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ABSTRACT

This dissertation is located in the field of numerical linear algebra. It proposes al-
gorithms for solving structured eigenvalue problems arising in electronic structure
computations. Matrices arising in linear-response time-dependent density functional
theory and many-body perturbation theory, in particular in the Bethe-Salpeter ap-
proach, show a 2 × 2 block structure. We show that they can also be characterized
with the help of non-Euclidian scalar products.

The motivation to devise new algorithms, instead of using general purpose eigenvalue
solvers, comes from the need to solve large problems on high performance computers.
This requires parallelizable and communication-avoiding algorithms and implementa-
tions.

After giving some mathematical, computational and physical background knowl-
edge, this thesis documents the extension of an optimized HPC library for solving
skew-symmetric eigenvalue problems on distributed memory machines. This proce-
dure is used to solve a specific form of Bethe-Salpeter eigenvalue problem under certain
definiteness conditions.

For crystalline systems, the periodicity of the lattice may be exploited to arrive
at a different form of the Bethe-Salpeter eigenvalue problem. Here, it is possible to
reduce the matrix dimension by half. Under the mentioned definiteness conditions, the
resulting eigenvalue problem is Hermitian positive definite. Accuracy may be improved
by employing a singular value decomposition instead of solving an implicitly squared
eigenvalue problem. A high performance implementation is not yet available but easy
to realize with basic linear algebra routines.

In the second half of this thesis, the focus shifts towards the development of new
algorithms, which do not yet have a high performance implementation but show high
potential in this regard.

We develop algorithms for computing generalized concepts of polar decompositions
and QR decompositions. Generalized polar decompositions are computed via itera-
tions where the number of steps can be known a priori. The iteration steps employ
routines for which communication-avoiding implementations exist. Further options
of parallelization are available making the algorithm promising for high performance
computing. Several heuristics to improve the accuracy of the involved computations
are proposed.

The motivating eigenvalue problems, stemming from electronic structure theory,
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fall into the category of pseudosymmetric eigenvalue problems. We develop a new
algorithm for this class of problems, by generalizing ideas from the method of spec-
tral divide-and-conquer for symmetric matrices. They are applied in a setting defined
by indefinite scalar products. Pseudosymmetry is preserved throughout the compu-
tations. Generalized polar decompositions and generalized QR decompositions are
necessary tools in the presented algorithm.
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ZUSAMMENFASSUNG

Diese Dissertation ist im Feld der numerischen linearen Algebra angesiedelt. Sie
stellt Algorithmen zur Lösung strukturierter Eigenwertprobleme, die sich bei der
Berechnung der elektronischen Struktur von Materie ergeben, vor. Matrizen aus
der zeitabhängigen Dichtefunktionaltheorie im Regime der linearen Antwort sowie
der Vielteilchen-Störungstheorie, insbesondere im Bethe-Salpeter Ansatz, zeigen eine
2 × 2 Blockstruktur. Wir zeigen, dass diese Strukturen außerdem mithilfe von nicht-
euklidischen Skalarprodukten charakterisiert werden können.

Die Motivation, neue Algorithmen zu entwickeln, statt allgemeine Löser zu verwen-
den, ergibt sich aus der Notwendigkeit, große Probleme auf Hochleistungsrechnern zu
lösen. Hierzu werden parallelisierbare Algorithmen und Implementierungen benötigt,
die außerdem unnötige Kommunikation vermeiden.

Nach einleitenden Voraussetzungen aus der Mathematik, der Informatik und der
Physik dokumentiert diese Arbeit die Erweiterung einer optimierten HPC Bibliothek
zur Lösung schiefsymmetrischer Eigenwertprobleme auf Maschinen mit verteiltem Spe-
icher. Diese Prozedur wird genutzt, um eine spezifische Form des Bethe-Salpeter-
Eigenwertproblems unter gewissen Definitheitsbedingungen zu lösen.

Für kristalline Systeme kann die Periodizität des Gitters genutzt werden, um zu
einer anderen Form des Bethe-Salpeter-Eigenwertproblems zu gelangen. Hier ist es
möglich, die Matrixdimension um die Hälfte zu verringern. Unter den genannten
Definitheitsbedingungen ist das resultierende Eigenwertproblem hermitsch positiv defi-
nit. Die Genauigkeit kann verbessert werden, wenn eine Singulärwertzerlegung genutzt
wird, statt implizit ein quadriertes Eigenwertproblem zu lösen. Eine Implementierung
auf Hochleistungsrechnern ist noch nicht verfügbar, aber leicht umzusetzen mit grundle-
genden Operationen der linearen Algebra.

Die zweite Hälfte dieser Arbeit konzentriert sich auf die Entwicklung neuartiger
Algorithmen, die noch keine Implementierung für Hochleistungsrechner besitzen, dies-
bezüglich aber ein großes Potenzial zeigen.

Wir entwicklen Algorithmen zur Berechnung verallgemeinerter Konzepte von Polar-
zerlegungen und QR Zerlegungen. Verallgemeinerte Polarzerlegungen werden mithilfe
von Iterationen berechnet, bei denen die Anzahl an Schritten a priori bekannt ist. Die
Iterationsschritte nutzen Routinen, für die kommunikationsvermeidende Implemen-
tierungen existieren. Weitere Möglichkeiten zur Parallelisierung sind verfügbar und
machen den Algorithmus vielversprechend für den Bereich des Hochleistungsrechnens.
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Verschiedene Heuristiken werden vorgestellt, um die Genauigkeit der durchgeführten
Berechnungen zu verbessern.

Die motivierenden Eigenwertprobleme aus der elektronischen Strukturtheorie fallen
in die Kategorie der schiefsymmetrischen Eigenwertprobleme. Wir entwickeln einen
neuen Algorithmus für diese Problemklasse, indem wir Ideen der spektralen Teile-und-
Herrsche Methode für symmetrische Matrizen verallgemeinern. Sie werden angewandt
in einem Umfeld, welches durch indefinite Skalarprodukte charakterisiert wird. Die
Pseudosymmetrie bleibt während der Rechnungen erhalten. Verallgemeinerte Polar-
zerlegungen und verallgemeinerte QR Zerlegungen werden als Werkzeuge im präsen-
tierten Algorithmus benötigt.
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CHAPTER 1

INTRODUCTION

1.1 The unreasonable effectiveness of mathematics
in algorithm development

In an article published in 1960 renowned physicist Eugene Wigner muses on the re-
markable connection between physics and mathematics [183]. Mathematics seems to
provide a perfect tool for describing fundamental laws of nature. According to Wigner,
this seems “unreasonably effective” as much of mathematics was developed in disregard
for possible applications. Instead, a core motive was to strive for “a sense of formal
beauty”. He concludes with a widely cited sentiment:

The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.

Wigner acknowledges the twofold role of mathematics in describing the physical
world. As becomes apparent in the quote, he emphasizes its role as a language to
describe fundamental laws. Its other role is to serve as a tool to evaluate said fun-
damental laws, in order to make predictions for specific situations. In particular, he
refers to the mathematical description of quantum mechanics, which has only existed
for 30 years at the time. The memories on the unique rush of major developments
at the beginning of the century in this regard are still fresh. Wigner hopes for this
success story to continue with similar breakthroughs, e.g. in the unification of quan-
tum mechanics and general relativity. However, he also acknowledges that this is not
guaranteed. Indeed, finding a Theory of Everything is a problem yet to be solved
gratifyingly.

The second role of mathematics is to compute trajectories of reality resulting from
the existing laws for given conditions, “merely serving as a tool”, as Wigner puts
it. From his words one may falsely conclude that the evaluation of the Schrödinger
equation, the center piece of modern quantum mechanics, is a trivial task. Nothing
could be further from the truth.

An analytic solution of the Schrödinger equation is only possible for a few toy prob-
lems and hydrogen forming the simplest molecule conceivable. Approximate solution
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schemes suffer from the curse of dimensionality: For a molecule with N electrons, a
partial differential equation in 3N dimensions needs to be solved.
The focus of research expanded in the six decades following Wigner and now also

includes computational methods themselves as subjects of research. The present thesis
is situated in this field. The rise of computing power motivated the development of
algorithms to simulate more complex systems. Tangible results were delivered and in
turn motivated the deployment of more and more powerful machines up to the massive
supercomputers of today [172].

In Wigner’s time, it must have seemed utterly infeasible to compute structural,
chemical or optical properties of materials not yet existent in reality, but only in form
of a sum of parameters fed to a computer program. In the research landscape of today
this is being done in form of electronic structure calculations with great success, using
the strongest supercomputers ever built.

Various electronic structure methods play an important role in current and future
technological advances. In our age, a major focus is defined by the great challenges
posed by the threat of climate change. Obvious applications of electronic structure
theory include the study of new materials [176] for building solar cells. Pure perovskite
or perovskite silicon tandem solar cells show a higher efficiency than their classic pure
silicone counter parts [9]. Other applications related to the energy revolution include
the study of storage technologies, or finding catalysts for the creation of green hydrogen
or other power-to-gas processes. These topics are examples of the growing interest in
in silico experiments in quantum chemistry.
Another major challenge was posed by the recent outbreak of the COVID-19 pan-

demic. Simulations of molecular processes aim for a better understanding of the
involved biological structures and mechanism or evaluate substances with respect to
their clinical potential [101].

With respect to this new context, i.e. the study of computational methods, Wigner’s
quoted sentiment still holds. Algorithms are developed and analyzed with the help of
mathematical ideas that originated independently of the specific algorithmic context.
Which mathematical concepts turn out to be useful depends on the level of abstraction
chosen to describe a specific problem.

In order to successfully apply mathematics, abstractions of some degree have to be
performed. The resulting mathematical problem can be considered detached from one
specific context and is applicable to a more general range of settings. Generally, the
process of abstraction will uncover mathematical concepts which have been studied in
depth on their own, or with respect to other application contexts.

The degree of abstraction may be chosen with a certain level of freedom and there is
a trade-off to be considered. On the one hand, if methods for a very abstract problem
formulation are found, they can be applied in many contexts, which is an advantage.
On the other hand, if certain specific aspects are kept, they can be exploited in order to
improve general methods. Algorithms may become more accurate or show performance
benefits at an implementation level.

Most electronic structure methods at their core solve a linear matrix eigenvalue
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problem, which in the given context can be considered a high level of abstraction.1
Over the last century, the standard eigenvalue problem has been studied in depth, and
great algorithms have been developed for its solution. Optimized implementations
within standard software are available.

Ground state methods, in general, lead to eigenvalue problems involving symmetric
matrices. While it is possible to ignore the symmetry, it would be a mistake of cardi-
nal importance. Because symmetry is an extremely common structure in eigenvalue
problems, perhaps even more common than the absence of symmetry, there are many
algorithms and implementations available [83].

We consider the computation of optical properties. Various methods of abstracting
the problem at hand once again lead to a structured eigenvalue problem. The structure
is slightly more complex than symmetry and in current implementations it is often
ignored. This thesis aims to fill this gap in order to improve performance and accuracy
at the back end of electronic structure codes.

The starting point is the Bethe-Salpeter equation (BSE), which is why the following
is called the Bethe-Salpeter eigenvalue problem:

Hv = λv,

H =

[
A B
−B −A

]
=

[
A B
−BH −AT

]
,

A = AH, B = BT ∈ Cn×n.

(1.1)

We call H a Bethe-Salpeter matrix. In this thesis, we are interested in finding all
eigenvectors v ∈ C2n and all corresponding eigenvalues λ ∈ C for given matrices A
and B. For crystalline systems, the given periodicity can be exploited to form a slightly
different variant:

Hv = λv,

H =

[
A B
−B −A

]
=

[
A B
−BH −AH

]
,

A = AH, B = BH ∈ Cn×n.

(1.2)

Here, both blocks A and B are Hermitian. This contrasts with B being complex
symmetric in the original variant (1.1). Throughout this thesis we call (1.1) Bethe-
Salpeter eigenvalue problem of form I, and the alternative setup (1.2) Bethe-Salpeter
eigenvalue problem of form II.

When the matrix of form I is constructed using real basis functions, both forms
coincide and can be tackled with the same algorithms.

1Of course, even higher levels of abstractions are possible, for example in the form of generalized,
polynomial or general non-linear eigenvalue problems. However, their consideration is not required
to make the point given in the text. Choosing a general-purpose linear eigensolver, unsuited for
the specific problem, in a higher level algorithm is a real danger, because well-developed implemen-
tations are available and easy to use. Developers, who have not considered the specific structure
at hand, may opt for a black-box solver and suffer from an unnecessary loss of performance or
accuracy. The accidental choice of a non-linear solver is not a realistic scenario, as they are not
included in popular linear algebra packages.
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This is the level of abstraction we focus on in this thesis, i.e. we do not make further
assumptions on the construction of A and B. The only further assumption we use in
some parts of this thesis is for matrices of form I

[
A B
BH AT

]
> 0, (1.3)

i.e. that the matrix, where the signs of the lower half have been switched, is Hermitian
positive definite. A similar condition for matrices of form II is given by

[
A B
B A

]
> 0. (1.4)

The later parts of the thesis focus on the property of H to be pseudosymmetric.
Here, we first ignore the more specific structure of H, i.e. the fact that the upper left
and lower right block are related, and that B is symmetric, and develop a general
method for pseudosymmetric eigenvalue problems. Due to the additional abstraction
step, this method has the potential to be applicable in other contexts. The more
specific aspects of H can be used to improve the abstract method with respect to
performance and accuracy.

In the process of algorithm development, we consider the computation of general-
ized polar decompositions. The concepts of pseudosymmetry and generalized polar
decompositions have not been developed with applications of electronic structure the-
ory in mind. But, to say it with Wigner’s words, they turn out to be “unreasonably
effective” as a tool in devising structure-preserving algorithms.

1.2 Outline of this thesis

This work starts by giving preliminaries useful for understanding the remainder of the
thesis. We give insights into the fields of numerical linear algebra and high performance
computing in Chapter 2. The presented tools are utilized in later chapters in order to
develop algorithms where the specific structures given in (1.1), (1.2), (1.3) and (1.4)
are exploited.

In Chapter 3 we give some background information as to how the structure in
(1.1) arises from certain integral equations, such as the Bethe-Salpeter equation, with
certain choices to perform approximations.

Chapter 4 compiles existing and new results on the consequences of the Bethe-
Salpeter structure given in (1.1) (form I) as well as the alternative structure given
by crystalline systems (1.2) (form II). It becomes clear why the alternative setup is
advantageous and should be pursued when possible. Here, it is possible to transform
the problem such that a Hermitian or pseudo-Hermitian eigenvalue problem of size
n× n is solved instead of larger 2n× 2n problem.

If this is not possible, Chapter 5 provides a way to solve (1.1) in a high performance
setting. The use of supercomputers becomes necessary because the dimension n of the
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Bethe-Salpeter matrix grows quadratically with the number of considered basis states.
For complex materials, many basis states are necessary to guarantee accurate results
leading to extremely large matrices. We extend the massively parallel ELPA library
for skew-symmetric matrices and use this feature to solve a Bethe-Salpeter eigenvalue
problem of size 51 200 on up to 512 cores with good scalability.

Chapter 6 explores, how the results given in Chapter 4 can be translated into al-
gorithms and gives numerical results. The chapter focuses on matrices of form II
(1.2). This form also results from studying molecules, as the resulting Bethe-Salpeter
matrices may be real in that case. We propose and compare various algorithms and
show that a typically used matrix square root can be substituted by a much cheaper
Cholesky factorization. The condition (1.4) may or may not hold, as both cases are
considered here.

Chapters 7 and 8 explore two tools which are used in Chapter 9 to extend the
class of spectral divide-and-conquer methods for structured matrices. Generalized
QR decompositions (Chapter 7) and generalized polar decompositions (Chapter 8)
are interesting mathematical concepts worth to be studied in their own right. In
these three chapters (Chapter 7 to Chapter 9), we develop algorithms with a focus on
numerical stability as well as parallelizability and communication avoidance. The last
two aspects are important to assure that the proposed methods are suitable for high
performance computing.

Chapter 10 summarizes the thesis and gives an overview on the proposed algorithms
and under which conditions they are suitable. We reflect on the considered approaches
and propose focus points for future research.

5





CHAPTER 2

MATHEMATICAL PRELIMINARIES AND HIGH
PERFORMANCE COMPUTING

Contents
2.1 Structured matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Tools and decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 High performance computing . . . . . . . . . . . . . . . . . . . . . . . . 19

In this chapter, we collect some known results in (numerical) linear algebra on which
the results and algorithms presented in this thesis are based. We give some background
information regarding concepts and software in high performance computing, to facil-
itate a broader understanding of the presented ideas. For a more detailed treatment
we refer to basic literature such as [83, 165, 173].

2.1 Structured matrices

The main focus of this thesis is to develop new algorithms for structured matrices. If
the structure of a matrix is preserved and exploited over the course of a computation,
this can have positive effects on the achieved accuracy and performance of an algorithm
[109]. A useful way of categorizing various occurring structures is given in form of non-
standard scalar products.

We introduce the notation and concepts following [117]. The authors in [46, 47, 125]
treat scalar products induced by Hermitian matrices, while in [96, 97] a more general
treatment is provided. The group theoretical foundations are laid out in [75] and used
to provide a systematic derivation of a large class of matrix decompositions.

A nonsingular matrix M defines a scalar product on Cn 〈., .〉M , which is a bilinear
or sesquilinear form, given by

〈x, y〉M =

{
xTMy for bilinear forms,
xHMy for sesquilinear forms,

(2.1)
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2 Mathematical preliminaries and high performance computing

for x, y ∈ Cn.

Definition 2.1:
For a matrix A ∈ Cn×n, A?M ∈ Cn×n denotes the adjoint with respect to the scalar
product defined by M . This is a uniquely defined matrix satisfying the identity

〈Ax, y〉M = 〈x,A?My〉M

for all x, y ∈ Cn. We call A?M the M -adjoint of A. ♦

It holds

A?M = M−1A∗M,

where .∗ can refer to the transpose .T or Hermitian transpose .H, depending on whether
a bilinear or a sesquilinear form is considered.

Definition 2.2:
We call the matrix A ∈ Cn×n

1. M -orthogonal if A?M = A−1 (given the inverse exists),

2. M -self-adjoint if A = A?M ,

3. M -skew-adjoint if A = −A?M . ♦

M -orthogonal matrices are exactly those that leave the structure of M -self-adjoint or
M -skew-adjoint matrices intact when applied as a similarity transformation.

Lemma 2.3:
Let T be an M -orthogonal matrix and A be self- or skew-adjoint with respect to a
scalar product induced by M . Then the transformed matrix

Â = T−1AT

is again self- or skew-adjoint with respect to M . ♦

Proof. We show that the transformed matrix Â = T−1AT is self-, respectively, skew-
adjoint, i.e. that it holds MÂ = ±Â∗M . We use MA = A∗M , MT−1 = T ∗M and
MT = T−∗M to see

MÂ = M(T−1AT ) = T ∗MAT = ±T ∗A∗MT

= ±T ∗A∗T−∗M = ±(T−1AT )∗M = ±Â∗M.

For M = In the scalar product defined in (2.1) is just the Euclidian scalar product of
two vectors.

The most ubiquitous form of a structured matrix is the symmetric (or Hermitian)
matrix, where a self-adjoint matrix A fulfills A = A∗. There is virtually no application
field of linear algebra where these matrices do not play a central role. Exploiting this
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2.1 Structured matrices

structure is a key element in popular algorithms for various tasks, such as the QR,
Lanczos or Conjugate Gradient algorithm [83].

The skew-adjoint counterpart is given by skew-symmetric matrices, fulfilling A =
−A∗. An In-orthogonal matrix Q is just an orthogonal (or unitary) matrix fulfilling
T−1 = T ∗. Orthogonal transformations preserve symmetry, as predicted by Lemma
2.3.

Allowing negative signs on the diagonal of the inducing matrix M leads to a gener-
alization of the Euclidian scalar product, which plays a central role in this thesis.

Definition 2.4:
A matrix

Σ =



σ1

. . .
σn


 , σj ∈ {−1, 1} for j = 1, . . . , n,

is called a signature matrix. ♦

Definition 2.5:
A matrix A ∈ Kn×n is called pseudosymmetric (pseudo-Hermitian) if there exists
a signature matrix Σ, such that A is self-adjoint with respect to the bilinear form
(sesquilinear form) induced by Σ. ♦

Equivalently, pseudosymmetry can be defined by

ΣA = (ΣA)∗

⇔ AΣ = (AΣ)∗.

This is the case if and only if A is symmetric up to sign changes of certain rows or
columns. Pseudo-skew-symmetry can also be defined but does not play an important
role here.

Given a particular Σ, pseudosymmetry is preserved by Σ-orthogonal matrices. How-
ever, we will see later, that it makes sense to relax this condition for developing rea-
sonable algorithms and allow permutations on the diagonal of Σ.

A specific signature matrix used to describe the structure of Bethe-Salpeter matrices
is denoted

Kn =

[
In 0
0 −In

]

in this thesis.
Another important structure-defining scalar product is induced by the skew-symmetric

matrix

Jn =

[
0 In
−In 0

]
.
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When the dimension is not important or clear from the context, we drop the index
and use K = Kn and J = Jn.
Real matrices, that are self-adjoint with respect to the bilinear form and complex

matrices, that are self-adjoint with respect to the sesquilinear form induced by J , are
called Skew-Hamiltonian [37]. They can equally be defined by

JA = −(JA)∗

⇔ AJ = −(AJ)∗.

This is the case if and only if A shows a certain block structure

A =

[
B C
D B∗

]
, C = −C∗, D = −D∗.

Matrices that are skew-adjoint with respect to J are called Hamiltonian matrices.
They fulfill (and can be defined by)

JA = (JA)∗

⇔ AJ = (AJ)∗.

This is the case if and only if A has a block structure of the form

A =

[
B C
D −B∗

]
, C = C∗, D = D∗.

Hamiltonian matrices and their corresponding eigenvalue problems naturally arise
in control theory and model order reduction, in particular in the solution of algebraic
Riccati equations [126, 28]. Skew-Hamiltonian matrices also play an important role in
this context. This is because a squared Hamiltonian matrix yields a skew-Hamiltonian
matrix [174] and a Hamiltonian matrix can be extended to form a skew-Hamiltonian
matrix of twice the size with related eigenvalues and eigenvectors [39]. The skew-
Hamiltonian structure can be exploited more effectively than the Hamiltonian struc-
ture, which is used to formulate structure-preserving algorithms.
J-orthogonal matrices are also called symplectic. A symplectic matrix S fulfills

S∗JS = J

and preserves (skew-)Hamiltonian structure when applied as a similarity transforma-
tion as in Lemma 2.3.

For real matrices that permit one of the structures in Definition 2.2, there is no
reason to distinguish between bilinear and sesquilinear form induced by M in (2.1).
For complex matrices on the other side, the structures induced by the bilinear and by
the sesquilinear form are not the same. Just as a complex matrix might be symmetric
(not Hermitian), a complex matrix can be self-adjoint with respect to the bilinear form
induced by J . This leads to the class of so-called J-symmetric matrices [34].
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The structural concepts emerging from generalized scalar products can be general-
ized to work for rectangular, non-square matrices. In particular, we are interested in
a notion generalizing “orthogonality” of a rectangular matrix. This refers to a matrix
Q ∈ Cm×n with orthogonal columns, i.e. fulfilling Q∗Q = In.
As two vector spaces of different dimensions now play a role, two distinct scalar

products are considered. We give some clarifying notation following [97]. For a matrix
A ∈ Cm×n, A?M,N ∈ Cn×m denotes the adjoint with respect to the scalar products
defined by the nonsingular matrices M ∈ Cm×m, N ∈ Cn×n. This matrix is uniquely
defined by satisfying the identity

〈Ax, y〉M = 〈x,A?M,Ny〉N
for all x ∈ Cn, y ∈ Cm. We call A?M,N the (M,N)-adjoint of A and it holds

A?M,N = N−1A∗M. (2.2)

Definition 2.6:
1. We call a matrix A ∈ Cm×n (M,N)-orthogonal or an (M,N)-isometry with

respect to the scalar products induced by M and N when

A?M,NA = In.

2. A matrix A is called a partial (M,N)-isometry when

AA?M,NA = A. ♦

For an (M,N)-isometry A, it holds that m ≥ n and that A has full column
rank. Partial (M,N)-isometries are generalizations of this concept. A partial (M,N)-
isometry A does not need to have full column or row rank. For example, A = Q1Q

T
2

for orthogonal Q1 ∈ Cm×k, Q2 ∈ Cn×k, k < m, k < n, is a partial (Im, In)-isometry.

2.2 Eigenvalues and eigenvectors

In the previous section we introduced structured matrices. We stated our aim to
develop algorithms that preserve and exploit the given structure. These algorithms
are supposed to compute eigenvalues and eigenvectors.

Definition 2.7 (Eigenvalues and eigenvectors [173]):
Given a matrix A ∈ Cn×n, λ ∈ C is called an eigenvalue of A, and a nonzero vector
v ∈ Cn is called an eigenvector of A corresponding to λ if it holds

Av = λv. ♦

The eigenvalues of a matrix are given by the roots of its characteristic polynomial,
i.e. for an eigenvalue λ it holds

det (A− λI) = 0.
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The set of all eigenvalues of A is called the spectrum of A and is denoted Λ(A).
A naive approach for computing the eigenvalues of a matrix explicitly forms the

characteristic polynomial. Closed form solutions are generally not available for poly-
nomials of a degree higher than four. The roots of the polynomial could be computed
via a numerical scheme such as Newton’s method. This is also a bad idea because poly-
nomial root-finding is in general an ill-conditioned problem and practically impossible
for polynomials of high order.

If A has n linearly independent eigenvectors v1, . . . , vn corresponding to λ1, . . . , λn
(i.e. it is nondefective), A can be diagonalized [165]. With the eigenvectors arranged
as columns of a matrix V =

[
v1 · · · vn

]
it holds

V −1AV = Λ =



λ1

. . .
λn


 .

In Section 2.1 we introduced symmetric (respectively Hermitian) matrices as a fun-
damentally important structure in applied linear algebra. The spectral structure (i.e.
the properties of eigenvalues and eigenvectors) makes the symmetric eigenvalue prob-
lem particularly nice to work with.

Theorem 2.8 (Spectral Theorem [165]):
A Hermitian matrix A ∈ Cn×n has only real eigenvalues and is unitarily diagonalizable,
i.e. there exists a matrix Q ∈ Cn×n, such that Q∗Q = In and

Q∗AQ = Λ =



λ1

. . .
λn


 ∈ Rn×n. ♦

The eigenvectors of a Hermitian matrix form an orthogonal set. Q in Theorem 2.8
contains the eigenvectors of A, which are scaled to be orthonormal.
A k-dimensional linear subspace V ⊆ Cn can be represented by its basis set v1, . . . , vk

forming a matrix V =
[
v1 · · · vk

]
. V is called an invariant subspace of A if it holds

Av ∈ V ∀v ∈ V.

In matrix notation, an invariant subspace of A is encoded in V ∈ Cn×k if it holds

AV = V D

for an arbitrary D ∈ Ck×k. If A is diagonalizable, its invariant subspaces are spanned
by subsets of its eigenvectors.

We now consider the field K as a placeholder for C or R. This reflects that in the
presented decompositions, no complex arithmetic is needed if the original matrix was
real. We use .∗ to refer to .T or .H.
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2.3 Tools and decompositions

In this section we present some computational tools which form the backbone of many
algorithms in numerical linear algebra. We start with Householder transformations
and Givens rotations. They are orthogonal transformations and can be used to intro-
duce zeros in matrices. Orthogonal transformation have a perfect condition number
of 1. This means that relative errors (for example rounding errors) are not inflated
when they are applied, making them very attractive for numerical computations.

Theorem 2.9 (Householder transformations [83]):
A Householder transformation or Householder reflection is a matrix of the form

H(v) = I − βvv∗.

Given a vector a ∈ Kn, choosing v = house(a) := a ± eiφ‖a‖2e1 with φ = arg a1 and
β = 2

v∗v
defines a Householder transformation such that

H(v)a = ∓eiφ‖a‖2e1. ♦

In practice (see BLAS/LAPACK in Section 2.4) slightly altered variants of the House-
holder transformation are in use. v is scaled such that v1 = 1 in order to store it
conveniently. The complex variant may be slightly altered to result in H(v)a = ‖a‖2e1

[100]. This is achieved by a complex β, which leads to H being non-Hermitian.

Theorem 2.10 (Givens rotations [83]):
A Givens rotation is a matrix of the form

G(θ, φ) =

[
c s
−s c

]
=

[
cos (θ) sin (θ)eiφ

− sin (θ)e−iφ cos (θ)

]
∈ K2×2.

Given a vector a =

[
u
v

]
∈ K2,

cos (θ) =
‖u‖2√

‖u‖2
2 + ‖v‖2

2

sin (θ) =
−‖v‖2√
‖u‖2

2 + ‖v‖2
2

and φ = arg (u)− arg (v), it holds

G(φ)∗a =

[
‖a‖ei arg (u)

0

]

and G∗G = I2. ♦

In the practical computation and application of G, there is no need to ever use trigono-
metric functions. For details on the implementation of both kinds of transformations,
see [83]. Householder transformations or Givens rotations can be used to transform a
matrix such that the first column becomes a multiple of e1, i.e. there are only zeros
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below the first entry. A second transformation can transform the second column, such
that there are only nonzero values except the first two entries, without destroying
the zeros in the first column. Continuing this process column by column leads to the
QR decomposition. This decomposition is one of the most versatile tools in numerical
linear algebra.

Theorem 2.11 ((Thin) QR decomposition):
For each A ∈ Km×n, m ≥ n, there exists an orthogonal (respectively unitary) matrix
Q ∈ Km×n and an upper triangular matrix R ∈ Kn×n such that

A = QR ♦

Proof. As described above one finds orthogonal transformationsQ1, . . . , Qn, that intro-
duce zeros below the diagonal. The product of orthogonal matrices is again orthogonal.
This procedure yields a (full) QR decomposition

Q∗n · · ·Q∗1A =

[
R
0

]
⇔ A = Q0

[
R
0

]
, Q0 = Q1 · · ·Qn.

Truncating the matrix Q0 to its first n columns yields the thin QR decomposition.

In practical implementations, because of performance considerations (see Section
2.4 below), it makes sense to accumulate the Householder transformations for some
steps and then apply them all at once to transform the remaining matrix. This can
be achieved with the storage-efficient variant of the QR decomposition [157], which is
also explained in [145].

Theorem 2.12 (Storage-efficient QR decomposition [145]):
Let Q = H1 · · ·Hr, Hi ∈ Km×m be a product of Householder matrices and let the
rectangular matrix V ∈ Km×r contain the Householder vectors

vi =
[
0 · · · 0 1 vi,i+1 · · · vi,m

]T ∈ Km, V =
[
v1 · · · vr

]
.

Then an upper triangular matrix T ∈ Kr×r exists, such that

Q = Im − V TV ∗. ♦

The theorem can be proven by induction using the following lemma. It describes how
the columns of the matrix T can be constructed one after the other.
Lemma 2.13 (Accumulation of storage-efficient QR decompositions [145]):
Let Q = Im − V TV ∗ ∈ Km×m be orthogonal with V ∈ Km×j and T ∈ Kj×j upper
triangular. Suppose that H = Im − βvv∗ is a Householder matrix with v ∈ Km and
β = 2

v∗v
. Then

QH = Im − V+T+V
∗

+,

where

V+ =
[
V v

]
∈ Cm×j+1, T+ =

[
T −βTV ∗v
0 β

]
. ♦
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The previously presented tools and the QR decomposition find their main applica-
tions in eigenvalue and least square problems. We now take our attention to decom-
positions of symmetric matrices, typically used for solving linear systems of equations
given as Ax = b.

Gaussian elimination is the classic approach for solving these systems and yields the
LU decomposition of A. If A is symmetric (respectively Hermitian) positive definite,
it is guaranteed to exist and it holds U = LH, yielding the Cholesky factorization.
Theorem 2.14 (Cholesky factorization [83]):
Let A ∈ Kn×n be symmetric (Hermitian) positive definite. Then there is a unique
decomposition

A = R∗R,

where R is upper triangular and has positive diagonal entries. ♦

We used the upper triangular factor R in Theorem 2.14 instead of a lower triangular
L to comply with Matlab syntax. Here, R=chol(A) yields the upper triangular factor.

If the considered matrix is symmetric, nonsingular but not positive definite, the
LDLT factorization may be used.
Theorem 2.15 (LDLT factorization [83]):
Let A ∈ Kn×n be symmetric (Hermitian) and let all its leading principal submatrices
be nonsingular. Then there is a unique factorization

A = LDL∗,

where L is unit lower triangular and D is diagonal. ♦

The LDLT factorization with a strictly diagonal D is typically not used in modern
algorithms, as it becomes unstable when small diagonal values appear [14]. Instead,
D is allowed to be block-diagonal with 1× 1 and 2× 2 blocks, and a pivoting scheme
is employed [53].

Theorem 2.16 (LDLT factorization with pivoting [83]):
Let A ∈ Kn×n be symmetric (Hermitian). Then there is a factorization

A = PLDL∗PT,

where P is a permutation and L is unit lower triangular. D is block-diagonal with
1× 1 or 2× 2 blocks and a real diagonal. ♦

We call this factorization “LDLT factorization with pivoting” or “block LDLT fac-
torization” in order to distinguish it from the “diagonal LDLT factorization”. The
additional degrees of freedom destroy the uniqueness property but allow for a more
stable computation. Several backward stable algorithms have been developed (see
[51, 52]) and well-established implementations are available in software packages such
as LAPACK and Matlab [14, 73]. In Matlab the implementation is given as the ldl
command.

The LDLT decomposition with pivoting can be used to compute a decomposition
with a signature matrix at the center.
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Lemma 2.17 (Scaled LDLT decomposition with pivoting):
Let A ∈ Kn×n be symmetric (Hermitian) and nonsingular. Then there is a decompo-
sition

A = LΣL∗,

where Σ is a signature matrix and L = PL0V , where P is a permutation, L0 is unit
lower triangular and V is an orthogonal, block-diagonal matrix with 1 × 1 and 2 × 2
blocks. ♦

Proof. With the LDLT decomposition with pivoting from Theorem 2.16 we have

A = PL0D0L
∗
0P

T

with unit lower triangular L0 and permutation P . D0 is block-diagonal, Hermitian
and has an eigenvalue decomposition D = V D0V

∗, where V is orthogonal and D0

is real diagonal (see Theorem 2.8). Furthermore, V is block diagonal with the same
structure as D, which is easily seen: Let Di, i = 1, . . . , nD be the ith block of D, i.e.

D = D1 ⊕ · · · ⊕DnD
,

and Vi define the eigenvalue decomposition of Di, i.e.

V ∗i DiVi = D0,i.

Then V := V1 ⊕ · · · ⊕ VnD
fulfills

V ∗DV = D0 = D0,1 ⊕ · · · ⊕D0,nD
.

The QR decomposition and the Cholesky factorization (and its generalization, the
LDLT decomposition) seem unrelated at first sight. Part of this thesis is concerned
with a hidden connection between them (see Chapter 7) and how it is exploited in a
generalized context to uncover useful properties of a structured matrix.

A decomposition which uncovers lots of useful properties of a general (not necessarily
square) matrix is the singular value decomposition (SVD).
Theorem 2.18 (The singular value decomposition (SVD) [83]):
Let A ∈ Km×n. Then there exists a decomposition

A = UΣV ∗, U ∈ Km×m, V ∈ Kn×n, Σ ∈ Rm×n,

where 



Σ = Σ0, if m = n,

Σ =

[
Σ0

0

]
if m > n,

Σ =
[
Σ0 0

]
if m < n,

with

Σ0 = diag
(
σ1, . . . , σmin (m,n)

)
, σ1 ≥ · · · ≥ σmin (m,n) ≥ 0,

U =
[
u1, . . . , um

]
, U∗U = Im, V =

[
v1, . . . , vn

]
, V ∗V = In. ♦

16



2.3 Tools and decompositions

While the QR decomposition yields an orthogonal basis for the column space of
a matrix, the SVD yields orthogonal bases for the column as well as the row space.
Furthermore, a weight σi is assigned to each of the basis vector pairs (ui, vi). By omit-
ting those vectors with small weight we are able to keep the essential information of
a linear mapping (given by the matrix) while drastically reducing the storage require-
ments. This low-rank approximation property (mathematically given in form of the
Eckart–Young–Mirsky theorem [74, 129]) is what makes the SVD extremely useful in
data science (in form of principal component analysis [89]) and model order reduction
[27].

One of the many applications of the SVD is to provide a construction and a proof
of the existence of the polar decomposition. The polar decomposition has interesting
approximation properties and can be used to solve the orthogonal Procrustes problem
[95].

Theorem 2.19 (The polar decomposition [95]):
Let A ∈ Km×n with m ≥ n. Then there is a decomposition

A = UH, U∗U = In, H = H∗ ≥ 0. (2.3)

H is uniquely given as the principal matrix square root H = (A∗A)
1
2 . If A has full

column rank, H is positive definite and U is unique. ♦

Proof. Let A = Us

[
Σ
0

]
V ∗s be an SVD and A = Us,0ΣV ∗s with Us,0 = Us(:, 1 : n) its

truncated version. Then

A = Us,0V
∗
s︸ ︷︷ ︸

=:U

VsΣV
∗
s︸ ︷︷ ︸

=:H

= UH

gives a polar decomposition of A. If A has rank r < n, any U of the form

U = Us,0

[
Ir

W

]
V ∗s ,

with arbitrary matrix W , together with uniquely defined, rank deficient H = VsΣV
∗
s

forms a polar decomposition. If A has full rank so has H and U = AH−1 is uniquely
defined.

The matrix polar decomposition generalizes the well-known scalar polar decompo-
sition: A complex number z ∈ C can be decomposed in the form

z = reiφ. (2.4)

Here, r = (zz)
1
2 corresponds to the Hermitian factorH. eiφ is a rotation in the complex

plane and corresponds to the orthogonal factor U in the generalized version.
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Further generalizations consider non-Euclidian scalar products [96, 97], as given in
(2.1). The efficient computation of a certain class of the resulting generalized polar
decompositions is the goal of Chapter 8 of this thesis.

A related scalar decomposition is defined using the sign function, i.e.

sign(z) =

{
1, Re(z) > 0,

−1, Re(z) < 0,
z ∈ C, z /∈ iR.

A complex number z /∈ iR has a sign decomposition

z = (z2)−
1
2 sign(z) . (2.5)

If z ∈ R, the decompositions (2.4) and (2.5) are identical because zHz = z2. In this
case, sign(z) and the orthogonal factor of the polar decomposition coincide.
This notion carries over to higher dimensions, where it applies to Hermitian matrices.

The scalar sign function is generalized to form the matrix sign function, which is
applied to matrices. For a detailed treatment see [95, Chapter 5]. The matrix sign
function has a strong connection to the polar decomposition [93].

Definition 2.20 (Matrix sign function):
Let a square matrix A without purely imaginary eigenvalues have a Jordan decompo-
sition

A = Z

[
J+

J−

]
Z−1,

where J+ ∈ Kn+×n+ contains Jordan blocks associated with eigenvalues with positive
real part and J− ∈ Kn−×n− contains Jordan blocks associated with eigenvalues with
negative real part. Then the matrix sign function is defined as

sign(A) = Z

[
In+

−In−

]
Z−1. (2.6)

♦

Lemma 2.21:
Let A ∈ Kn×n be a symmetric (Hermitian) matrix without purely imaginary eigenval-
ues, S = sign(A) and A = UH be a polar decomposition. Then it holds

S = U. ♦

Proof. S can be expressed as S = A(A2)−
1
2 [93]. If A has no purely imaginary eigen-

values, it is also nonsingular. U is unique and can be expressed as U = AH−1 =
A(A∗A)−

1
2 . Clearly, these expressions are identical if A = A∗.

It follows from (2.6) that the matrix sign function can be used to acquire projectors
onto invariant subspaces associated with the positive and negative parts of the spec-
trum. This property is the reason it was originally proposed in order to solve algebraic
Riccati equations [149].
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Lemma 2.22:
Let S = sign(A) exist for A ∈ Kn×n. P+ = 1

2
(In+S) and P− = 1

2
(I−S) are projectors

onto the invariant subspaces associated with eigenvalues of A on the open right and
open left half-plane respectively. ♦

In order to acquire projections onto invariant subspaces associated with other eigen-
value subsets, the matrix sign function of a shifted A + σI can be used. Another
possibility is to transform A before computing the matrix sign function in order to
acquire subspaces associated with almost arbitrary regions of the eigenvalue spectrum
[19]. What makes the matrix sign function a widely used algorithmic tool, is that
there exist iterative methods for its computation [95, 102]. The most simple one can
be derived as a Newton iteration to find the roots of f(X) = X2 − I,

Xk+1 =
1

2
(Xk +X−1

k ), X0 = A. (2.7)

The same idea applied to f(X) = X∗X − I yields the Newton iteration

Xk+1 =
1

2
(Xk +X−∗k ), X0 = A. (2.8)

(2.8) converges to the orthogonal polar factor U in (2.3). Many other iterative methods
for computing the matrix sign function can be repurposed to form an iteration for
computing the orthogonal polar factor [95]. These include the dynamically weighted
Halley and the Zolotarev iteration, which are explored in more detail in Chapter 8.

