not delve here into this complex issue, and choose to use the electron–phonon
coupling computed at the experimental lattice (shown in figure 1(o)), as it best describes the vibrational
spectrum [39, 63, 64]. Consistently, we compute the static screened Coulomb interaction with the same
structure. As shown in figures 1(l) and (m) the Coulomb repulsion is relatively smooth, with decreasing
matrix elements at higher energies, not unlike the electron gas model [65]. However, sinceW(ε,ε ′) enters
equation (16) jointly with the density of states, it plays a non trivial role in determining Tc. We obtain a Tc of
11.3 K, which underestimates the experimental value, reported to be within the range 14.6 K [44]–15.6 K
[45]. A simple McMillan estimation with µ∗ = 0.1 predicts a Tc of 15.2 K, in better agreement with
experiments, even though, due to the d character of the density of states at the Fermi level, a larger µ∗ is
conventionally recommended [4].

3.4. Li0.5ZrNCl
Lastly, we consider the lithium-doped ternary transition-metal nitride halide ZrNCl. Undoped ZrNCl is a
layered semiconductor. The intercalation of lithium impurities into the Van der Waals gap (the interlayer
space) leads, for x= 0.5, to the crystal structure shown in figure 1(t). This material has been studied
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thoroughly by Akashi and coworkers [38] within the SCDFT framework. Here, we use the electron–phonon
coupling extracted from their reference and shown in figure 1(p).

The Coulomb interaction matrix that we computed is shown in figures 1(q) and (r). Compared to MgB2

and CaC6, this function is significantly more structured, owing to the fact that, this system being a doped
insulator, the metallic screening is poor. In fact at the band edges (that is close to the points where the density
of states tends to zero in figure 1(r)),W(ε,ε ′) shows very high peaks caused by the 1/q divergence of the bare
Coulomb interaction. Since the Fermi level is very close to one of the peaks, the Coulomb repulsion is strong.
A µ∗ = 0.2 is required in the McMillan formula to reproduce the extrapolated experimental [47] Tc of
approximately 11 K, whereas the standard µ∗ = 0.1–0.14 gives a Tc in the range 18–22 K, that is almost twice
the experimental value. On the contrary, our Eliashberg approach yields an excellent Tc estimate of 9.5 K.
However, one should point out that due to the peaked-structure ofW(ε,ε ′), the estimation of Tc is very
sensitive to parameters like the position of the Fermi level and properties of the dielectric function.
Therefore, in a doped insulator of this kind, a 20% error in Tc is usually expected [48]. As a test, we have
used the same input functions to compute the critical temperature within SCDFT. This latter approach gives
a Tc of 13.1 K, that is about 15% higher than the experimental value. We observe that previous SCDFT-based
calculations on this system [38] predicted a very low Tc, highlighting a large discrepancy between theory and
experiments. We can now assert that the problem had to be ascribed to inaccuracy of the functional available
at the time [11].

4. Conclusions

We have presented a minimal yet efficient approach to include static Coulomb interactions in Eliashberg
theory from first principles, which avoids the arbitrariness introduced by the use of the adjustable parameter
µ∗. The method is formally equivalent to the static limit of the ab-initio Eliashberg theory recently proposed
in [10], but, unlike the more complex original scheme, allows for a straightforward implementation in
conventional Eliashberg codes. In the derived equations, the effects of the Coulomb interaction outside the
phonon frequency range are evaluated analytically, and the numerical integration is reduced, as for the
standard approach, to the energy window 0→ ωnc ∼ 10 ωD. Both parts include the matrix elements of the
screened Coulomb interaction, which can be computed using the random phase approximation for the
dielectric matrix. In practice, this is the main additional computational step compared to conventional
implementations. We have tested our method on the layered superconducting materials CaC6, MgB2,
YNi2B2C and Li-doped β-ZrNCl, which present a non-monotonous behavior of the Coulomb repulsion,
such to challenge the validity of the µ∗ approximation. The new approach turns out to be accurate as the
estimated critical temperatures are consistent with SCDFT values. The agreement with experiments is
excellent in terms of both Tc’s and gaps for CaC6, MgB2 and Li-doped β-ZrNCl, with a significant
improvement in prediction quality with respect to the µ∗ formula. We observe, however, a large error (25%)
in the predicted Tc of YNi2B2C. We believe that this anomaly should be further investigated, as it stems from
a difficulty in determining the electron–phonon coupling, and might point to strong non-adiabatic effects
related to the presence of a sharp Van Hove singularity at the Fermi level.
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