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Appendix SA. Detailed derivation of ffCO2[APO]. 

ΔCO2 = F – O – L 

where ΔCO2 is the change in atmospheric CO2, F is CO2 from fossil fuel emissions (a net source of CO2 to the 
atmosphere), O is the net CO2 exchange between the ocean and the atmosphere (a sink), and L is the CO2 
exchange between the land biosphere and the atmosphere (also a sink; includes fluxes from land-use change).  

ΔO2 = αF*F – αL*L 

where ΔO2 is the change in atmospheric O2, F and L are CO2 fluxes as defined above, αF is the mean oxidative 
ratio (-O2:CO2) of global fossil fuel emissions, and αL is the mean oxidative ratio of global terrestrial biosphere-
atmosphere exchange (-O2:CO2).  

Considering the CO2 and O2 mass balance over a regional domain: 

CO2 = H(F) – H(L) – H(O) + CO2-BL  

where H is a transport operator and CO2-BL is the baseline CO2 concentration 

O2 = αF*H(F) + αL*H(L) + O2-BL  

where O2-BL is the baseline O2 concentration. It is assumed there is no regional net ocean flux for O2 because CO2 
and O2 ocean-atmosphere exchange is decoupled, owing to the fact that CO2 dissociates in seawater but O2 does 
not.  

As defined in Equation 1:  

APO = O2 + αL*CO2 

Therefore, 

APO = (αF+αL)*H(F) – αL*H(O) + O2-BL + αL*CO2-BL 

For APOBL (i.e. the signal coming from the ocean onto the land) F = 0 so: 

APOBL = -αL*H(O) + O2-BL+ αL*CO2-BL 

Thus, 

ffCO2[APO] = (APO – APOBL)/(RAPO) = (APO – APOBL)/(αF+αL) = H(F) 



 

 

 
Figure S1. Supplementary plots of WAO. (A) Map of the UK, showing the location of Weybourne 
Atmospheric Observatory on the north Norfolk Coast (red star). (B) Polar frequency plot showing wind speed (in 
m s-1) and wind direction for May 2010 – Jan 2021, split by season. South-westerly winds dominate during all 
seasons, except in spring when there is a greater contribution from the north-east sector.  
  



 

 
Figure S2. WAO footprint for each year 2010-2020, from 3-hourly HYSPLIT trajectories, binned for each map grid 
box. The WAO annual footprint exhibits interannual variability, which affects the concentrations of atmospheric species 
measured at the site.   



 

 

 
Figure S3. RAPO values calculated from the UK BEIS energy trends data for the period January 2011 to 
January 2021 inclusive. RAPO is shown by the red line (left axis) with coal, gas and petrol shown by the black 
lines (right axis). RAPO increases by 0.01 after March 2020, during the COVID-19 lockdown periods. The earlier 
change in RAPO during 2012-2016 is caused by a reduction in coal usage, which is later compensated by an 
increase in gas usage. The reason for the difference between the mean RAPO value determined from the BEIS data 
compared to the value we obtained from STILT (BEIS is about 0.08 higher) is not currently known. 
  



 

 
 
Figure S4. Histogram of the observation – model differences shown in Figure 4. The plot shows data from 
the model test set only, which are withheld from model training. The black solid line is a gaussian fit of the 
binned differences. Only differences in the range -6 to 6 ppm are shown for clarity (the counts for larger 
differences are all very low). x0 denotes the x-axis position of the peak of the gaussian fit ± 1σ standard 
deviation. The value differs from that of Figure 4A in the main text, in part because of the binning process, and 
in part because the observation-model differences have a slightly non-normal distribution.  
  



 

 

 

Figure S5. Air mass backwards trajectory analysis for WAO. (A) Clustered air mass backwards trajectories 
at WAO for the years 2010-2020. These clusters were used as one of the ten independent variables in the 
machine learning analysis (see Methods). (B) Time proportion plot for the year 2020, showing the contribution 
of each cluster per month. UK-originating air masses dominate the trajectories of WAO during most months, 
with some significant contributions from the North Sea (especially during the late spring/early summer) and the 
European continent.  
 
  



 

 

 
Figure S6. Variable importance plot of the 10 independent variables of the trained Random Forest model. 
The variable importance, shown on the x axis, is defined as “the permutation importance differences of the 
predicted errors” and is unitless (39). Variable importance provides a measure of the strength of influence of a 
variable on prediction and is ranked for the 2010-2019 period. Thus, Radon-222, for which the data only exist at 
WAO since April 2018, ranks low in this plot but is ranked much higher when the model is trained using only 
2018-2019 data. 
 
  



 

 

 
Figure S7. Sensitivity of the Random Forest prediction to different start dates: 01Jan2020 (solid red line 
and shaded uncertainty, which are the same as shown in Figure 3B in the main text); 01Nov2019 (dotted 
burgundy line); and 01Dec2019 (dashed burgundy line). The cumulative ffCO2 differences of all three 
predictions are relative to 01Feb2020. Except for during the first few months, the differences in the results 
between the three predictions are within the uncertainties.  
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