2.4 High performance computing

In this section we give a brief overview on basic software packages and their central
role in high performance computing.

BLAS stands for Basic Linear Algebra Subroutines [134, 43]. They define a reference
behavior and an API for the most basic linear algebra algorithms involving matrices
and vectors. The routines are divided into three classes [83]:

1. Level 1 BLAS routines involve a linear amount of data and a linear amount of
arithmetic, i.e. O(n), where n is the dimension of the input data, e.g. vector
length. These typically include scalar and vector operations. An example is the
axpy operation

y ← αx+ y.

2. Level 2 BLAS routines involve a bilinear amount of data and a bilinear amount
of arithmetic, i.e. O(mn), where m and n are the dimensions of the input data.
These typically include matrix-vector operations. An example is the general
matrix-vector product (gemv operation)

y ← αAx+ βb.
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3. Level 3 BLAS routines involve a bilinear amount of data and a trilinear amount
of arithmetic, i.e. O(mnk), where m, n, k are the dimensions of the input data.
These typically include matrix-matrix operations. An example is the general
matrix-matrix product (gemm operation)

C ← αAB + βC.

During the design of algorithms it is in most cases beneficial to maximize the portion
of level 3 BLAS operations in comparison with the other levels in order to achieve high
performance. The reason for this is the high arithmetic density of these operations.
The amount of work (O(n3) for square matrices) exceeds the amount of data that needs
to be moved to the registers (O(n2) for square matrices) by one order of magnitude.
On modern processors this is the only way to achieve peak performance. Otherwise,
performance is limited by the memory bandwidth [87, 185].

LAPACK (Linear Algebra PACKage) [13, 135] extends the idea of BLAS and in-
cludes more complex routines. These can for example be used to compute the decom-
positions presented in Section 2.3.

Reference implementations of BLAS and LAPACK are available at [134] and [135].
These define the specifications of the included routines but should not be used for
software where the performance is relevant. Optimized BLAS implementations, that
show the same behavior but have been tweaked at a low level to exploit a particular
software architecture, are made available by chip vendors and open source initiatives
[2, 3, 4, 175]. BLAS and LAPACK are usually shipped together.

These implementations are optimized to run on shared memory multi-core proces-
sors, such as the ones integrated in standard desktop PCs and laptops. Calling an
optimized and multithreaded LAPACK or BLAS routine can already invoke a degree
of parallelism on this level.

If several shared memory processors are connected via a network, one arrives at a
distributed memory machine, also called computer cluster. The individual (shared
memory) computers are called nodes. Current supercomputers interconnect hundreds
to thousands of nodes [172].

The communication between nodes is realized by an implementation of the Message
Passing Interface (MPI) standard [128]. As in the case of BLAS and LAPACK, vendor
specific and open source libraries are available. The main idea is to start multiple
instances of the same program running in parallel. The instances are called processes.
Each process is aware of its unique ID and can behave differently according to that.
The processes can communicate by passing messages. Multiple processes may run on
the same node, so that they communicate via shared memory, or on different nodes,
so that they communicate via the interconnect. The MPI library takes care of the
technical details on how the message passing is realized on the operating system and
the hardware level.

On top of MPI, libraries have been developed to realize the algorithms available
in LAPACK, e.g. for eigenvalue computation, with the aim to be as convenient as
the shared memory variants. ScaLAPACK (Scalable Linear Algebra PACKage) [42]
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employs BLACS (Basic Linear Algebra Communication Subroutines), which uses MPI,
and gives reference implementations for distributed memory versions of the LAPACK
routines. Again, vendor-specific optimized libraries exist. The ELPA library [119] is
an open source endeavor to provide an alternative to the eigensolvers in ScaLAPACK.

For distributed memory machines, the question arises on how to organize the storage
of large dense matrices in memory. Each node holding a full copy might be impossible
due to memory constraints and is wasteful, when one node only works on part of the
matrix. The 2D block cyclic data layout is a one-size-fits-all solution to this problem
introduced by ScaLAPACK and also used in ELPA. At the initialization stage of a
program, the processes are arranged in form of an abstract mp×np grid. For example,
if a program is started to use 6 MPI processes using the console command

mpirun -np 6 [program]

a process grid may be defined (inside the program) in the form
(
P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

)
.

A matrix A is divided into blocks Aij of chosen size mb × nb, e.g.

A =




A11 A12 A13 A14 A15 A16

A21 A22 A13 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46


 .

Some blocks might be smaller thanmb×nb when the dimensions of A are not a multiple
of mb and nb. A matrix block Ai,j belongs to process Pk,l, where

k = i mod mp, l = j mod np.

In our example the process P1,1 owns the matrix blocks A1,1, A1,4, A3,1 and A3,4. These
matrix blocks are stored in form of one large array in the local memory of P1,1. This
way, one can easily benefit from fast BLAS level 3 performance if the algorithm is
implemented in the right way.

The 2D block cyclic data layout is preferable to a non-cyclic layout because it
guarantees better load balancing for a large variety of algorithms, while still having a
blocked structure to facilitate BLAS level 3 on a local level.

We already presented two different approaches to realize parallelism on one node
with shared memory: The use of multiple processes governed by MPI and the use
of optimized BLAS libraries, which take care of the parallelism in the background.
A third approach used in high performance computing is the OpenMP API [140].
Here, parallelism is realized within one process in the form of multithreading. The
programmer determines parallel regions via compiler directives leading to a fork-join
parallelism.

In recent years, graphics processing units (GPUs) and other forms of accelerators
became as important as general purpose processors (central processing units, CPUs)
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in the field of high performance computing. Originally invented to render complex
graphics, GPUs are equipped with many more cores than CPUs but with less control
infrastructure on the chip. This makes them well-suited for SIMD (single instruction
multiple data) parallelism. The individual threads on the different GPU cores run
independently and do the same computations but on different input data. By now
GPUs have outgrown their original graphics purpose and have established themselves
as central computational devices for linear algebra and machine learning workloads.

Nvidia is the current market leader in the field of GPUs and provides useful infras-
tructure to facilitate their programming. CUDA [136, 138] is a parallel computing
platform and API. It allows the programmer to address the resources of a GPU from
the serial code running on the CPU. In a widely adopted model, a CPU, for example
on a node in a compute cluster, has access to one or multiple GPUs and offloads com-
putations with high arithmetic intensity to the accelerator (i.e. the GPU). To realize
operations in numerical linear algebra, the cuBLAS library [137] provides a BLAS-like
interface on top of CUDA. Above, we pointed out the need for BLAS level 3 operations
due to limited memory bandwidth. This applies even more in this context as the data
in main memory first has to be transferred to the accelerator device.

We see that parallelism and data locality play an important role on many different
levels. A programmer has a lot of freedom in choosing and combining the available
tools such that an optimal performance for the given hardware can be achieved. The
art of performance optimization takes place on the level of mathematical algorithm
design, on the level of implementation, as well as on the level of a system’s configura-
tion.

22



CHAPTER 3

BASICS OF ELECTRONIC STRUCTURE THEORY

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 A short introduction to quantum physics . . . . . . . . . . . . . . . . . 24
3.3 Ground state methods in electronic structure theory . . . . . . . . . . . 29

3.3.1 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . 30

3.4 Computing optical properties . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Optical properties and a Dyson-like equation . . . . . . . . . . . 33
3.4.2 Kernel derivation from TDDFT . . . . . . . . . . . . . . . . . . 35
3.4.3 Kernel derivation from the Bethe-Salpeter equation . . . . . . . 36

3.5 The emergence of structured eigenvalue problems . . . . . . . . . . . . 37
3.6 Exploiting crystalline structure . . . . . . . . . . . . . . . . . . . . . . 41
3.7 TDDFT vs. Bethe-Salpeter approach . . . . . . . . . . . . . . . . . . . 44
3.8 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Introduction

The main goal of this thesis is to give insight and provide algorithms for eigenvalue
problems arising in the description of excited states within electronic structure theory.
Over the course of this project, it has turned out to be crucial to foster a mutually
beneficial relationship between the fields of mathematics, in particular numerical linear
algebra, and (solid-state) physics. In order to achieve this, one needs to bridge the
existing gap between the fields. By this, we not only mean the basic domain knowledge
necessary for understanding the nature of the problem, but also more subtle differences
in the culture leading to different writing styles, as well as seemingly trivial things such
as mathematical notation.

The power of applied mathematics lies in abstraction. It can derive deeper insights
because a problem is detached from unimportant and distracting details obfuscating its
true mathematical nature. The methods developed from these insights are applicable
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to a wider range of problems because the abstract problem is more general and may
contain other specific problems, perhaps even from completely different applications.
The Bethe-Salpeter eigenvalue problem (1.1) is an abstraction in the sense that the
“details” of how the block matrices A and B are constructed, and what the results
mean in a physical sense, are declared unimportant. Further abstractions are made in
Chapters 7 to 9, which may find applications in completely different fields.

However, our chosen level of abstraction, i.e. in form of the eigenvalue problem (1.1),
is rather arbitrary. Determining which details are to be stripped away in an abstract
formulation, is a big challenge. Details may seem unimportant to an applied scientist,
and inaccessible for a mathematician due to a lack of domain knowledge. Those details
can perhaps be exploited algorithmically, if both parties are aware of them.

This is why close interdisciplinary collaboration is needed. There is no strict border
between the fields, where a concrete problem of physics turns into an abstract problem
of mathematics. Rather, there is a whole border region whose landscape should be
explored by experts from both sides, determining a good point for making abstractions.

This chapter aims to contribute towards making the field of electronic structure
theory accessible for scientists with a perspective rooted in (numerical) linear algebra,
but not necessarily with a background in physics. Mathematically speaking, this
chapter is less rigorous than the following chapters where new results are presented. A
mathematically sound introduction to quantum mechanics alone fills entire textbooks.
We rather aim to give some context and intuition about where the eigenvalue problems
treated in this thesis come from. We start by giving a concise overview on the ideas
of quantum mechanics (Section 3.2). Methods for computing the ground state of
a quantum system (Hartree-Fock and Density functional theory) are introduced in
Section 3.3. Section 3.4 introduces the notion of electronic excitations and how related
optical properties can be computed. We do not derive equations from many-body
perturbation theory, such as the Bethe-Salpeter equation, but elaborate in Section 3.5
on how these equations lead to structured eigenvalue problems such as (1.1). Section
3.6 provides an alternative way of setting up a matrix eigenvalue problem for crystalline
solids. This leads to a slightly different structure that can be exploited algorithmically
in later chapters of this thesis.

3.2 A short introduction to quantum physics

In classical Newtonian mechanics an object such as an electron is characterized by a
specific position and momentum which can in theory be measured with a 100% cer-
tainty. While Newton’s laws, together with Einstein’s relativity, accurately describe
movements in the macroscopic world (see e.g. [141]), they fail to accurately predict
results of experiments concerning microscopic quantities, such as the double-slit and
the Stern-Gerlach experiment [85]. In response to this, quantum mechanics was devel-
oped in the 20th century. It replaced Newtonian mechanics as a fundamental theory of
motion. While it is less intuitive to understand, it’s predictions have been confirmed
in countless experiments.
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Every particle and most of reality can be described in terms of quantum mechanics.
In this thesis we focus on electrons, as their behavior (the electronic structure of
atoms, molecules and condensed matter) determines chemical and optical properties.
An understanding of electronic structure can therefore lead to the development of new
materials useful in industrial applications.

In the following we introduce some basic concepts of quantum mechanics, which can
e.g. be found in [85] and [115]. We disregard spin in the following in order to achieve
conceptual clarity. A more complete account can be found, e.g., in [153].

The quantum state of an electron is given in form of a wave function

ψ(x) ∈ H = L2(R3,C) =

{
f : R3 → C :

∫

R3

|f(x)|2 dx <∞
}
, x ∈ R3. (3.1)

H is referred to as the Hilbert space. The scalar product of two wave functions is
defined as

〈ψ|φ〉 =

∫

R3

ψ(x)φ(x)dx.

In the physics literature using .∗ to refer to the complex conjugation (and not neces-
sarily to the conjugated transpose of a matrix) is very common.
ψ(x) ∈ H represents a physical state if it is normalized, i.e. we have

〈ψ|ψ〉 = 1. (3.2)

From the scalar product notation stems another commonly used way to refer to the
quantum state, introduced by Dirac [71]. A quantum state is expressed in form of a
so-called ket |ψ〉. A ket refers to a vector living in the abstract Hilbert space, that is
not yet expressed in a specific basis. We will see below, that the wave function (3.1)
refers to the quantum state in a so-called position basis. The matching counterpart
of a ket is a bra, denoted 〈ψ|. It is an element of the dual space H∗, i.e. it is a linear
functional 〈ψ| : H→ C. A bra applied on a ket forms a bra(c)ket, which explains the
names, and is just a scalar product,

〈φ| · |ψ〉 = 〈φ|ψ〉 .

In addition to the concept of states we require the concept of linear operators to
describe quantum mechanics. They act on elements of the Hilbert space and return
another wave function,

Q : H→ H.

An operator is called Hermitian if it holds

〈ψ|Qφ〉 = 〈Qψ|φ〉 =: 〈ψ|Q|φ〉 , ∀ψ, φ ∈ H.

Hermitian operators represent observables, i.e. quantities that can be measured. The
measurement provokes a collapse of the wavefunction, according to the Copenhagen
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interpretation of quantum mechanics. Before the collapse, a measurable property
can only be known in form of a probability distribution. After the collapse, the
wave function instantaneously becomes an eigenfunction of the observable (given said
eigenfunction is normalizable), and the corresponding eigenvalue is measured. The
eigenfunction fq fulfills the eigenvalue equation with eigenvalue q,

Qfq = qfq.

As predicted by Theorem 2.8, the eigenvalues of observables are real. Assuming a
discrete spectrum Λ(Q) = {q1, q2, . . . }, the eigenfunctions {fq1 , fq2 , . . . } corresponding
to different eigenvalues are orthogonal, i.e. with normalization it holds

〈fqi , fqj〉 = δi,j =

{
1 if i = j,

0 if i 6= j.
(3.3)

A measurement of qn happens with a probability of |cn|2, where cn is the coordinate
of the quantum state |ψ〉 in the eigenfunction basis,

P (observing qn after collapse) = |cn|2 , where cn = 〈fqn|ψ〉 . (3.4)

After the collapse, the quantum state is given by fqn and a second immediate mea-
surement will yield the same result qn with 100% certainty.
In case of a continuous spectrum, the eigenfunctions are not normalizable in the

sense of (3.3). Let z ∈ R vary over R, such that q(z) gives the spectrum and fq(z) be
the corresponding eigenfunction. The eigenfunctions can be normalized in the sense
that

〈fq(z), fq(ẑ)〉 = δ(z − ẑ)

gives the well-known Dirac delta function. The Dirac delta function is defined as the
distribution fulfilling

δ(x) =

{
∞ if x = 0,

0 if x 6= 0
,

∫
δ(x)dx = 1.

The “collapse” then refers to a narrow range around the measured quantity, depending
on the measurement precision. The probability of getting a measurement in a cer-
tain interval is given via a probability density. For a given quantum state |ψ〉, the
probability of getting a measurement result in the interval [a, b] is

P (observing q ∈ [a, b] after collapse) =

∫ b

a

|c(z)|2 dq(z),

where c(z) = 〈fq(z)|ψ〉 .
(3.5)

The role of the discrete index n in (3.4) is now played by the continuous variable z.
Analogously to cn, the function c(z) is seen as containing the coordinates of |ψ〉 in the
eigenfunction basis. The situation of a continuous spectrum arises for example when
considering the position operator. To improve the clarity of notation we consider the
one-dimensional problem in the following example, i.e. the particle is located on a line.
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Example 3.1:
Let the quantum state of a particle be given by

ψ(x) ∈ H1 = L2(R,C) =

{
f : R→ C :

∫

R
|f(x)|2 dx <∞

}
, x ∈ R.

The position operator x̂ is given by

x̂ : H1 → H1,

Ψ(x) → xΨ(x).

It is obviously linear and Hermitian. All z ∈ R are eigenvalues and the (generalized)
eigenfunctions are the delta functions

gz(x) = δ(x− z).

Now the wave function ψ(x) can be interpreted as the coordinates of |ψ〉 in the basis
given by the eigenfunctions of the position operator.

ψ(z) = 〈gz|ψ〉 =

∫

R
gz(x)ψ(x)dx.

Referring to (3.5), we see that c(z) = ψ(z) and q(z) = z. Therefore, |ψ(x)|2 =
ψ(x)ψ(x) describes a probability distribution concerning the electron’s position. This
justifies the normalization condition (3.2): The probability of finding an electron some-
where in space is equal to one. ♦

We have seen in Example 3.1 how the state can be expressed with respect to position x.
Just as well it can be represented in other bases such as the generalized eigenstates of
the momentum operator. An extension to three dimensions is straightforward. Here,
the generalized eigenfunctions of the position operator are given by delta functions
defined on R3, and the position measurements are given as three-dimensional points
in space.

The Hamiltonian operator H is an observable associated with the measurement of
energy. In absence of a magnetic field it is given for an electron as

H : ψ(x)→ − ~2

2me

∆xψ(x) + V (x)ψ(x),

where ~ is the Planck’s modified constant, me is the mass of an electron, and V (x) is
the potential energy function, describing the environment the electron is interacting
with. In shorthand notation we write

H = − ~2

2me

∆x + V (x).

From here on we use Hartree atomic units, i.e. set ~ = me = 1
4πε0

= kB = 1, where
1

4πε0
is the Coulomb constant and kB is the Boltzmann constant [160]. When results
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3 Basics of electronic structure theory

are obtained from computations employing atomic units, they can easily be scaled to
reflect proper units in a post-processing step. In this convention, the Hamiltonian
operator becomes

H = −1

2
∆x + V (x), (3.6)

The eigenvalue equation of this operator is the well-known time-independent Schrödinger
equation

HφE(x) = EφE(x), (3.7)

where E ∈ R is an eigenvalue of H, denoting possible energy levels of a system. The
state corresponding to the lowest possible energy level is called the ground state.

The only missing puzzle piece for describing a quantum process concerns the evo-
lution of a wave function in time. This behavior is described by the time-dependent
Schrödinger equation

i
∂ψ(x, t)

∂t
= Hψ(x, t). (3.8)

We set

ψ(x, t) = ψE(x, t) = φE(x)e−iEt, (3.9)

and see that it solves (3.8). While this wave function does depend on t, the probability
density associated with the electron’s position does not:

|ψ(x, t)|2 = φE(x)eiEtφE(x)e−iEt = |φE(x)|2 .

The functions ψE(x, t) defined in (3.9) are therefore called stationary states.
The spectrum of a Hamiltonian can have discrete as well as continuous parts. For

now we assume that the spectrum of H is discrete. The eigenfunctions of the Hamil-
tonian (3.7) form a complete basis set, i.e. any initial state can be expressed as

ψ(x, t = 0) =
∑

E

cEφE(x).

Now the time evolution of the initial state according to the Schrödinger equation (3.8)
is given by

ψ(x, t) =
∑

E

cEψE(x, t) =
∑

E

cEφE(x)e−iEt.

Getting solutions of the time-dependent Schrödinger equation (3.8) is therefore a
trivial task, when the solutions of the time-independent Schrödinger equation (3.7)
are known.
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3.3 Ground state methods in electronic structure theory

When n electrons are considered, the wave function has the form

ψ(x1, x2, . . . , xn) ∈ Hn = L2(R3n,C). (3.10)

Now, |ψ(x1, x2, . . . , xn)|2 is associated with the probability density of finding electrons
in positions x1, x2, . . . , xn. The Hamiltonian operator takes the form

H : ψ(x1, . . . , xn)→ −1

2

n∑

i=1

∆xiψ(x1, . . . , xn) + V (x1, . . . , xn)ψ(x1, . . . , xn).

The solution of the eigenvalue problem (3.7) is highly non-trivial, in particular when
more than one electron is involved.

In principal, all particles have a quantum nature and are described in form of a
quantum state. However, atomic nuclei have a much higher mass, such that in com-
parison to the electrons, they can be regarded as a static potential. This is called
the Born-Oppenheimer approximation and is applied in most of electronic structure
theory. In this setting, the many-body Hamiltonian is given as [120, 144]

H = T + VEN + VEE + ENN , (3.11)

where T is the kinetic energy, VEN is the potential created by the nuclei acting on
the electrons, VEE is the electron-electron interaction and ENN is the classical nuclei-
nuclei interaction. For n electrons and m nuclei with positions Xi and charges Zi,
i = 1, . . . ,m, they are given by

T =
n∑

i=1

−1

2
∆xi , VEN =

m∑

j=1

n∑

i=1

Zi
|xi −Xj|

,

VEE =
n∑

j

j−1∑

i

1

|xi − xj|
, EII =

m∑

j

j−1∑

i

ZiZj
|Xi −Xj|

.

Here, the nuclei-electron interaction VEN is given as the bare nuclear Coulomb inter-
action but may be switched for a pseudopotential in numerical calculations to include
the effect of core electrons. EII is constant with respect to ri and may also contain
other terms contributing to the total energy. Complexity arises because the electrons
are not independent of one another, i.e. each electron influences the electric potential
determining the Hamiltonian operator.

3.3 Ground state methods in electronic structure
theory

Computational methods are required to find approximate wave functions. For the
ground state, i.e. the eigenstate corresponding to the lowest eigenvalue of the Hamil-
tonian, the Hartree-Fock (HF) method [170] and Density Functional Theory (DFT)
[78] are being applied successfully.
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3 Basics of electronic structure theory

3.3.1 Hartree-Fock

The Hartree-Fock methodology approximates the many-electron wave function as a
product of independent, orthonormal wave functions, that has been antisymmetrized
to fulfill the Pauli exclusion principle [170]. A many-body wave functions of this form
is called a Slater determinant (see e.g. [104]). The ground state energy is given as
the infimum of an energy functional, so that approximations of any form produce a
ground state energy that is larger than or equal to the true one. A variational method
is used to find the wave functions whose Slater determinant yields the lowest energy,
i.e. the one closest to the true ground state energy. This is done by solving a nonlinear
eigenvalue problem

F(V )V = V Λ, (3.12)

where V contains the eigenvectors and Λ is the diagonal matrix containing the eigen-
values. In actual computations, a wave function approximation is expanded in a finite-
dimensional space and can be represented as a column vector. The Fock operator F
is Hermitian and becomes a Hermitian matrix when expressed in finite-dimensional
space. It depends on the eigenvectors, making the problem non-linear which results
from the Hartree potential and the exchange operator. The Hartree-Fock equation
(3.12) is typically solved in a series of Hermitian linear eigenvalue problems until
self-consistency is achieved.

Hartree-Fock and its descendants are very popular in quantum chemistry as they
provide good correspondence with experiments for many molecules. A major drawback
of Hartree-Fock methods is that the interaction between electrons, called electronic
correlation, is not completely taken into account.

This interaction has measurable influence in particular in crystalline systems, which
is why in solid state physics density functional theory (DFT) is a more popular ap-
proach to compute ground state properties.

3.3.2 Density functional theory

Density functional theory is based on the following fact. For an accurate computation
of the ground state, one does not need to know the complete many-body wave function
(3.10), which is extremely demanding to compute or approximate [115]. Instead, one
can use the electron density, which for a multidimensional wave function ψ(r1, . . . , rn)
is given as

ρ(r) = n

∫
· · ·
∫
ψ(r, r2, . . . , rn)ψ(r, r2, . . . , rn)dr2 . . . drn, r, r2, . . . , rn ∈ R3.

Hohenberg and Kohn [98] showed that the ground state wave function is completely
determined by the ground state density. As in Hartree-Fock theory, DFT can be
based on the expression of the ground state energy as the solution of an optimization
problem, searching in the space of skew-symmetric (hence admissible) n-dimensional
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3.3 Ground state methods in electronic structure theory

wave functions An.

Emin = inf
ψ∈An

〈ψ|H|ψ〉

We take the perspective of constrained optimization, which was developed by Levy
[112] and Lieb [114]. E is expressed as a solution to an optimization problem on the
set of admissible ground state densities. Given the formulation of the many-body
Hamiltonian in (3.11), it holds

Emin = inf
ρ(r)

inf
ψ∈A0

n
ψ 7→ρ(r)

〈ψ|T |ψ〉+ EH [ρ] + Exc[ρ] +

∫
ρ(r)Vext(r)dr + EII . (3.13)

Here,

EH [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′| drdr
′

describes electron-electron repulsion and is called the Hartree energy. The remaining
electron-electron interaction is captured in the exchange-correlation energy Exc. The
second (i.e. inner) infimum minimizes the resulting energy over all admissible wave
functions ψ yielding a given density distribution ρ(x) (denoted by ψ 7→ ρ(r)). It can
be shown that it is enough to consider the wave functions given by Slater determinants,
which were introduced in the previous section. We call the set of all Slater determinants
A0
n.
An n-dimensional Slater determinant is an anti-symmetrized product of n single

particle wave functions. The optimization problem (3.13) can be reformulated, such
that one is looking for the set of orthonormal wave functions ψi(r) minimizing the
Kohn-Sham energy EKS:

Emin = inf
{ψi}ni=1
〈ψi|ψj〉=δij

EKS({ψi}) + EII ,

EKS({ψi}ni=1) =
1

2

n∑

i=1

∫
|∆rψi(r)|2dr +

∫
ρ(r)Vext(r)dr + EH [ρ] + Exc[ρ].

Similar to the Hartree-Fock method one can solve the minimization problem by finding
a stationary point of the corresponding Lagrangian. The resulting Euler-Lagrange
equations are given by

HKS[ρ]ϕi(r) =
n∑

j=1

ϕj(r)λij, i = 1, . . . , n, (3.14)

where the operator

HKS[ρ] = −1

2
∆r + Vext(r) + VH [ρ](r) + Vxc[ρ](r), (3.15)
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is the so-called Kohn-Sham Hamiltonian [107]. VH =
∫ ρ(r′)
|r−r′|dr

′ is the Hartree potential
and the functional derivative

Vxc[ρ] =
δExc[ρ]

δρ

is called the exchange-correlation potential. The matrix of Lagrange multipliers [λij]
n
i,j=1

is Hermitian and can be diagonalized with an orthogonal transformation (cf. Theorem
2.8). This way, equation (3.14) is transformed into a non-linear eigenvalue problem,
called the Kohn-Sham equation [107].

HKS[ρ]ψi(r) = EKS
i ψi(r), i = 1, . . . , n. (3.16)

The eigenstates (eigenvectors) ψi(r) are called Kohn-Sham orbitals. There is no point
in explicitly computing the functions ϕi(r) in (3.14), as they are just rotated versions
of the set given by ψi(r). Both sets yield the same density, i.e. they are equivalent and
create the same Kohn-Sham Hamiltonian. The eigenvalue problem is non-linear be-
cause HKS depends on the electron density, which in turn depends on the eigenvectors
in form of

ρ(r) =
n∑

i=1

|ψi(r)|2.

In order to solve the eigenvalue problem (3.16) to self-consistency, typically a series
of Hermitian matrix eigenvalue problems is solved, representing the discretized, finite-
dimensional form of the eigenvalue problem.

The Kohn-Sham Hamiltonian (3.15) has the same form as a classical Hamiltonian
created by an external potential

Veff (r) = Vext(r) + VH [ρ](r) + Vxc[ρ](r).

This means that the eigenvalue problem (3.16) is a time-independent Schrödinger
equation and the Kohn-Sham orbitals can be seen as fictitious system of independent
wave functions. Their combination in form of a Slater determinants yields the same
electron density as the true solution of the original Schrödinger equation. Then the
ground state energy must be the same.

The presented framework is in principle exact. All quantities are given explic-
itly with the exception of the exchange-correlation energy Exc and consequently the
exchange-correlation potential. The challenge in the successful application of DFT
lies in the use of a suitable approximation for Exc. The simplest and most widely
used one is the local density approximation (LDA). It replaces the inhomogeneous
system at point r with the homogeneous system of the same density. Surprisingly,
this approximation often yields good results, even for very inhomogeneous systems
[139].

Both Hartree-Fock and DFT compute eigenvalues and eigenstates of a fictitious
system (see (3.16) for DFT). It is tempting to interpret these eigenvalues as excitation
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levels (i.e. as eigenvalues of the original many-body Schrödinger equation), but this
approach bears little justification and usually leads to wrong results [139].

The presented ground-state methods are unsuited for computing eigenstates cor-
responding to higher energy eigenvalues, called excited states. Excited states are
required for the description of optical phenomena. The ground state may be used as
a starting point for further computations as described in Section 3.4.

3.4 Computing optical properties

Electronic excitations are responsible for optical phenomena such as direct photoemis-
sion, inverse photoemission and absorption.

3.4.1 Optical properties and a Dyson-like equation

In this section, we compile equations for computing the frequency-dependent reducible
polarizability χ(r, r′, ω) according to [139] and [155]. χ is needed to compute the di-
electric function ε, which is used to compute the electron-loss spectrum. Furthermore,
it can be used to compute the macroscopic dielectric function, which is needed for
computing the optical absorption spectrum of solids. Alternatively, a modified po-
larizability P can be used to directly compute the macroscopic dielectric function.
It is constructed from a modified Coulomb potential where the long range term is
truncated. Similar equations hold for P as for χ and they can be solved in a similar
manner (see details in [139]).

In case of a system consisting of independent (quasi-)particles, χ is constructed in
form of

χ0(r, r′, ω) =
∑

i∈Iocc,
j∈Iunocc

ϕi(r)ϕj(r)ϕj(r
′)ϕi(r′)

ω − ωij

+
∑

i∈Iunocc,
j∈Iocc

ϕi(r)ϕj(r)ϕj(r
′)ϕi(r′)

−ω − ωji
,

(3.17)

where Iocc is the index set for which ϕi, i ∈ Iocc describes an occupied orbital and Iunocc
is the index set for which ϕi, i ∈ Iunocc describes an unoccupied (also called virtual)
orbital. ωij = εj − εa is the energy difference of the states ϕj and ϕi.

A corresponding four point quantity is constructed in form of [155]

χ0(r1, r2, r3, r4, ω) =
∑

i∈Iocc,
j∈Iunocc

ϕi(r1)ϕj(r3)ϕj(r2)ϕi(r4)

ω − ωij

+
∑

i∈Iunocc,
j∈Iocc

ϕi(r1)ϕj(r3)ϕj(r2)ϕi(r4)

−ω − ωji
.

(3.18)
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The poles of χ in the frequency domain are the excitation energies of the system.
If the Kohn-Sham orbitals from ground state DFT (see Section 3.3.2) are used to
construct χ0, it can be seen as a very rough approximation for χ. It can serve as a
starting point for computing χ in form of a Dyson-like equation

χ(r, r′, ω) = χ0(r, r′, ω) +

∫ ∫
χ0(r, r1, ω)C(r1, r2)χ(r2, r

′, ω)dr1dr2. (3.19)

The specific kernel C depends on the chosen computational method. The two possi-
ble methods are the approach following from linear response time-dependent density
functional theory (TDDFT) and the approach based on the Bethe-Salpeter equation
(BSE), following from many-body perturbation theory. Some details are given in
Sections 3.4.2 and 3.4.3.

Any two point operator W (r, r′) can approximately be expressed as a matrix W =
[Wkl]

n
k,l=1 with respect to a finite-dimensional orthonormal basis set ψk(r), k = 1, . . . , n.

Wkl =

∫ ∫
W (r, r′)ψk(r)ψl(r

′)drdr′.

In this representation, the integral equation (3.19) becomes a matrix equation

χ = χ0 + χ0Cχ. (3.20)

Often, a matrix equation like (3.20) is used as a shorthand notation for integral equa-
tions like (3.19) without having a specific discretization in mind.

In the TDDFT approach, C takes the form of a two-point kernel, i.e. (3.19) holds
as described above. In the Bethe-Salpeter approach on the other hand, a four-point
kernel is needed to adequately describe the relationship between χ0 and χ. In this
case, equation (3.20) is seen as shorthand notation for the integral equation [155]

χ(r1, r2, r3, r4, ω) = χ0(r1, r2, r3, r4, ω) +

∫ ∫ ∫ ∫
χ0(r1, r5, r3, r6, ω)

·C(r6, r7, r5, r8)χ(r8, r2, r7, r4, ω)dr5dr6dr7dr8.

(3.21)

Equation (3.21) can be regarded as a Bethe-Salpeter equation for χ.
It is also possible to consider the four-point quantities, even when in the TDDFT

approach 2-point quantities would suffice. Then the four-point kernel C is given by

C(r1, r2, r3, r4, ω) = C(r1, r4)δ(r1 − r3)δ(r2 − r4). (3.22)

With χ0(r1, r2, ω) = χ0(r1, r2, r1, r2, ω) and defining

χ(r1, r2, ω) = χ(r1, r2, r1, r2, ω),

we arrive at (3.19) when using (3.22) in (3.21). A method solving (3.21) can therefore
be used so solve (3.20).

34



3.4 Computing optical properties

Section 3.5 shows how the four-point variant (3.21) can be reformulated in form of a
matrix eigenvalue problem of dimension 2noccnunocc, where nocc = |Iocc| is the number
of occupied orbitals and nunocc = |Iunocc| is the number of unoccupied orbitals.
The method of solving the eigenvalue problem following from treating the 2-point

TDDFT equation (3.20) as a four-point equation for molecules is called Casida for-
malism [64].

3.4.2 Kernel derivation from TDDFT

The Kohn-Sham equations (3.16) can be generalized to reflect a time-dependent Hamil-
tonian

H(t) = −
∑

i

∆xi + V (x, t)

with a time-dependent potential V (x, t). Runge and Gross [150] showed that two
external potentials, that only differ by a time-dependent function, give rise to the
same electron density ρ(r, t). The wave functions only differ by a phase factor. The
resulting framework is called time-dependent density functional theory (TDDFT).
Analogously to classical mechanics, an equation of motion is found by determining

the wave function ψ(x, t) in form of a stationary point of the action A[ψ]. This leads
to the time-dependent Kohn-Sham equations, describing the time evolution of a wave
function under changing external potential:

i
∂

∂t
ψi(x, t) =

[
−1

2
∆2
x + Veff(x, t)

]
ψi(x, t), (3.23)

where

Veff =

∫
ρ(x′, t)

|x− x′|dx
′ + Vxc[ρ(r, s)t0<s<t](r) + Vext(x, t). (3.24)

The exchange-correlation potential Vxc is dependent not just on the current density,
but on the density evolution since time t0. In the time-independent case, it is already
difficult to approximate and in TDDFT further sacrifices have to be made.

A straightforward choice is the local density approximation (LDA), which accurately
describes the homogeneous electron gas, but works surprisingly well for many other
systems [139].

In order to compute excitation energies, one needs to apply concepts from pertur-
bation theory. Here, the Hamiltonian is seen as a stationary Hamiltonian which is
perturbed by a small time-dependent potential δVext(t). In the linear regime, the re-
sponse function is given by the reducible dynamic polarizability operator χ and defined
as

χ(r, t, r′, t′) =
∂ρ(r, t)

∂Vext(r′, t′)
,
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i.e. it describes how the electron density ρ(r, t) reacts to a change in the external
potential. What makes this quantity difficult to compute is seen in (3.23) and (3.24).
The external potential Vext does not directly perturb the Kohn-Sham Hamiltonian but
creates an effective potential Veff , including the difficult-to-approximate exchange-
correlation potential Vxc. If the effective potential was known, the resulting density
could easily be computed via the irreducible dynamic polarizability operator defined
in this context as

χ0(r, t, r′, t′) =
∂ρ(r, t)

∂Veff (r′, t′)
.

The operator χ0 is the linear response of the fictitious system described by the Kohn-
Sham orbitals ψi determined by equation (3.23). It can be shown to be computed as
presented in equation (3.17).

Using these definitions, (3.20) can be shown to hold with a frequency-dependent
kernel

C(r1, r2, ω) = v(r1, r2) + fxc(r1, r2, ω). (3.25)

fxc(r1, r2, ω) is given by a Fourier transform of

fxc(r, t, r
′, t′) =

∂Vxc[ρ(r, t)]

∂ρ(r′, t′)

∣∣∣∣
Vext=0

.

In the time-dependent LDA (TDLDA) approximation, it is frequency-independent and
given as

fTDLDAxc (r1, r2) = δ(r1 − r2)
∂V LDA

xc (ρ(r1), r1)

∂ρ(r1)
,

where V LDA
xc is known explicitly.

In practical computations, approximations already have to be made in the computa-
tion of χ0. Typically, Kohn-Sham orbitals from the ground-state calculations with an
approximate exchange-correlation functional are used, together with corrected eigen-
values using the GW method. The approximations induced by the TDLDA come on
top.

3.4.3 Kernel derivation from the Bethe-Salpeter equation

The Bethe-Salpeter equation [154] is a general equation describing a two-body system
within quantum field theory. For a general treatment see e.g. [77]. It can be applied in
many physical settings including high energy particle physics, nuclear theory and elec-
tronic structure theory [166]. In the latter setting, it can also be derived from Hedin’s
equations [90]. This has the advantage of pointing out recipes for approximations of
the required quantities.

Hedin’s equations are a closed set of five integral equations, accurately describing the
many-body problem. They relate the important physical quantities of the self-energy
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Σ, the dynamical screened interaction W , the time-ordered polarization operator P ,
the vertex function Γ and the Green’s function G. One approach to solve them is to
start with approximations for G and Σ and use them to compute the other quantities
hoping to achieve self-consistency. Setting the starting points to Σ = 0 and G = G0

which is constructed from Kohn-Sham orbitals and eigenvalues, one arrives at the
Dyson equation [77, 90]

G = G0 +G0ΣG,

where Σ = iG0W has been approximated using the GW approximation. Applying
Hedin’s equations for Π and P yields

P = χ0 − PWχ0, (3.26)

where χ0 is constructed from G0. P and χ are by definition connected in form of

χ = P + Pvχ, (3.27)

where v is the bare Coulomb potential v(r1, r2) = |r1 − r2|−1.
The Dyson-like equation (3.20) can be derived from (3.26) and (3.27) with the kernel

C(r1, r2, r3, r4) = v(r1, r4)δ(r4 − r2)δ(r3 − r1)−W (r2, r4)δ(r4 − r1)δ(r3 − r2). (3.28)

We described the setup of the kernel C in an abstract fashion and omitted details
which may vary in different variants of the BSE-based method. We see that approx-
imations have to be made at multiple points. This gives some degrees of freedom in
the implementations of electronic structure codes.

3.5 The emergence of structured eigenvalue
problems

In this section, we show how the Dyson-like equations (3.20) can be treated as a matrix
eigenvalue problem. The resulting matrix will display two kinds of symmetries. One
is induced by the choice of basis functions in order to represent the 4-dimensional
quantities in 2-dimensional matrix form. The other one is induced by using a four-
point kernel of the form (3.22) where C(r1, r4) = C(r4, r1). This is the case for the
TDDFT kernel described in Section 3.4.2 and the first addend of the BSE kernel
(3.28). In the second addend, only the roles of r1 and r2 are switched and the same
symmetries emerge.

Starting from (3.20) and making the dependency on ω explicit, we have [155]

χ(ω) = χ0(ω) + χ0(ω)Cχ(ω),

⇔ χ(ω) = χ0(ω)(I + Cχ(ω))

⇔ χ0(ω)−1χ(ω)− Cχ(ω) = I

⇔ χ(ω) = (χ0(ω)−1 − C)−1. (3.29)
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3 Basics of electronic structure theory

Below we express the involved operators in a specific basis set. In this basis set χ0(ω)
is diagonal and χ0(ω)−1 has the form

χ0(ω)−1=D + ωK, (3.30)

whereD = diag(D0, D0) is real diagonal and not depending on ω andK = diag(I,−I).
Using (3.29), the matrix representation of χ(ω) is now given by

χ(ω)=(D + ωK − C)−1

= −(K(C −D)︸ ︷︷ ︸
=:HC

−ωI)−1K (3.31)

where we used K−1 = K. The poles of χ are the sough-after excitation values of the
original system. From (3.31) we see that ω is a pole of χ when the matrix pencil
HC − ωI is not invertible, i.e. when ω is an eigenvalue of HC . Furthermore, χ(ω) can
be computed when a full diagonalization HC = V ΛV −1 is available as

χ(ω) = −(V ΛV −1 − ωI)−1K

= −V (Λ− ωI)−1V −1K. (3.32)

The microscopic dielectric function and the electron-energy-loss spectrum can be
computed from χ(ω). The macroscopic dielectric function can be computed from the
microscopic dielectric function via a matrix inversion or alternatively more direct by
considering a modified polarizability [139].

From (3.18) we see that the free four-point polarization propagator χ0(r1, r2, r3, r4, ω)
is an element of the vector space

Vorig := H ⊗H ⊗H ⊗H,

i.e. the tensor product of four Hilbert spaces. The vector space H is spanned by
the functions ϕi(r) which were used in (3.18) to construct χ0. The dual space H

is spanned by the complex conjugated basis functions ϕi(r). The space Vorig is a
subspace of L2(R3×4,C).
Suppose each H has dimension 2N (corresponding to N occupied and N unoc-

cupied orbitals). Then Vorig has dimension 16N4. Let H have a given basis set
{ϕi : i = 1, ..., 2N}. A basis of the tensor product space Vorig is given by

{ψ(klmn) = ϕk(r1)ϕl(r2)ϕm(r3)ϕn(r4) : k, l,m, n ∈ {1, ..., 2N}},

i.e. all possible product combinations with factors from the individual basis sets.
χ0(r1, r2, r3, r3, ω) is represented in this basis as

χ0(r2, r2, r3, r4, ω) =
2N∑

k,l,m,n

χ0,klmnψklmn
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3.5 The emergence of structured eigenvalue problems

Any element of Vorig can be represented by 16N4 parameters, given in the case of
χ0 by χ0,klmn. But in fact we know more about what χ0 looks like and do not need to
consider the whole space. Instead we consider a subspace V of dimension 4N4.
LetH = O⊕U, where O is the subspace spanned by the occupied orbitals, associated

with index set Iocc = {1, . . . , N}, and U is the subspace spanned by the unoccupied
orbitals associated with the index set Iunocc = {N + 1, . . . 2N},

O = span(ϕi : i ∈ Iocc) ,
U = span(ϕi : i ∈ Iunocc) .

Rewriting (3.18), χ0(ω) has the form [10]

χ0(r1, r2, r3, r4, ω) =
N∑

i=1

2N∑

j=N+1

1

ω − ωij
ψ(ijji) (3.33)

+
2N∑

i=N+1

N∑

j=1

1

−ω − ωji
ψ(ijji).

χ0 can also be expressed as an element of the lower-dimensional V = B⊗B, where B

is given as the transition subspace

B = B0 ⊕ B̂0 = (O⊗ U)⊕ (U⊗ O) (3.34)
= span(Ψij := ϕi(r)ϕj(r

′), i = 1, ..., N, j = N + 1, ..., 2N)

⊕ span(Ψij = ϕi(r)ϕj(r
′), i = N + 1, ..., 2N, j = 1, ..., N)

and has dimension 2N2. We map the double indices (i, j) to one superindex I

I =

{
(j − (N + 1))N + i for i ∈ {1, .., N}, j ∈ {N + 1, ..., 2N},
N2 + (j − 1)N + i−N for i ∈ {N + 1, .., 2N}, j ∈ {1, ..., N}. (3.35)

An ordered basis set of B is given as

{ΨI(r, r
′) := ΨI(i,j)(r, r

′) = Ψi,j(r, r
′) : I = 1, ..., 2N2}. (3.36)

This yields a basis of the tensor product space B×B

{ΨI(r1, r3)ΨJ(r4, r2) : I, J = 1, ..., 2N2}. (3.37)

χ0 can be represented with respect to this basis as

χ0(r1, r2, r3, r4, ω) =
2N2∑

I,J

χ0,IJΨI(r1, r3)ΨJ(r4, r2). (3.38)
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3 Basics of electronic structure theory

χ̂0(ω) := (χ0,IJ)I,J=1,...,2N2 is a two-dimensional tensor, i.e. a matrix, representing
χ0(r1, r2, r3, r4, ω). It follows from (3.33) that χ̂0(ω) is diagonal and given as

χ̂0(ω) =

[
D1(ω)

D2(ω)

]
,

where

D1(ω) = diag((ω − ω1,N+1)−1, . . . (ω − ω1,2N)−1, (ω − ω2,N+1)−1, . . . , (ω − ω2,2N)−1,

. . . , (ω − ωN,N+1)−1, . . . , (ω − ωN,2N)−1)

D2(ω) = diag((−ω − ω1,N+1)−1, . . . (−ω − ω1,2N)−1, (−ω − ω2,N+1)−1,

. . . , (−ω − ω2,2N)−1, . . . , (−ω − ωN,N+1)−1, . . . , (−ω − ωN,2N)−1).

We see that (3.30) holds indeed with

D0 = diag(ω1,N+1, . . . , ω1,2N , . . . , ωN,N+1, . . . , ωN,2N).

What is left to do is to examine the matrix structure of the kernel C given in (3.25)
or (3.28), discretized with respect to the orthogonal basis set (3.37). The matrix
elements of a kernel of the form (3.22) are

CI,J =

∫ ∫ ∫ ∫
C(r1, r2, r3, r4))ΨI(r1, r3)ΨJ(r4, r2)dr1dr2dr3dr4 (3.39)

=

∫ ∫
C(r1, r2)ΨI(r1, r1)ΨJ(r2, r2)dr1dr2. (3.40)

It is easily shown that from C(r1, r2) = C(r2, r1) follows

CIJ = CJI , (3.41)

i.e. the matrix is Hermitian. The symmetry is a property independent from the specif-
ically chosen basis functions.

Another kind of symmetry is introduced by the basis functions because it holds

ΨI(r, r
′) = ΨÎ(r

′, r), Î =

{
I +N2 if I ≤ N2,

I −N2 if I > N2.
(3.42)

It follows

ΨI(r1, r3)ΨJ(r4, r2) = ΨĴ(r2, r4)ΨÎ(r3, r1)

and therefore we have with C(r1, r2) = C(r2, r1)

CI,J = CĴ ,Î . (3.43)
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3.6 Exploiting crystalline structure

Equation (3.43) implies a block matrix structure

C =

[
A B
D AT

]
, D = DT, B = BT. (3.44)

Because we know from equation (3.41) that the matrices are Hermitian, we arrive at
the block structure

C =

[
A B
B A

]
, A = AH, B = BT. (3.45)

In the Bethe-Salpeter approach, the static approximation of the screened Coulomb
interaction in four-point form is given as [139]

W (r1, r2, r3, r4) = W (r2, r4)δ(r4 − r1)δ(r3 − r2)

and yields a matrix form

WIJ =

∫ ∫ ∫ ∫
W (r1, r2, r3, r4))ΨI(r1, r3)ΨJ(r2, r4)dr1dr2dr3dr4

=

∫ ∫
W (r2, r4)ΨI(r4, r2)ΨJ(r2, r4)dr2dr4.

Here we also see that WIJ = WJI , i.e. the matrix is Hermitian. The symmetry
following from the particular choice of basis functions for the tensor space (3.43), i.e.
WIJ = WĴ Î , also holds for W , such that we arrive at the same structure.
With the Kernel C in matrix form (3.45), the matrix HC defined in (3.31) has the

form

HC =

[
A B
−B −A

]
, A = AH, B = BT

This is what we called the Bethe-Salpeter matrix in the thesis introduction in (1.1).
Developing algorithms to solve the eigenvalue problem for this matrix that exploit the
structure and are suitable for high performance computing, is a major focus of this
thesis.

3.6 Exploiting crystalline structure

In this section, we assume that the Dyson-like equation (3.20) is to be solved for a
crystalline system. Here, the atoms are arranged in form of a Bravais lattice [161],
defined by basis vectors a1, a2, a3 ∈ R3 as

L = {R = n1a1 + n2a2 + n3a3|n1, n2, n3 ∈ Z}.
The positions of the atoms can be considered fixed. They determine the state of an
electron within the system in form of a periodic potential

V (r) = V (r +R) ∀R ∈ L.
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3 Basics of electronic structure theory

Bloch’s theorem states that the eigenstates of the Hamiltonian operator determined
by a periodic potential have the form [115]

ϕn,k(r) = eik·run,k(r), (3.46)

where k ∈ R3, n = 0, 1, 2, . . . and un,k(r) is periodic with respect to the lattice, i.e.

un,k(r) = un,k(r +R) ∀R ∈ L.

The states (3.46) are called Bloch states. The corresponding eigenvalues (energy levels)
are given by εn,k. From considerations involving the time reversal operator it follows
that [151, 155]

ϕn,k(r) = ϕn,−k. (3.47)

As the ϕi in (3.17) are eigenstates of the Kohn-Sham Hamiltonian, they can be ex-
pressed in form of a Bloch state (3.46).

ϕi(r) = ϕn(i),k(i)(r).

We define the subspace spanned by occupied and unoccupied orbitals corresponding
to a wave vector k in the Brillouin zone Ω∗.

Ok = span(ϕn,k(r) : n ∈ Iocc = {1, . . . , Nsol}) ,
Uk = span(ϕn,k(r) : n ∈ Iunocc = {Nsol + 1, . . . , 2Nsol}) .

Assuming a zero momentum transfer in the excitation (corresponding to a direct band
gap), only ϕn,k with the same crystal momentum k contribute to the polarizability,
i.e. χ0 (see (3.18)) can be expressed as [155]

χ0(r1, r2, r3, r4, ω) =
∑

k∈Ω∗

∑

i∈Iocc,
j∈Iunocc

ϕi,k(r1)ϕj,k(r3)ϕj(r2)ϕi,k(r4)

ω − ωij,k

+
∑

k∈Ω∗

∑

i∈Iunocc,
j∈Iocc

ϕi,k(r1)ϕj,k(r3)ϕj,k(r2)ϕi,k(r4)

−ω − ωji,k
,

where ωij,k = εj,k−εi,k. By changing the summation index k in the second term (called
antiresonant) to −k, which is also in the Brillouin zone, and applying (3.47) we arrive
at

χ0(r1, r2, r3, r4, ω) =
∑

k∈Ω∗

∑

i∈Iocc,
j∈Iunocc

ϕi,k(r1)ϕj,k(r3)ϕj,k(r2)ϕi,k(r4)

ω − ωij,k

+
∑

k∈Ω∗

∑

i∈Iunocc,
j∈Iocc

ϕi,k(r1)ϕj,k(r3)ϕj,k(r2)ϕi,k(r4)

−ω − ωji,k
.

(3.48)
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3.6 Exploiting crystalline structure

χ0 can now be represented as a matrix acting on the transition subspace

Bsol =Bsol,0 ⊕ B̂sol,0, (3.49)

where

Bsol,0 = ⊕k∈Ω∗(Ok ⊗ Uk)

= span(Ψij,k(r, r
′) = ϕi,k(r)ϕj,k(r

′) : i ∈ Iocc, j ∈ Iunocc, k ∈ Ω∗)

and

B̂sol,0 = ⊕k∈Ω∗(Uk ⊗ Ok)

= span(Ψij,k(r, r
′) = ϕi,k(r)ϕj,k(r

′) : i ∈ Iunocc, j ∈ Iocc, k ∈ Ω∗) .

Let the set of possible values of k be encoded in the finite index set Ik = {1, . . . , Nk}.
Nk represents the resolution of the discretization. This means that for complex systems
a large number of k-points is required (Nk � N). We represent each k-point by an
index l ∈ Ik. The index triple (i, j, l) is mapped on the superindex I analogously
to (3.35). We define I(i, j, l), where either i ∈ Iocc and j ∈ Iunocc or i ∈ Iunocc and
j ∈ Iocc, by

I(i, j, l) =

{
(l − 1)N2 + (j − (N + 1))N + i for i ∈ Iocc j ∈ Iunocc,
NkN

2 + (l − 1)N2 + (j − 1)N + i−N for i ∈ Iocc, j ∈ Iunocc.

An ordered basis set of Bsol is given as

{ΨI(r, r
′) := ΨI(i,j,l)(r, r

′) = Ψij,k(r, r
′) : I = 1, ..., 2NkN

2}. (3.50)

The first half of basis functions corresponds to states where i ∈ Iocc, j ∈ Iunocc, and k
covers all admissible k-points in the Brillouin zone. The second half covers i ∈ Iunocc,
j ∈ Iocc and again all possible k-points.
As in the general case discussed in Section 3.5, χ0 (3.48) is diagonal with respect to

the defined basis set (3.50).
The particular choice of basis functions introduces a symmetry in form of

ΨI(r, r
′) = ΨÎ(r

′, r), Î =

{
I +NkN

2 if I ≤ NkN
2

I −NkN
2 if I > NkN

2
.

In contrast to (3.42), no complex conjugation is involved. It follows

ΨI(r1, r3)ΨJ(r4, r2) = ΨĴ(r2, r4)ΨÎ(r3, r1)

and therefore we have, using the general definition of the matrix elements of C (3.40),

CI,J = CĴ ,Î . (3.51)
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3 Basics of electronic structure theory

In contrast to (3.44), a matrix block structure of the following form is implied by
(3.51).

C =

[
A B
D AH

]
, D = DH, B = BH.

Together with the fact, that C is Hermitian ((3.41) also holds for the newly defined
basis set), we arrive at a structured matrix

C =

[
A B
B A

]
, A = AH, B = BH.

The same ideas can be applied to the second part of the Bethe-Salpeter Kernel W ,
leading to the same structure. With this kernel, the Bethe-Salpeter matrix defined in
(3.31) has the form

HC =

[
A B
−B −A

]
, A = AH, B = BH.

3.7 TDDFT vs. Bethe-Salpeter approach

The Dyson-like equation emerging from linear response TDDFT (3.20) can also be
written down with 2-point quantities in form of (3.19) using the Kernel (3.25).

Extending it as a large 2n2 × 2n2 eigenvalue problem, i.e. using (3.22), leads to a
much larger eigenvalue problem. This only makes sense under specific circumstances.
In quantum chemistry, molecules are observed, instead of solid structures. Here, the
basis functions can be chosen such that they have no imaginary components. This
results in real matrices. Methods described in Chapter 6 can therefore be applied.
These methods rely on the formation of A − B and A + B. In [64] it is shown that
A − B is diagonal if the matrix was set up in this context. The presented approach
relies on the matrix square root of A − B, also see Chapter 6. In this case, one
only needs to compute the square roots of the diagonal entries. This is equivalent to
the other presented approaches in Chapter 6, e.g. involving a Cholesky factorization.
Furthermore, in quantum chemical applications usually a smaller number of states n
is needed for modeling, and the quadratic size 2n2 of the eigenvalue problem is not
yet prohibitively large. When A−B is not diagonal, the square root approach should
be avoided. Details are presented in Chapter 6.

For solids, it is not possible to only use real basis functions. Therefore, following the
Casida formalism one arrives at a problem that is computationally equivalent to the
BSE approach. The quality of TDDFT depends on the quality of the approximation
used for the exchange-correlation potential. As pointed out in Section 3.3.2, this al-
ready poses a challenge in the non-time-dependent case. The Bethe-Salpeter approach
on the other hand provides a clear path for better approximation by including larger
parts of the corresponding Feynman diagrams [139].
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3.8 Summary and conclusion

In particular the inclusion of a strong electron-hole correlation is easier in the BSE
approach. This is the case for materials such as bulk silicone. In [139] and [152] it
is shown that a Bethe-Salpeter approach computes optical absorption spectra that
better match experimental results than a TDDFT approach.

Both approaches can benefit from mutual insight. For example, approximate TDDFT
exchange-correlation kernels can be deduced from a comparison with results from
many-body perturbation theory.

3.8 Summary and conclusion

In this chapter, we discussed quantum physical ground state methods. They give a set
of independent orbitals and eigenvalues. These are used to set up a function χ0. The
sought-after function is the (reducible) polarizability χ. It is related to χ0 via a kernel
C in form of a four-point integral equation, which can be considered a Bethe-Salpeter
equation. C is deduced either from time-dependent density functional perturbation
theory, or from many-body perturbation theory, i.e. Hedin’s equations.

Rewriting the equation leads to an operator eigenvalue problem, which can be dis-
cretized to form a linear matrix eigenvalue problem. To this end, we used the idea
that any four-point function can approximately be represented in form of a 4D tensor
with respect to a set of orthogonal four-point basis functions. We used products of
four one-point functions that are given by the ground state occupied orbitals and un-
occupied orbitals. The 4D tensor is representable as a 2D tensor, i.e. a matrix when
flattened. To this end we defined the product of two orbitals ϕi, ϕj as basis functions
ΨI , where I is a superindex referring to all possible combinations of the pair i, j. In
the product, only occupied and unoccupied states can be paired. We considered N
occupied and N unoccupied states and arrived at a matrix of size 2N2 × 2N2.
The resulting structure shows two kinds of symmetries. One stems from the inher-

ent symmetry of K, the other one comes from the redundancy inherent to the basis
functions. Both symmetries together lead to the typical block matrix structure.

For solid materials, the time-inversion symmetry of basis functions in k-space can be
applied. In the basis-related symmetry, the change introduces a complex conjugation.
This leads to a slightly different block structure.

A conclusion to be drawn from this chapter is that the setup of the Bethe-Salpeter
block matrix is only the last step in a series of mathematical considerations. The
matrix eigenvalue problem is one way to make the problem tractable for computers.
However, due to the N2 scaling, the resulting matrix is extremely large, even for small
scale problems. The symmetries in the matrix reflect the representation of redundant
information in this approach. Future research, going beyond the scope of this thesis,
should not just take the structured matrix as a starting point. Instead, the original 4-
dimensional objects it represents should be studied further. If dimensionality reduction
can be applied at this stage, much smaller matrices would need to be considered.
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CHAPTER 4

PROPERTIES OF MATRICES WITH
BETHE-SALPETER STRUCTURE
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4.1 Introduction

We have seen in equation (3.32) that the discretized Bethe-Salpeter equation (3.20)
for the reducible polarizability χ(ω) can be solved by computing the eigenvalue de-
composition of a structured matrix H.

With a general set of occupied and unoccupied orbitals as basis functions, H has
the structure

H = H1 =

[
A B
−BH −AT

]
∈ C2n×2n, A = AH, B = BT. (4.1)

In this thesis, we refer to Structure (4.1) as a BSE matrix of form I.
In crystalline systems, the given physical structure implies a periodic potential.

Here, Bloch states are chosen as basis functions. The periodicity of crystalline systems
implies a time-inversion symmetry in these states (see Section 3.6). This leads to H
having the form

H = H2 =

[
A B
−B −A

]
∈ C2n×2n, A = AH, B = BH. (4.2)

We call matrices of this form BSE matrix of form II.
An eigenvalue problem of this form is also called linear response eigenvalue problem

[21, 22, 23, 20, 24]. It appears in the Casida formalism of time-dependent density func-
tional theory [64] and in the random phase approximation concerning the excitations
of atomic nuclei [142].
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4 Properties of matrices with Bethe-Salpeter structure

In most applications, apart from solid state physics, basis functions may be chosen
to be real, leading to real valued matrices. In that case, form I and form II do not
differ.

In the practice of computing excitation properties of materials, often there is even
more structure available. It can be exploited for devising efficient algorithms. The
Hermitian matrices

H1 :=

[
In 0
0 −In

]
H1 =

[
A B
BH AT

]
> 0, H2 :=

[
In 0
0 −In

]
H2 =

[
A B
B A

]
> 0, (4.3)

are typically positive definite [139, 155]. We refer to Bethe-Salpeter eigenvalue prob-
lems of form I or form II as “definite” when they fulfill this definiteness property (4.3).

In Section 4.2, we characterize the structure of the BSE matrices (4.1) and (4.2)
by employing the concept of non-standard inner products. We compile important
results regarding BSE matrices of form I and form II. We do not generally assume
the definiteness property (4.3) to hold and explicitely state when it is assumed. An
important new result concerning BSE matrices of form II is given in Section 4.3.

4.2 Results on the spectral structure of BSE
matrices

Non-definite inner products, introduced in (2.1), provide a language to describe the
structure of the BSE matrices in a more concise way, not relying on the matrix block
structure. The following two matrices, and the inner products induced by them, play
a central role:

Jn =

[
0 In
−In 0

]
, Kn =

[
In 0
0 −In

]
.

We drop the index when the dimension is clear from its context. The identities J−1 =
−J and K−1 = K are regularly used in the following. The results compiled in this
section are partly known but can now be proven easily using the notion of generalized
inner products.

Theorem 4.1:
A matrix H is a BSE matrix of form I as given in (4.1) if and only if both of the
following conditions hold.

1. H is skew-adjoint with respect to the complex bilinear form induced by J , i.e.
H = −H?J = JHTJ .

2. H is self-adjoint with respect to the complex sesquilinear form induced by K,
i.e. H = H?K = KHHK. ♦
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4.2 Results on the spectral structure of BSE matrices

Proof. JHTJ = H is equivalent to JH being symmetric andKHHK = H is equivalent
to KH being Hermitian. We observe that JH is symmetric and KH is Hermitian,

if H has BSE form I. Conversely, let H =

[
H11 H12

H21 H22

]
, Hij ∈ Cn×n and JH =

[
H21 H22

−H11 −H12

]
be symmetric. It follows

H21 = HT
21, H12 = HT

12, H11 = −HT
22. (4.4)

Let KH =

[
H11 H12

−H21 −H22

]
be Hermitian. It follows

H11 = HH
11, H22 = HH

22, H21 = −HH
12. (4.5)

Equations (4.4) and (4.5) give exactly BSE form I:

H =

[
H11 H12

−HH
12 −HT

11

]
with H11 = HH

11, H12 = HT
12.

Theorem 4.2:
A matrix H ∈ C2n×2n is a BSE matrix of form II as given in (4.2) if and only if both
of the following conditions hold.

1. H is skew-adjoint with respect to the complex sesquilinear form induced by J ,
i.e. H = −H?J = JHHJ .

2. H is self-adjoint with respect to the complex sesquilinear form induced by K,
i.e. H = H?K = KHHK. ♦

Proof. The proof works exactly as the proof of Theorem 4.1, but here, the Hermitian
transpose .H is associated with J instead of the regular transpose .T.

This new characterization is now used to show that eigenvalues and eigenvectors
also exhibit special structures. Matrices, that are skew-adjoint with respect to the
sesquilinear form induced by J are called Hamiltonian, and play an important role
in control theory and model order reduction (see e.g. [37]). The same property with
respect to the bilinear form is called J-symmetric in [117] and explored further in [34].
The first two propositions of the following theorem are well known facts about

Hamiltonian [37] and J-symmetric matrices [34].

Theorem 4.3:
Let H ∈ C2n×2n.

1. If H is skew-adjoint with respect to the sesquilinear form induced by J , i.e.
JH = −HHJ , then its eigenvalues come in pairs (λ,−λ̄). If x is a right eigenvec-
tor of H corresponding to λ, then xHJ is the left eigenvector of H corresponding
to −λ̄.
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4 Properties of matrices with Bethe-Salpeter structure

2. IfH is skew-adjoint with respect to the bilinear form induced by J , i.e. JH = −HTJ ,
then its eigenvalues come in pairs (λ,−λ). If x is a right eigenvector of H cor-
responding to λ, then xTJ is the left eigenvector of H corresponding to −λ.

3. If H is self-adjoint with respect to the sesquilinear form induced by K, i.e.
KH = HHK, then its eigenvalues come in pairs (λ, λ̄). If x is a right eigenvector
of H corresponding to λ, then xHK is the left eigenvector of H corresponding to
λ̄. ♦

Proof. 1. Using HH = JHJ and J−1 = −J , we see that

Hx = λx ⇔ xHJH = −λ̄xHJ.

2. Using HT = JHJ and J−1 = −J , we see that

Hx = λx ⇔ xTJH = −λxTJ.

3. Using HH = KHK and K−1 = K, we see that

Hx = λx ⇔ xHKH = λ̄xHK.

Theorem 4.3 reveals that symmetries defined by the matrices J or K are reflected
in connections between left and right eigenvectors of the considered matrix.

The BSE matrices show a symmetry with respect to two inner products (Theorem
4.1 and 4.2). This double-structure leads to eigenvalues that show up not only in pairs
but in quadruples if they have a real and an imaginary component. Additionally, it
yields a connection between right eigenvectors, clarified in the following theorem.

Theorem 4.4:
Let H ∈ C2n×2n be self-adjoint with respect to the sesquilinear inner product induced
by K and skew-adjoint with respect to (a) the sesquilinear inner product or (b) the
bilinear inner product induced by J . Then

1. The eigenvalues of H come in pairs (λ,−λ) if λ ∈ R or λ ∈ iR, or in quadruples
(λ, λ̄,−λ,−λ̄).

2. a) If v is an eigenvector of H with respect to λ, then JKv is an eigenvector of
H with respect to −λ.

b) If v is an eigenvector of H with respect to λ, then JKv̄ is an eigenvector of
H with respect to −λ̄. ♦

Proof. 1. The quadruple property comes from combining the propositions given in
Theorem 4.3 (1. and 3. or 2. and 3., respectively). The pair property for real
eigenvalues comes (a) from Theorem 4.3, proposition 1, or (b) from Theorem
4.3, proposition 2. The pair property for imaginary eigenvalues follows from
Theorem 4.3, proposition 3 in both cases.
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2. a) With KJHJK = H we have

Hv = λv ⇔ HJKv = −λJKv.

b) With KJHJK = H̄ we have

Hv = λv ⇔ H̄JKv = −λJKv ⇔ HJKv̄ = −λ̄JKv̄.

The special case of (b) (i.e. for BSE matrices of form I, see equation (4.1)) has
been proven in [34]. Our proof does not rely on the particular block structure of the
matrix, but works with the given symmetries and is therefore more concise and easily
extendable to other double-structured matrices.

The definiteness property (4.3) has consequences for the structure of the eigenvalue
spectrum. To study these, we consider the more general class of Σ-Hermitian matrices.
By this we mean matrices that are self-adjoint with respect to the inner product
induced by a signature matrix Σ. K is a particular example of a signature matrix.

Theorem 4.5:
Let Σ = diag(σ1, . . . , σn), σi ∈ {+1,−1} be a signature matrix with p positive and
n − p negative diagonal entries. Let H ∈ Cn×n be given such that ΣH is Hermitian
positive definite. Then H is diagonalizable and its eigenvalues are real, of which p are
positive and n− p are negative. ♦

Proof. As ΣH is positive definite, and Σ is symmetric, they can be diagonalized si-
multaneously (see [83], Corollary 8.7.2), i.e. there is a nonsingular X ∈ Cn×n, such
that

XHΣHX = In, (4.6)
XHΣX = Λ, (4.7)

where Λ = diag(λ1, . . . , λn) ∈ Rn×n gives the eigenvalues of the matrix pencil Σ− λΣH.
It follows from (4.7) and Sylvester’s law of inertia that Λ has p positive and n − p
negative values. We have

X−1HX = Λ−1,

i.e. H is diagonalizable and Λ−1 contains the eigenvalues of H.

The spectral structure of the BSE matrices given in practice follows immediately
from the presented theorems and is summarized in the following lemma.

Lemma 4.6:
Let H be a BSE matrix of form I (see equation (4.1)) or form II (see equation (4.2)),
such that the definiteness property (4.3) holds. Then the eigenvalues are real and
come in pairs ±λ. If v is an eigenvector associated with λ, then
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1. y =

[
0 I
I 0

]
v̄ is an eigenvector associated with −λ if H is of BSE form I.

2. y =

[
0 I
I 0

]
v is an eigenvector associated with −λ if H is of BSE form II, ♦

We have seen in Sections 3.5 and 3.6 that for crystalline systems it is possible to
either arrive at a Bethe-Salpeter eigenvalue problem of form I or form II, depending
on the basis functions chosen for discretization. The basis functions leading to form
II are the less intuitive choice and up to this point we did not provide a clear reason,
why this form is preferable to form I. The reason is that for form II it is possible to
devise algorithms that solve an eigenvalue problem of size n× n instead of the larger
eigenvalue problem of size 2n × 2n. At its core this is possible due to the following
observation which finds no analogue for BSE matrices of form I. It can e.g. be found
in [159], albeit for real matrices.
Lemma 4.7:
Let H be a BSE matrix of form II (4.2).

1. With the matrix Q = 1
2

[
I I
−I I

]
we have

Q−1HQ =

[
0 A+B

A−B 0

]
. (4.8)

2. KH is positive definite if and only if A+B and A−B are positive definite. ♦

Lemma 4.7 says that a BSE matrix of form II is easily transformed to an antidiagonal
block matrix. This matrix can be squared and one arrives at

[
0 A−B

A+B 0

]2

=

[
(A−B)(A+B) 0

0 (A+B)(A−B)

]
=

[
Â 0

0 −Â

]
. (4.9)

So Â = (A − B)(A + B) contains the squares of the eigenvalues of H. The second
part of the lemma states that Â is a matrix product consisting of two positive definite
matrices. For the solution of this kind of product eigenvalue problem, efficient methods
are available. Not only the eigenvalues of H can be deduced from Â but also the
eigenvectors of H can be constructed from the eigenvectors of Â. The computation is
clarified in the next section.

4.3 Solving a smaller product eigenvalue problem

In this section, we focus on BSE matrices of form II, paving the way for a new unified
framework relating different solution strategies. In contrast to most of the literature,
we do not require the definiteness property (4.3) here. The following two theorems play
a central role in Chapter 6. The relate eigenvectors and corresponding real (Theorem
4.8) and complex eigenvalues (Theorem 4.9) of (A + B)(A − B) (see equation (4.9))
to eigenvectors and eigenvalues of H.
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Theorem 4.8:
Let H be a BSE matrix of form II (see Equation (4.2)) andM1 := A+B,M2 := A−B
be nonsingular. Let

M1M2v1 = µv1 (4.10)

define a right eigenvector of the matrix productM1M2, corresponding to an eigenvalue
µ ∈ R, λ2 := vH1 M2v1 ∈ R. Then

v2 := λ−1
2 M2v1 (4.11)

is a left eigenvector of M1M2 corresponding to µ with vH1 v2 = 1.

With Q := 1
2

[
I I
−I I

]
and λ1 := vH2 M1v2 ∈ R an eigenpair of H is given by

λ =

{
µ

1
2 if (λ1 > 0 and λ2 > 0) or sign(λ1) sign(λ2) = −1,

−µ 1
2 if λ1 < 0 and λ2 < 0,

vλ = Q

[
v1λ

1
4
1 λ
− 1

4
2

v2λ
− 1

4
1 λ

1
4
2

]
,

(4.12)

i.e. Hvλ = λvλ. If γ is an eigenvalue of M1M2 and vγ is the corresponding constructed
vector, it holds

vHλKvγ =





1 if λ = γ ∈ R,
0 if λ = γ ∈ iR,
0 if λ 6= γ,

vHλ Jvγ =





0 if λ = γ ∈ R or if λ 6= γ,

i if λ = γ ∈ iR and λ1 > 0, λ2 < 0,

−i if λ = γ ∈ iR and λ1 < 0, λ2 > 0.

(4.13)
♦

Proof. It follows from (4.10) and (4.11), using vH1 v2 = 1, that

M1v2 = λ1v1, λ1 := µλ−1
2 = vH2 M1v2. (4.14)

For λ ∈ C,
[

0 M1

M2 0

] [
x
y

]
= λ

[
x
y

]

holds if and only if

M1y = λx and M2x = λy. (4.15)

This is achieved by x := v1λ
1
4
1 λ
− 1

4
2 , y := v2λ

− 1
4

1 λ
1
4
2 and λ = λ

1
2
1 λ

1
2
2 . If λ1 and λ2 are

both positive, or if they have opposing signs, it holds (λ1λ2)
1
2 = λ

1
2
1 λ

1
2
2 , so that we have
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4 Properties of matrices with Bethe-Salpeter structure

λ = λ
1
2
1 λ

1
2
2 = µ

1
2 . If λ1 and λ2 are both negative, it holds (λ1λ2)

1
2 = −λ

1
2
1 λ

1
2
2 , so that

λ = λ
1
2
1 λ

1
2
2 = −µ 1

2 . We observe that

Q−1HQ =

[
0 M1

M2 0

]

and conclude

Hvλ = HQ

[
x
y

]
= Q

[
0 M1

M2 0

] [
x
y

]
= λQ

[
x
y

]
= λvλ.

The orthogonality conditions (4.13) remain to be shown. We see with scaling factors
sλ = λ

1
4
1 λ
− 1

4
2 , sγ = γ

1
4
1 γ
− 1

4
2 and

vλ = Q

[
xλ
yλ

]
, xλ= v1,λsλ, yλ = v2,λs

−1
λ , vγ= Q

[
xγ
yγ

]
, xγ = v1,γsγ, yγ= v2,γs

−1
γ ,

that

vHλKvγ =
1

2
(sλs

−1
γ vH1,λv2,γ + s−1

λ sγv
H
2,λv1,γ), vHλ Jvγ =

1

2
(sλs

−1
γ vH1,λv2,γ − s−1

λ sγv
H
2,λv1,γ).

For λ 6= γ, both expressions are zero because vH1,λv2,γ = 0. For γ = λ we have

vHλKvλ =
1

2
(sλs

−1
λ + s−1

λ sλ), vHλ Jvλ =
1

2
(sλs

−1
λ − s−1

λ sλ).

If λ is real, then µ is positive and λ1 and λ2 have the same sign. Then it holds
sλ = (λ1λ

−1
2 )

1
4 . The factor sλ is real and so it holds sλs−1

λ = 1 = s−1
λ sλ, which shows

vHλ Jvλ = 0 and vHλKvλ = 1. If λ is imaginary, then µ is negative and λ1 and λ2 have
opposing signs. Here we have

sλs
−1
λ =

{
i if λ1 > 0, λ2 < 0,

−i if λ1 < 0, λ2 > 0,

leading to the final results vHλ Jvλ = ±i and vHλKvλ = 0.

We have seen that the sign of of the eigenvalue of the computed eigenpair of H
via Theorem 4.8 does not necessarily match the sign of the principal square root of
the eigenvalue of the matrix product M1M2. In the definite case (4.3), i.e. where
KH is positive definite we have positive definite M1 and M2. λ1 and λ2 are positive
and the sign switch does not take place. If a sign switch occurs and the eigenvectors
corresponding to the principal square root are of interest, they can easily be computed
via Theorem 4.4, proposition 2, case (a).

The product eigenvalue problem resulting from Theorem 4.8 can also be interpreted
as a generalized eigenvalue problem (M2,M

−1
1 ). However, computing a matrix inverse

is not necessary and the product eigenvalue problem can be tackled directly as we see
in the following section.

Similarly to Theorem 4.8, complex eigenvalues can be related to a smaller product
eigenvalue problem.
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4.3 Solving a smaller product eigenvalue problem

Theorem 4.9:
Let H be a BSE matrix of form II (see Equation (4.2)), with M1 := A + B and
M2 := A−B nonsingular. Let V1 =

[
v11 v12

]
∈ Cn×2 contain a right eigenvector pair

of the matrix M1M2,

M1M2V1 = V1M (4.16)

where M =

[
µ 0
0 µ

]
contains the eigenvalue pair. Then, with Λ2 := V H

1 M2V1 =
[

0 λ2

λ2 0

]
, the matrix

V2 =
[
v21 v22

]
:= M2V1Λ−1

2 ∈ Cn×2,

contains a corresponding left eigenvector pair with V H
1 V2 = I2. Define the scaling

factors

λ1 := vH21M1v22, λ2 := vH12M2v11, λ̂ := λ
1/4
1 λ

−1/4
2 , (4.17)

Λ̂1 :=

[
λ̂ 0

0 λ̂

]
, Λ̂2 :=

[
0 λ̂

−1

λ̂−1 0

]
.

Then, with Q = 1
2

[
I I
−I I

]
, two eigenvectors of H are given as columns of the matrix

Vλ = Q

[
V1Λ̂1

V2Λ̂2

]
and we have

HVλ = Vλs

[
µ

1
2

µ
1
2

]
, s =

{
−1 if arg λ1 + arg λ2 < −π or arg λ1 + arg λ2 > π,

1 else.
(4.18)

Furthermore, we have

V H
λ KVγ =





[
0 1

1 0

]
if {λ, λ} = {γ, γ},

[
0 0

0 0

]
if {λ, λ} 6= {γ, γ},

V H
λ JVγ =

[
0 0
0 0

]
, (4.19)

V H
λ Kvγ =

[
0 0

]T
, V H

λ Jvγ =
[
0 0

]T
, (4.20)

where Vγ contains two eigenvectors corresponding to a complex eigenvalue pair {γ, γ},
constructed according to this theorem. vγ is an eigenvector corresponding to a real or
imaginary eigenvalue γ, constructed according to Theorem 4.8. ♦
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4 Properties of matrices with Bethe-Salpeter structure

Proof. It can be shown that

V H
1 M2V1 =

[
0 λ2

λ2 0

]
=: Λ2, V H

2 M1V2 =

[
0 λ1

λ1 0

]
=: Λ1

and

M1M2V1 = V1Λ1Λ2.

With (4.16) it follows that Λ1Λ2 = M . Note that Q−1HQ =

[
0 M1

M2 0

]
and

[
0 M1

M2 0

] [
X
Y

]
=

[
X
Y

]
Λ

holds for X, Y ∈ Cn×2 if and only if

M1Y = XΛ and M2X = Y Λ. (4.21)

Equation (4.21) can be manipulated to show that

Λ1Λ̂2 = sΛ̂1M
1
2 and Λ2Λ̂1 = sΛ̂2M

1
2 (4.22)

for s =

{
−1 if arg λ1 + arg λ2 < −π or arg λ1 + arg λ2 > π,

1 else.
(4.23)

Using (4.22), we see that (4.21) holds for

X := V1Λ̂1, Y := V2Λ̂2,

Λ := sM
1
2 = s diag

(
µ

1
2 , µ

1
2

)
.

In conclusion we have

HVλ = HQ

[
X
Y

]
= Q

[
0 M1

M2 0

] [
X
Y

]
= Q

[
X
Y

]
Λ = VλΛ.

The orthogonality conditions (4.19) remain to be shown. We observe QHKQ =

1
2

[
0 I
I 0

]
and with

Vλ = Q

[
Xλ

Yλ

]
, Xλ = V1,λΛ̂1, Yλ = V2,λΛ̂2,

Vγ = Q

[
Xγ

Yγ

]
, Xγ = V1,γΓ̂1, Yγ = V2,γΓ̂2,
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4.3 Solving a smaller product eigenvalue problem

we see

V H
λ KVγ =

1

2
(Λ̂H

1 V
H

1,λV2,γΓ̂2 + Λ̂H
2 V

H
2,λV1,γΓ̂1),

V H
λ JVγ =

1

2
(Λ̂H

1 V
H

1,λV2,γΓ̂2 − Λ̂H
2 V

H
2,λV1,γΓ̂1).

(4.24)

This expressions are equal to 0 if V2,λ and V1,γ contain left and right eigenvectors
corresponding to different eigenvalue pairs {λ, λ} 6= {γ, γ} of M1M2. If λ = γ and if
Vλ and Vγ were constructed in the same way, we have Λ̂1 = Γ̂1 and Λ̂2 = Γ̂2. The

equations (4.24) simplify to V H
λ KVλ =

[
0 1
1 0

]
and V H

λ JVλ =

[
0 0
0 0

]
. We used that

Λ̂H
1 Λ̂2 =

[
0 1
1 0

]
following from the definition (4.17). The orthogonality conditions

(4.20) are shown in a similar way.
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CHAPTER 5

A MASSIVELY PARALLEL IMPLEMENTATION FOR
BETHE-SALPETER EIGENVALUE PROBLEMS OF

FORM I
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5.1 Introduction

In this Chapter, we focus on ways to solve the Bethe-Salpeter eigenvalue problem,
when it is not possible to exploit time-inversion symmetry of the basis functions in
order to generate a matrix of form II. If it is possible to generate form II, it should be
preferred. For an explanation see Chapter 4 and for resulting methods see Chapter 6.

We consider a BSE matrix of form I as given in (4.1) for which the definiteness
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5 A massively parallel implementation for Bethe-Salpeter eigenvalue problems of
form I

property (4.3) holds, i.e.

HBS =

[
A B
−B̄ −Ā

]
=

[
A B
−BH −AT

]
, A = AH, B = BT ∈ Cn×n, (5.1)

[
In 0
0 −In

]
HBS =

[
A B
B̄ Ā

]
> 0. (5.2)

The blocks A, B, are dense and extremely large up to a dimension of about n = 50 000.
Because of the large matrix size, it is of imminent importance to develop algorithms

that run in parallel and can exploit the computational resources available on a su-
percomputer. We aim for a solution method that preserves this structure under the
influence of inevitable numerical errors, i.e. that guarantees that the eigenvalues come
in pairs or quadruples, respectively (see Section 4.2). General methods for eigenvalue
problems, such as the QR/QZ algorithm [83], destroy this property. In this case, it is
not clear anymore which eigenpairs correspond to the same excitation state.

In Section 5.2, we will see how an eigenvalue problem of this form can be transformed
into a skew-symmetric eigenvalue problem of equal size. Afterwards, we present an
approach to solve skew-symmetric eigenvalue on high-performance architectures, im-
plemented within the ELPA library [119]. Apart from the application in the Bethe-
Salpeter approach, skew-symmetric eigenvalue problems also appear in many other
areas and are worth to be studied in their own right. A matrix A ∈ Rn×n is called
skew-symmetric if A = −AT. We are interested in eigenvalues and eigenvectors of A.
The symmetric eigenvalue problem, i.e. the case A = AT, has been studied in depth

for many years. It lies at the core of many applications in different areas such as
electronic structure computations (see Section 3.3). Many methods for its solution
have been proposed [83] and successfully implemented. Optimized libraries for many
platforms are widely available [13, 42]. With the rise of more advanced computer
architectures and more powerful supercomputers, the solution of increasingly com-
plex problems comes within reach. Parallelizability and scalability become key issues
in algorithm development. The ELPA library [119] is one endeavor to tackle these
challenges and provides highly competitive direct solvers for symmetric (and Hermi-
tian) eigenvalue problems running on distributed memory machines such as compute
clusters.

The skew-symmetric case [181] lacks the ubiquitous presence of its symmetric coun-
terpart and has not received the same extensive treatment. We close this gap by
extending the ELPA methodology to the skew-symmetric case.

Our motivation stems from the connection to the Hamiltonian eigenvalue problem,
which has many applications in control theory and model order reduction [37]. A real
Hamiltonian matrix H is connected to a symmetric matrix M via

M = JH, J =

[
0 In
−In 0

]
.

If M is positive definite, the Hamiltonian eigenvalue problem can be recast into a
skew-symmetric eigenvalue problem using the Cholesky factorization M = LLT. The
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5.2 Solving the Bethe-Salpeter eigenvalue problem of form I

eigenvalues of H are given as eigenvalues of the skew-symmetric matrix LTJL and
eigenvectors can be transformed accordingly. This situation occurs for example in
[159], where a structure-preserving method for the solution of the Bethe-Salpeter
eigenvalue problem is described.

The remaining chapter is structured as follows. The solution approach of the Bethe-
Salpeter eigenvalue problem via skew-symmetric matrices is presented in Section 5.2.
Section 5.3 reintroduces the methods used by ELPA and points out the necessary
adaptations to make them work for skew-symmetric matrices. Section 5.4 provides
performance results of the ELPA extension, including GPU acceleration, and points
out the speedup achieved in the context of the Bethe-Salpeter eigenvalue problem.

5.2 Solving the Bethe-Salpeter eigenvalue problem
of form I

In general, we are interested in all eigenpairs of the matrix HBS given in (5.1), as
they contain valuable information on the excitations of the system. As shown in
Chapter 4, the definiteness property (5.2) leads to HBS having only real eigenvalues
which come in pairs ±λ. A structure-preserving method relying on this assumption is
developed in [159] and has been made available as BSEPACK. It uses (partly modified)
ScaLAPACK routines and runs in parallel on distributed memory systems. The main
idea is to exploit a connection to a Hamiltonian eigenvalue problem given in the
following theorem.

Theorem 5.1 (Theorem 2 in [159]):

Let Q = 1√
2

[
I −iI
I iI

]
, then Q is unitary and

QH

[
A B
−B̄ −Ā

]
Q = i

[
Im(A+B) −Re(A−B)
Re(A+B) Im(A−B)

]
=: iH,

where H is real Hamiltonian, i.e. JH = (JH)T. ♦

Let

M = JH =

[
Re(A+B) Im(A−B)
− Im(A+B) Re(A−B)

]
(5.3)

be the symmetric matrix associated with the Hamiltonian matrix H. Its positive
definiteness follows from property (5.2), which can be seen in the following way. Let
the matrices K and H be given as

K =

[
In
−In

]
, H =

[
A B
B̄ Ā

]
,
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i.e. HBS = KH. With the matrix Q from Theorem 5.1 we have

M = −iJQHKHQ. (5.4)

It is easily verified that

−iJQHKQ = In,

i.e. −iJQHK is the inverse of Q. The construction of M (5.4) can therefore be seen
as a similarity transformation of H. If H is positive definite, so is M. The method
described in [159] relies on this property in order to guarantee the existence of the
Cholesky factorization of M . It performs the following steps.

1. Construct M as in (5.3).

2. Compute a Cholesky factorization M = LLT.

3. Compute eigenpairs of the skew-symmetric matrix LTJL, where J =

[
0 I
−I 0

]
.

4. Perform the eigenvector back transformation associated with Cholesky factor-
ization and transformation to Hamiltonian form (Theorem 5.1).

The main workload is given as the solution of a skew-symmetric eigenvalue prob-
lem (Step 3). As a proof of concept, solution routines for the symmetric eigenvalue
problem from the ScaLAPACK reference implementation [42] were adapted to the
skew-symmetric setting in [159]. Here, the matrix is reduced to tridiagonal form us-
ing Householder transformations. The tridiagonal eigenvalue problem is solved via
bisection and inverse iteration.

The ScaLAPACK reference implementation is not regarded as a state-of-the art
solver library. When performance and scalability are issues, one generally turns to
optimized libraries such as ELPA [119] or vendor-specific implementations such as
Intel’s MKL. Within BSEPACK, ScaLAPACK can be substituted by ELPA working
on skew-symmetric matrices. The resulting performance benefits are discussed in
Section 5.4.2.

5.3 Solution method

5.3.1 Solving the symmetric eigenvalue problem in ELPA

The ELPA library [11, 15, 119] is a highly optimized parallel MPI-based code [128].
It shows great scalability over thousands of CPU cores and contains low-level op-
timizations targeting various compute architectures [110]. When only a portion of
eigenvalues and eigenvectors are required, this is exploited algorithmically and results
in performance benefits. We briefly describe the well-established procedure employed
by ELPA. This forms the basis of the method for skew-symmetric matrices described
in the next subsection.
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5.3 Solution method

ELPA contains functionality to deal with symmetric-definite generalized eigenvalue
problems. In this chapter, we focus on the standard eigenvalue problem for simplicity.
This is reasonable as it is the most common use case and forms the basis of any
method for generalized problems. We only consider real skew-symmetric problems.
The reason is that any real skew-symmetric or complex skew-Hermitian problem can be
transformed into a Hermitian eigenvalue problem by multiplying it with the imaginary
unit i. This problem can be solved using the available ELPA functionality for complex
matrices. For the real case, this induces complex arithmetic, which should obviously
be avoided, but for complex matrices this is a viable approach.

We consider the symmetric eigenvalue problem, i.e. the orthogonal diagonalization
of a matrix,

QTAQ = Λ,

where A = AT ∈ Rn×n is the matrix whose eigenvalues are sought. We are looking
for the orthogonal eigenvector matrix Q and the diagonal matrix Λ containing the
eigenvalues. The solution is carried out in the following steps:

1. Reduce A to tridiagonal form, i.e. find an orthogonal transformation Qtrd such
that

Atrd = QT
trdAQtrd

is tridiagonal. This is done by accumulating Householder transformations

Qtrd = Q1Q2 · · ·Qn−1,

where Qi = I − τivivTi represents the i-th Householder transformation that re-
duces the i-th column and row of the updated QT

i−1 · · ·QT
1AQ1 · · ·Qi−1 to tridi-

agonal form. The matrices Qi are not formed explicitly but are represented by
the Householder vectors vi. These are stored in place of the eliminated columns
of A.

2. Solve the tridiagonal eigenvalue problem, i.e. find orthogonal Qdiag such that

Λ = QT
diagAtrdQdiag.

In ELPA, this step employs a tridiagonal divide-and-conquer scheme.

3. Transform the required eigenvectors back, i.e. perform the computation

Q = QtrdQdiag.

The ELPA solver comes in two flavors which define the details of the transformation
steps, i.e. Steps 1 and 3. The solver ELPA1 works as described, the reduction to tridi-
agonal form is performed in one step. The ELPA2 approach splits the transformations
into two parts. Step 1 becomes
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1. a) Reduce A to banded form, i.e. compute orthogonal Qband such that

Aband = QT
bandAQband

is a band matrix.
b) Reduce the banded form to tridiagonal form, i.e. compute orthogonal Qtrd

such that

Atrd = QT
trdAbandQtrd

is tridiagonal.

Accordingly, the back transformation step is split into two parts:

3. a) Perform the back transformation corresponding to the band-to-tridiagonal
reduction

Q̃ = QtrdQdiag.

b) Perform the back transformation corresponding to the full-to-band reduc-
tion

Q = QbandQ̃.

The benefit of the two-step approach is that more efficient BLAS-3 procedures can
be used in the tridiagonalization process (see Section 2.4) and an overlap of commu-
nication and computation is possible. As a result, a lower runtime can generally be
observed in the tridiagonalization, compared to the one-step approach. This comes
at the cost of more operations in the eigenvector back transformation due to the ex-
tra step that has to be performed. Therefore, the ELPA2 approach is superior to
the ELPA1 variant in particular when only a portion of the eigenvectors is sought.
In the context of skew-symmetric eigenvalue problems, this becomes pivotal as the
purely imaginary eigenvalues come in pairs ±λi, λ ∈ R. The eigenvectors are given as
the complex conjugates of each other. It is therefore enough to compute half of the
eigenvalues and eigenvectors.

Both approaches are extended to skew-symmetric matrices in this work.

5.3.2 Solving the skew-symmetric eigenvalue problem

Like a symmetric matrix, a skew-symmetric matrix can be reduced to tridiagonal
form using Householder transformations. A Householder transformation represents a
reflection onto a scaled first unit vector e1. Let H be a transformation that acts on
a vector v such that Hv = αe1 (see Theorem 2.9). Obviously −v is transformed to
H(−v) = −αe1 by the same H. Therefore all tridiagonalization methods that work
on symmetric matrices, such as the ones implemented in ELPA, can in principle work
on skew-symmetric matrices as well.

A skew-symmetric tridiagonal matrix is related to a symmetric one via the following
observation [181].
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Lemma 5.2:
With the unitary matrix D = diag{1, i, i2, . . . , in−1}, where i denotes the imaginary
unit, αj ∈ R, it holds

−iDH




0 α1

−α1 0
. . .

. . . . . . αn−1

−αn−1 0


D =




0 α1

α1 0
. . .

. . . . . . αn−1

αn−1 0


. ♦

After the reduction to tridiagonal form, the symmetric tridiagonal system is solved
using a divide-and-conquer method [15]. As a first step of the back transformation,
the resulting (real) eigenvectors have to be multiplied by the (complex) matrix D.
Then the back transformations corresponding to the tridiagonalization take place.
Algorithm 5.1 outlines this process. It is very similar to the method employed for
symmetric eigenvalue problems. The differences are the addition of step 3 and changes
in the implementation, which are given in detail in Sections 5.3.3.1 and 5.3.3.2.

In ELPA2, the transformation steps (1 and 4 in Algorithm 5.1) are both split into
two parts as described in Section 5.3.1.

5.3.3 Implementation

Extending ELPA for skew-symmetric matrices means adding the back transformation
step involving D. In contrast to symmetric matrices, skew-symmetric matrices have
complex eigenvectors and strictly imaginary eigenvalues. Computationally complex
values are introduced in Algorithm 5.1 with D in step 3. Further transformations have
to be performed for the real and the imaginary part individually. It is preferable to
set up an array with complex data type entries representing the eigenvectors as late as
possible, so that we can benefit from efficient routines in double precision. The routines
for the eigenvector back transformation corresponding to tridiagonalization do not
change, because all they do is to apply Householder transformations to non-symmetric
(and non-skew-symmetric) matrices. They are applied on the real and imaginary part
independently, realizing the complex back transformation in real arithmetic. The
symmetric tridiagonal eigensolver can be used as is. Making it aware of the zeros on
the diagonal might turn out to be numerically or computationally beneficial.

We now examine the implementation of the two tridiagonalization approaches in
ELPA1 and ELPA2 in more detail. At many points in the original implementation,
symmetry of the matrix is assumed in order to avoid unnecessary computations and to
efficiently reuse data available in the cache. In this section, we recollect some details
of the tridiagonal reduction in order to point out these instances. Here, the implicit
assumptions can be changed from “symmetric” to “skew-symmetric” by simple sign
changes.

ELPA is based on the well established and well documented 2D block-cyclic data
layout introduced by ScaLAPACK for load balancing reasons (see Section 2.4). It is
therefore compatible with ScaLAPACK and can act as a drop-in replacement, while
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Algorithm 5.1: Solving a skew-symmetric eigenvalue problem.
Data: A = −AT ∈ Rn×n

Result: Unitary eigenvectors Q ∈ Cn×n, λ1, . . . , λn ∈ R such that
QHAQ = diag{λ1i, . . . , λni}.

1 Reduce A to tridiagonal form, i.e. generate Qtrd such that

QT
trdAQtrd = Atrd =




0 α1

−α1 0
. . .

. . . . . . αn−1

−αn−1 0


.

2 Solve the eigenvalue problem for the symmetric tridiagonal matrix −iDHAtrdD,
where D = diag{1, i, i2, . . . , in}, i.e. generate Qdiag such that

QT
diag




0 α1

α1 0
. . .

. . . . . . αn−1

αn−1 0


Qdiag =




λ1

λ2

. . .
λn


.

3 Back transformation corresponding to symmetrization (see Lemma 5.2), i.e.
compute

Q← DQdiag ∈ Cn×n

4 Back transformation corresponding to band-to-tridiagonal reduction, i.e.
compute

Q← QtrdQ

no ScaLAPACK routines are used by ELPA itself. In general, each process works
on the part of the matrix that was assigned to it. This chunk of data resides in the
local memory of the process. Communication between processes is realized via MPI.
Each process calls serial BLAS routines. Additional CUDA and OpenMP support is
available.
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5.3.3.1 Tridiagonalization in ELPA1

In ELPA1, the tridiagonalization is realized in one step using Householder transfor-
mations. The computation of the Householder vectors is not affected by the symmetry
of a matrix. Essentially, the tridiagonalization of a matrix comes down to a series of
rank-2 updates [121], described in the following. Given a Householder vector v, the
update of the trailing submatrix is performed as

A← (I − τvvT)A(I − τvvT) (5.5)
= A+ v (0.5τ 2vTAvvT − τvTA)︸ ︷︷ ︸

uT1

+ (0.5τ 2vvTAv − τAv)︸ ︷︷ ︸
u2

vT (5.6)

= A+ vuT1 + u2v
T (5.7)

= A+
[
v u2

] [
u1 v

]T
. (5.8)

For symmetric matrices it holds u1 = u2. This is assumed in the original ELPA
implementation. For skew-symmetric matrices it holds u1 = −u2. In ELPA1, the
two matrices

[
v u2

]
and

[
u1 v

]T are stored explicitly. Actual updates are performed
using GEMM and GEMV routines. The matrices differ in the data layout, i.e. which process
owns which part of the matrix. After the vector u1 is computed, it is transposed and
redistributed to represent u2 in

[
v u2

]
. Here, for the skew-symmetric variant, a sign

change is introduced. The skew-symmetric update now reads

A← A+
[
v −u1

] [
u1 v

]T
.

During the computation of u1, symmetry is assumed in the computation of ATv.
In particular, the code assumes that an off-diagonal matrix tile is the same as in the
transposed matrix. Another sign change corrects this assumption for skew-symmetric
matrices.

5.3.3.2 Tridiagonalization in ELPA2

In ELPA2, the tridiagonalization is split into two parts. First, the matrix is reduced
to banded form, then to tridiagonal form. For the reduction to banded form, the
Householder vectors are computed by the process column owning the diagonal block.
They are accumulated in a triangular matrix T ∈ Rnb×nb, where nb is the block size.
The product of Householder matrices is stored via its storage-efficient representation
[157]

Q = H1 · · ·Hnb = I − V TV T, (5.9)

where V =
[
v1 · · · vnb

]
contains the Householder vectors. Hi = I − τiviv

T
i is the

Householder matrix corresponding to the i-th Householder transformation.
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In this context, the update of the matrix A takes the following shape, analogous to
the direct tridiagonalization described in Section 5.3.3.1.

A← (I − V TV T)TA(I − V TV T) (5.10)
= A+ V (0.5TTV TAV TV T − TTV TA)︸ ︷︷ ︸

UT
1

+ (0.5V TTV TAV T − AV T )︸ ︷︷ ︸
U2

V T (5.11)

= A+
[
V U2

] [
U1 V

]T
. (5.12)

It holds U1 = U2 if A is symmetric, and U1 = −U2 if A is skew-symmetric. Each
process computes the relevant parts of U1 in a series of (serial) matrix operations and
updates the portion of A that resides in its memory. Here, the symmetry of A is
assumed and exploited at various points in the implementation. Sign changes have to
be applied at these instances.

For the banded-to-tridiagonal reduction, the matrix is redistributed in the form of
a 1D block-cyclic data layout. Each process owns a diagonal and a subdiagonal block.
The reduction of a particular column introduces fill-in in the neighboring block. The
“bulge-chasing” is realized as a pipelined algorithm, where computation and commu-
nication can be overlapped by reordering certain operations [15, 16].

The update of the diagonal blocks takes the same form as in ELPA1 (equations
(5.5) to (5.8)). Here, no matrix multiplication is employed but BLAS-2 routines are
used working directly with the Householder vectors. It holds u1 = u2 for symmetric
A and u1 = −u2 for skew-symmetric A. In the symmetric case, the update is realized
via a symmetric rank-2 update (SYR2). We implemented a skew-symmetric variant of
this routine which realizes the skew-symmetric rank-2 update A← A−vuT +uvT. For
the setup of u, a skew-symmetric variant of the BLAS routine performing a symmetric
matrix vector product (SYMV) is necessary.

The other parts of Algorithm 5.1 are adopted from the symmetric implementation
without changes. The computation of Householder vectors, the accumulation of the
Householder transformations (see Lemma 2.13) in a triangular matrix and the update
of the local block during reduction to banded form do not have to be changed compared
to symmetric ELPA. This is because they act on the lower part of the matrix so that
possible (skew-)symmetry has no effect.

5.4 Numerical experiments

5.4.1 ELPA benchmarks

In this section we present performance results for the skew-symmetric ELPA extension.
All test programs are run on the mechthild compute cluster, located at the Max
Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany.
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Figure 5.1: Scaling of the ELPA solver for skew-symmetric matrices. For comparison,
the runtimes for the alternative solution method via complex Hermitian
solvers are included. Here, ELPA and Intel’s MKL 2018 routines PZHEEVD
and PZHEEVR are used. The matrix has a size of n = 20 000.
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Up to 32 nodes are used, which consist of 2 Intel Xeon Silver 4110 (Skylake) processors
with 8 cores each, running at 2.1 GHz. The Intel compiler, MPI library and MKL
in the 2018 version are used in all test programs. The computations use randomly
generated skew-symmetric matrices in double precision.

Figure 5.1 shows the resulting performance and the scaling properties of ELPA
for a medium sized skew-symmetric matrix (n = 20 000). As an alternative to the
approach described in this work, the skew-symmetric matrix can be multiplied with the
imaginary unit i. The resulting complex Hermitian matrix can be diagonalized using
available methods in ELPA or Intel’s ScaLAPACK implementation shipped with the
MKL. This represents the only previously available approach to solve skew-symmetric
eigenvalue problems in a massively parallel high-performance setting.

For skew-symmetric matrices, only 50% of eigenvalues and eigenvectors need to be
computed, as they are purely imaginary and come in pairs ±λi, λ ∈ R. The runtime
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Table 5.1: Execution time speedups achieved by different aspects of the solution ap-
proach with varying number of cores.

#Cores Compl.
ELPA2 100%
vs. Compl.
MKL 100 %

Compl.
ELPA2 50%
vs. Compl.
MKL 50%

Skew-Sym.
ELPA2 50%
vs. Compl.
ELPA2 50%

Skew-Sym.
ELPA2 50%
vs. Compl.
MKL 50%

16 1.10 1.41 2.33 3.28
32 1.29 1.41 2.30 3.24
64 1.11 1.40 2.32 3.25
128 1.18 1.33 2.20 2.93
256 1.17 1.28 2.16 2.76
512 1.21 1.51 1.87 2.82

measurements for 100% are included for reference.
Figure 5.1 shows that all approaches display good scalability in the examined setting.

Skew-symmetric ELPA runs 2.76 to 3.28 times faster than the complex MKL based
solver, where both only compute 50% of eigenpairs. The data gives further insight
into how this improvement is achieved. Table 5.1 compares the runtimes for different
solvers and presents the achieved speedups. When we compare complex 100% solvers,
ELPA already improves performance by a factor of 1.1 to 1.29 (column 2 in Table 5.1).
When all eigenpairs are computed, ELPA1 and ELPA2 yield very similar runtime re-
sults which is why only ELPA2 is considered in Table 5.1. The two-step approach
employed by ELPA2 pays off in particular when not all eigenpairs are sought, which
is the case here. When complex 50% solvers are compared (ELPA2 vs. MKL, column
3 in Table 5.1), the achieved speedup increases to a value between 1.28 and 1.51. The
largest impact on the performance is caused by avoiding complex arithmetic. This is
represented by the speedup achieved by the skew-symmetric 50% ELPA2 implemen-
tation compared to the complex 50% ELPA2 implementation (column 4 of Table 5.1).
This accounts for an additional speedup of 1.87 to 2.33.

The tridiagonalization is an essential step in every considered solution scheme and
contributes a significant portion of the execution time. The fewer eigenpairs are sought,
the more dominant it becomes with respect to computation time. Figure 5.2 dis-
plays the runtimes and scalability of available tridiagonalization techniques for skew-
symmetric matrices. As an alternative implementation to the presented approaches
there is a tridiagonalization routine PDSSTRD shipped in BSEPACK [159]. It is an
adapted version of the ScaLAPACK reference implementation.

All discussed implementations are based on the 2D-block-cyclic data distribution
established by ScaLAPACK. Here, the matrix is divided into blocks of a certain size
NB. The blocks are distributed to processes organized in a 2D grid in a cyclic manner
(see Section 2.4). Typically, the block size is a parameter chosen once in a software
project. The data redistribution to data layouts defined by other block sizes is avoided
as this involves expensive all-to-all communication. The main disadvantage of the
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Figure 5.2: Scaling of the tridiagonalization in two steps (ELPA2) and one step
(ELPA1). We compare it to the runtimes of the tridiagonalization rou-
tine for skew-symmetric matrices PDSSTRD available in BSEPACK [159]
for different block sizes NB. The matrix size is n = 20 000.
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PDSSTRD routine is that it is very susceptible to the chosen block size, both with
regard to scalability and overall performance. This makes it less suitable to be included
in larger software projects, where the block size is a parameter predefined by other
factors. ELPA (both the one and two-step version) on the other hand does not have
this problem and performs equally well for all data layouts.

Figure 5.2 also displays the advantage of the two-step tridiagonalization over the
one-step approach. Here, the performance is dominated by the first step, i.e. the
reduction to banded form.

In the context of electronic structure computations, the matrices of interest can
become extremely large. Figure 5.3 displays the achieved runtime improvements for
larger matrices up to a size of n = 125 000 when using 256 CPU cores. The individual
speedups are presented in Table 5.2. For large matrices we achieve a speedup of up to
3.67 compared to the available MKL routine.
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Figure 5.3: Runtimes for solving eigenvalue problems of larger sizes. 256 CPU cores
were used, i.e. 16 nodes on the mechthild compute cluster.
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Table 5.2: Execution time speedups achieved by different aspects of the solution ap-
proach with varying matrix size. 256 CPU cores were used, i.e. 16 nodes
on the mechthild compute cluster.

Matrix
size

Compl.
ELPA2 100%
vs. Compl.
MKL 100 %

Compl.
ELPA2 50%
vs. Compl.
MKL 50%

Skew-Sym.
ELPA2 50%
vs. Compl.
ELPA2 50%

Skew-Sym.
ELPA2 50%
vs. Compl.
MKL 50%

50 000 1.17 1.45 2.32 3.35
75 000 1.16 1.46 2.39 3.50
100 000 1.17 1.47 2.42 3.57
125 000 1.17 1.49 2.46 3.67
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5.4.1.1 GPU acceleration

For the 1-step tridiagonalization approach (ELPA1), there is a GPU-accelerated ver-
sion available that gets shipped with the ELPA library [111]. The design approach is
to stick with the same code base as the CPU-only version, and offload compute-intense
parts, such as BLAS-3 operations, to the GPU in order to benefit from its massive
parallelism. This is done using the CUBLAS library provided by NVIDIA. Because
ELPA2 employs more fine-grained communication patterns, this approach works best
for ELPA1. Here, the performance can benefit when the computational intensity is
high enough, i.e. when big chunks of data are being worked on by the GPU.

Figure 5.4 shows the performance that can be achieved on one node of the mechthild
compute cluster, that is equipped with an NVIDIA P100 GPU as an accelerator device.
The GPU version is based on ELPA1 and therefore does not benefit from the faster
tridiagonalization in ELPA2 (see Figure 5.2 and the discussion in the previous section).
Despite this fact, the GPU-accelerated ELPA1 version eventually outperforms the
ELPA2 CPU-only version, if the matrix is large enough. In our case the turning point
is at around n = 15 000. For smaller matrices the additional work of setting up the
CUDA environment and transferring the matrix counteracts any possible performance
benefits and results in a larger runtime. For matrices of size n = 32 768 employing the
GPU can reduce the runtime from 570 seconds to 328 seconds, i.e. by 41%.

The take-away message of these results is the following. If nodes equipped with
GPUs are available and to be utilized, it is important to make sure each node has
enough data to work on. This way, the available resources are used most efficiently.

5.4.2 Accelerating BSEPACK

We consider the performance improvements that can be achieved by using the newly
developed skew-symmetric eigenvalue solver in the BSEPACK [159] software, described
in Section 5.2. In this procedure, Step 3, the computation of eigenpairs of the skew-
symmetric matrix LTJL, is now performed by the ELPA library.

We evaluate the achieved perfomance for a matrix created by considering hexag-
onal boron nitride. It is a material with a wide band gap and strong electron-hole
interactions resulting in the formation of bound excitons. For materials like this,
the Bethe-Salpeter approach was developed, because other methods do not take the
electron-hole interaction into account. This is why it is studied widely in experiments
as well as theoretically [63, 44, 82, 79, 67, 108, 6]. According to previous studies,
excitonic effects and the optical absorption spectrum can be computed accurately via
the Bethe-Salpeter approach. The first Brillouin zone is discretized, such that there
are Nk = 16×16×4 possible values for the wave vector k (see Section 3.6). We choose
N = 5 occupied and unoccupied “orbitals”, i.e. the five lowest conduction and the five
highest valence bands. These choices lead to a matrix dimension of the matrix blocks
A, B of n = N2 · Nk = 25 600. The whole matrix HBSE has dimension 51 200. In
the computation of the Bethe-Salpeter matrix, the basis functions are given as plane
waves with a cut-off of 387 eV. The static dielectric function is expanded in plane
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Figure 5.4: Runtimes for solving eigenvalue problems on one node on the mechthild
compute cluster employing a GPU.
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waves with a cutoff of 132 eV and obtained from ABINIT [84]. The EXC code [1] is
used to construct the Bethe-Salpeter matrix.

Figure 5.5 displays the achieved runtimes of BSEPACK for this fixed-size matrix
for different core counts. We compare the original version and a version that employs
ELPA. The performance of the original solver is highly dependent on the chosen block
size (see also Figure 5.2). This parameter determines how the matrix is distributed
to the available processes in the form of a 2D block-cyclic data layout. The default
is given as NB = 64, but choosing a larger block size can increase the performance
dramatically, as can be seen in Figure 5.5 for NB = 256. Typically, software packages
(e.g. [86, 178]) developed for electronic structure computations are large and contain
many features, implementing methods for different quantities of interest. The block
size is typically predetermined by other considerations. It would mean a serious effort
to change it, in order to optimize just one building block of the software. Furthermore,
the optimal block size of the original BSEPACK is probably dependent on the given
hardware and the given matrix size. Autotuning frameworks could help, but are also
very costly and impose an additional implementation effort. A software, that does not
show this kind of runtime dependency is greatly preferable. Employing ELPA for the
main computational task in BSEPACK fulfills this requirement. The performance of
ELPA is nearly independent of the chosen NB, because the block size on the node
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Figure 5.5: Scaling of the direct, complex BSEPACK eigenvalue solver for computing
the optical absorption spectrum of hexagonal boron nitride. The Bethe-
Salpeter matrix (5.1) has a size of 51 200.
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level for optimal cache use is decoupled from the block size defining the multi-node
data layout.

The ELPA-accelerated version is up to 9.22 times as fast as the original code with
the default block size. Even when the block size is increased, using the new solver
always yields a better performance. In the case of NB = 256, the ELPA-version still
performs up to 2.76 times as fast. Choosing even larger block sizes has in general
no further positive effect on the performance of the original BSEPACK. Employing
ELPA also leads to an improved scalability over the number of cores.

5.5 Conclusions

We have presented a strategy to extend existing solver libraries for symmetric eigen-
value problems to the skew-symmetric case. Applying these ideas to the ELPA library,
makes it possible to compute eigenvalues and eigenvectors of large skew-symmetric ma-
trices in parallel with a high level of efficiency and scalability. We benefit from the
maturity of the ELPA software project, where many optimizations have been realized
over the years. All of these, including GPU support, find their way into the presented
skew-symmetric solver. It is always possible to solve a complex Hermitian eigenvalue
problem instead of a skew-symmetric one. Our newly developed solver outperforms
this strategy, implemented via Intel MKL ScaLAPACK, by a factor of 3. We also ob-
serve an increase in performance concerning the Bethe-Salpeter eigenvalue problem.
Here, we improve the runtime of available routines by a factor of almost 10, making the

75



5 A massively parallel implementation for Bethe-Salpeter eigenvalue problems of
form I

BSEPACK library with ELPA a viable choice as a building block for larger electronic
structure packages.
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CHAPTER 6

METHODS FOR SOLVING THE BETHE-SALPETER
EIGENVALUE PROBLEM OF FORM II

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Solving the definite Bethe-Salpeter Eigenvalue problem of form II . . . 78

6.2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Towards structure-preserving methods for non-definite problems . . . . 87
6.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Introduction

We have seen in Chapter 4 that it is advisable to set up the Bethe-Salpeter matrix in
form II, if it is available, rather than form I, i.e.

HBS =

[
A B
−B −A

]
∈ C2n×2n, A = AH, B = BH. (6.1)

Theorem 4.8 and Theorem 4.9 pointed out that in this case it is possible to work on
a product eigenvalue problem of half the size instead of the large eigenvalue problem.

The definiteness property

KHBS =

[
A B
B A

]
> 0, K =

[
In 0
0 −In

]
, (6.2)

has a direct effect on the matrices involved in the smaller eigenvalue problem. If it
holds, all eigenvalues are real and Theorem 4.9 is not required. The corresponding
smaller product eigenvalue problem then has two positive definite factors and can be
tackled in fairly straightforward ways. The resulting algorithms are presented in Sec-
tion 6.2. We present a concise overview of direct methods exploiting the structure
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

given in (6.1) and improve upon a currently used approach in terms of performance
and accuracy. Results and algorithms may partly be known but have not yet been de-
rived in a unified fashion as presented here. This contribution is particularly valuable
because the eigenvalue problem appears in many loosely connected fields, spanning
nuclear physics, various strands of electronic structure theory and quantum chem-
istry. Our unified framework shows how techniques that have been developed multiple
times in different fields are all based on the same principles. This eases the switch
from one technique to a better suited one in the context of complex high performance
implementations. The proposed methods are well-suited for high performance com-
puting as they rely on basic linear algebra building blocks for which high performance
implementations are readily available.

If the property (6.2) does not hold, the methods available in the literature become
very scarce. In Section 6.4 we show how Theorem 4.9 allows us to extend the algo-
rithms from the definite to an indefinite setting.

Iterative methods [22, 158, 91] are certainly attractive in the context of large, pos-
sibly sparse matrices and when only the few smallest eigenpairs are sought. It is,
however, worthwhile not to neglect direct approaches leading to full diagonalization.
When all eigenpairs are of interest, or when it is not clear how many eigenpairs are
required a-priori, a direct method is expected to have a favorable performance. Other
reasons include ease of implementation, testing and benchmark purposes. Typically, a
direct approach is established first and iterative methods are compared to this baseline
in terms of performance and accuracy. In order to guarantee a fair comparison, the
direct approach should not be needlessly laborious. This is not the case in current
implementations [64, 155, 178], which employ a matrix square root. In this thesis,
we show that a cheaper Cholesky factorization works just as well and point out the
mathematical structure underlying the used algorithms.

6.2 Solving the definite Bethe-Salpeter Eigenvalue
problem of form II

6.2.1 Algorithms

We have seen in Theorem 4.8 that the BSE problem of form II with size 2n×2n can be
interpreted as a product eigenvalue problem with two Hermitian factors of size n× n.
In this section we assume that the definiteness property (6.2) holds. Then the factors
of the product eigenvalue problem are Hermitian positive definite.

In practice, the complete set of eigenvectors provides insight to excitonic effects. To
compute them, left and right eigenvectors of the smaller product eigenvalue problem
are needed. Product eigenvalue problems are well studied, see e.g. [109]. A general way
to solve these problems, which takes the product structure into account to improve
numerical properties, is the periodic QR algorithm. This tool can be used for solving
general Hamiltonian eigenvalue problems [39]. In this work we focus on non-iterative
methods that work for Hermitian factors and transform the problem such that it can
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be treated using available HPC libraries like ScaLAPACK or ELPA (see Section 2.4).
The algorithms presented in this section compute the positive part of the spectrum of

a BSE matrix and the corresponding eigenvectors. If the eigenvectors corresponding
to the negative mirror eigenvalues are of interest, they can easily be computed by
employing proposition 2. a) in Theorem 4.4.

A widely used approach for solving the BSE problem of form II [64, 155, 178] relies
on the computation of the matrix square root ofM2 = A−B. We present this method
in the following and relate it to the framework given by Theorem 4.8.

Starting with the eigenvectors of the product eigenvalue problem defined in (4.10),
we see

M1M2V1 = V1Λ2 ⇔M
1
2

2 M1M2

1
2 V̂ = V̂ Λ2, (6.3)

V H
2 M1M2 = Λ2V H

2 ⇔ V̂ HM2

1
2M1M2

1
2 = Λ2V̂ H, (6.4)

where V̂ = M
1
2

2 V1 = M2
− 1

2V2 contains the eigenvectors of the Hermitian matrix
M2

1
2M1M2

1
2 . The following theorem clarifies how this approach leads to a simple

algorithm.

Theorem 6.1:
Let H, M1, M2 and Q be given as in Theorem 4.8 and property (6.2) hold, S = M

1
2

2

and

SM1SV̂ = V̂ Λ2

be an eigenvalue decomposition with

V̂ HV̂ = I,Λ = diag(λ1, . . . , λn) ∈ Rn×n
+ .

Then

V = Q

[
S−1V̂ Λ

1
2

SV̂ Λ−
1
2

]

contains eigenvectors of H corresponding to Λ, i.e. HV = V Λ. ♦

Proof. We see from the equivalences (6.3) and (6.4) that right and left eigenvectors of
M1M2 are given by V1 = S−1V̂ and V2 = SV̂ . It holds V H

1 V2 = I so that we are in
a position to apply Theorem 4.8. The scaling factors λ1 and λ2 for each eigenvector
follow from observing M2V1 = V2 and M1V2 = V1Λ2. So we have λ1 = λ2, λ2 = 1 for
each eigenvalue λ. The eigenvector matrix V1 needs to be scaled by Λ

1
4
1 Λ
− 1

4
2 = Λ

1
2 , the

eigenvector matrix V2 needs to be scaled by Λ−
1
2 .

The essential computational effort of this approach is the computation of the matrix
square root and the solution of a Hermitian eigenvalue problem. Computing the
(principal) square root of a matrix is a nontrivial task, compare e.g. [95, Chapter 6],
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

with a (perhaps surprisingly) high computational demand. Its efficient computation
has been an active area of research. Given a Hermitian positive definite matrix C,
its principal square root S, such that S2 = C, can be computed by diagonalizing
M = VCDCV

H
C , and taking the square roots of the diagonal entries of DC . Then the

square root is given by S := VCDC

1
2V H

C . The main computational effort is therefore
the subsequent solution of two Hermitian eigenvalue problems.

We now lay out how the product eigenvalue problem (4.10) can be solved by using
Cholesky factorizations. Let the Cholesky factorization M2 = LLH be given.

Starting with the product eigenvalue problem (4.10), we see

M1M2V1 = V1Λ2 ⇔ LHM1LV̂ = V̂ Λ2,

V H
2 M1M2 = Λ2V H

2 ⇔ V̂ HLHM1L = Λ2V̂ H,

where V̂ = LHV1 = L−1V2 contains the eigenvectors of the Hermitian matrix LHM1L.
The analogy to Theorem 6.1 is given in the following. The proof is omitted as it is

very similar to the one of Theorem 6.1. The role of S is just taken over by L and LH

respectively.

Theorem 6.2:
Let H, M1,M2 and Q be given as in Theorem 4.8, and property (6.2) hold, LLH = M2

be a Cholesky decomposition and LHM1LV̂ = V̂ Λ2 be an eigenvalue decomposition
with V̂ HV̂ = I, Λ = diag(λ1, . . . , λn) ∈ Rn×n

+ . Then

V = Q

[
L−HV̂ Λ

1
2

LV̂ Λ−
1
2

]

contains eigenvectors of H corresponding to Λ, i.e. HV = V Λ. ♦

Comparing algorithms resulting from Theorems 6.1 and 6.2, we see that the essen-
tial work in both algorithms is solving Hermitian positive definite n × n eigenvalue
problems. The Cholesky variant solves one explicitly, the square root variant solves
one for computing the matrix square root, which is then used to set up the matrix for
the second eigenvalue problem. Then both left and right eigenvectors of the product
eigenvalue problem can be inferred from the computed eigenvectors.

Both approaches compute the squared eigenvalues of the original problem. In the
numerical linear algebra community this procedure is well known to limit the attainable
accuracy [174]. The methods essentially work on the (transformed) matrix product
M1M2. It corresponds to the squared matrix H2 as

Q−1H2Q =

[
M1M2

M2M1

]
,

where

Q =
1

2

[
I I
−I I

]
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is again given as in Theorem 4.8.
H belongs to the class of Hamiltonian matrices (see Section 4.2). When the eigenval-

ues are computed from the squared matrix H2, employing a backward-stable method,
the computational error can be approximated using first-order perturbation theory
[184, 174, 30]. It is given as

|λ− λ̂| ≈ ε
‖H‖2

s(λ)
min

{‖H‖2

λ
,

1√
ε

}
, (6.5)

where λ denotes an exact eigenvalue of H, λ̂ the corresponding computed value, s(λ)
the condition number of the eigenvalue, and ε the machine precision. Unless λ is very
large, the expression is dominated by

√
ε‖H‖2
s(λ)

. Essentially, the number of significant
digits of the eigenvalues is halved, compared to direct backward-stable methods. For
example, applying the QR algorithm on the original matrix H would yield an approx-
imate error of ε‖H‖2

s(λ)
. It fails, however, to preserve and exploit the structure of the

problem and is undesirable from a numerical as well as from a performance point of
view. A remedy is given by making use of the singular value decomposition (SVD).

Given the Cholesky factorizations L1L
H
1 = M1, L2L

H
2 = M2 and the SVD UΛV H =

L1L
H
2 , the product eigenvalue problem can be rewritten in the form

M1M2V1 = V1Λ2 ⇔ LH
1L2(LH

1L2)HV̂1 = V̂1Λ2, (6.6)

V H
2 M1M2 = Λ2V H

2 ⇔ V̂ H
2 (LH

1L2)H(LH
1L2) = Λ2V̂ H

2 , (6.7)

where V̂1 = L−1
1 V1, V̂2 = L−1

2 V2. The diagonal matrix Λ contains the positive eigenval-
ues of the BSE matrix, i.e. the square roots of the eigenvalues of the matrix product
M1M2. The details of the eigenvector computation are given in the following theorem.

Theorem 6.3:
LetH,M1,M2 andQ be given as in Theorem 4.8, and property (6.2) hold, L1L

H
1 = M1,

L2L
H
2 = M2 be Cholesky decompositions and LH

1L2 = USV DΛV H
SV D be a singular value

decomposition, Λ = diag(λ1, . . . , λn) ∈ Rn×n
+ . Then

V = Q

[
L1USV DΛ−

1
2

L2VSV DΛ−
1
2

]

contains eigenvectors of H corresponding to Λ, i.e. HV = V Λ. ♦

Proof. We see from equivalences (6.6) and (6.7) that V1 = L1USV DΛ−
1
2 and V2 =

L2VSV DΛ−
1
2 are right and left eigenvectors of the matrix product M1M2. It holds

V H
1 V2 = I and we can apply Theorem 4.8. We observe M2V1 = V2Λ and M1V2 = V1Λ.

So scaling factors are given as λ1 = λ2 = 1 for each λ.

The main difference between the SVD-based algorithm and the other ones, from a
numerical point of view, is that the eigenvalue matrix Λ is computed directly by the
SVD and not as a square root of another diagonal matrix. The way real BSE matrices
are treated in [159] is based on the same idea.
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

We can expect to see a higher accuracy in the eigenvalues than in the square root
and the Cholesky approach, because the eigenvalues are computed directly, using a
backward-stable method for the singular value decomposition. Perturbation theory
[164] yields an approximate error of

|λ− λ̂| ≈ ε
‖H‖2

s(λ)
.

In the other approaches, a similar approximation only holds for the error of the squared
eigenvalues λ2, and translates in form of (6.5) to the non-squared ones.

6.2.2 Comparison

In recent years, various packages have been developed to facilitate the computation of
the electronic structure of materials. See e.g. [86, 70, 156] or [171] for an overview. In
particular, computing excited states via methods based on many-body perturbation
theory has come into focus, as powerful computational resources become more widely
available. Here, the Bethe-Salpeter approach constitutes a state-of-the art method for
computing optical properties such as the optical absorption spectrum. To this end,
an algorithm based on Theorem 6.1 is typically used to solve the resulting eigenvalue
problem after the matrices A and B have been set up [155].

The main contribution of the previous section was to provide a unified frame of
reference, which can be used to derive the currently used approach, based on Theo-
rem 6.1, as well as two alternative ones, based on Theorems 6.2 and 6.3. Here, the
similarities between the realizations of the different approaches become apparent. In
all resulting algorithms we clearly see four steps.

1. Preprocessing : Setup a matrix M .

2. Decomposition: Compute spectral, respectively, singular value decomposition of
M .

3. Postprocessing : Transform resulting vectors to (left and right) eigenvectors of
matrix (A+B)(A−B).

4. Final setup: Form eigenvectors of original BSE matrix.

A detailed compilation is given in Table 6.1. Seeing the algorithms side by side
enables a direct comparison. The amount of flops (floating point operations) is based
on estimates for sequential, non-blocked implementations [83], and lower order terms,
i.e. O(n2) and O(n), are neglected. The preprocessing step is most expensive in the
square root approach. Computing the square root of a Hermitian matrix involves
the solution of a Hermitian eigenvalue problem. Additionally, the matrices S and M
need to be set up, using 3 matrix-matrix products. This makes the preprocessing
step even more expensive than the following “main” eigenvalue computation. The
CHOL and the CHOL+SVD approach, on the other hand, only rely on one or two
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6.2 Solving the definite Bethe-Salpeter Eigenvalue problem of form II

Table 6.1: Algorithmic steps of the different methods. The number in parentheses
estimates the number of flops (floating point operations), where lower-order
terms are neglected.

SQRT
(Thm. 6.1)

CHOL
(Thm. 6.2)

CHOL+SVD
(Thm. 6.3)

1. Prepro-
cessing

S = (A−B)
1
2 ,

(11n3)
M = S(A+B)S
(4n3)

LLH = A−B,
(1

3
n3)

M = L(A+B)LH

(2n3)

L1L
H
1 = A+B,

(1
3
n3)

L2L
H
2 = A−B,

(1
3
n3)

M = LH
1L2

(n3)

2. Decompo-
sition

M = VMΛ2V H
M

(9n3)
M = VMΛ2V H

M

(9n3)
M = USV DΛV H

SV D

(21n3)

3. Postpro-
cessing

V1 := S−1VMΛ
1
2 ,

(8
3
n3)

V2 = SVMΛ−
1
2

(2n3)

V1 = L−HVMΛ
1
2 ,

(n3)
V2 = LVMΛ−

1
2

(n3)

V1 = L1USV DΛ−
1
2 ,

(n3)
V2 = L2VSV DΛ−

1
2

(n3)

4. Final setup V =

[
1
2
(V1 + V2)

1
2
(V2 − V1)

]
.

Cholesky factorizations and matrix multiplications, which are comparatively cheap
to realize. The computational effort in the decomposition step is the highest in the
CHOL+SVD step. The post-processing step again is most expensive in the SQRT
approach, because the matrix S is a general square matrix, while the L matrices in
CHOL and CHOL+SVD are triangular. In total, SQRT takes an estimated amount
of 282

3
n3 flops, CHOL takes 131

3
n3 flops and CHOL+SVD takes 242

3
n3 flops. The

classical QR algorithm applied to the full, non-Hermitian matrix takes about 25(2n)3 =
200n3 flops (not including the computation of eigenvectors from the Schur vectors).

An obvious solution approach for computing the eigenvalue decomposition of HBS

under condition (6.2) considers the equivalent Hermitian-definite eigenvalue problem

HBSx = λx

⇔ KHBSx = λKx,

defined by the matrix pencil (KHBS, K). Using a Cholesky factorization of the positive
definite matrix KHBS, an equivalent Hermitian eigenvalue problem is formed (see e.g.
[83, Algorithm 8.7.1]). Here, the available symmetry is exploited, but the method still
acts on a large 2n×2n problem. It can be expected to perform 14(2n)3 = 112n3 flops.
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

According to this metric, we expect the Cholesky and the SVD approach to perform
faster than the square root approach. The actual performance of algorithms on current
architectures is not simply determined by the number of operations performed, but by
their parallelizability and communication costs. All presented approaches have a high
computational intensity of O(n3), such that the memory bandwidth is not likely to be
a bottleneck. All methods rely on the same standard building blocks from numerical
linear algebra, for which optimized versions (e.g. blocked variants for cache-efficiency)
are available. This setting makes a fair comparison possible, where the arithmetic
complexity has a high explanatory power.

To summarize, we expect CHOL to be about twice as fast as SQRT, while keeping
the same accuracy. CHOL+SVD performs more computations than CHOL, and will
take more time, but could improve the accuracy of the computations. It might be
faster than SQRT, depending on how efficient the diagonalizations in SQRT and the
SVD in CHOL+SVD are implemented.

The comparison in Table 6.1 is helpful when implementing the new approaches in
codes that already use the square root approach. For the Cholesky approach, we need
to substitute the computation of the matrix square root with the computation of a
Cholesky factorization (LAPACK routine POTRF), compute the matrix M using trian-
gular matrix multiplications (TRMM), and use a triangular solve (TRSM) and a triangular
matrix multiplication (TRMM) in the post-processing step. For the CHOL+SVD ap-
proach, an additional Cholesky factorization is necessary and the Hermitian eigenvalue
decomposition is substituted by a singular value decomposition (zgesvd). The post-
processing involves two triangular matrix products instead of a matrix inversion and
two general matrix products.

6.3 Numerical experiments

We implemented and compared serial versions of algorithms presented in Table 6.1
in MATLAB. They compute positive eigenvalues and associated eigenvectors of a
BSE matrix H ∈ C2n×2n of form II (6.1), which fulfills the definiteness property
(6.2). The eigenvalues are given as a diagonal matrix D ∈ Rn×n. The eigenvectors
V ∈ C2n×n are scaled such that K-orthogonality (guaranteed by equation (4.13) in
Theorem 4.8) holds, i.e. V HKV = In. The K-orthogonality is an important property
in the application. It is exploited in order to construct the polarizability operator
ultimately used for the computation of the absorption spectrum.

We also include the MATLAB eigensolver eig for comparison. eig can either work
on the BSE matrix H or solve the generalized eigenvalue problem for the matrix pencil
(KH,K). In this formulation, both matrices are Hermitian and one is positive definite,
which allows for a faster computation.

The experiments were performed on a laptop with an Intel(R) Core(TM) i7-8550U
processor, running with 1.8 GHz on 4 cores, using MATLAB R2018a.

The first experiments aim to assess the accuracy of the computed eigenvalues. The
matrices A and B are of size n = 200 and are created in the following way for a given
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Table 6.2: Comparison of different methods for eigenvalue computation for a Bethe-
Salpeter matrix of form II of size 400× 400.

Method Relative Error Runtime
κ = 10 κ = 103 κ = 106 κ = 109

eig 1.28e-14 5.08e-14 3.82e-11 1.26e-08 62.7 ms
generalized eig 7.89e-15 6.67e-15 1.89e-11 1.97e-09 10.7 ms
haeig 4.73e-15 7.82e-15 4.32e-11 2.23e-08 50.9 ms
SQRT 5.45e-15 3.11e-12 4.64e-06 1.39e+00 5.87 ms
CHOL 4.23e-15 2.17e-12 1.32e-06 1.19e-05 3.09 ms
CHOL + SVD 1.23e-15 2.20e-14 2.53e-11 2.38e-09 4.28 ms

value κ ∈ R. Let d =
[
1, . . . , 1

3
κ
]
∈ Rn be a vector with elements equally spaced

between 1 and 1
3
κ. The BSE matrix is constructed as

H =

[
A B
−B −A

]
:=

[
Q 0
0 Q

]H [
diag(d) 1

2
diag(d)

−1
2

diag(d) − diag(d)

] [
Q 0
0 Q

]
,

where Q ∈ Cn×n is a randomly generated, unitary matrix. It can be shown, that
cond(H) = κ and the eigenvalues are given as

√
3

2
d.

Table 6.2 shows the relative error in the smallest eigenvalue λ =
√

3
2
, using the

methods discussed in Section 6.2. We also include the routine haeig from the SLICOT
package [40, 38]. Because haeig can only compute eigenvalues, not eigenvectors, we
also only compute eigenvalues in the other methods in order to make the runtimes
comparable.

The MATLAB eig function has the largest runtime. haeig is slightly faster, because
it exploits the available Hamiltonian structure. However, the routine is not optimized
for cache-reuse, which is why this effect can not be observed more clearly and vanishes
for larger matrices. The generalized eigenvalue problem can be solved much faster,
because it can be transformed to a Hermitian eigenvalue problem of size 2n×2n. The
other methods ultimately act on Hermitian matrices of size n× n, which explains the
much lower runtimes.
The observed eigenvalue errors comply with the error analysis given in Section 6.2.1.

The currently used square root approach performs even worse than expected, yielding
a completely wrong eigenvalue for matrices with a condition number κ = 109. In the
application context, the small eigenvalues are of special interest. They correspond to
bound exciton states, representing a strong electron-hole interaction. They are the
reason why the Bethe-Salpeter approach is used instead of simpler schemes based on
time-dependent density functional theory [152]. The smallest eigenvalues suffer the
most from this numerical inaccuracy.
The second experiment aims to asses the runtime of the sequential implementations,

including the eigenvector computation in the measurement. The matrices A and B
are setup as random matrices, where the diagonal of A has been scaled up in order to
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Figure 6.1: Runtimes for eigenvalue and eigenvector computation using different meth-
ods, A,B ∈ Cn×n with varying matrix sizes.
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guarantee the definiteness property (6.2). The measured runtimes are found in Figure
6.1 and serve as a rough indicator of computational effort.

As expected, the Cholesky approach yields the fastest runtime of all approaches.
The SVD approach also performs better than the square root approach. However,
this picture could easily look different in another computational setup. An approach
based on the eig command becomes prohibitively slow, when larger matrices are
considered. Matrices in real applications become extremely large, up to dimensions of
order 100 000, in order to get reasonable results. The effect would be even more drastic
in a parallel setting, as the solution of a non symmetric dense eigenvalue problem is
notoriously difficult to parallelize.

Figure 6.2 shows the achieved K-orthogonality of the eigenvector matrices for ma-
trices with certain condition numbers. To this end, we manipulate the diagonal of the
randomly generated matrix A such that badly conditioned BSE matrices H are gen-
erated. For the square root and the Cholesky approach, the K-orthogonality breaks
down completely for badly conditioned matrices. This can have dramatic consequences
and lead to completely wrong results, when further computations rely on this property.

To show the applicability to real life examples, we extracted a Bethe-Salpeter ma-
trix corresponding to the excitation of Lithium-Fluoride from the exciting software
package [86]. Computational details on how the matrix is generated can be found
in the documentation1. Here, it is pointed out that a Tamm-Dancoff approximation,

1http://exciting-code.org/carbon-excited-states-from-bse
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Figure 6.2: Deviation from K-orthogonality for different methods, A,B ∈ C200×200

with a certain condition number.
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i.e. setting the off-diagonal block B to zero, already yields satisfactory results. The
resulting 2560 × 2560 BSE matrix has a condition number (computed using cond in
MATLAB) of 5.33. We do not expect the algorithms to suffer from the numerical
difficulties observed in the first example.

The three smallest eigenvalues computed by different methods are found in Table 6.3.
Indeed, all approaches coincide in the first 14 significant digits. The Tamm-Dancoff
approximation (TDA) applies MATLAB eig on the diagonal Block A and provides
eigenvalues, that are correct up to 4 significant digits, which is sufficient for practical
applications. The measured runtimes reflect the results of the other experiments. Now
the lack of low-level optimization in the haeig routine becomes apparent and leads to
the lowest performance of all approaches.

6.4 Towards structure-preserving methods for
non-definite problems

The algorithms presented in Section 6.2 assume property (6.2) to hold, i.e. KH is
assumed to be positive definite. However, as pointed out in [22, 142], complex eigen-
values can occur in certain contexts and are related to finite lifetimes of particles. In
this section, we point out how our framework can be used to gain insight in this case.
In contrast to the definite case, the stable computation of required quantities can be
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Table 6.3: Computed eigenvalues for the Lithium Fluoride example.

λ1 λ2

eig 4.6423352497493209e-01 4.6524229149750918e-01
generalized eig 4.6423352497493126e-01 4.6524229149750407e-01
haeig 4.6423352497493725e-01 4.6524229149750940e-01
SQRT 4.6423352497493120e-01 4.6524229149750490e-01
CHOL 4.6423352497493031e-01 4.6524229149750573e-01
CHOL + SVD 4.6423352497493092e-01 4.6524229149750473e-01
TDA 4.6427305979874345e-01 4.6528180480128906e-01

λ3 Runtime
eig 4.6872644706731720e-01 32.49 s
generalized eig 4.6872644706732447e-01 10.62 s
haeig 4.6872644706732514e-01 71.43 s
SQRT 4.6872644706732541e-01 3.44 s
CHOL 4.6872644706732414e-01 2.06 s
CHOL + SVD 4.6872644706732453e-01 3.41 s
TDA 4.6877150201685513e-01 0.88 s

more challenging and routines are not as readily available. This section serves as a mo-
tivation for future algorithmic developments. This is why the numerical experiments
in the previous section focus on the definite case.

In the definite case in Section 6.2, a Cholesky factorization was used to transform
the eigenvalue problem. This role is now played by its generalized form, an LDLT

factorization. We use a scaled LDLT decomposition to arrive at an eigenvalue problem
of half the size. The resulting matrix is pseudo-Hermitian, i.e. Hermitian up to sign
changes of certain rows or columns. The same idea is explored in [142]. Let M2 =
LTLH be a decomposition, where T is a signature matrix, i.e. T = diag(t1, . . . , tn),
tj ∈ {1,−1} for j = 1, . . . , n (see Lemma 2.17). Then we see

M1M2V1 = V1D ⇔ LHM1LT V̂1 = V̂1D, (6.8)

where V̂1 = LHV1 contains the right eigenvectors of the pseudo-Hermitian matrix
LHM1LT . Similarly, the left eigenvectors of M1M2 show the relation

V H
2 M1M2 = DV H

2 ⇔ V̂ H
2 L

HM1LT = DV̂ H
2 ,

where V̂2 = L−1V2 contains the left eigenvectors of the pseudo-Hermitian matrix
LHM1LT .
For Hermitian matrices occurring in the definite case, left and right eigenvectors are

the same. For pseudo-Hermitian matrices this does not hold, but they are nevertheless
related. This is pointed out in the following theorem stating a normal form for pseudo-
Hermitian matrices, compare [122].
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Theorem 6.4:
Let M ∈ Cn×n be diagonalizable with k real positive, l real negative eigenvalues, and
2m complex eigenvalues and be selfadjoint with respect to a signature matrix Σ, i.e.

MΣ = (MΣ)H, and define S2 =

[
0 1
1 0

]
. Then there exists an eigenvalue decomposition

V −1MV = D := D+ ⊕D− ⊕Dcomplex,

V HΣV = S := diag(σ1, . . . , σk+l, S2, . . . , S2) .

The positive real eigenvalues of M are contained in

D+ = diag(λ1, . . . , λk)

and the negative real eigenvalues of M are contained in

D− = diag(λk+1, . . . , λk+l) .

The 2m complex eigenvalues of M are contained in

Dcomplex = diag
(
λk+l+1, λk+l+1, . . . , λk+l+m, λk+l+m

)
.

The ordered list (σ1, . . . , σk+l) contains signs ±1. ♦

Given the decomposition from Theorem 6.4, the left eigenvectors of M are given as
the columns of

V2 = V −H = ΣV S.

Structure-preserving algorithms such as the HR algorithm [33, 182, 56, 57] can be
employed to compute a structured eigenvalue decomposition. This idea is described
for product eigenvalues in [49]. A well-known downside of this approach is that it is
not guaranteed to be stable. A new class of algorithms for solving pseudo-Hermitian
eigenvalue problems is presented in Chapter 9.

Given a structured decomposition, the following theorem explains how to use it to
construct eigenvalues of H.

Theorem 6.5:
Let H be a BSE matrix of form II, with M1 := A+ B and M2 = A− B nonsingular.
Moreover, let M2 = LTLH be a decomposition, where T is a signature matrix, and
assume

V̂ −1MV̂ = D

to be the structured eigenvalue decomposition of M = LHM1LT given in Theorem
6.4, i.e.

V̂ −1 = SV̂ HT, S = diag(σ1, . . . , σk+l, S2, . . . , S2) .
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

Then with T̂ = diag(σ1, . . . , σk+l, I2, . . . , I2) and Q := 1
2

[
I I
−I I

]
, the columns of the

matrix

V = Q

[
L−HV̂ D1/4

LT V̂ T̂D−1/4

]
,

provide eigenvectors of H fulfilling HV = V Λ̂, where Λ̂ = D
1
2 T̂ . The complete set of

eigenvectors is given by

Vfull =
[
V −iJKV

]
, (6.9)

which fulfills

V H
fullKVfull =




Ik 0 0 0 0 0
0 0 0 0 Il 0
0 0 S2m 0 0 0
0 0 0 −Ik 0 0
0 Il 0 0 0 0
0 0 0 0 0 −S2m



, S2m = diag(S2, . . . , S2) ∈ R2m×2m.

(6.10)
♦

Proof. We see in equivalence (6.8) that L−HV̂ =: V1 contains right eigenvectors of the
matrix product M1M2. Similarly, it can be seen that LV̂ −H = LT V̂ S =: V2 contains
left eigenvectors of M1M2. We aim to apply Theorems 4.8 and 4.9 to compute the
required scaling factors for V1 and V2. We observe that

M1V2 = V1DS, M2V1 = V2S. (6.11)

The eigenvector matrices V1,ri := V1(:, 1 : k + l) and V2,ri := V2(:, 1 : k + l) correspond
to the real eigenvalues of M , and will turn out to correspond to real and imaginary
eigenvalues of H. For the leading parts of S and T , we have

Sri := S(1 : k + l, 1 : k + l) = diag(σ1, . . . , σk+l) = T̂ri := T̂ (1 : k + l, 1 : k + l).

It follows with Dri = D(1 : k + l, 1 : k + l) that

M1V2,ri = V1,riDriT̂ri, M2V1,ri = V2,riT̂ri.

According to Theorem 4.8, the scaling factors λ1 and λ2 are given by the diagonal
elements of DriT̂ri and T̂ri. Let µ be an eigenvalue of M1M2 given as a diagonal
element of Dri. We consider the four possible cases

1. µ > 0

a) λ1 > 0 and λ2 > 0 ⇔ Corresponding diagonal value in T̂ri is +1,
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b) λ1 < 0 and λ2 < 0 ⇔ Corresponding diagonal value in T̂ri is −1,

2. µ < 0

a) λ1 < 0 and λ2 > 0 ⇔ Corresponding diagonal value in T̂ri is +1,

b) λ1 > 0 and λ2 < 0 ⇔ Corresponding diagonal value in T̂ri is −1.

In cases 1 (a) and 2 (a), the constructed vector corresponds to λ = µ
1
2 with no

sign switch occurring according to Theorem 4.8. In case 1 (b), a sign switch occurs
according to Theorem 4.8. In these three cases the corresponding scaling factor is
given as λ

1
4
1 λ
− 1

4
2 = µ

1
4 . In case 2 (b), no sign switch occurs according to Theorem

4.8, but the proper scaling factor is given as λ
1
4
1 λ
− 1

4
2 = µ

1
4 = −iµ

1
4 . If instead a

scaling factor of µ
1
4 is chosen, this yields the eigenvector corresponding to −µ 1

2 as we

see in the following. Let v = Q

[
v1s1

v2s
−1
1

]
be the properly constructed eigenvector H

corresponding to µ with the scaling factor s1 = −iµ
1
4 . According to Theorem 4.4, 2.

(a), the eigenvector corresponding to −µ 1
2 is given by

JKv = Q

[
v1s1

−v2s
−1
1

]
= −iQ

[
v1µ

1
4

v2µ
− 1

4

]
, (6.12)

where we used JKQ = QK. Scaling this eigenvector with i gives the vector, that
is constructed using µ

1
4 as a scaling factor, as is proposed here. In summary, the

proposed construction leads to a sign change whenever T̂ has negative values and we
have

HVri = VriD
1
2
ri T̂ri, Vri = Q

[
L−HV̂riD

1
4
ri

LT V̂riT̂riD
− 1

4
ri

]
. (6.13)

The scaling matrices for the remaining vectors Vc = V (:, k+ l+ 1 : n) associated with
complex eigenvalues are constructed via Theorem 4.9. From (6.11) we see that the
scaling factors for a given µ are given as λ1 = µ and λ2 = 1, resulting in λ̂ = µ

1
4 and

the scaling matrices

Λ̂1 =

[
µ

1
4 0

0 µ
1
4

]
, Λ̂2 =

[
0 µ−

1
4

µ−
1
4 0

]
= S2Λ̂−1

1 .

The submatrices Dc, V̂c V1,c and V2,c denote the trailing diagonal matrix or the trailing
columns of the respective matrix, corresponding to the 2m complex eigenvalues of H
with non-vanishing real and imaginary part. The scaling matrices for V1,c and V2,c are
given as Λ̂1,c = D

1
4
c , Λ̂2,c = S2mΛ̂−1

1,c. According to (4.18), no sign switch occurs with
the given λ1 and λ2 and we have

HVc = VcD
1
2
c , Vc = Q

[
V1,cΛ̂1,c

V2,cΛ̂2,c

]
= Q

[
L−HV̂cD

1
4
c

LT V̂cD
− 1

4
c

]
. (6.14)
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

Equations (6.13) and (6.14) together give the first part of the proposed theorem.
Vfull provides a full set of eigenvectors according to Lemma 4.4, 2. (a). It remains

to show the K-orthogonality condition (6.10). The upper left quadrant of V H
fullKVfull

is given as proposed according to Theorems 4.8 and 4.9. The lower right quadrant
is evaluated as (−iJKV )HK(−iJKV ) = −V HKV . The remaining quadrants are de-
termined by the entries vHλK(−iJKvγ) = ivHλ Jvγ, where vλ and vγ refer to vectors
given as columns of V . This term evaluates as 0 when λ 6= γ or when the correspond-
ing eigenvalue is not purely imaginary. For imaginary eigenvalues, we distinguish
cases 2 (a) and 2 (b) defined above. In case 2 (a) (where λ1 < 0 and λ2 > 0),
we have ivHλ Jvγ = i(−i) = 1 according to (4.13). In case 2 (b) (where λ1 > 0 and
λ2 < 0), we used the scaling factor µ

1
4 instead of −iµ

1
4 proposed by Theorem 4.8.

Equation (6.12) states that the original vector, for which Theorem 4.8 holds, is given
by −iKJvλ. So the J-orthogonality condition holds for −iKJvλ, i.e. in this case we
have (−iKJvλ)

HJ(−iKJvλ) = −vHλ Jvλ = i. The quadrant entry then evaluates as
ivHλ Jvγ = 1.

The correct tool for generalizing the SVD-based approach in Theorem 6.3 is a gen-
eralized SVD (GSVD) given in form of Theorem 4.1 in [124]. The following version
concerns the special case of diagonalizable matrices and gives a generalized SVD with
respect to two signature matrices T1 and T2.
Theorem 6.6:
Let A ∈ Cn×n be nonsingular and diagonalizable with k real positive, l real negative
eigenvalues, and 2m complex eigenvalues and let T1, T2 ∈ Rn×n be two signature
matrices. Then there exist nonsingular matrices U, V ∈ Cn×n, such that

UHAV = Λr ⊕ Λi ⊕ Λc, UHT1U = T̂1 = diag(s1, . . . , sk+l, S2, . . . S2) ,

V HT2V = T̂2 = diag(ŝ1, . . . , ŝk+l, S2, . . . S2) ,
(6.15)

where Λr = diag(λ1, . . . , λk), Λi = diag(λk+1, . . . , λk+l) are diagonal matrices contain-
ing positive real values,

Λc = diag
(
λk+l+1, λk+l+1, . . . , λk+l+m, λk+l+m

)

is a diagonal matrix containing complex conjugate pairs of complex values, where
arg λj ∈ (0, π/2) for j = k + l + 1, , . . . , k + l + m. The diagonal values of T̂2 are
signs, sj, ŝj ∈ {1,−1}. They fulfill sj ŝj = 1 for j = 1, . . . , k and sj ŝj = −1 for
j = k+1, . . . , k+l. For the matricesM = T1AT2A

H, M̂ = T2A
HT1A, the decomposition

presented in Theorem 6.4 is given as

U−1MU = Λ2
r ⊕−Λ2

i ⊕ (Λ2
c)

H, V −1M̂V = Λ2
r ⊕−Λ2

i ⊕ Λ2
c . ♦

Using scaled LDLT decompositions M1 = L1T1L
H
1 , M2 = L2T2L

H
2 , where T1 ans T2

are signature matrices, the product eigenvalue problem considered in Theorem 4.8 and
Theorem 4.9 is rewritten as

M1M2V1 = V1D ⇔ T1L
H
1L2T2(LH

1L2)HV̂1 = V̂1D, (6.16)

V H
2 M1M2 = DV H

2 ⇔ V̂ H
2 (LH

1L2)HT1(LH
1L2)T2 = DV̂ H

2 , (6.17)
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where V̂1 = L−1
1 V1 and V̂2 = L−1

2 V2.
Here, the connection to the GSVD (6.15) in Theorem 6.6 becomes apparent by

setting A = LH
1L2. The following theorem explores this idea and gives guidance for

computing eigenpairs of the BSE matrix via the GSVD.

Theorem 6.7:
Let M1 = L1T1L

H
1 , M2 = L2T2L

H
2 be decompositions, where T1, T2 are signature

matrices and

ÛHMV̂ = Λ = Λr ⊕ Λi ⊕ Λc

be the GSVD of M = LH
1L2 with respect to T1 and T2 given in Theorem 6.6, i.e.

Û−1 = T̂1Û
HT1, T̂1 = diag(s1, . . . , sk+l, S2, . . . , S2) ,

V̂ −1 = T̂2V̂
HT2, T̂2 = diag(ŝ1, . . . , ŝk+l, S2, . . . , S2) .

Then

V = Q

[
L1Û(Λ−1/2)H

L2V̂ Λ−1/2P

]
, P = Ik ⊕ iIl ⊕ S2 ⊕ · · · ⊕ S2

yields eigenvectors of H fulfilling HV = V Λ̂, where

Λ̂ = ΛT̂ , T̂ = diag(s1, . . . sk+l, I2m) .

The complete set of eigenvectors is given by

Vfull =
[
V iJKV

]
,

which satisfies

V H
fullKVfull =




Ik 0 0 0 0 0
0 0 0 0 Il 0
0 0 S2m 0 0 0
0 0 0 −Ik 0 0
0 Il 0 0 0 0
0 0 0 0 0 −S2m



, S2m = diag(S2, . . . , S2) ∈ R2m×2m.

(6.18)
♦

Proof. We use the GSVD of M = LH
1L2 from Theorem 6.6, ÛHMV̂ = Λ. Then it

holds

T1MT2M
H = Û(Λ2)HSÛ−1, S = Ik ⊕−Ik ⊕ I2m,

and the equations (6.16) are equivalent to

Û(Λ2)HSÛ−1V̂1 = V̂1D, V̂1 = L−1
1 V1.
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

This equation holds for D = (Λ2)HS and V1 = L1Û(Λ−
1
2 )H. Similarly, it can be seen

that (6.17) is solved by V2 = L2V̂ Λ−
1
2 and D = (Λ2)HS. (Λ−

1
2 )H and Λ

1
2 are diagonal

matrices scaling the eigenvectors and have been chosen such that it holds V H
1 V2 = In.

Now we are in a position to apply Theorems 4.8 and 4.9. With some simple algebra
we see that the scaling factors are given as (block-) diagonal elements of

Λ1 = V H
2 M1V2 = T̂1Λ, Λ2 = V H

1 M2V1 = ΛT̂2.

The scaling factor corresponding to a real diagonal value λj, j = 1, . . . , k+ l, of Λ can
be evaluated as

λ
1
4
1,jλ

− 1
4

2,j = (λjsj)
1
4 (λj ŝj)

− 1
4 =





1 if sj ŝj = 1,

i−
1
2 =
√

2
−1 −

√
2
−1

i if sj = 1 and ŝj = −1,

i
1
2 =
√

2
−1

+
√

2
−1

i if sj = −1 and ŝj = 1.

(6.19)

The 2×2 scaling blocks for complex eigenvalues evaluate as the identity matrix. There-
fore, a non-trivial scaling is only needed for eigenvectors corresponding to imaginary
eigenvalues (sj ŝj = −1).

Equation (6.19) suggests for the case where sj = 1 and ŝj = −1 to use the scaling
factors i−

1
2 for the corresponding vectors in V1 and i

1
2 in V2. We further multiply all

vectors with i
1
2 , such that only V2 is scaled by i. This does not change the fact that

they are normalized eigenvectors, but simplifies notation.
In the case sj = −1, ŝj = 1 the wrong scaling factor has been chosen. This is the

same situation as in the proof of Theorem 6.5. Similarly, it can be shown that using
the “wrong” scaling factor leads to the computation of an eigenvector corresponding
to an eigenvalue of switched sign. In the case sj = −1, ŝj = −1, a sign switch occurs
according to Theorem 4.8. No sign switch occurs for the complex eigenvalues according
to (4.18), because we have λ1 = λ2 and arg λ1 ∈ [0, π/2] according to the definition of
the GSVD in Theorem 6.6. So in total, a sign switch occurs whenever sj = −1. This
is encoded in Λ̂ = ΛT̂ , where T̂ = diag(s1, . . . , sk+l, I2m). The normalization condition
(6.18) is shown similarly to the proof of Theorem 6.5.

Table 6.4 summarizes and compares the two algorithmic approaches following from
Theorems 6.5 and 6.7. Unfortunately, stable algorithms computing the necessary
structured decompositions, in particular Theorem 6.6, are hard to find. Because of
the missing established algorithmic pathways, we do not provide flop counts as in
Table 6.1.

A method for computing the structured decomposition given in Theorem 6.4, needed
for the LDLT approach, is presented in Chapter 9.

6.5 Conclusions and discussion

We presented a unifying framework for solving the Bethe-Salpeter eigenvalue problem
as it appears in the computation of optical properties of crystalline systems. Two pre-
sented methods are superior to the one often used in current implementations, which is
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Table 6.4: Algorithmic steps of the different methods applicable in the non-definite
setting, i.e. the definiteness property (6.2) does not necessarily hold.

LDLT LDLT + GSVD

1. Preprocessing LTLH = A−B,
M = L(A+B)LHT

L1T1L
H
1 = A+B,

L2T2L
H
2 = 0, A−B,

M = LH
1L2

2. Decomposi-
tion

M = V̂ DV̂ −1, where
V̂ HT V̂ = S,
Λ = D

1
2

M = U−HGSV DΛV −1
GSV D, where

UH
GSV DT1UGSV D = T̂1,

V H
GSV DT2VGSV D = T̂2

3. Postprocess-
ing

V1 = L−HVMΛ
1
2 ,

V2 = LTVM T̂Λ−
1
2

V1 = L1UGSV D(Λ−
1
2 )H,

V2 = L2VGSV DΛ−
1
2P , where

P = Ik ⊕ iIk ⊕ S2m

4. Sign switches T̂ is the diagonal matrix
containing the signature of S.

T̂ is the diagonal matrix
containing the signature of T̂1.

4. Final setup V =

[
1
2
(V1 + V2)

1
2
(V2 − V1)

]
, Λ̂ = ΛT̂

based on the computation of a matrix square root. Computing the matrix square root
constitutes a high computational effort for non-diagonal matrices. Our first proposed
method substitutes the matrix square root with a Cholesky factorization which can
be computed much easier. The total runtime is reduced by about 40% in preliminary
experiments, while the same accuracy is achieved. In order to achieve a higher accu-
racy we proposed a second method, which also relies on Cholesky factorizations and
uses a singular value decomposition instead of an eigenvalue decomposition.

We gave new theoretical results on structured matrices, which served as a foundation
of the proposed algorithms. These results were further extended to be applicable in
a setting where non-definite matrices and complex eigenvalues occur. The previously
presented methods found direct analogies in this setting. Most methods available in
the literature on the other hand rely on the definiteness property (6.2).

In the definite setting, many available methods, such as the iterative ones presented
in [22, 158], are implicitly connected to the presented product eigenvalue structure
given in Theorems 4.8 and 4.9. The contribution of this chapter in this regard is to
clarify the common basis of methods that seem unconnected at first glimpse. The
treatment of the non-definite case in Theorem 4.9 is completely new and can serve
as a basis for further algorithm development. We only presented direct methods
based on structured decompositions. Future research can explore the possibility of an
iterative approach solving the indefinite product eigenvalue problem in Theorem 4.9.
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6 Methods for solving the Bethe-Salpeter eigenvalue problem of form II

A candidate might be based on an indefinite Lanczos method [143, 68, 62].
Iterative methods have benefits when only a fraction of the eigenpairs are sought.

Typically, the eigenpairs corresponding to a few smallest eigenvalues already provide a
lot of information about the considered system. It is also possible to reduce the com-
putational costs of direct methods when only few eigenpairs are sought. For example,
the needed decompositions can partially be computed in a divide-and-conquer fashion
[133]. On an implementational level it is also possible to save some operations in the
computation of symmetric eigenvalue decompositions in particular in the context of
high performance computing [15].
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CHAPTER 7

GR DECOMPOSITIONS AND THEIR RELATIONS TO
CHOLESKY-LIKE FACTORIZATIONS
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7.2.4 Computing the indefinite QR factorization via two LDLT de-

compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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7.3.2 Successive column elimination . . . . . . . . . . . . . . . . . . . 106
7.3.3 Connection to the skew-symmetric Cholesky-like factorization . 109
7.3.4 Computing the symplectic QR decomposition via two Cholesky-

like factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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7.4.2 Symplectic QR decomposition . . . . . . . . . . . . . . . . . . . 114

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Introduction

We have seen in Chapter 4 that the Bethe-Salpeter matrices are self-adjoint with
respect to two non-standard scalar products. Both of them share the property to be
self-adjoint with respect to the sesquilinear form induced by

Kn =

[
In 0
0 −In

]
,

i.e. they are pseudo-Hermitian.
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The remaining three chapters of this thesis are directed towards developing new
algorithms for solving eigenvalue problems for this class of matrices.

In this chapter, we examine generalized variants of the QR decomposition and how
they are related to generalized variants of the Cholesky factorization. This connection
is used to improve the accuracy of the computation of the QR-like decompositions
(also called GR decompositions). Essentially, two rounds of reorthogonalization with
respect to non-standard scalar products are performed.

The QR-like decomposition with respect to a signature matrix such as Kn is called
hyperbolic (or indefinite) QR decomposition and will serve as a tool in the compu-
tation of the generalized polar decomposition in Chapter 8. The generalized polar
decomposition in turn will serve as a tool to devise a new structure-preserving spec-
tral divide-and-conquer method for pseudo-Hermitian eigenvalue problems in Chapter
9.

For a given full-rank matrix A ∈ Km×n, where K = C or K = R, m ≥ n, we are
interested in computing GR decompositions

A = GR, G ∈ Km×n, R ∈ Kn×n,

where G is an isometry with respect to given scalar products induced by matrices
M ∈ Km×m and N ∈ Kn×n, see Definition 2.6.

We first examine GR decompositions with respect to M = Km, N = Kn, yielding
the hyperbolic QR decomposition in Section 7.2. In Section 7.3, M = Jm and N = Jn
are considered, where

Jn =

[
0 In
−In 0

]
.

The resulting decomposition is called the symplectic QR decomposition.
The standard QR decomposition given in Theorem 2.11 is a representative of a GR

decomposition defined by the Euclidian scalar product, i.e. M = Im, N = In. Here,
R is upper triangular. With respect to identity matrices, an isometry is a matrix
with orthonormal columns. Typically, the QR decomposition is computed in a stable
fashion by successively eliminating subdiagonal entries of the matrix using orthogonal
transformations. This is called the Householder QR method in the following. Instead
of Householder transformations, Givens rotations can be used, but they are less suited
for a cache-aware, blocked implementation.

There is a well known connection to the Cholesky factorization. Let A have full
column rank. It holds that A = QR is a thin QR decomposition if and only if R
defines a Cholesky decomposition RHR = AHA. Computing Q := AR−1 provides an
alternative to the column elimination approach. For tall and skinny matrices, this
method takes half as many operations as the Householder QR method. However, it is
known to be unstable.

The stability can be drastically improved by doing a second repetition, i.e. compute
the QR decomposition of Q [187]. Implementing a shifting strategy further improves
the method for ill-conditioned matrices [80]. If A is reasonably conditioned, more
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specifically cond(A) < O(u−
1
2 ), then ‖Q̂∗Q̂− In‖F = O(u) and ‖Q̂R̂−A‖F = O(u) can

be achieved. This algorithm is called CholeskyQR2. The detailed procedure is given
as

1. Compute Gram matrix X1 := A∗A.

2. Compute Cholesky factor R1, such that R∗1R1 = X1.

3. Q1 := AR−1
1 .

4. Compute Gram matrix X2 := Q∗1Q1.

5. Compute Cholesky factor R2, such that R∗2R2 = X2.

6. Q := Q1R
−1
2 .

7. R := R2R1.

While the amount of flops of this method is comparable to the Householder approach,
the CholeskyQR2 method is better suited for high performance computing, which has
been shown in empirical tests [69, 81].

This raises the hope to improve stability in the setting defined by non-standard
scalar products. The idea is to compute a GR decomposition via the corresponding
Cholesky-like factorization and repeat this a second time. This method is investigated
for the hyperbolic QR decomposition in Section 7.2.4 and for the symplectic QR
decomposition in Section 7.3.4.

7.2 The hyperbolic QR decomposition

7.2.1 Definition

The hyperbolic QR decomposition is a well-known tool in numerical linear algebra
and can be computed via successive column elimination, similar to the orthogonal QR
decomposition. This method is described briefly in Section 7.2.2. In the same way
as the orthogonal QR decomposition is connected to the Cholesky factorization, the
hyperbolic QR decomposition is connected to the LDLT factorization. This factoriza-
tion exists in different variants: D can be strictly diagonal or block-diagonal. Each
variant can be used to define a variant of the hyperbolic QR decomposition. Section
7.2.3 unravels the involved nuances. In Section 7.2.4, we investigate the possibility to
compute the Hyperbolic QR decomposition via two subsequent LDLT factorizations.

Let Σ be a given signature matrix. We search for a way to compute (Σ, Σ̂)-
orthogonal bases (see Definition 2.6) which span a given subspace. While Σ is a given
signature matrix, Σ̂ can be another arbitrary signature matrix. (Σ, Σ̂)-orthogonal ma-
trices are also called hyperexchange matrices [94] and can be used to solve indefinite
least square problems [45].
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7 GR decompositions and their relations to Cholesky-like factorizations

The methods presented in this section take a rectangular matrix A ∈ Km×n and a
signature matrix Σ as input and deliver two outputs. These are another signature ma-
trix Σ̂, and H ∈ Km×n, which spans the same subspace as A and is (Σ, Σ̂)-orthogonal.
Subspace representations of this kind will be used in the computation of generalized
polar decompositions in Chapter 8 of this thesis. Furthermore, they are required
in the structure-preserving spectral divide-and-conquer method for pseudosymmetric
matrices developed in Chapter 9. A classic method for computing such a subspace
representation uses the hyperbolic QR decomposition.

Theorem 7.1 (The hyperbolic QR decomposition [54]):
Let Σ ∈ Rm×m be a signature matrix, A ∈ Km×n, m ≥ n. Suppose all the leading
principal submatrices of A∗ΣA are nonsingular. Then there exists a permutation
matrix P , a signature matrix Σ̂ = PTΣP , a (Σ, Σ̂)-orthogonal matrix H ∈ Km×m (i.e.
H∗ΣH = Σ̂), and an upper triangular matrix R ∈ Rn×n, such that

A = H

[
R
0

]
. ♦

The hyperbolic QR decomposition is unique (i.e. A = H1R1 and A = H2R2, where
H1 and H2 are (Σ, Σ̂)-orthogonal, implies H1 = H2, R1 = R2) when the diagonal
values of R are restricted to be positive real [163].

Remark 7.2:
The hyperbolic QR decomposition can be truncated to form a thin hyperbolic QR
decomposition

A = H0R, H0 ∈ Km×n, R ∈ Kn×n, H∗0 ΣH0 = Σ̂0.

H0 contains the first n columns of H and Σ̂0 contains the n× n leading submatrix of
Σ̂, where H and Σ̂ are given in Theorem 7.1. ♦

7.2.2 Successive column elimination

The hyperbolic QR decomposition can be computed by accumulating transformations
that introduce zeros below the diagonal, similar to the standard QR decomposition.
We give a quick idea on how these elimination matrices are computed. For a more
formal treatment, see e.g. [182]. For a given vector x and a given signature matrix Σ,
we look for a transformation H such that H−1x = de1, where e1 denotes the first unit
vector and HHΣH = Σ̂ is another signature matrix. The two kinds of transformations
used are orthogonal Householder transformations and hyperbolic Givens rotations.
For illustrative purposes suppose x ∈ C2n and Σ = diag(In,−In). Let

H1 =

[
H+

H−

]
, (7.1)

where H+ and H− are Householder transformations of dimension n × n, such that
H−1

1 x = ae1 + ben+1. We have HH
1 ΣH1 = Σ. The b entry in position n + 1 is then
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7.2 The hyperbolic QR decomposition

annihilated by a hyperbolic Givens rotation acting on rows 1 and n+1. The elimination

G−1

[
a
b

]
=

[
d
0

]
is achieved by

G−1 =

[
c −s
−s c

]
,

where

{
c = |a|/

√
|a|2 − |b|2, s = eiφ|b|/

√
|a|2 − |b|2 if |a| > |b|,

c = |a|/
√
|b|2 − |a|2, s = eiφ|b|/

√
|b|2 − |a|2 if |a| < |b|, (7.2)

with φ = arg a− arg b. The Givens matrix G is given as G =

[
c s
s c

]
. For the |a| > |b|

case we have

G∗
[
1 0
0 −1

]
G =

[
1 0
0 −1

]
. (7.3)

For |a| < |b| there is a sign switch in the signature matrix,

G∗
[
1 0
0 −1

]
G =

[
−1 0
0 1

]
. (7.4)

If a and b are real then G is also real. Embedding G into a larger matrix H2 (equal
to the identity except in rows and columns 1 and n+ 1), gives the sought-after trans-
formation H = H1H2. Another signature matrix is given by H∗ΣH = Σ̂, where +1
at diagonal position 1 and −1 at diagonal position n + 1 have been interchanged if
condition (7.4) takes effect. If condition (7.3) takes effect, the signature matrix does
not change: Σ = Σ̂.
The presented method works not only for the given specific signature matrix. For

an arbitrary signature matrix Σ, the Householder matrix H+ acts on the rows corre-
sponding to positive entries of Σ, the Householder matrix H− acts on the remaining
rows. H1 is set up accordingly. H2 then acts on the remaining two entries and may
or may not introduce a sign switch in the signature matrix. In the determination
of the hyperbolic Givens rotation (7.2), the case |a| = |b| is not covered and in this
case, no suitable matrix G exists. The assumptions in Theorem 7.1 prevent this from
happening. However, if a and b are close, G becomes ill-conditioned. This can lead to
an instability in algorithms employing this kind of column elimination.

7.2.3 Connection to LDLT factorizations

In order to overcome these potential instabilities, we take a look at the standard QR
decomposition. Here, we can find the computation based on a Cholesky factorization
as an alternative. In the indefinite setting an analogous connection exists between the
hyperbolic QR factorization given in Theorem 7.1 and a scaled variant of the diagonal
LDLT factorization given in Theorem 2.15.

101



7 GR decompositions and their relations to Cholesky-like factorizations

Lemma 7.3:
Let A ∈ Km×n have full column rank and a decomposition A = HR, where H ∈ Km×n,
R ∈ Kn×n. Then

H∗ΣH = Σ̂ ⇔ A∗ΣA = R∗Σ̂R. (7.5)
♦

Proof. For the implication from the left to the right statement, A does not need to
have full rank. Inserting HR as A in AHΣA, yields the right equation when the left
equation is used. From right to left one inserts H = AR−1 in HHΣH to find Σ̂ by
using the right equation.

Remark 7.4:
If the right side of the equivalence (7.5) is given, H = AR−1 can be recovered from
A and R. In the case of signature matrices, the right side can be computed from
an LDLT decomposition A∗ΣA = LDL∗, where L is unit lower triangular, D is real
diagonal. Then R := |D| 12L∗ and Σ̂ := sign(D) (containing the signs of the diagonal
values in D) fulfill A∗ΣA = R∗Σ̂R. ♦

Remark 7.4 points out how the (truncated) hyperbolic QR decomposition (Theorem
7.1) can be computed from the diagonal LDLT decomposition. If instead the scaled
LDLT decomposition with pivoting (see Lemma 2.17) is used, one obtains the indefinite
QR factorization given in the following Theorem. In contrast to the hyperbolic QR
decomposition, it is not unique anymore. Additional degrees of freedom are introduced
by the possibility of pivoting and because D is allowed to have 2 × 2 blocks on the
diagonal. This allows for a more stable computation [14].

Theorem 7.5 (Indefinite QR decomposition [163]):
Let Σ ∈ Rm×m be a signature matrix, A ∈ Km×n, m ≥ n. Suppose A∗ΣA is nonsin-
gular. Then there exists a factorization

A = HRPT, H ∈ Km×n, R ∈ Kn×n, P ∈ Rn×n.

P is a permutation matrix, PΣ ∈ Rm×n contains n columns of an m×m permutation
matrix and defines the signature matrix Σ̂ = PT

ΣΣPΣ. H is (Σ, Σ̂)-orthogonal (i.e.
H∗ΣH = Σ̂), and R is block-upper triangular with blocks of size 1× 1 or 2× 2. ♦

The difference between the indefinite QR factorization (Theorem 7.5) and the hy-
perbolic QR factorization (Theorem 7.1) is that pivoting is introduced, which results
in the second permutation matrix P . Furthermore, 2 × 2 blocks may appear on the
diagonal of R, and the assumption on A∗ΣA is weaker. This decomposition can be
computed via the successive use of transformation matrices, similar to the hyperbolic
QR decomposition [162]. A perturbation analysis for the computation of the hyper-
bolic QR factorization (Theorem 7.1), i.e. the triangular case of the indefinite QR
factorization in Theorem 7.5, is given in [163] and more recently in [113].

Computing the indefinite QR factorization via the LDLT factorization employs the
variant given in Lemma 2.17 and proceeds as follows.
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7.2 The hyperbolic QR decomposition

1. Compute an LDLT factorization A∗ΣA = PLDL∗PT, whereD is block-diagonal.

2. Diagonalize D, i.e. compute unitary V , diagonal Λ such that V ΛV ∗ = D.

3. R := |Λ| 12V ∗L∗.

4. H := APR−1.

The unitary matrix V , computed in step 2, has the same block-diagonal structure as
D.

7.2.4 Computing the indefinite QR factorization via two LDLT

decompositions

We follow the idea of the CholeskyQR2 algorithm and derive the indefinite variant. We
call the algorithm LDLIQR2, standing for LDLT-based computation of the Indefinte
QR decomposition, applied twice. It computes a (Σ, Σ̂)-orthogonal basis of the sub-
space spanned by a matrix A. Σ is a given signature matrix and Σ̂ is another signature
matrix determined by the algorithm. It starts by computing the indefinite QR factor-
ization

A = H1R1P
T
1

via the LDLT factorization with pivoting as described in the previous section. Then
as a second step, the indefinite QR decomposition

H1 = HR2P
T
2

is computed using the same method. This yields a factorization

A = HR2P
T
2 R1P

T
1 , with R1, R2block upper triangular,

P1, P2 permutation matrices.
(7.6)

In exact arithmetic, the second step is redundant, as the hyperbolic QR decomposition
of a (Σ, Σ̂)-orthogonal H is H = HI. In floating point arithmetic, however, we hope
to see improvements regarding the accuracy of the computed factorization. P2 will
in practice often be the identity matrix. In this case, we have computed an instance
of the indefinite QR factorization given in Theorem 7.5 with R := R2R1, P := P1.
For our application we are just interested in a (Σ, Σ̂)-orthogonal basis, so the exact
shape of R in a decomposition A = HR does not matter. The method is formulated
in Algorithm 7.1.

If one is only interested in computing H and Σ̂, then Steps 4 and 8, computing R1

and R2, can be omitted. This is the case in the application considered in this thesis.
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7 GR decompositions and their relations to Cholesky-like factorizations

Algorithm 7.1: LDLIQR2: Compute (Σ, Σ̂)-orthogonal basis via double
LDLT factorization with pivoting.
Data: A ∈ Km×n, with full column rank, Σ ∈ Rn×n is a signature matrix.
Result: (Σ, Σ̂)-orthogonal H ∈ Km×n and R1, P1, R2, P2 ∈ Kn×n yielding a

decomposition (7.6).
// First pass:

1 [L1, D1, P1]← ldl(A∗ΣA)
2 [V1,Λ1]← eig(D) // V1 is block-diagonal.

3 H1 ← AP1L
−∗
1 V1|Λ1|−

1
2

4 R1 ← |Λ1|
1
2V ∗1 L

∗
1

// Second pass:
5 [L2, D2, P2]← ldl(H∗ΣH)
6 [V2,Λ2]← eig(D) // V2 is block-diagonal.

7 H ← H1P2L
−∗
2 V2|Λ2|−

1
2

8 R2 ← |Λ2|
1
2V ∗2 L

∗
2

// Compute new signature matrix:
9 Σ̂← Λ2|Λ2|−1

7.3 The symplectic QR decomposition

7.3.1 Definition

The symplectic QR decomposition is introduced in [58] and serves as an important
tool in model order reduction and control theory. Here, symplectic subspaces are used
to solve algebraic Riccati equations [37, 109].

We now consider scalar products induced by Jn. A (Jm, Jn)-isometry S ∈ K2m×2n

(K = C or K = R) fulfills the property S∗JmS = Jn. The asterisk .∗ may refer to
transposition (.∗ = .T) or complex conjugate transposition (.∗ = .H). When K = R and
.∗ = .T, or when K = C and .∗ = .H, S is called (complex) symplectic. When K = C
and .∗ = .T, the resulting isometries are referred to as complex J-symmetric [34]. In
this work, the term symplectic may refer to all three cases.

The symplectic QR decomposition A = SR, as we use it in this thesis, is given in
form of the following theorem. Here, we use the perfect shuffle permutation

Pn =
[
e1 e3 . . . e2n−1 e2 e4 . . . e2n

]
,

where ej denotes the unit vector, that contains 1 in entry j and 0 otherwise.

Theorem 7.6 (Symplectic QR decomposition [58, 76, 34]):
Let A ∈ K2m×2n, m ≥ n, such that the principal minors of even dimension of
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7.3 The symplectic QR decomposition

PnA
∗JmAPT

n are non-zero. Then A has a symplectic QR decomposition

A = SR, R =




R11 R12

0 0
R21 R22

0 0


 =




@
@@

@
@

0

0
@@

0 0
@
@

0

0
@@

@
@@

0 0


 , S∗JmS = Jm, (7.7)

where the diagonal values of R11 and R22 fulfill R11,ii = ±R22,ii for i = 1, . . . , n. ♦

Proof. We describe the construction of the decomposition in Section 7.3.2, serving as
a constructive proof.

Remark 7.7 (Thin symplectic QR decomposition):
The symplectic QR decomposition can be truncated to form a thin symplectic QR
decomposition

A = H0R, H0 ∈ K2m×2n, R =

[
R11 R12

R21 R22

]
=

[
@

@@

@
@

0

0
@@

@
@

0

0
@@

@
@@

]
∈ K2n×2n, H∗0JmH0 = Jn.

For the orthogonal and hyperbolic QR decomposition this is done by taking the first
n columns of the n × n matrix Q. Due to the different shape of R in the symplectic
case, we have to chose the first n columns of the first and second half

H0 =
[
H(:, 1 : n) H(:,m+ 1 : m+ n)

]
. ♦

Remark 7.8:
The decomposition given in Theorem 7.6 can be made unique (i.e. A = SR = ŜR̂

implies S = Ŝ, R = R̂), e.g., by demanding the diagonal of R11 to contain only ones
[58]. In the symplectic QR decomposition typically given in the literature [59], this is
not the case and R has the form

R =




R11 R12

0 0
R21 R22

0 0


 =




@
@@

@
@@

0 0
@
@

0

0
@@

@
@@

0 0


 . (7.8)

Here, more degrees of freedoms are available. The diagonal values of R12 are not
required to be zero, and the diagonal values of R22 are not fixed to mirror the ones
of R11. We choose them in a way such that a correspondence to the skew-symmetric
Cholesky-like factorization can be established (see Section 7.3.3). ♦
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7 GR decompositions and their relations to Cholesky-like factorizations

7.3.2 Successive column elimination

Similar to the hyperbolic and orthogonal case, the symplectic QR decomposition can
be computed by the successive introduction of zeros in the columns using symplectic
transformations. The resulting matrix is of the form given in Remark 7.8. The miss-
ing conditions may be achieved in a post-processing step after the successive column
elimination if they are relevant in the given context.

For illustrative purposes we consider real arithmetic (i.e.K = R) and set .∗ = .T. The
presented transformation matrices have complex analogues. The complex conjugate
variants of these matrices lead to the complex J-symmetric decomposition [34]. Three
different kinds of symplectic elimination matrices are needed. The first two are also
orthogonal which makes them attractive from a numerical point of view.

The first kind of transformation performs the same orthogonal Householder trans-
formation on the upper and the lower part of of the matrix, i.e.

H(k, v) =




Ik−1

H0(v)
Ik−1

H0(v)


 , v ∈ Rn−k, k ∈ {1, . . . , n},

where H0(v) = I − 2
v∗v
vv∗ is a regular Householder transformation (see Theorem 2.9).

The second kind of symplectic transformations needed are Givens rotations (see
Theorem 2.10) that act on the entries k and n+ k of a vector of length 2n:

G(k, α) =




Ik−1

cosα sinα
In−1

− sinα cosα
In−k



, α ∈ [0, 2π], k ∈ {1, . . . , n}.

Symplectic, orthogonal Householder transformations and Givens rotations can be
combined to map a vector a ∈ R2n onto the subspace

span(e1, . . . ek, en+1, . . . , en+k−1) ,

where k ∈ {2, . . . , n} is a given index. For k = 1, the vector is mapped onto span(e1).
This is achieved by an elementary orthogonal symplectic (EOS) matrix [109]

Ek(v1, α, v2) = H(k, v2)G(k, α)H(k, v1),

i.e. the concatenation of a Householder transformation, a Givens rotation and another
Householder transformation. The Householder vector v1 is chosen such that

H(k, v1)a ∈ span(e1, . . . , en+k) .

Now α, the parameter of the Givens rotation, is chosen such that the entry n + k of
H(k, v1)a is zeroed,

G(k, α)H(k, v1)a ∈ span(e1, . . . , en+k−1) .
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The defining vector v2 of the second Householder transformation is chosen such that
the entries k + 1 to n of G(k, α)H(k, v1)a are zeroed and we arrive at

H(k, v2)G(j, α)H(k, v1)a ∈ span(e1, . . . ek, en+1, . . . , en+k−1)

for k ∈ {2, . . . , n} and

H(k, v2)G(j, α)H(k, v1)a ∈ span(e1)

for the case k = 1.
Applying EOS matrices defined by the first n columns of a matrix A ∈ R2m×2n with

the parameter k = 1, . . . , n, one arrives at a matrix decomposition of the form

S−1A = R =




@
@@

0
@
@

0

0
@@

0


 .

We see that no structure on the right half of A emerges. In order to introduce zeros
in this part of A, orthogonal symplectic transformations do not suffice.

EOS matrices can be used to transform the first column of A to lie in span(e1).
The column n + 1 can be transformed by a second EOS transformation to lie in
span(e1, e2, en+1), without destroying the structure in the first column. If now an EOS
matrix with the parameter k = 2 is used to transform the second column, the structure
in the right half is lost. To prevent this from happening, it is necessary to get rid of
the entry on the subdiagonal of the upper right block.

To achieve this, we introduce a third kind of symplectic transformation, which, in
contrast to the previous two, is not orthogonal. A symplectic shear transformation
[59] is given by

S(k, s) =




Ik−2

D(s) V (s)
In−2

D(s)−1

In−k



,

D(s) =

[
1

(1+s2)1/4 0

0 1
(1+s2)1/4

]
, V (s) =

[
0 s

(1+s2)1/4

s
(1+s2)1/4 0

]
.

Given a ∈ R2n, we have that the k-th entry of

y = S(k, s)a

is zero when

s =

{
−ak/an+k−1 if an+k−1 6= 0,

0 if an+k−1 = 0 and ak = 0.
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If an+k−1 = 0 and ak 6= 0 is encountered, the symplectic QR decomposition does not
exist. The conditions in Theorem 7.6 guarantee the existence and prevent this from
happening in exact arithmetic. In floating point arithmetic however, values close to
zero can cause instability. One approach to mitigate the issue is to use the degrees of
freedom mentioned in Remark 7.8 to minimize the condition number of the diagonal
blocks [76], which is not pursued in this work. Our approach is to exploit a connection
to the skew-symmetric Cholesky factorization [31, 50] in Section 7.3.4.

The inverse of S(k, s) is given by

S(k, s)−1 =




Ik−1

D(s)−1 −V (s)
In−2

D(s)
In−1−k



.

Using the three kinds of symplectic transformations, the symplectic QR decomposition
can be computed via successive column elimination. In a step k, columns k and n+ k
are considered and transformed to

[
v1,k v2,k

]
, v1,k ∈ span(e1, . . . , ek, en+1, . . . , en+k−1) ,

v2,k ∈ span(e1, . . . , ek, en+1, . . . , en+k) .

The transformations are collected in S. The matrix A is updated accordingly until
the form of R as in (7.8) is achieved.
Details are given in Algorithm 7.2. The functions givens(.) and house(.) refer

to the computation of an appropriate Householder vector, see Theorem 2.9, and an
appropriate angle for the Givens rotation, see Theorem 2.10. In actual implementa-
tions, the matrix elements of a Givens rotation are computed directly and the angle
α is not needed. We use it in pseudocode for conceptual clarity.
After applying Algorithm 7.2 one arrives at a decomposition A = SR, where R has

the form (7.8). With one more step, one arrives at the unique factorization given in
Theorem 7.6. Let Dij be a diagonal matrix with the same diagonal as a triangular
block Rij. The matrix

Ŝ :=

[
D −DD12D

−1
22

0 D−1

]
, D = sign(D11) |D11|−

1
2 |D22|

1
2

is symplectic and transforms R such that the unique form (7.7) emerges. Here, |Dij|
denotes a matrix which contains the absolute values of the entries of Dij. The upper
right block of Ŝ encodes n Gaussian eliminations introducing zeros on the diagonal of
R12. The factor |D11|−

1
2 |D22|

1
2 represents scaling the rows of R such that the diagonal

values of the upper left and lower right part have the same modulus. sign(D11) assigns
a positive sign to the upper left block. With

Ŝ−1 :=

[
D−1 DD12D

−1
22

0 D

]
,
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Algorithm 7.2: Compute the symplectic QR decomposition via successive
column elimination.
Data: A ∈ K2m×2n such that Theorem 7.6 holds.
Result: Symplectic matrix S ∈ K2m×2m, R ∈ K2m×2n with form (7.8), such

that A = SR.
1 S ← I2m

2 for k = 1 : n do
// Use elementary orthogonal symplectic matrix to create zeros

in left half
3 v ← house(A(m+ k : 2m, k))
4 A← H(k, v)A, S ← SH(k, v)−1

5 α← givens(A(k, k), A(m+ k, k))
6 A← G(k, α)A, S ← SG(k, α)−1

7 v ← house(A(k : m, k))
8 A← H(k, v)A, S ← SH(k, v)−1

9 if k<m then
// Use elementary orthogonal symplectic matrix to create

zeros in right half
10 v ← house(A(m+ k + 1 : 2m,n+ k))
11 A← H(k + 1, v)A, S ← SH(k + 1, v)−1

12 α← givens(A(k + 1, n+ k), A(m+ k + 1, n+ k))
13 A← G(k + 1, α)A, S ← SG(k + 1, α)−1

14 v ← house(A(k + 1 : m,n+ k))
15 A← H(k + 1, v)A, S ← SH(k + 1, v)−1

// Introduce zeros in upper right subdiagonal
16 s = −A(k + 1, n+ k)/A(n+ k)
17 A← S(k, s)A, S ← SS(k, s)−1

18 R← A

the unique decomposition is given by

A = (SŜ−1)(ŜR) = SuRu,

where Ru has the form (7.7).

7.3.3 Connection to the skew-symmetric Cholesky-like
factorization

Symplectic QR decompositions are related to factorizations of ATJA. The following
lemma is an analogy of Lemma 7.3.

Lemma 7.9:
Let A ∈ R2m×2n, m ≥ n, have full column rank and a decomposition A = SR with
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S ∈ R2m×2n, R ∈ R2n×2n. Then

STJmS = Jn ⇔ RTJnR = ATJmA. (7.9)
♦

If a decomposition as in the right side of equivalence (7.9) is available, and R is
nonsingular, it can be used to compute S = AR−1. A factorization of this form is
given by the skew-symmetric Cholesky-like factorization presented in [31, 50]. If it is
formulated in form of the following Theorem, this becomes clear. This is a reformulated
version of Theorem 2.2 in [31]. Again, the perfect shuffle Pn is used.

Theorem 7.10 (Skew-symmetric Cholesky-like factorization):
Let a skew-symmetric matrix A ∈ R2n×2n be such that the principal submatrices of
PnAP

T
n of even size are nonsingular. Then A has a unique factorization

A = RTJnR, R =

[
@

@@

@
@

0

0
@@

@
@

0

0
@@

@
@@

]
= PT

n R̂Pn.,

where the diagonal values of R11 are positive. The diagonals of R11 and R22 fulfill
R22,ii = ±R11,ii for j = 1, . . . , n. ♦

R̂ in Theorem 7.10 is block upper triangular with 2×2 diagonal blocks on the diagonal.
For full-rank A, the decomposition A = SR is a symplectic QR decomposition, as

given in Remark 7.7, if and only if R defines a Cholesky-like decomposition of the
skew-symmetric matrix ATJmA as in Theorem 7.10. With a given R, the symplectic
factor S can be computed as S = AR−1. Since R is just a permuted triangular matrix
the linear solve is easy to compute.

[31] also introduces a variant of the skew-symmetric Cholesky-like factorization,
where pivoting is used, yielding a better stability. The following theorem is a refor-
mulated version of Theorem 2.3 in [31].

Theorem 7.11 (Skew-symmetric Cholesky-like factorization with pivoting):
Let a skew-symmetric matrix A ∈ R2n×2n have even rank. Then there exists a permu-
tation P such that A has a factorization

A = PTRTJRP, R =

[
R11 R12

R21 R22

]
=

[
@

@@

@
@

0

0
@@

@
@

0

0
@@

@
@@

]
= PT

n R̂Pn., (7.10)
♦

where the diagonal values of R11 are positive or zero and the diagonals of R11 and R22

fulfill R22,ii = ±R11,ii for j = 1, . . . , n.

The pivoting in form of a permutation matrix P , introduced in Theorem 7.11, in-
creases the stability of the Cholesky-like decomposition. If we use the decomposition
(7.10) and Lemma 7.9, we arrive at another variant of the symplectic QR decomposi-
tion.
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7.3 The symplectic QR decomposition

Theorem 7.12 (Symplectic QR decomposition with pivoting):
Let A ∈ R2m×2n, such that ATJmA is nonsingular. Then there is a permutation P ,
such that A has a decomposition

A = SRP, R =

[
R11 R12

R21 R22

]
=

[
@
@@

@
@

0

0
@@

@
@

0

0
@@

@
@@

]
, STJmS = Jn, (7.11)

where R11 has a positive diagonal and the diagonal values of R11 and R22 fulfill
R22,ii = ±R11,ii for i = 1, . . . , n. ♦

An algorithm for computing the decomposition in Theorem 7.12 based on the skew-
symmetric Cholesky-like factorization with pivoting in Theorem 7.11 takes the follow-
ing form.

1. Compute Cholesky-like factorization ATJmA =: PTRTJnRP .

2. S := APTR−1.

In [31], an algorithm is devised to compute the triangular matrix R̂ = PnRP
T
n .

We need to take care of the permutations and can use the algorithm to arrive at a
permuted symplectic QR decomposition. There is no need to rewrite the algorithm to
yield R instead of R̂. The resulting procedure is the following.

1. Compute Cholesky-like factorizationATJmA =: QTR̂TĴnR̂Q, where Ĵn = PnJnP
T
n ,

Q is a permutation.

2. P := PT
nQ.

3. R := PT
n R̂Pn.

4. S := APTR−1.

7.3.4 Computing the symplectic QR decomposition via two
Cholesky-like factorizations

As in the hyperbolic case, we draw inspiration from the CholeskyQR2 algorithm and
repeat the procedure for the computed symplectic factor S. We call the resulting
procedure ssCholSQR2, which stands for the computation of the Symplectic QR de-
composition via the skew-symmetric Cholesky-like decomposition, applied twice.
First, the symplectic QR factorization of A is computed as

A = S1R1P1

via the skew-symmetric Cholesky-like factorization with pivoting as described in the
previous section. In a second step, the symplectic QR decomposition

S1 = SR2P2
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7 GR decompositions and their relations to Cholesky-like factorizations

is computed using the same method. We arrive at a a factorization

A = SR2P2R1P1, with R1, R2 with form (7.10)
P1, P2 permutation matrices.

(7.12)

The setting is completely analogous to the situation of the standard and the hy-
perbolic QR decomposition. We expect an improved accuracy after the second step,
which would be redundant in exact arithmetic. The second pivoting step is often not
necessary, such that one ends up with a symplectic QR decomposition as given in
Theorem 7.12 with R := R2R1, P := P1.

If one is interested in a symplectic subspace representation, then the shape of R
does not matter. We give the details in Algorithm 7.3, where we use the notational
shorthand

Ĵn = PnJnP
T
n =




0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0




.

In Steps 1 and 5, the algorithm from [31] is used to compute the triangular matrix
R̂ = PnRP

T
n . In Steps 3, 4, 7 and 8, the explicit forms of P1, R1, P2 and R2 from

the decomposition (7.12) are computed. If only the symplectic matrix S is of interest,
these steps are not necessary.

7.4 Numerical experiments

7.4.1 Hyperbolic QR decomposition

We implemented the LDLIQR2 Algorithm (Algorithm 7.1) in MATLAB R2018a. Ran-
dom matrices of size 1000 × 1000 (n = m = 500) with a given condition number κ
were generated using the command

A = gallery(’randsvd’, 2*n, kappa);

For the column elimination approach we used available MATLAB code [99], based
on the works [12, 65, 92]. We compared this approach with the computation via the
LDLT decomposition presented in Section 7.2.3, referred to as “1 × LDLT” and the
LDLIQR2 algorithm (Algorithm 7.1), referred to as “2 × LDLT”. The quality of the
computed factors H and R is evaluated in form of the residual ‖A−HR‖F/‖A‖F and
the deviation from being (Σ, Σ̂)-orthogonal, i.e. ‖HTΣH − Σ̂‖F . Here, ‖.‖F denotes
the Frobenius norm. Results are found in Figure 7.1.
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7.4 Numerical experiments

Algorithm 7.3: ssCholSQR2: Compute a symplectic basis via double skew-
symmetric Cholesky-like factorization with pivoting.
Data: A ∈ Rm×n, with full column rank.
Result: Symplectic S ∈ Rm×n and R1, P1, R2, P2 ∈ Rn×n as in (7.12).
// First pass:

1 Compute factor R̂1, permutation Q1 of a skew-symmetric Cholesky-like
factorization such that

QT
1 R̂

T
1 ĴnR̂1Q1 = ATJA.

2 S1 ← AQT
1 R̂
−1
1 Pn

3 P1 ← PT
nQ1

4 R1 ← PT
n R̂1Pn

// Second pass:
5 Compute factor R̂2, permutation Q2 of a skew-symmetric Cholesky-like

factorization such that

QT
2 R̂

T
2 ĴnR̂2Q2 = QT

1JQ1.

6 S ← SQT
2 R̂
−1
2 Pn

7 P2 ← PT
nQ2

8 R2 ← PT
n R̂2Pn

Figure 7.1: Numerical results for computing hyperbolic QR decompositions A = HR
of randomly generated matrices of size 1000× 1000.
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7 GR decompositions and their relations to Cholesky-like factorizations

Figure 7.2: Numerical results for computing decompositions of randomly generated
matrices of size 1000× 1000.
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Figure 7.1 shows how the accuracy of a hyperbolic QR decomposition is improved
by computing it via the LDLT factorization. The residual is low for both LDLT-based
approaches, no matter the condition number of the matrix. A difference between
both approaches is seen in the second figure regarding the deviation from generalized
orthogonality. For well-conditioned matrices, both approaches yield better results
than the elimination-based approach. However, the quality deteriorates for badly
conditioned matrices, if only one LDLT step is performed. Performing a second round
solves this problem and yields consistently low deviations that are independent of the
condition number. Using the LDLIQR2 algorithm is a promising approach when a
high accuracy is mandatory.

7.4.2 Symplectic QR decomposition

We perform a similar experiment in the symplectic setting. Here, we consider several
variants of the column elimination approach (Algorithm 7.2) and the approach based
on the Cholesky-like factorization (Algorithm 7.3).

The matrices are generated as in the experiment regarding the hyperbolic QR de-
composition in the previous section. Results on the residual and the (generalized)
orthogonality are found in Figure 7.2.

Two variants are based on the skew-symmetric Cholesky-like decomposition with
pivoting. Either one (ssCholSQR1), or two rounds (ssCholSQR2) of the process de-
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7.5 Conclusions

scribed in Section 7.3.4 are performed.
We also consider variants of ssCholSQR without any pivoting, where we do up

to three rounds of (re-)orthogonalization (ssCholSR3). Furthermore, we include an
approach based on column elimination, where the matrix A is permuted according
to the permutation resulting from ssCholSQR1. The pivoting in this test is known
a-priori. This test serves the purpose to determine whether a clever way of pivoting
could in principle improve the elimination-based approach.

ssCholSQR1 without pivoting gives a residual that is comparable to the column
elimination approach but a worse symplecticity. It is therefore not recommended to
compute the symplectic QR decomposition via a single skew-symmetric Cholesky-
like factorization without pivoting. A second repetition (still without pivoting) only
improves the symplecticity slightly. It still deteriorates for badly conditioned matrices.
If we repeat the process one more time, the symplecticity seems reasonable, but the
residual is still bad.

Pivoting seems to be a key element for good accuracy in the ssCholSQR algorithms.
After one repetition with pivoting included, the residual is extremely low, but the
symplecticity deteriorates for high condition numbers, becoming worse than for column
elimination. A second repetition yields good results with respect to the residual and
the symplecticity.

The last test performs a column elimination of the matrix with permuted columns.
The permutation is the one previously computed by ssCholSQR1. This test shows
what would be possible if a good pivoting strategy was known a-priori. The results are
promising. The residual and the symplecticity do not deteriorate for badly conditioned
matrices and are only about an order of magnitude worse than ssCholSQR2. In future
research, this result could motivate the investigation of pivoting strategies for the
column-elimination based approach.

7.5 Conclusions

In this section, we saw that connections exist between GR decompositions and ana-
logues of the Cholesky factorization. We drew inspiration from the CholeskyQR2
algorithm and showed empirically, that a similar approach greatly improves the sta-
bility in the hyperbolic as well as in the symplectic setting.

We laid out the overall framework and showed that the computation via two Cholesky-
like decompositions presents a way to avoid existing stability problems in the column
elimination based approaches.

Computing the hyperbolic QR decomposition is useful in many applications [45,
186], which could benefit from the analysis given in this chapter. The LDLIQR2
method (Algorithm 7.1) is a promising new technique to tackle problems associated
with the stability of the hyperbolic or indefinte QR decomposition.

This section can only serve as a first impulse for future research as a more thorough
analysis of the stability regarding the laid out methods is missing and goes beyond
the scope of this thesis.
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7 GR decompositions and their relations to Cholesky-like factorizations

Another point to be discussed concerns the suitability for high performance comput-
ing. While our presented algorithms were motivated by improved stability, CholeskyQR2,
in the orthogonal setting, was motivated by improved performance in a highly parallel
setting, where avoiding communication is key. In the orthogonal setting, the column
elimination approach already yields a good stability. Our presented methods do not
lent themselves to the high performance setting as naturally as the Cholesky decom-
position because pivoting is involved. We have seen in particular in the experiments
concerning the symplectic QR decomposition (see Figure 7.2) that pivoting is key for
satisfactory results. However, pivoting always requires communication and could be
an obstacle in the quest for high performance implementations. The design of pivoting
strategies that yield satisfactory accuracy results while keeping communication at a
minimum is a possible focus of future research. Shifting strategies, as employed in
[80], should also be investigated.
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CHAPTER 8

THE GENERALIZED POLAR DECOMPOSITION
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8.1 Introduction

In this chapter we develop algorithms for computing generalized polar decompositions
with a special focus on those related to scalar products induced by a signature matrix
Σ = diag(σ1, . . . , σn), σj ∈ {−1, 1} for j = 1, . . . , n. These decompositions may be
considered in their own right and have interesting applications [105]. We are primarily
interested in them as a tool to devise structure-preserving algorithms for structured
eigenvalue problems, such as the Bethe-Salpeter eigenvalue problems introduced in
Chapter 3 and examined in Chapter 4. The eigenvalue problems are given by matrices
of the form

H = H1 =

[
A B
−BH −AT

]
∈ C2n×2n, A = AH, B = BT

or

H = H2 =

[
A B
−B −A

]
∈ C2n×2n, A = AH, B = BH.
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8 The generalized polar decomposition

As pointed out in Chapter 4, these matrices are pseudo-Hermitian. This is why this
class of matrices receives special attention throughout this chapter. New structure-
preserving algorithms for solving structured eigenvalue problems employ generalized
polar decompositions and are presented in Chapter 9.

For K = C or K = R, m ≥ n, the polar decomposition of a matrix A ∈ Km×n,

A = UH, U∗U = I, H = H∗ ≥ 0 (8.1)

is given in Theorem 2.19. The matrix U ∈ Km×n is unitary and H ∈ Kn×n is positive
semidefinite. It is a well-known tool in numerical linear algebra.

Classically, the SVD is the starting point for the computation of the polar decom-
position, see proof of Theorem 2.19, and it can be regarded as a “tuned down” variant
of the SVD. However, it is sensible to study the polar decomposition in its own right.
It is of use in many applications, in particular because of its best-approximation prop-
erties. For a detailed treatment see [95, Chapter 8]. The SVD-based method is not
very pleasing from an algorithmic point of view, as the polar decomposition contains
less (but still very useful) information than the SVD. This route therefore computes
more than might be necessary in a given application. In recent years, methods have
been developed to compute the polar decomposition efficiently on modern computer
architectures [130, 132, 131, 116]. In fact, the polar decomposition can now be seen as
a first step towards computing the SVD of a general matrix [167]. Efficient algorithms
for computing the SVD of large matrices on high performance architectures form an
active field of research.

It is well known that the unitary polar factor of a Hermitian matrix coincides with
the matrix sign function, see Lemma 2.21. The matrix sign function is a widely used
tool for acquiring invariant subspaces of a matrix, see Lemma 2.22. This property
is used to solve matrix equations [149, 41] and develop parallelizable algorithms for
solving eigenvalue problems [17, 169]. Therefore, efficient iterations for computing
the polar decomposition, such as the QDWH iteration [132], and its successor based
on Zolotarev functions [131], can be used to improve these methods for Hermitian
matrices.

The concept of polar decompositions can be generalized in terms of non-standard
scalar product spaces introduced in Chapter 2. Let A ∈ Km×n, and M ∈ Km×m,
N ∈ Kn×n be nonsingular. For certain matrices M ∈ Km×m, N ∈ Kn×n, the canonical
generalized polar decomposition can be defined. M and N are required to form an
orthosymmetric pair.

Definition 8.1 (Definition 3.2 in [97]):
M ∈ Km×m and N ∈ Kn×n form an orthosymmetric pair if and only if

(a) MT = βM , NT = βN , β = ±1 for bilinear forms,

(b) MH = αM , NH = αN , |α| = 1 for sesquilinear forms. ♦
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8.1 Introduction

Definition 8.2 (Definition 3.6 in [97]):
A matrix A ∈ Km×n has a canonical generalized polar decomposition with respect to
an orthosymmetric pair of matricesM ∈ Km×m and N ∈ Kn×n, if there exists a partial
(M,N)-isometry W and an N -self-adjoint matrix S, where all nonzero eigenvalues of
S have a positive real part, such that

A = WS, (8.2)

and range(W ?M,N ) = range(S). ♦

If A has full column rank, W is (M,N)-orthogonal. If additionally, A is square and
M = N , then W is an N -automorphism.
In contrast to the standard polar decomposition, the existence of the (canonical)

generalized polar decomposition can in general not be guaranteed. The following
theorem clarifies this issue.
Theorem 8.3 (Theorem 3.9 in [97]):
A matrix A ∈ Km×n has a unique canonical generalized polar decomposition with
respect to the orthosymmetric pair M , N if and only if all the following conditions
apply.

1. The matrix A?MA has no eigenvalues on the negative real axis.

2. If zero is an eigenvalue of A?M,NA, then it is semisimple.

3. ker(A?M,N ) = ker(A). ♦

In case of existence, we have S = (A∗M,NA)
1
2 and W ?M,NWS = S. Just as the

standard polar decomposition, the generalized polar decomposition is related to the
matrix sign function.
Theorem 8.4:
Let M be a nonsingular matrix and A ∈ Kn×n be self-adjoint with respect to the
scalar product induced by M . If A has no purely imaginary eigenvalues (including
zero eigenvalues), sign(A) and the canonical generalized polar decomposition (with
respect to M) A = WS are well-defined and it holds

sign(A) = W. ♦

Proof. The matrix sign function can be expressed as [95]

sign(A) = A(A2)−1/2.

The generalized polar decomposition A = WS is well-defined with a unique self-adjoint
factor S if M−1A∗MA has no negative real eigenvalues. For self-adjoint matrices, it
holds M−1A∗M = A, so M−1A∗MA = A2 can only have negative real eigenvalues
if A has purely imaginary eigenvalues. So A = WS is well-defined. Using S =
(M−1A∗MA)1/2, the factor W is given as

W = A(M−1A∗MA)−1/2 = A(A2)−1/2 = sign(A) .
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8 The generalized polar decomposition

Because of this equivalence, finding efficient iterations for computing the generalized
polar decomposition can lead to new methods for matrix equations and eigenvalue
problems involving self-adjoint matrices.

The standard polar decomposition (8.1) can be used to solve the orthogonal Pro-
crustes problem [95]. It consists of finding an orthogonal transformation that most
closely maps one rectangular matrix to another. This task arises in the context of
multidimensional scaling [48] and factor analysis [66], which form important sets of
tools for data analysis in fields such as psychology and marketing.

Here, the non-orthogonal Procrustes problem arises as well, which calls for the polar
factor with respect to an indefinite scalar product [105]. This is a specific version of
the generalized polar decomposition (8.2).

In this chapter, we present some results on how generalized polar decompositions
can be computed based on the dynamically weighted Halley (DWH) iteration. When
this iteration employs a QR decomposition to realize an iteration step (then called
QDWH iteration), it is successful in computing the standard polar decomposition
in an efficient and stable way [132]. We focus on the important subclass of scalar
products induced by signature matrices, i.e. diagonal matrices with +1 and −1 as
diagonal values, denoted by Σ throughout this thesis.

As mentioned above, the ultimate goal of this thesis is to develop new algorithms
for finding eigenvalues and eigenvectors of Bethe-Salpeter matrices. In chapters 4 and
6, we addressed that the Bethe-Salpeter matrix H is self-adjoint with respect to the
signature matrix K = In ⊕ −In (i.e. it is pseudosymmetric), and often possesses an
additional property: Due to physical constraints, KH is typically positive definite.
Similar structures arise in different contexts of electronic structure theory [123, 72,
35]. We call pseudosymmetric matrices with this property definite pseudosymmetric
matrices. For these matrices in particular, the convergence behavior of our proposed
method will turn out to be as good as in the standard setting defined by the Euclidean
scalar product.

Pseudosymmetric matrices also play a role in describing damped oscillations of linear
systems. In [177] they are called J-Hermitian and definite pseudosymmetric matrices
are called J-positive.

The remainder of this chapter is structured as follows. In Section 8.2, we recapitulate
the central ideas of the QDWH algorithm. Section 8.3 shows how they can be applied
in order to compute a generalized polar decomposition. We show general results
and then restrict ourselves to scalar products induced by signature matrices. Here,
inverses can be avoided by using the decompositions presented earlier in Section 7.2.
The introduction of permuted graph bases can further improve the stability of the
computation of the generalized polar factor. Details are found in Section 8.4. Section
8.5 gives numerical results on the question of stability and convergence. Conclusions
and further research directions are discussed in Section 8.7.
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8.2 The QDWH algorithm for computing the standard polar decomposition

8.2 The QDWH algorithm for computing the
standard polar decomposition

Methods for the computation of the polar decomposition of a matrix (8.1) have been
studied extensively in recent years. Once the orthogonal polar factor is computed,
the symmetric factor can be recovered via H = U∗A. Numerical symmetry can be
guaranteed by performing H := (H +H∗)/2 as an extra step.

A current state-of-the-art iterative method for computing the polar factor is the
QDWH algorithm [130]. It is based on the well-known Halley iteration which is a
member of the Padé family of iterations [103]. The Dynamically Weighted Halley
(DWH) iteration introduces the weights ak, bk, ck ∈ R+ and is given as

Xk+1 = Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)

−1, X0 =
1

‖A‖2

A. (8.3)

Convergence is globally guaranteed with an asymptotic cubic rate, provided A has
full column rank. In order to choose the weights in an optimal fashion, iteration (8.3)
is understood as an iteration acting on the singular values of the iterate Xk. Let
Xk = USDkVS

∗ be the SVD of Xk. Then one step of iteration (8.3) yields

Xk+1 = USgk(Dk)VS
∗, (8.4)

where

gk(x) = x
ak + bkx

2

1 + ckx2
.

The singular value σi,k+1 of Xk+1 is hence given by a rational function acting on the
singular value σi,k of Xk,

σi,k+1 = gk(σi,k). (8.5)

The singular values converge to 1 as Xk approaches the polar factor. Let `(=: `0) be
a lower bound to the singular values of X0. Due to the initial scaling with 1/‖A‖2

the singular values of X0 lie between 0 and 1. A successful strategy for accelerating
convergence can be developed by minimizing the distance of `k to 1 in each iteration.
This line of thoughts leads to weights chosen as

ak = h(`k), bk = (ak − 1)2/4, ck = ak + bk − 1, `k+1 = gk(`k), (8.6)

where

h(`) =
√

1 + d+
1

2

√
8− 4d+

8(2− `2)

`2
√

1 + d
, d =

3

√
4(1− `2)

`4
. (8.7)

The weights (8.6) are the solutions of an optimization problem. This is how they
were introduced in [130]. Another derivation considers the best rank-(3,2) rational
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8 The generalized polar decomposition

approximation of the sign function. This leads to the same weights given in (8.6). The
latter approach can be extended to rational approximations of higher order (Zolotarev
functions) [131].

For a matrix A with condition number κ2(A) < 1016, convergence within 6 iterations
can be guaranteed using these weights [130]. A rewrite of the iteration (8.3)

Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)

−1

=
bk
ck
Xk +

(
ak −

bk
ck

)
Xk(I + ckX

∗
kXk)

−1
(8.8)

leads to two distinct implementation variants. The matrix (I + ckX
∗
kXk) is symmetric

positive definite and its linear solve is done using a Cholesky factorization in the first
variant.

{
Zk = I + ckX

∗
kXk, Wk = chol(Zk),

Xk+1 = bk
ck
Xk +

(
ak − bk

ck

)
XkW

−1
k W−∗

k .
(8.9)

It can also be shown that Xk(I + ckX
∗
kXk)

−1 is equivalently computed via a QR
decomposition, which leads to the QR-based Dynamically Weighted Halley (QDWH)
iteration





[√
ckXk

I

]
=

[
Q1

Q2

]
R,

Xk+1 = bk
ck
Xk + 1√

ck

(
ak − bk

ck

)
Q1Q

∗
2.

(8.10)

This variant avoids inversion and is proven to be backward stable [132]. It has, how-
ever, a higher operation count than the Cholesky variant (8.9). This is why in practical
implementations, the QR-based variant (8.10) is carried out in the first iterations and
switches to the Cholesky variant (8.9) as soon as a reasonably conditioned iterate Xk

is guaranteed. This way, numerical stability of the iteration is not compromised.
The two forms of the iteration represent the connection between the QR decompo-

sition and the Cholesky factorization described in Chapter 7. They are two sides of

the same coin. Either the QR decomposition of A =

[√
ckX
I

]
is computed, leading to

iteration (8.10), or the Cholesky factorization of A∗A = I + ckX
∗X is computed and

used for a linear solve, leading to iteration (8.9).

8.3 Computing generalized polar decompositions

8.3.1 The generalized QDWH algorithm

In this section, iterative methods for computing the generalized polar factor are con-
structed by exploiting a connection to the matrix sign function.
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Theorem 8.5 (Theorem 5.1 in [96]):
Let A = WS be a matrix with an existing canonical generalized polar decomposition
with respect to the orthosymmetric pair M,N (see Definition 8.2). Let

Xk+1 = g(Xk) = Xkh(X2
k) (8.11)

be an iteration that converges to sign(X0), assuming it exists. g(·) and h(·) are matrix
functions. Let g(0) = 0 and for sesquilinear forms assume that g(X?N ) = g(X)?N

holds for all X in the domain of g. Then the iteration

Yk+1 = Ykh(Y
?M,N

k Yk), Y0 = A,

converges to W with the same order of convergence as iteration (8.11) converges to
sign(X0). ♦

Iterations for the matrix sign function of the form (8.11) are very common and well-
studied [95, Ch. 5]. They include the class of Padé iterations devised in [102]. Here,
the iteration is given as a rational function of the form

Xk+1 = Xkplm(I −X2
k)qlm(I −X2

k)−1, X0 = A,

where plm(·) and qlm(·) are explicitly given polynomials, yielding the Padé approximant
of degree (l,m).
Choosing l = m = 1 leads to the Halley iteration, which also forms the basis of the

QDWH algorithm presented in Section 8.2. In the context of the generalized polar
decomposition, the DWH iteration follows from applying Theorem 8.5 and is given as

Xk+1 = Xk(akI + bkX
?M,N

k Xk)(I + ckX
?M,N

k Xk)
−1, X0 = sA, (8.12)

where s ∈ K is an arbitrary scaling factor, as any sA has the same polar factor W .
A discussion on how to choose a beneficial s follows later. More explicitly, using
A?M,N = N−1A∗M , the iteration (8.12) is given as

Xk+1 = Xk(akI + bkN
−1X∗kMXk)(I + ckN

−1X∗kMXk)
−1, X0 = sA.

The generalization of the DWH algorithm given in the previous paragraphs is
straightforward. We now investigate whether this iteration has attractive numeri-
cal properties and which circumstances can lead to an accelerated convergence. The
key observation in the standard setting is that one iteration step acts as a rational
function on the singular values of the iterate Xk (see equations (8.4) to (8.5)). A
similar observation helps in the indefinite setting.
Corollary 8.6:
Let the canonical generalized polar decomposition A = WS exist and be computed
via an iteration Xk+1 = Xkh(X

?M,N

k Xk), X0 = A, as given in Theorem 8.5. Then Xk

has a canonical generalized polar decomposition

Xk = WSk.

For the series of self-adjoint factors Sk it holds

Sk+1 = Skh(S2
k). (8.13)

♦
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8 The generalized polar decomposition

Proof. See proof of Theorem 5.1 in [97].

Using the Jordan canonical form S = ZJZ−1, we see that (8.13) is equivalent to

Sk+1 = Zg(Jk)Z
−1 = ZJk+1Z

−1,

with g(x) = xh(x2). Essentially, one iteration step for computing the generalized polar
decomposition acts as a rational function on the eigenvalues of the self-adjoint factor
S, such that they converge towards 1 (or stay 0 in the rank-deficient case). Note that
all non-zero eigenvalues of S have positive real part and S = (A?M,NA)

1
2 by definition.

In the standard setting outlined in Section 8.2, i.e. the case M = Im, N = In, S is
symmetric (respectively Hermitian) and has only real eigenvalues. These eigenvalues
are the singular values of A. This property does not hold in the general case. Only
the convergence of the real eigenvalues of S is guaranteed to benefit from choosing the
weighing parameters as in the standard case.

The reason we are interested in developing this method further, lies in its possible
applications laid out in Chapters 3 and 4. In the application in quantum physics, the
relevant eigenvalues are in fact often real. This follows from physical constraints and
does not follow directly from the given matrix structure. More specifically, it holds
that ΣA is Hermitian and positive definite. We call a matrix with this property a
definite pseudosymmetric matrix. The signature matrix is specifically given in this
application by Σ = K. In this case, we expect great benefits from choosing the
weighting parameters (8.6) and (8.7).

The scaling factor s in iteration (8.12) should be chosen in the following way: Let
sA = WSs be the generalized polar decomposition of X0 = sA. The polar factor W
is the same as for A. The pseudosymmetric factor Ss is the scaled pseudosymmetric
factor of A = WS, Ss = sS. Note that we consider the definite case here, where all
eigenvalues of S are real. The scaling s should be chosen such that the absolute values
of the eigenvalues of Ss lie between 0 and 1, i.e.

s ≤ (|λmax(S)|)−1 = (|λmax|((ΣA∗ΣA)
1
2 ))−1, (8.14)

where λmax refers to the eigenvalue with maximum absolute value. `0 should be a
lower bound on the eigenvalue with smallest absolute value of Ss, i.e.

`0 ≤ |λmin|(Ss) = s|λmin|((ΣA∗ΣA)
1
2 ), (8.15)

where λmin refers to the eigenvalue with minimum absolute value. Computing values
fulfilling properties (8.14) and (8.15) seems non-trivial, as computing S (after com-
puting W via the iteration) is the goal of the algorithm and S is not known a-priori.
The following lemma gives a remedy for square matrices.
Lemma 8.7:
Let A ∈ Kn×n and Q1 ∈ Kn×n, Q2 ∈ Kn×n be unitary. Then

|λmax((Q1A
∗Q2A)

1
2 )| ≤ σmax(A), |λmin((Q1A

∗Q2A)
1
2 )| ≥ σmin(A).

Again, λmax and λmin refer to an eigenvalue ordering by absolute value. ♦
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8.3 Computing generalized polar decompositions

Proof. Because the spectral norm is submultiplicative, we have

|λmax(Q1A
∗Q2A)| ≤ σmax(Q1A

∗Q2A) ≤ σmax(Q1A
∗Q2)σmax(A) = σmax(A)2,

|λmin(Q1A
∗Q2A)| ≥ σmin(Q1A

∗Q2A) ≥ σmin(Q1A
∗Q2)σmin(A) = σmin(A)2.

The proposition follows immediately.

Lemma 8.7 for Q1 = Q2 = Σ implies that s and `0 can be chosen as

s ≈ 1/σmax(A), `0 ≈ sσmin(A) = 1/cond2(A) (8.16)

in order to fulfill properties (8.14) and (8.15) in the case of square matrices.
As discussed, generalizing the ideas from QDWH guarantees favorable convergence

properties for certain matrices. An additional benefit is that it leads to a new class
of inverse-free iterations for computing the generalized unitary polar factor, as we see
in the following. In the case of self-adjoint matrices, this polar factor coincides with
the matrix sign function, which is relevant in many application areas. Avoiding the
inverse opens up the possibility of more stable methods.

Here, the role of the orthogonal representations in QDWH is played by (M,N)-or-
thogonal matrices defined via two scalar products given by two matrices M and N .
The following lemma provides a tool for substituting the inverse (I + ckX

?M,N

k Xk)
−1

in iteration (8.12).

Lemma 8.8:
Let M ∈ Km×m, N ∈ Kn×n be nonsingular, and M2 :=

[
M

N

]
. For X ∈ Km×n,

η ∈ K, let
[
ηX
In

]
= V R with V =

[
V1

V2

]
∈ K(m+n)×n, R ∈ Kn×n nonsingular, be a

decomposition. Then

ηX(I + |η|2X?M,NX)−1 = V1(V ?M2,NV )−1V ?N
2 . ♦

Proof. It holds

ηX(I + |η|2X?M,NX)−1 = ηX

([
ηX
I

]?M2,N
[
ηX
I

])−1

=
[
I 0

]
V R((V R)?M2,NV R)−1

=V1((V R)?M2,NV )−1

=V1(R?NV ?M2,NV )−1

=V1(V ?M2,NV )−1(R−1)?N

=V1(V ?M2,NV )−1V ?N
2 .

In the last step we used V2 = R−1.

125



8 The generalized polar decomposition

For M = Im, N = In and orthogonal or unitary V , we have the known result

ηX(I + |η|2X∗X)−1 = V1V
∗

2 ,

given for example as Theorem 4.1 in [130]. The original QDWH algorithm is based on
this result. A straightforward idea to generalize this approach would be to choose V
to be (M2, N)-orthogonal, i.e. V ?M2,NV = I. The next lemma shows how we can relax
this condition, while keeping the inverse easy to compute.

Lemma 8.9:
LetM ∈ Km×m, N ∈ Kn×n be nonsingular,M2 =

[
M

N

]
, and V =

[
V1

V2

]
∈ K(m+n)×n

be (M2, N̂)-orthogonal for a matrix N̂ ∈ Kn×n, i.e. V ∗M2V = N̂ . Then

V1(V ?M2,NV )−1V ?N
2 = V1V

?N,N̂

2 . ♦

Proof. From V ∗M2V = N̂ , it follows V ?M2,NV = N−1N̂ and therefore

V1(V ?M2,NV )−1V ?N
2 = V1N̂

−1V ∗2 N = V1V
?N,N̂

2 .

8.3.2 Realizing the ΣDWH iteration

When a practical method for computing the (M2, N̂)-orthogonal matrices in Lemma 8.9
is available, we can formulate a generalized QDWH algorithm. If applying N−1 is triv-
ial to implement (e.g. N is involutory), this leads to an inverse-free computation, if
the computation of the (M2, N̂)-orthogonal matrix avoids inversion. We now leave
the general framework and restrict ourselves to scalar products induced by signature
matrices.

Chapter 7 (specifically Section 7.2) laid the groundwork for several options in the
algorithm design realizing iteration (8.12) for computing the canonical generalized
polar decomposition of A ∈ Km×n with respect to the signature matrices Σm and Σn.
As signature matrices are involutory, the iteration is given as

Xk+1 = Xk(akI + bkΣnX
∗
kΣmXk)(I + ckΣnX

∗
kΣmXk)

−1, X0 = A/‖A‖. (8.17)

We call iteration (8.17) the ΣDWH iteration. The naive approach is to implement
the iteration straightforward, using a linear solve employing the MATLAB backslash
operator. However, there is a better way to exploit the structure at hand. To see this,
we rewrite (8.17) as

Xk(akI + bkΣnX
∗
kΣmXk)(I + ckΣnX

∗
kΣmXk)

−1

=
bk
ck
Xk + (ak −

bk
ck

)Xk(Σn + ckX
∗
kΣmXk)

−1Σn.

This is the indefinite analogue to equation (8.8). In the standard case, the Cholesky
factorization is employed to exploit the symmetric structure in iteration (8.9). In the
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8.4 Subspaces in the ΣDWH iteration

indefinite case, this role is played by a scaled variant of the pivoted LDLT factorization.
Analogously to iteration (8.9), iteration (8.17) is equivalently given as

{
Zk = Σn + ckX

∗
kΣmXk, [Lk, Dk, Pk] = ldl(Zk),

Xk+1 = bk
ck
Xk +

(
ak − bk

ck

)
XkPkL

−∗
k D−1

k L−1
k PT

k Σ.
(8.18)

This approach is already more promising than the naive one because the structure of
the involved matrices is exploited. This way, less computational work is needed and
we may expect better accuracy.

We employ Lemma 8.8 and Lemma 8.9 to find an equivalent formulation of the
DWH iteration (8.17), which in principle does not rely on computing inverses. The
role of N̂ in Lemma 8.9 is played by another signature matrix Σ̂n of size n× n. The
formulation





[√
ckXk

I

]
=

[
H1

H2

]
R, where

[
H1

H2

]∗ [
Σm

Σn

] [
H1

H2

]
= Σ̂n,

Xk+1 = bk
ck
Xk + 1√

ck

(
ak − bk

ck

)
H1Σ̂nH

∗
2 Σn

(8.19)

is the analogue to the QR-based iteration (8.10) in the standard case. Instead of

an orthogonal basis (using the QR decomposition), a
([

Σm

Σn

]
, Σ̂n

)
-orthogonal

basis is computed. This can be done by computing the hyperbolic QR decomposition
(Theorem 7.1) or the indefinite QR decomposition (Theorem 7.5). Here, methods
exist that are based on successive column elimination and do not perform any matrix
inversions (see Section 7.2.2). Computing the indefinite QR decomposition via an
LDLT factorization (i.e. employing Lemma 7.3) gives exactly the LDLT based iteration
(8.18). A promising way to compute the required basis is to employ the LDLIQR2
algorithm (Algorithm 7.1).

The resulting stability of iterations employing these different approaches is examined
experimentally in the numerical experiments of Section 8.5.

8.4 Subspaces in the ΣDWH iteration

8.4.1 Permuted graph bases for general matrices

Looking at Lemma 8.8, we see that the factor R of the V R decomposition is in fact
not referenced in order to rewrite part of the ΣDWH iteration. This suggests the

idea to employ a well-conditioned basis of the subspace spanned by
[√

ckX
In

]
. The

linear solve in one iteration step is not avoided completely but we hope to invert a
better-conditioned matrix.

In the following we use A ∼ B to indicate that the columns of the two matrices A
and B span the same subspace. A good candidate for providing a basis with desirable
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8 The generalized polar decomposition

properties are permuted graph bases. An n-dimensional subspace U is said to be
represented in a permuted graph basis if

U = colspan

(
PT

[
In
X

])
, (8.20)

where P denotes a permutation. It is shown in [127] that for a given subspace, a
matrix X and a permutation P exist, such that the entries of X are all smaller than
1. This leads to much better numerical properties when using this representation in
numerical algorithms.

The computation of the entry-bound representations (8.20) is an NP-hard problem.
However, [127] presents heuristic methods that compute representations, where for a
given threshold value τ > 1, |xi,j| < τ . This can be done with a reasonable amount
of computational effort. In the worst case this is O(n3 logτ n) [147]. In practice, it is
typically much lower, in particular when good starting guesses for P are available.

The following lemma is a reformulation of Lemma 8.8, where M = Σm and N = Σn

are signature matrices and V is attained via Representation (8.20).

Lemma 8.10:
Let Σm ∈ Rm×m, Σn ∈ Rn×n be signature matrices, For X ∈ Km×n, η ∈ K let

[
In
ηX

]
∼ V =

[
V1

V2

]
= PT

[
I

X̂

]
∈ K(m+n)×n,

where P is a permutation. Let

P

[
Σn

Σm

]
PT =

[
Σ̂n

Σ̂m

]
.

Then

ηX(I + |η|2ΣnX
∗ΣmX)−1 = V2(Σ̂n + X̂∗Σ̂mX̂)−1V ∗1 Σn. ♦

Proof. Let Σ2 :=

[
Σn

Σm

]
. We follow the lines of the proof of Lemma 8.8 and

observe
[
I
ηX

]?Σ2,Σn
[
I
ηX

]
= I + |η|2X?Σm,ΣnX.

As
[
I
ηX

]
and V span the same subspace, there exists a nonsingular matrix R such

that
[
I
ηX

]
= V R.
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8.4 Subspaces in the ΣDWH iteration

Algorithm 8.1: Compute the generalized polar decomposition with respect to
signature matrices, using permuted graph bases.
Data: A ∈ Km×n, Σm ∈ Rm×m Σn ∈ Rn×n: signature matrices, such that the

canonical generalized polar decomposition of A exists (according to
Theorem 8.5), s: estimate on |λmax((ΣnA

∗ΣmA)
1
2 )|−1,

`: estimate on s|λmin(ΣnA
∗ΣmA)

1
2 |,

τ > 1: threshold value for permuted graph basis.
Result: A = WS is the canonical generalized polar decomposition with

respect to Σm and Σn.
1 W ← sA
2 for k = 1, 2, . . . do
3 Compute weighting parameters a, b, c and update ` from equations (8.6)

and (8.7).

4 Compute entry-bound permuted graph basis of colspan

([
I√
cW

])
, i.e.

[
I√
cW

]
∼ PT

[
I

Ŵ

]
=:

[
V1

V2

]
,

|Ŵij| < τ for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

5

[
Σ̂n

Σ̂m

]
← P

[
Σn

Σm

]
PT

6 Compute LDLT factorization Σ̂n + Ŵ ∗Σ̂mŴ = PLDL∗PT.
7 W ← b

c
W + (a− b

c
)V2PL

−∗D−1L−1PTV ∗1 Σn

8 Compute pseudosymmetric factor and ensure pseudosymmetry numerically:
S ← ΣnW

∗ΣmA, S ← (S + ΣnS
∗Σn)/2

Exactly as in the proof of Lemma 8.8 (with the roles of V1 and V2 switched) it can
be shown that

ηX(I + |η|2ΣnX
∗ΣmX)−1 = V2(V ?Σ2,ΣnV )−1V

?Σn
1

= V2(Σn

[
I X̂∗

]
PΣ2P

T

[
I

X̂

]
)−1ΣnV

∗
1 Σn

= V2(Σ̂n + X̂∗Σ̂mX̂)−1V ∗1 Σn.

Algorithm 8.1 presents the details on how permuted graph bases can be used in the
computation of generalized polar decomposition via the DWH iteration.
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8 The generalized polar decomposition

8.4.2 Permuted Lagrangian graph bases for pseudosymmetric
matrices

As pointed out in Section 8.1, we are in particular interested in computing the gener-
alized polar decomposition (with respect to a signature matrix) of pseudosymmetric
matrices. A way to exploit this structure in the iteration can be found by considering
Lagrangian subspaces, to which pseudosymmetric matrices can be linked.

Definition 8.11:
A subspace

U = colspan(U) , U ∈ K2n×n,

is called Lagrangian if it holds U∗JU = 0, where J =

[
0 In
−In 0

]
. ♦

A Lagrangian subspace can be represented by a permuted Lagrangian graph basis

U = colspan

(
ΠT

[
I
X

])
, (8.21)

where X = X∗. Here, Π denotes a symplectic swap matrix [29]. A symplectic swap
matrix is defined by a Boolean vector v ∈ {0, 1}n and its complement v̂ ∈ {0, 1}n,
v̂i = 1− vi. The corresponding symplectic swap matrix is defined as

Πv =

[
diag(v) diag(v̂)
− diag(v̂) diag(v)

]
. (8.22)

It is shown in [127] that each Lagrangian subspace admits a representation (8.21),
where X has no entries larger than

√
2.

As for general subspaces, there exist heuristics for computing a basis, such that the
entries of X are bounded, within a reasonable amount of time. In this case |xi,j| < τ ,
where τ >

√
2 is a given threshold value.

A Lagrangian subspace could of course be treated as a general subspace and ad-
mits a representation (8.20), with even smaller entries than in Representation (8.21).
However, the structural property, i.e. the subspace being Lagrangian, is not encoded
anymore in this representation. It is encoded in the symmetry of X, which can easily
be enforced and preserved in the course of computations. This has numerical benefits,
which typically outweigh the slightly larger entries in X.
The following lemma draws a connection between self-adjoint matrices and La-

grangian subspaces.

Lemma 8.12:
Let M ∈ Kn×n, M = M∗ be a nonsingular matrix. Let X ∈ Kn×n be self-adjoint

with respect to the scalar product induced by M . Then
[
M
X

]
spans a Lagrangian

subspace. ♦

130



8.4 Subspaces in the ΣDWH iteration

Proof. We have
[
M
X

]∗ [
0 I
−I 0

] [
M
X

]
= M∗X −X∗M = 0,

where we have used that MX = X∗M is equivalent to X being self-adjoint with
respect to M .

The following lemma is a variant of Lemma 8.8 applied to square matrices, where
the positions of the two matrix blocks are switched. The goal is to get to a formulation
in which the subspace given in Lemma 8.12 appears.

Lemma 8.13:
Let M,N ∈ Kn×n be nonsingular, N be M -orthogonal, i.e. N?MN = I. M2 :=[
M

M

]
, X ∈ Kn×n. Let

[
N
ηX

]
= V R with V =

[
V1

V2

]
∈ K2n×n, R ∈ Kn×n nonsingu-

lar be a decomposition. Then

ηX(I + |η|2X?MX)−1 = V2(V ?M2,MV )−1V ?M
1 N. ♦

Proof. We observe
[
N
ηX

]?M2,M
[
N
ηX

]
= N?MN + |η|2X?MX = I + |η|2X?MX.

Following the proof of Lemma 8.8, we get

ηX(I + |η|2X?MX)−1 = V2(V ?M2,MV )−1(R−1)?M = V2(V ?M2,MV )−1V ?M
1 N.

In the last step we used R−1 = N−1V1 = N?MV1.

Let us go back to the specific case of a scalar product induced by a signature
matrix, i.e. M := Σ. In this case, Lemma 8.12 and Lemma 8.13 come together. Σ
is symmetric, so Lemma 8.12 holds. So does Lemma 8.13 by setting N := Σ. The
subspace in question can be represented by permuted Lagrangian graph bases. The
situation is summarized in the following lemma.

Lemma 8.14:
Let Σ ∈ Rn×n be a signature matrix. Σ2 :=

[
Σ

Σ

]
, X ∈ Kn×n be self-adjoint with

respect to the scalar product induced by Σ, η ∈ K. Let
[

Σ
ηX

]
∼ ΠT

[
I

X̂

]
=: V =

[
V1

V2

]

be a permuted Lagrangian graph basis, i.e. Π is a symplectic swap matrix and X̂ = X̂∗.
Then

ηX(I + |η|2ΣX∗ΣX)−1 = V2(Σ + X̂ΣX̂)−1V ∗1 . ♦
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8 The generalized polar decomposition

Proof. Note that

V ?Σ2,ΣV = Σ
[
I2n X̂T

]
ΠΣ2ΠT

[
I2n

X̂

]
= I2n + ΣX̂∗ΣX̂ = I2n + ΣX̂ΣX̂.

We have used ΠΣ2ΠT = Σ2, which holds because Π =

[
V V̂

−V̂ V

]
is a symplectic swap

matrix as given in equation (8.22):

ΠΣ2ΠT =

[
V V̂

−V̂ V

] [
Σ

Σ

] [
V V̂

−V̂ V

]T
=

[
V ΣV + V̂ ΣV̂ −V ΣV̂ + V̂ ΣV

−V̂ ΣV + V ΣV̂ V̂ ΣV̂ + V ΣV

]
= Σ2.

V ΣV + V̂ ΣV̂ = Σ and −V ΣV̂ + V̂ ΣV = 0 hold because V and V̂ pick up comple-
menting rows and columns of Σ. Now applying Lemma 8.13 gives

ηX(I + |η|2X?ΣX)−1 = V2(Σ + X̂∗ΣX̂)−1V ∗1 .

Algorithm 8.2 is a variant of Algorithm 8.1 using permuted Lagrangian graph bases.
It computes the generalized polar decomposition of a pseudosymmetric matrix with
respect to its defining signature matrix.

In the update step (Step 6 in Algorithm 8.1 and Step 5 in Algorithm 8.2), the struc-
ture of V1 and V2 should be taken into account for an efficient implementation. The
rows of the identity matrix are distributed in V1 and V2 according to the permutation
P or the symplectic swap Π. The remaining columns are given by Ŵ . If this is taken

care of, the matrix representing the subspace V = ΠT

[
I

Û

]
never has to actually be

formed. We can directly work on the matrices W and Ŵ .
However, we may need to form a n × 2n matrix if a good starting guess for the

permutation in the computation of the permuted graph basis is desired. For this task,
a heuristic is proposed in [127] that includes a modified version of the QR factorization
with column pivoting of an n× 2n matrix.

8.5 Numerical results

In this chapter, we have developed several variants of the ΣDWH iteration to compute
the canonical generalized polar decomposition of a matrix with respect to signature
matrices.

In general, the existence of the decomposition is not guaranteed, which is why
we first examine pseudosymmetric matrices with respect to Σ. For these matrices,
the generalized polar decomposition exists if and only if A has no purely imaginary
eigenvalues (note that this is also required for sign(A) to exist, see Theorem 8.4).
For randomly generated matrices, this is typically the case, which is why we observe
convergence most times. Pseudosymmetric matrices represent an important class of
matrices regarding the application potential of the developed methods, as pointed
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Algorithm 8.2: Compute the generalized polar decomposition of a pseudosym-
metric matrix with respect to a signature matrix, using permuted Lagrangian
graph bases.
Data: Signature matrix Σ ∈ Kn×n, A = ΣA∗Σ ∈ Kn×n, such that A has no

purely imaginary eigenvalues,
s: estimate on |λmax((ΣA

∗ΣA)
1
2 )|−1,

`: estimate on s|λmin(s(ΣA∗ΣA)
1
2 )|,

τ >
√

2: threshold value for permuted Lagrangian graph bases.
Result: A = WS is the generalized polar decomposition with respect to Σ.

1 W ← sA
2 for k = 1, 2, . . . do
3 Compute weighting parameters a, b, c and update ` from equations (8.6)

and (8.7)
4 Compute entry-bound permuted Lagrangian graph bases of

colspan

([
Σ√
cW

])
, i.e.

[
Σ√
cW

]
∼ ΠT

[
I

Ŵ

]
=:

[
V1

V2

]
, |Ŵij| < τ for i, j ∈ {1, . . . , n}.

5 Compute LDLT factorization Σ + Ŵ ∗ΣŴ = PLDL∗PT.
6 W ← b

c
W + (a− b

c
)V2PL

−∗D−1L−1PTV ∗1

7 Compute pseudosymmetric factor and ensure pseudosymmetry numerically:
S ← ΣW ∗ΣA, S ← (S + ΣS∗Σ)/2

out in Section 8.1. For other matrices, which are not pseudosymmetric but yield a
generalized polar decomposition with respect to Σ, similar results were observed in
further tests. The experiments were performed on a laptop with an Intel® Core™
i7-8550U processor, running with 1.8 GHz on 4 cores, using MATLAB R2018a.

In light of the asymptotic cubic convergence of the iteration (see [95, Sec. 4.9.2])
we use the stopping criterion

‖Xk+1 −Xk‖F ≤ (5ε)
1
3 , (8.23)

where ε is the machine precision.
We take the same values for s and ` as in the QDWH algorithm [130], which are

given in (8.16). As explained there, this makes sense for definite pseudosymmmetric
matrices. The resulting convergence behavior is the same as in the standard setting.
Further investigation of the convergence behavior is needed to devise sensible values
for s and ` in the general case. Here the iteration may act on complex values. This
consideration goes beyond the scope of this thesis. We use the same values as in the
definite case even when they are not completely justified.
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8 The generalized polar decomposition

Figure 8.1: Residuals for different iterations for computing the generalized polar de-
composition of pseudosymmetric matrices A ∈ R200×200 with a certain
condition number. “Backslash” refers to the naive implementation, “LDL”
refers to iteration (8.18), “Hyperbolic QR” and “LDLIQR2” refer to the
variants of iteration (8.19). “PLG” refers to the variant using permuted
Lagrangian graph bases described in Algorithm 8.2.
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We first compare the algorithms in terms of their achieved residual for badly con-
ditioned matrices. We consider square matrices and their generalized polar decom-

position for a given signature matrix Σ :=

[
In
−In

]
(M = N = Σ in Definition

8.2).

Example 1 A real pseudosymmetric matrix with a condition number κ = 10k is
generated as A := ΣQDQT. Q is a random orthogonal matrix (orth(rand(2*n))),
and D is a diagonal matrix containing equally distributed values between 1 and 10k,
with alternating signs. A polar decomposition A ≈ WS is computed and the resulting
residual ‖WS −A‖F/‖A‖F for matrices of size 200× 200 (n = 100) is given in Figure
8.1. The residuals were averaged over 10 runs with different randomly generated
matrices.

We see that a naive implementation of the ΣDWH iteration (8.17) leads to a highly
unstable method. The accuracy improves as the iteration is rewritten to employ the
LDLT decomposition, see (8.18). This can be interpreted as exploiting structure that
is hidden and ignored in the original formulation. As in the naive implementation,
the accuracy deteriorates for ill-conditioned matrices. Surprisingly, for matrices with
a condition number higher than 1011, this trend is reversed and the method performs
quite well for extremely ill-conditioned matrices. A possible explanation is that MAT-
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LAB function ldl estimates the condition number of the input and acts differently,
in our case preferably, for ill-conditioned matrices. The LDLT-based iteration can
be read as an iteration based on the indefinite QR decomposition, see Theorem 7.5
and iteration (8.19), that has been computed via the pivoted LDLT decomposition.
For computing a hyperbolic QR decomposition directly, using a column elimination
approach, we used available MATLAB code [99], based on the works [12, 65, 92]. In
our setting, this does not perform well. For well-conditioned matrices, this approach
delivers the worst accuracy. For ill-conditioned matrices, it yields better results than
the naive implementation, but is still highly dependent on the condition number. The
two remaining methods use the indefinite QR decomposition via a double LDLT de-
composition (LDLIQR2) and permuted Lagrangian graph bases (PLG). These result
in a high accuracy, which is independent of the condition number. For well-conditioned
matrices, LDLIQR2 does not seem to be preferable, as it yields a higher residual than
even the naive implementation. However, the residual stays at a consistently low order
of magnitude as the condition number increases. Using PLGs consistently delivers the
best results regarding accuracy, in the well-conditioned as well as in the ill-conditioned
setting.

The disadvantage of the PLG approach is that it relies on very recently developed,
fine-grained algorithms. Therefore, no optimized implementations are available yet
and the runtimes resulting from a prototype MATLAB implementation are very high.
Formulating the computation of PLGs in a way that exploits current computer archi-
tectures is a challenge not yet addressed. This method would need to be block-based
in order to exploit the memory hierarchy, be parallelizable and avoid communication.
The LDLIQR2 approach on the other side is easily implemented and only relies on the
LDLT factorization for which highly optimized implementations are available. How-
ever, both approaches rely on pivoting strategies, implying a considerable cost for
communication if they are to be deployed in a massively parallel setup.

In a practical implementation, a combination of the LDLT, LDLIQR2 and PLG
approach should be considered, as it is possible for each iteration step to be per-
formed by a different method. For badly conditioned matrices, the first steps could
be performed via PLG. As soon as the condition number of the iterate has improved,
another method could be employed, which shows better performance. The computa-
tion of PLGs is potentially very expensive, in particular for ill-conditioned matrices.
The exact behaviour should be investigated in order to develop this method further.

We now compare the developed algorithms with other available methods, in partic-
ular concerning convergence properties. A standard approach for computing (gener-
alized) polar decompositions, and a natural candidate to compare to our developed
methods is the scaled Newton iteration (see e.g. [95]). Before moving to further nu-
merical experiments, we describe it briefly in the following.

For a given signature matrix Σ, it is given as

Xk+1 =
1

2
(µkXk + µ−1

k ΣX−∗k Σ), X0 = A. (8.24)

It is called the Newton iteration as it represents the Newton method for solving A?A =
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8 The generalized polar decomposition

I. See also [94] for details. For the DWH iteration, we have shown in Corollary 8.6 that
the iteration acts as a matrix sign function iteration on the self-adjoint factor of the
decomposition. This observation also holds for the Newton iteration. Let Xk = WSk
be a generalized polar decomposition of the iterate, then iteration (8.24) is equivalent
to

Xk+1 = W

(
1

2
(µkSk + µ−1

k S−1
k )

)
, X0 = A.

The part in large parentheses is the Newton iteration for the matrix sign function
acting on Sk. In the standard setting, the self-adjoint factor is Hermitian and its
eigenvalues are real. This is exploited to devise scaled iterations which drive these
values closer to one and therefore accelerate convergence (see [95, 61, 130]). For the
generalized polar decomposition, the values are not necessarily real. In this case,
we can fall back on scaling strategies for the matrix sign function which show good
convergence properties in practice. In particular, we consider determinantal scaling
[60], where

µk := | detSk|−
1
n = | detXk|−

1
n .

The computation via the iterate Xk becomes possible because signature matrices and
automorphisms with respect to them have a determinant of ±1. Its computation is
cheap as it can be computed from the diagonal values of the LU factorization, which
is used to compute X−∗k .
For the next numerical example, we generate matrices for which the generalized polar

decomposition with respect to Σ is guaranteed to exist, but where the eigenvalues of
the self-adjoint factor are all complex.

Example 2 For the generalized polar decomposition A = WS, we prescribe the
self-adjoint factor S with a condition number κ = 10k. The absolute values rj of
the eigenvalues λj = rj exp (iφj) of H are uniformly distributed between 10−bk/2c and
10dk/2e. φj is uniformly distributed between −π/2 and π/2, i.e. all eigenvalues lie in the
right half plane. S is generated using two random orthogonal matrices Q1, Q2 ∈ Rn×n,

Q =

[
Q1 0
0 Q2

]
,

S := QT




Re(λ1) − Im(λ1)
. . . . . .

Re(λn) − Im(λn)
Im(λ1) Re(λ1)

. . . . . .
Im(λn) Re(λn)



Q.

The polar factor W is prescribed as

W :=

[
Q3

Q4

] [
CW SW
SW CW

]
.
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Q3 and Q4 are random orthogonal matrices. The matrix
[
CW SW
SW CW

]
describes a series

of hyperbolic Givens rotations, i.e.

CW = diag(coshω1, . . . , coshωn) , SW = diag(sinhω1, . . . , sinhωn),

where ω1, . . . , ωn are uniformly distributed angles between 0 and 1
4
π. Averaged results

for 20 matrices of size 200× 200 (n = 100) are given in Table 8.1.
For the Newton iteration we use the stopping criterion given in [95, Chapter 8],

‖Xk++1 −Xk‖F 5 (2ε)
1
2 ,

where ε denotes the machine precision.
For the ΣDWH iteration, we employ permuted graph bases (Algorithm 8.1), avail-

able in the pgdoubling package associated with [127]. It is compared to the Newton
iteration with determinantal scaling (DN) and the Newton iteration with sub-optimal
scaling [61] (SON). We generate 20 different random matrices and report the average
number of iterations and the resulting residual ‖A − W̃ S̃‖F/‖A‖F , where W̃ and S̃
are the computed polar factors. We influence the condition number of A indirectly
via κ = cond(S). It is about twice as high as κ because of the used hyperbolic Givens
rotations.

In the standard setting, DWH and SON converge in 6 [130], respectively 9 [61],
steps. Here, the iterations act as scalar iterations on the eigenvalues of the self-
adjoint factor, who happen to be real in the standard case, but not in the indefinite
setting. Still, we can observe that they converge significantly faster than the Newton
iteration with determinantal scaling, in particular for ill-conditioned matrices. ΣDWH
generally seems to need about 2/3 as many iteration steps as SON. Whether the cost
per iteration is comparable, depends on the chosen implementation method for the
DWH iteration. The simplest method is based on one LDLT decomposition (8.18)
and the main cost is a symmetric matrix inversion, just as in the Newton variants. If
higher stability is needed in the case of badly conditioned matrices it can be obtained
at the expense of a higher costs per iteration. This can be done by employing the
LDLIQR2 iteration or by improving the corresponding subspace via Lagrangian graph
bases (Algorithm 8.1).

ΣDWH displays the lowest backward error for the Σ-orthogonal factor W, which
deteriorates for all methods as matrices become ill-conditioned. All methods yield a
factorW that shows a good Σ-orthogonality. SON and ΣDWH both do a much better
job than DN at recovering the self-adjoint factor S with backward errors of order
10−14 instead of 10−2. DN and SON sometimes fail to converge for badly conditioned
matrices.

We see that ΣDWH can compete with standard methods, even if no definite pseu-
dosymmetric structure is given. Note that ΣDWH is the only one of the three methods
that can directly be applied to non-square matrices, in order to compute the canonical
generalized polar decomposition.

The results of Example 2 should be seen as preliminary, as the scaling factors and
the stopping criterion (8.23) are not completely justified in the non-definite case. They
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8 The generalized polar decomposition

Table 8.1: Convergence behavior for different methods computing the generalized polar
decomposition with respect to Σ of a 200× 200 matrix (Example 2).

κ 10 105 1010 1015

cond(A) 2.15e+01 1.98e+05 1.98e+10 2.02e+15

# iterations
ΣDWH 8.70 9.70 10.65 10.60
DN 12.30 20.00 32.95 44.13 1

SON 14.05 15.45 16.45 16.74 2

residual
ΣDWH 5.06e-15 7.68e-15 9.88e-15 3.00e-15
DN 2.98e-15 2.98e-15 2.93e-15 2.96e-15
SON 3.00e-15 2.98e-15 2.96e-15 2.89e-15

rel. error W
ΣDWH 1.35e-14 9.45e-12 5.35e-08 8.01e-03
DN 1.18e-14 3.96e-11 1.53e-06 7.83e-02
SON 1.32e-14 3.12e-11 2.24e-07 5.22e-03

rel. error S
ΣDWH 1.05e-14 2.76e-14 3.51e-14 4.51e-14
DN 9.98e-15 9.00e-12 8.52e-07 6.65e-02
SON 1.43e-14 2.42e-14 2.33e-14 2.83e-14

‖ΣWTΣW − I‖F
ΣDWH 1.16e-15 1.23e-15 1.07e-15 1.25e-15
DN 3.19e-15 3.19e-15 3.13e-15 3.12e-15
SON 3.21e-15 3.18e-15 3.16e-15 3.09e-15

1 5 out of 20 runs did not converge. 2 1 out of 20 runs did not converge.

do, however, motivate further research to devise iterations based on rational functions
acting on complex values.

Example 3 We generate pseudosymmetric matrices as in Example 1, but additionally
ensure the definiteness of ΣA by choosing only positive values for D. We compare the
same methods as in Example 2 with respect to convergence properties. 20 matrices
were generated and averaged results are reported in Table 8.2.

As expected, we see the convergence of ΣDWH and of the Newton iteration with
sub optimal scaling within 6, respectively 9, iterations.

8.6 Using Zolotarev functions to accelerate the
iteration

In this section we present an iteration that converges In even less steps than the DWH
iteration in the case of definite pseudosymmetric matrices. To this aim, we generalize
the ideas from [131], using Zolotarev functions as rational iterations.

Let A ∈ Kn×n be a matrix, that is self adjoint with respect to a signature matrix
Σ, such that ΣA > 0. Then A has only real eigenvalues (see Theorem 4.5). Let A be
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Table 8.2: Convergence behavior for different methods computing the generalized polar
decomposition with respect to Σ of definite pseudosymmetric matrices of
size 200× 200 (Example 3).

κ 10 105 1010 1015

# iterations
ΣDWH 4.00 5.00 6.00 6.00
DN 6.00 15.10 30.50 44.50
SON 6.00 7.00 8.00 9.00

residual
ΣDWH 1.38e-15 4.47e-14 2.34e-14 2.85e-14
DN 8.11e-16 2.46e-14 5.30e-14 1.05e-14
SON 8.14e-16 3.20e-14 3.03e-14 1.04e-14

‖ΣWTΣW − I‖F
ΣDWH 1.26e-15 1.95e-13 2.03e-13 6.92e-14
DN 7.31e-16 6.87e-14 5.66e-14 3.13e-14
SON 7.16e-16 6.94e-14 5.64e-14 3.09e-14

scaled, such that its eigenvalues lie in [−1, 1], and let 0 < ` < |λ| for all λ ∈ Λ(A), and
let A = WS be a generalized polar decomposition with respect to a signature matrix
Σ. Then the eigenvalues of S = (A?ΣA)

1
2 lie in (`, 1].

According to Corollary 8.6, a rational iteration with starting point A acts as a
rational scalar function on the eigenvalues of S, lying in (`, 1]. If they reach 1, the
iteration has converged and arrived at the polar factor W .

The main idea explored in this chapter is the following. If a rational function
approximates the scalar function sign(.) well on (`, 1], it is a good candidate for the first
iteration for computing the polar decomposition, because it drives all the eigenvalues
of S closer to 1. The lower bound on the eigenvalues of the self-adjoint factor of the
iterate, now called `1 also got moved closer to 1. The next iteration should be based
on a good approximation of sign(.) on the much narrower interval (`1, 1]. This way,
convergence in just a few steps can be achieved.

Luckily, explicit formulas for rational best-approximations of the sign function on
an interval (`, 1] with the necessary form (8.11) where found by Zolotarev in 1877
[188]. In [131] Zolotarev functions are used to devise an iteration which computes
the standard polar decomposition in just 2 steps. The algorithmic cost of the steps
is increased compared to other iterative techniques, but the additional computations
can be performed completely in parallel. We extend this approach for computing the
polar decomposition of definite pseudosymmetric matrices.

We call the unique rational function of degree (2r + 1, 2r) solving

min
R∈R2r+1,2r

max
x∈[−1,−`]∪[`,1]

| sign(x)−R(x)|

for a given 0 < ` < 1 and an integer r, type (2r + 1, 2r) Zolotarev function. They are
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8 The generalized polar decomposition

given explicitly in form of

Z2r+1(x; `) := Cx

r∏

j=1

x2 + c2j

x2 + c2j−1

. (8.25)

The coefficients c1, . . . , c2r are determined via the Jacobi elliptic functions sn(u; `) and
cn(u; `) as

ci = `2
sn2( iK′

2r+1
; `′)

cn2( iK′

2r+1
; `′)

, i = 1, . . . 2r, (8.26)

where `′ =
√

1− `2 and K ′ =
∫ π/2

0
(1−(`′)2 sin2(θ))−1/2dθ are familiar quantities in the

context of Jacobi elliptic functions (see e.g. [5, Chapter 17], [7, Chapter 5]). Details
on the computation of the coefficients can be found in [131]. C > 0 is a uniquely
determined constant, which will later be substituted with a normalization constant
Ĉ. The authors of [131] provide MATLAB functions to compute the parameters in a
stable fashion, which are used in our implementation.

Zolotarev also showed (see [8, Chapter 9], [146, Chapter 4]), that Z2r+1(x; `) solves

max
P,Q∈Pr

min
`≤x≤1

x
P (x2)

Q(x2)
.

For r = 1, this optimization problem was solved in [130], leading to the dynamically
weighted Halley (DWH) iteration (see Section 8.2). This iteration was used in Section
8.3 to compute the generalized polar decomposition. An iteration based on Zolotarev
functions therefore generalizes the DWH approach in terms of rational functions of
higher degrees.

A key observation in [131] is that the composition of Zolotarev functions is again a
Zolotarev function. More precisely, it holds

Ẑ2r+1(Ẑ2r+1(x; `); `1) = Ẑ(2r+1)2(x; `),

where

Ẑ2r+1(x; `) =
Z2r+1(x; `)

Z2r+1(1; `)
= Ĉx

r∏

j=1

x2 + c2j

x2 + c2j−1

, with Ĉ =
r∏

j=1

1 + c2j−1

1 + c2j

, (8.27)

is a scaled Zolotarev function and `1 = Ẑ2r+1(`; `). It can be verified that with r := 8
and ` ≥ 10−16, it holds Z(2r+1)2([`, 1], `]) ⊆ [1− 10−15, 1]. Employing Corollary 8.6 for
two steps on a matrix A = WS with the rational iteration

g1(x) = Ẑ2r+1(x; `),

g2(x) = Ẑ2r+1(x; `1),

we see that the eigenvalues of g2(g1(S)) are in the interval [1 − 10−15, 1], under the
condition that all eigenvalues of S are smaller than 1 and larger than ` ≥ 10−16. In
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this sense, g2(g1(A)) ≈ W has converged to the polar factor W , after two iteration
steps. Choosing a higher r, algorithms can be devised, that converge in just one step.
It was argued in [131] that a 2-step approach is a sensible choice to acquire a robust
algorithm. This way, potential instabilities, e.g. in the computation of the Zolotarev
coefficients ci, are forgivable.

Remark 8.15:
In the implementation of the Zolotarev iteration for a matrix A, first A is scaled, such
that all its eigenvalues lie in (−1, 1). Then ` should be a lower bound on the minimum
absolute value in the spectrum of the scaled A, i.e.

` . κ−1
abs :=

min{|λ| : λ ∈ Λ(A)}
max{|λ| : λ ∈ Λ(A)} .

Choosing r := 8 guarantees convergence in 2 steps, if κ−1
abs > ` > 10−16, which can

often be assumed. If κabs is known to be smaller, a larger ` and a smaller r can be
chosen, while convergence is still guaranteed in two steps. Details are given in Table
1 in [131], where now κ2 needs to be substituted with κabs. ♦

The scaled Zolotarev function can be represented in a partial fraction decomposition

Ẑ2r+1(x; `) = Ĉx

(
1 +

r∑

j=1

aj
x2 + c2j−1

)
, (8.28)

aj = −
(

r∏

k=1

(c2j−1 − c2k)

)
·
(

r∏

k=1,k 6=j
(c2j−1 − c2k−1)

)
. (8.29)

An iteration (8.11) derived from (8.28) takes the form

Xk+1 = Ĉ(Xk +
r∑

j=1

aj,kXk(X
?M
k Xk + c2j−1,kI)−1). (8.30)

With M = Σ as a signature matrix, iteration (8.30) becomes

Xk+1 = Ĉ(Xk +
r∑

j=1

aj,kXk(X
∗
kΣX + c2j−1,kΣ)−1Σ). (8.31)

Computing the inverse via an LDLT decomposition leads to a first practical iteration.





Z2j−1,k = (X∗kΣXk + c2j−1,kΣ), [Lj, Dj, Pj] = ldl(Z2j−1,k),

Xk+1 = Ĉ(Xk +
∑r

j=1 ajXkPjL
−∗
j D−1

j L−1
j PT

j Σ)
(8.32)
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The first line of iteration (8.32) means that in iteration k, the LDLT decomposition

Z2j−1,k = PjLjDjL
∗
jP

T
j

is computed for each Z2j−1,k, j = 1, . . . , r. Pj is a permutation matrix, Lj is lower
triangular, and Dj is block-diagonal with 1× 1 or 2× 2 blocks.
In Section 8.3, the special case for r = 1 is derived. There, the iteration is rewritten

in a way, such that it becomes inverse-free and a hyperbolic QR decomposition is
employed instead. A special case of Lemma 8.8, in conjunction with Lemma 8.9 is
given in the following lemma and can be used to rewrite iteration (8.31).

Lemma 8.16:
Let Σ be a signature matrix, η ∈ R. For X ∈ Rn×n, let

[
ηX
I

]
= HR, H =

[
H1

H2

]
∈

R2n×n, R ∈ Rn×n be a decomposition, such that H∗
[
Σ

Σ

]
H = Σ̂, where Σ̂ ∈ Rn×n

is another signature matrix. Then

ηX(I + |η|2X?ΣX)−1 = H1Σ̂H∗2 Σ. ♦

Using Lemma 8.16 with η = 1√
c2j−1,k

, (8.31) can be rewritten as





[
Xk√
c2j−1,kI

]
=

[
H1,j

H2,j

]
Rj, where

[
H1,j

H2,j

]∗ [
Σ

Σ

] [
H1,j

H2,j

]
= Σ̂

Xk+1 = Ĉ(Xk +
∑r

j=1
aj√
c2j−1

H1,jΣ̂H
∗
2,jΣ).

(8.33)

As in iteration (8.32), the first line refers to the computation of a total of r independent

decompositions
[

Xk√
c2j−1,kI

]
= HjRj for j = 1, . . . , r, per iteration step. One way

of acquiring the needed matrix H is the hyperbolic QR decomposition, which we
introduced in Theorem 7.1. As in the ΣDWH algorithm presented in the previous
sections, another possibility is the LDLIQR2 algorithm presented in Section 7.2.4.
Algorithm 8.3 presents the pseudocode of a Zolotarev-based computation of the

generalized polar factor, employing LDLIQR2. We assume that convergence is reached
after just two steps, which are explicitly written in the algorithm. For the computation
of iterate X1, iteration (8.33) is employed. For the computation of the H matrices, we
use Algorithm 7.1. We assume that this approach shows a better numerical stability
than column-elimination based approaches, which was shown empirically in Section
8.5. Under this assumption, the second iterate X2 can safely be computed using the
LDLT-based iteration (8.32). A detailed reasoning for the standard case is found in
[131].

Algorithm 8.3 converges even for badly conditioned matrices. As explained in [131],
for well-conditioned A, it is possible to skip the first iteration or choose a lower
Zolotarev rank r < 8. In exact arithmetic the algorithm converges after 2 steps, in
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Algorithm 8.3: Hyperbolic Zolo-PD for definite pseudosymmetric matrices.
Data: Signature matrix Σ A ∈ Cn×n such that ΣA is Hermitian positive

definite,
Zolotarev rank r according to Remark 8.15

Result: S = sign(A).
1 Estimate α & max{|λ| : λ ∈ Λ(A)}, β . min{|λ| : λ ∈ Λ(A)}.
2 X0 ← 1

α
A, `← β

α

// First iteration:
3 for j = 1, . . . , 2r do
4 cj ← `2sn2( iK′

2r+1
; `′)/cn2( iK′

2r+1
; `′) // See (8.26)

5 for j = 1, . . . , r do
6 aj = − (

∏r
k=1(c2j−1 − c2k)) ·

(∏r
k=1,k 6=j(c2j−1 − c2k−1)

)
// See (8.29)

7 Ĉ ←∏r
j

1+c2j−1

1+c2j
// See (8.27)

8 Compute X1 according to (8.33), using Algorithm 7.1:




[
X0√
c2j−1I

]
=

[
H1,j

H2,j

]
Rj, where

[
H1,j

H2,j

]∗ [
Σ

Σ

] [
H1,j

H2,j

]
= Σ̂ (j = 1, . . . , r)

X1 ← Ĉ(Xk +
∑r

j=1
aj√
c2j−1

H1,jΣ̂H
∗
2,jΣ)9

10 `← Ĉ`
∏r

j=1(`2 + c2j)/(`
2 + c2j−1)

11 Repeat Step 3 to Step 7 to update cj for j = 1, . . . , 2r, aj for j = 1, . . . , r and
Ĉ.
// Second iteration:

12 Compute X2 according to (8.32):




Z2j−1,1 = (X∗1 ΣX1 + c2j−1,1Σ), [Lj, Dj, Pj] = ldl(Z2j−1,1), (j = 1, . . . , r)

X2 = Ĉ(X1 +
∑r

j=1 ajX1PjL
−∗
j D−1

j L−1
j PT

j Σ)13

14 if ‖X2 −X1‖F/‖X2‖F ≤ u1/(2r+1) then
15 S ← X2

16 else
17 A← X2, return to Step 1.
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the sense presented in this section. As a safeguard for numerical errors we adopt the
stopping criterion from [131], to guarantee convergence, using the known convergence
rate of 2r + 1.
Another possibility for computing an iterant Xk in a more stable fashion than the

LDLT-based iteration (8.32) was explored in Section 8.4 in the context of the ΣDWH
iteration. Lemma 8.14 can be used to rewrite iteration (8.31), such that the inverse
of a better conditioned matrix is computed. The main idea is to compute a well

conditioned basis of the subspace
[

Xk√
c2j−1I

]
. This can be done by employing permuted

Lagrangian graph bases described in [127]. This is an interesting path to explore,
because the observed accuracy in Section 8.4 is even better than for the LDLIQR2
algorithm. LDLIQR2 yielded satisfactory results as well, i.e. the accuracy did not derail
for badly conditioned matrices. The implementation uses available routines (i.e. the
LDLT factorization) and is more straight-forward. An implementation of the approach
using permuted Lagrangian graph bases is left as future work.

Numerical results regarding the iteration based on Zolotarev function can be found
in Chapter 9, where it is used in a structure-preserving divide-and-conquer method
for definite pseudosymmetric eigenvalue problems.

8.7 Conclusions

In this chapter, we have presented a generalization of the QDWH method to compute
the canonical generalized polar decomposition of a matrix with respect to a signature
matrix Σ. One variant employs the hyperbolic QR decomposition as a tool. If Σ is
chosen as the identity, this decomposition becomes the standard QR decomposition
and can safely be computed with a column elimination approach, based on Householder
transformations. This yields the well-known QDWH iteration.

Several options were provided on how to realize the iterations. Employing a com-
putation of the hyperbolic QR decomposition based on column elimination forms the
most natural generalization of QDWH. Other approaches, however, yield better results
regarding stability. Methods based on LDLT factorizations (LDLIQR2, Section 7.2.4)
or on permuted (Lagrangian) graph bases (Algorithm 8.1 and 8.2) perform better in
this regard.

Using these variants, a stability similar to Newton methods can be observed, but
fewer iterations are needed. For the important class of definite pseudosymmetric ma-
trices, the convergence behavior corresponds to the standard QDWH method. Conver-
gence up to machine precision can be guaranteed in 6 steps for reasonably conditioned
matrices.

The theoretical results we gave, in particular Lemma 8.8, provide a greater flexibility
in the algorithmic design for DWH-based iterations, which might be utilized further
than the scope of this thesis permits. Other methods for computing well-conditioned
bases could also yield good results. Being more flexible in algorithmic design becomes
increasingly important in view of modern computer architectures. In general, these
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become more heterogeneous. They employ different levels of parallelism on various
scales, have restrictions on available memory or use numerous accelerators and GPUs.
Our framework provides the flexibility to find solutions, which could exploit the ar-
chitecture at hand to its full potential.

Our main motivation came from computing the matrix sign function of large definite
pseudosymmetric matrices. Here, the iteration acts as a rational function on what can
be understood as generalized singular values. This allows the use of Zolotarev functions
as best-approximations to the sign function of higher degree, yielding an iteration that
converges in two steps. The individual steps take more work but are embarrassingly
parallel and well-suited for large-scale high performance computations. In the field of
computational quantum physics this is exactly what is needed, making this research
direction promising.

In Section 8.6 we commented on the possibility to use permuted Lagrangian graph
bases to improve the accuracy of the Zolotarev iteration for computing the matrix sign
function. This direction could be explored further in the future. Further investigation
should include a well-founded analysis on the stability of the proposed methods.
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9.1 Introduction

In this final chapter, we introduce a promising new class of algorithms for the structure-
preserving solution of pseudosymmetric eigenvalue problems. The Bethe-Salpeter
eigenvalue problems introduced Chapters 3 belong to this class of matrices. We have
seen in Chapter 4 that one form of the BSE eigenvalue problem can be reduced to a
product eigenvalue problem of half the original size. Algorithms based on this finding
were developed in Chapter 6. If the definiteness property 6.2 holds, one further trans-
formation yields a symmetric eigenvalue problem. If the definiteness property does not
hold, one ends up with a pseudosymmetric problem, see Theorem 6.5. The algorithm
presented in this chapter can therefore be a valuable tool applied directly on the BSE
matrices, or on the reduced form, even if definiteness can not be guaranteed.
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9 A structure-preserving spectral divide-and-conquer method

The necessary tools were developed in previous chapters. A central role is played
by the generalized polar decomposition with respect to a signature matrix, which
was explored in depth in Chapter 8. In the computation of the generalized polar
decompositions, the GR decompositions studied in Chapter 7 played a vital role. In
this chapter, they are used as tools once more in order to compute structure-preserving
subspace bases.

The main idea of this chapter is to exploit the ability of the matrix sign function
to find invariant subspaces, see Theorem 2.22. In the case of self-adjoint matrices, the
matrix sign function coincides with the generalized orthogonal factor of a generalized
polar decomposition, compare Theorem 8.4. The eigenvalue problem can be projected
onto a subspace, leading to eigenvalue problems of smaller sizes. The method of doing
this successively, until full diagonalization is achieved, is called spectral divide-and-
conquer [17, 18, 36, 106]. The main challenge in this chapter is to devise such a method,
which respects and preserves the given pseudosymmetric structure. This means that
the smaller, projected eigenvalue problem should again be pseudosymmetric.

Given a diagonalizable matrix A ∈ Kn×n, K ∈ {R,C}, we are interested in full
diagonalization, i.e. finding V ∈ Kn×n, such that

V −1AV = D. (9.1)

For K = C, the matrix D is diagonal and contains the eigenvalues of A as diagonal
values. For K = R, the matrix D is block diagonal with blocks of size 1 × 1, corre-
sponding to real eigenvalues, or of size 2 × 2, corresponding to complex eigenvalues.
The well-established standard approach for computing an eigenvalue decomposition
(9.1) starts by computing the Schur decomposition of A

Q∗AQ = T,

where Q is orthogonal (or unitary) T is (block) upper triangular, via the QR algo-
rithm [83]. The eigenvectors of T are computed via backward substitution or the
eigenvectors of A are recovered via inverse iteration [13]. The QR algorithm, however,
has proven difficult to parallelize and is not well-suited for computing only parts of
the eigenvalue spectrum [17]. This is why spectral divide-and-conquer algorithms were
explored as an alternative [17, 18, 19, 118]. They are based on the idea of spectral
division. A matrix V is found such that

V −1AV =

[
A11 A12

0 A22

]
. (9.2)

This is achieved when the first columns of V form a basis of an invariant subspace
of A and the remaining columns complement them to form a basis of Kn. Now, the
eigenvalue problems of the smaller matrices A11 and A22 are considered. Repeating
this method recursively leads to a spectral divide-and-conquer scheme for the trian-
gularization of a matrix.

The required subspace bases are acquired by employing the matrix sign function,
which is computed via an iterative scheme [36, 106]. In general, the computational
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9.1 Introduction

effort of spectral divide-and-conquer methods is higher than that of QR based algo-
rithms. This is why optimized implementations that exploit available parallelism, are
needed, representing a high implementation effort.

For symmetric matrices, it is clear that symmetry must be exploited in order to
formulate efficient eigenvalue algorithms. For spectral division, an orthogonal matrix
V is sought that realizes block diagonalization instead of the block-triangularization
in (9.2).
This is done in the spectral divide-and-conquer approach, as presented in [133]. For

symmetric matrices, the computation of the matrix sign function can be parallelized
particularly well [131], making it competitive with standard approaches in a high
performance setting [116]. An important aspect is that spectral divide-and-conquer
methods require less communication than QR based approaches. In recent years,
efforts were increasingly directed towards finding communication-avoiding implemen-
tations of essential tools in numerical linear algebra [26]. Spectral divide-and-conquer
methods can be implemented using these available building blocks [25]. On more ad-
vanced architectures, avoiding communication is more important than avoiding flops
in order to minimize the runtime.

In this chapter, we show how the spectral divide-and-conquer approach is extended
to solve eigenvalue problems of matrices with pseudosymmetric structure. In the
following, statements are formulated for (pseudo-)symmetric matrices, but also hold
to (pseudo)Hermitian matrices.

Efforts to exploit pseudosymmetric structure led to the development of the HR
algorithm [55, 56, 49], which was already mentioned as a possibility to compute the
structured decomposition in Theorem 6.4. It generalizes the symmetric QR algorithm
and is motivated by the following observation. A generalized eigenvalue problem with
symmetric matrices

Ax = λBx, A = AT, B = BT, (9.3)

where B is nonsingular, can be cast into a pseudosymmetric standard eigenvalue prob-
lem. Neither A nor B need to be positive definite. B has a decomposition B = RTΣR,
where Σ is a signature matrix, see Lemma 2.17. Then (9.3) is equivalent to

ΣR−TAR−1y = λy, y = Rx.

ΣR−TAR−1 is clearly a pseudosymmetric matrix.
The QR algorithm computes its results with high accuracy because only (implicit)

orthogonal transformations are involved. This is not true for the HR algorithm, which
uses (Σ, Σ̂)-orthogonal matrices instead (also called pseudoorthogonal) [182]. A (Σ, Σ̂)-
orthogonal matrix H, where Σ and Σ̂ are two signature matrices, fulfills HTΣH = Σ̂.
They are used to transform a matrix to upper triangular form, similar to the QR
algorithm.

On top of that, the HR algorithm suffers from the same drawbacks as the QR algo-
rithm in a high-performance environment: It is hard to parallelize and not communication-
avoiding, as explained above.
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9 A structure-preserving spectral divide-and-conquer method

The spectral divide-and-conquer method developed in this chapter presents a promis-
ing alternative. It can be parallelized and only relies on building blocks, for which
communication-avoiding and well performing implementations exist. It can be used
to compute only parts of the spectrum with reduced computational effort. Stability
concerns are addressed by employing alternatives to or variants of the HR decompo-
sition in the computation of the matrix sign function, presented in Chapter 8.

As stated before, the Bethe-Salpeter eigenvalue problems are the main motivation
for developing the algorithm presented in this chapter. The definiteness property
(4.3) plays a central role in most methods available in the literature, for example
in the algorithm which was improved in Chapter 5. The new spectral divide-and-
conquer approach in this chapter does not rely on this assumption. However, if the
property holds, it can be exploited algorithmically. For these matrices, we showed in
Chapter 8 that the used iterations have the same favorable convergence properties as
in the symmetric setting and that an acceleration using Zolotarev function is possible.
Furthermore, the first round of spectral division will be proven to decouple the problem
into a positive and a negative definite symmetric matrix.

The remaining chapter is structured as follows. Section 9.2 explains the idea of
spectral divide-and-conquer methods and presents a generalization of this approach
for pseudosymmetric matrices. The acquisition of (Σ, Σ̂)-orthogonal representations
of invariant subspaces is essential for structure preservation in the spectral division. In
Section 9.3, we point out a link between QR decompositions of symmetric projection
matrices (describing orthogonal projections) and Cholesky factorizations. This link
exists analogously for pseudosymmetric projection matrices and the LDLT factoriza-
tion. We use this insight to compute required basis representations via the LDLT

factorization. Section 9.4 shows how the definiteness property

ΣA = (ΣA)T > 0 (9.4)

is exploited in the presented algorithms. The computation of proper basis repre-
sentations simplifies to a partial Cholesky factorization (Section 9.4.2). Section 9.5
presents the results of numerical experiments regarding the new method. Conclusions
and further research directions are given in Section 9.6.

9.2 Structure-preserving divide-and-conquer
methods

The property of the matrix sign function to acquire invariant subspaces was originally
used to solve algebraic Riccati equations [149]. Later, it was used as a building block
to devise parallelizable methods for eigenvalue computations of nonsymmetric matri-
ces [17, 169]. In [133] a spectral divide-and-conquer algorithm for symmetric matrices
is formulated, based on the relation between the matrix sign function and the po-
lar decomposition. In this section, we generalize this approach to pseudosymmetric
matrices, see Definition 2.5.
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9.2 Structure-preserving divide-and-conquer methods

The definition is equivalent to ΣA (or AΣ) being symmetric. Essentially, a pseu-
dosymmetric matrix is symmetric up to sign changes of certain rows (or columns).
This definition is slightly different than the one given, e.g., in [117], as we allow any

signature matrix and not just Σp,q =

[
Ip
−Iq

]
.

In Section 9.2.1 we outline the general idea of spectral division, which reduces a
large eigenvalue problem to two smaller ones. Recursively applying this technique
yields parallelizable methods for acquiring all eigenvalues and eigenvectors. Section
9.2.2 recounts how a symmetric structure can be preserved in this context. The same
line of thinking is applied to pseudosymmetric matrices in Section 9.2.3.

9.2.1 General spectral divide-and-conquer

It is a well-known concept to use invariant subspaces of a matrix to block-triangularize
it with a similarity transformation. In the following, we focus on real matrices, but
everything extends to complex matrices. For real matrices we end up with 2×2 matrix
blocks on the diagonal for complex eigenvalues, whereas for complex matrices, 1 × 1
blocks suffice.
Theorem 9.1:
Let A ∈ Rn×nand V1 ∈ Rn×k be a basis for an invariant subspace of A and

V =
[
V 1 V 2

]
∈ Rn×n

have full rank. Then

V −1AV =

[
A11 A21

0 A22

]
, A11 ∈ Rk×k, A22 ∈ R(n−k)×(n−k). ♦

Recursively applying the idea of Theorem 9.1 with shifts leads to a divide-and-
conquer scheme, given in Algorithm 9.1.

This algorithm serves as a prototype for structure-preserving methods developed in
the next subsections. The key idea is to choose the subspace basis in Step 4 in a way
that preserves the structure in the spectral division.

9.2.2 Symmetric spectral divide-and-conquer

In this section we consider the symmetric eigenvalue problem, i.e.A = AT. A structure-
preserving method requires the spectral division V −1AV to be symmetric. This is
exactly fulfilled by orthogonal matrices, i.e. for matrices fulfilling V −1 = V T. A
structure-preserving variant of Theorem 9.1 for symmetric matrices is given in the
following.

Theorem 9.2:
Let A = AT ∈ Rn×n and V1 ∈ Rn×k be a basis of an invariant subspace of A and

V =
[
V 1 V 2

]
∈ Rn×n

151



9 A structure-preserving spectral divide-and-conquer method

Algorithm 9.1: Unstructured spectral divide-and-conquer for block triangu-
larization.
Data: A ∈ Rn×n.
Result: V , T such that V −1AV = T is block upper triangular.

1 Stop if A is of size 1× 1 or 2× 2 with a complex conjugate pair of eigenvalues.
2 Find shift σ such that A− σI has eigenvalues with positive and negative real

part and no eigenvalues with zero real part.
3 Compute S = sign(A− σI) via an iteration.
4 Get a basis V+ of range(S + I) and V− such that V0 =

[
V+ V−

]
has full rank.

Then

V −1
0 AV0 =

[
A11 A12

0 A22

]
.

5 Repeat spectral divide-and-conquer for A11, i.e. find V1 such that
V −1

1 A11V1 = T11 is block upper triangular.
6 Repeat spectral divide-and-conquer for A22, i.e. find V2 such that

V −1
2 A22V2 = T22 is block upper triangular.

7 V ← V

[
V1 0
0 V2

]
, T ←

[
T11 V −1

1 A12V2

0 T22

]
.

be orthogonal. Then

V −1AV = V TAV =

[
A11 0
0 A22

]
,

A11 = AT
11 ∈ Rk×k, A22 = AT

22 ∈ R(n−k)×(n−k). ♦

The symmetric version of Algorithm 9.1 follows immediately as Algorithm 9.2. Due
to the symmetry of A and by restricting the subspace basis to be orthogonal, this
method can become highly viable. For symmetric A, sign(A) can be computed in a
stable way via the QDWH iteration [130, 132] or the Zolotarev iteration [131]. The
basis extraction can be done by performing a rank-revealing QR decomposition or a
subspace iteration [133] if pivoting is considered too expensive.

9.2.3 Pseudosymmetric spectral divide-and-conquer

We now apply the line of thinking presented in Section 9.2.2 to pseudosymmetric
matrices. The role of structure-preserving similarity transformations was played by
orthogonal matrices in Section 9.2.2. For pseudosymmetric matrices this role is played
by (Σ, Σ̂)-orthogonal matrices. A (Σ, Σ̂)-orthogonal matrix V is defined by

V TΣV = Σ̂,

where Σ and Σ̂ denote signature matrices in our setup. What (Σ, Σ̂)-orthogonal ma-
trices have in common with orthogonal matrices is that their (pseudo-)inverses are
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9.2 Structure-preserving divide-and-conquer methods

Algorithm 9.2: Symmetric spectral divide-and-conquer for block diagonaliza-
tion.
Data: A = AT ∈ Rn×n.
Result: Orthogonal V , diagonal D such that V TAV = D.

1 Stop if A is of size 1× 1.
2 Find shift σ such that A− σI has positive and negative eigenvalues and no

zero eigenvalues.
3 Compute S = sign(A− σI) via an iteration.
4 Get a basis V+ of range(S + I) and V− such that V0 =

[
V+ V−

]
is orthogonal.

Then

V T
0 AV0 =

[
A11 0
0 A22

]
, A11 = AT

11, A22 = AT
22.

5 Repeat spectral divide-and-conquer for A11, i.e. find V1 such that
V T

1 A11V1 = D11 is diagonal.
6 Repeat spectral divide-and-conquer for A22, i.e. find V2 such that

V T
2 A22V2 = D22 is diagonal.

7 V ← V0

[
V1 0
0 V2

]
, D ←

[
D11 0
0 D22

]
.

easily computed in form of

V † = Σ̂V TΣ.

Lemma 9.3:
If V ∈ Rm×n is a (Σ, Σ̂)-orthogonal matrix and A ∈ Rm×m is pseudosymmetric with
respect to Σ, i.e. ΣA = ATΣ, then Â = V †AV is pseudosymmetric with respect to Σ̂,
i.e. Σ̂Â = ÂT Σ̂. ♦

Proof. With V † = Σ̂V TΣ, ΣV = (V †)T Σ̂, Σ2 = Im and Σ̂2 = In we have

Σ̂(V †AV ) = V TΣAV = V TATΣV = V TAT(V †)TΣ̂ = (V †AV )TΣ̂.

(Σ, Σ̂)-orthogonal matrices already played a central role in the computation of the
generalized polar decomposition, described in Chapter 8. In the resulting algorithms
their purpose is therefore twofold: First they are needed in the iteration computing the
matrix sign function, then they are needed to extract subspace bases that guarantee
structure preservation.

Methods for computing these matrices include theHR decomposition [54] and meth-
ods described in Chapter 7. They prescribe Σ and yield Σ̂ and the (Σ, Σ̂)-orthogonal
matrix. We do not actually care about how Σ̂ looks exactly, as long as it is a signature
matrix. This way, pseudosymmetry as we defined it in Definition 2.5, not being bound
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9 A structure-preserving spectral divide-and-conquer method

Algorithm 9.3: Pseudosymmetric spectral divide-and-conquer for block diag-
onalization.
Data: Signature matrix Σ, pseudosymmetric A with respect to Σ, i.e.

ΣA = (ΣA)T.
Result: Signature matrix Σ̂, and (Σ, Σ̂)-orthogonal V such that V †AV = D is

block diagonal with blocks no larger than 2× 2.
1 Stop if A is of size 1× 1 or 2× 2 with a complex conjugate pair of eigenvalues.
2 Find shift σ such that A− σI has eigenvalues with positive and negative real

part and no eigenvalues with zero real part.
3 Compute S = sign(A− σI) via an iteration.
4 Get a basis V+ of range(S + I) and V− such that V0 =

[
V+ V−

]
is

(Σ,Σ0)-orthogonal with Σ0 =

[
Σ+

Σ−

]
. Then

V †0 AV0 =

[
A11 0
0 A22

]
, Σ+A11 = (Σ+A11)T, Σ−A22 = (Σ−A22)T.

5 Repeat spectral divide-and-conquer for A11 with Σ := Σ+, i.e. find
(Σ+,Σ1)-orthogonal V1 such that V †1 A11V1 = D11 is diagonal.

6 Repeat spectral divide-and-conquer for A22 with Σ := Σ−, i.e. find
(Σ−,Σ2)-orthogonal V2 such that V †2 A22V2 = D22 is diagonal.

7 V ← V0

[
V1 0
0 V2

]
, Σ̂←

[
Σ1

Σ2

]
, D ←

[
D11 0
0 D22

]
.

to a specific Σ, is preserved. These kind of matrices, i.e. (Σ, Σ̂)-orthogonal matrices,
where Σ̂ does not matter, are sometimes called “hyperexchange” (e.g. in [179, 180]).
These observations can be used to formulate a pseudosymmetric variant of Algo-

rithm 9.1, given in Algorithm 9.3. In this algorithm, the property preserved in the
spectral division is the pseudosymmetry. This means, that Σ does not stay fixed, but
is permuted and truncated in each division step.

9.3 Computing (Σ, Σ̂)-orthogonal representations of
subspaces

Symmetric spectral divide-and-conquer methods rely on variants of the QR decom-
position. The natural generalization in the indefinite context is the hyperbolic QR
decomposition (see Theorem 7.1). Similar to the orthogonal QR decomposition, it
can be computed by applying transformations that introduce zeros below the diago-
nal, column by column. Details are found in Section 7.2.2. In [163], the indefinite QR
decomposition, see Theorem 7.5, is presented, which improves stability by allowing
2 × 2 blocks on the diagonal of R and additional pivoting. This variant can also be
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9.3 Computing (Σ, Σ̂)-orthogonal representations of subspaces

computed via the LDLT decomposition of ATΣA; a link which was exploited in Chap-
ter 7 and Chapter 8. There, the stability of computations is improved by applying
this method twice.

In the context of this chapter we aim to compute the indefinite QR decomposition
of a pseudosymmetric projection matrix. We will see that in this special case, an
indefinite QR decomposition can be computed via the LDLT decomposition without
the need to form ATΣA. The deterioration of accuracy associated with forming ATΣA
is avoided and no “reothogonalization”, as presented in Chapter 7, is needed.

We start with an observation regarding the symmetric divide-and-conquer method.
Here, the matrix sign function computes a symmetric projection matrix, representing
an orthogonal projection.

Lemma 9.4:
P ∈ Rn×n is an orthogonal projection matrix, i.e. P 2 = P and P = PT, with rank r.
Let RTR = P , R ∈ Rr×n be a low-rank Cholesky factorization, where R has full row
rank. Then RT has orthogonal columns, i.e. RRT = Ir, and RTR = P is a thin QR
decomposition of P. ♦

Proof. Because P is positive semi-definite, the low-rank Cholesky factorization exists
[88]. From P = P 2 follows RTR = RTRRTR and therefore RRT = Ir.

Lemma 9.4 states that for projection matrices attained via the matrix sign function,
the low-rank Cholesky and the thin QR decomposition are equivalent.

Let P+ = 1
2
(In + sign(A)) be the projection on the subspace of A associated

with positive eigenvalues. The advantage of computing the (full) QR decomposi-

tion
[
Q+ Q−

] [R
0

]
is that you immediately get a basis Q− for the complementing

subspace, associated with negative eigenvalues. The Cholesky factorization applied in
the sense of Lemma 9.4 can only yield a thin QR decomposition. However, the same
procedure can be applied on P− = 1

2
(In − sign(A)). The two thin QR decompositions

can be combined to form a full one. Indeed, let Q+ and Q− be acquired from P+

and P− via Lemma 9.4. QT
+Q+ = I and QT

−Q− = I follow immediately from the
orthogonality proven in the lemma. From P+ = Q+Q

T
+ follows Q+

T = QT
+P+ and from

P− = Q−QT
− follows Q− = P−Q−. From the definition of the projectors in Lemma 2.22

we have P+P− = 0 and therefore QT
+Q− = Q+P

T
+P−Q− = 0.

The details are given in Algorithm 9.4. In step 3 we use the trace of a projection
matrix to determine its rank.

In the symmetric context, computing the QR decomposition like this does not have
an obvious benefit over computing a QR decomposition the standard way. It is even
pointed out in [168], that this way of computing the relevant subspaces may cause
numerical errors. With this notion in our minds, we hold back on fully recommending
this method in the general case. However, we use it to investigate a new pathway in the
indefinite context, to which it can be generalized. Here, an LDLT decomposition can
be used instead of a hyperbolic QR decomposition, which is a computational routine
much more widely used. Mature algorithms and well-maintained implementations are
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9 A structure-preserving spectral divide-and-conquer method

Algorithm 9.4: Compute orthogonal invariant subspace representations of a
symmetric matrix via Cholesky.
Data: A = AT ∈ Rn×n nonsingular.
Result: An orthogonal basis Q =

[
Q+ Q−

]
, where Q+ is a basis of the

invariant subspace of A associated with positive eigenvalues, Q− is a
basis of the invariant subspace of A associated with negative
eigenvalues.

1 S ← sign(A).
2 P+ ← 1

2
(In + S).

3 Compute rank of P+: r+ ← tr(P+).
4 Q1,+ ← chol(P+(1 : r+, 1 : r+)).

5 Q+ ←
[

Q1,+

P+(r+ + 1 : n, 1 : r+)Q−T1,+

]
.

6 P− ← 1
2
(In − S).

7 Compute rank of P−: r− ← n− r+.
8 Q1,− ← chol(P−(1 : r−, 1 : r−)).

9 Q− ←
[

Q1,−
P+(r− + 1 : n, 1 : r−)Q−T1,−

]
.

available and ready to use, e.g. in MATLAB as the command ldl. Details are given
in the following lemma.

Lemma 9.5:
Σ is a given signature matrix, P ∈ Rn×n is a projection matrix and pseudosymmetric
with respect to Σ, i.e. P 2 = P and ΣPΣ = PT, with rank r. Let RT Σ̂R = ΣP ,
R ∈ Rr×n be a scaled low-rank LDLT factorization, where R has full row rank and
Σ̂ ∈ Rr×r is another signature matrix. Then RT is (Σ, Σ̂)- orthogonal„ i.e. RΣRT = Σ̂,
and HR = P with H = ΣRTΣ̂ is a decomposition of P, where H is (Σ, Σ̂)-orthogonal.♦

Proof. With P = ΣRTΣ̂R and P = P 2 it follows ΣRTΣ̂R = ΣRTΣ̂RΣRTΣ̂R and
therefore

Σ̂ = Σ̂RΣRTΣ̂. (9.5)

or equivalently

Σ̂ = RΣRT.

We used Σ̂2 = Ir. Equation (9.5) is equivalent to H := R† = ΣRTΣ̂ being (Σ, Σ̂)-
orthogonal: HTΣH = Σ̂. So we have a decomposition P = ΣRTΣ̂R = HR.

If R in Lemma 9.5 is computed with the Bunch-Kaufman algorithm [51] (e.g. MAT-
LAB ldl), it can be a permuted block-triangular matrix. Then P = HR is an indefi-
nite QR decomposition given in Theorem 7.5. The shape of R is not important in the
given context as we are only interested in the subspace representation given by H.
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Algorithm 9.5: Compute hyperbolic invariant subspace representations of a
pseudosymmetric projection matrix via LDLT.
Data: Signature matrix Σ, A = ΣATΣ ∈ Rn nonsingular.
Result: A signature matrix Σ̂, which is a permuted variant of Σ,

a (Σ, Σ̂)-orthogonal basis Q =
[
Q+ Q−

]
, i.e. QTΣQ = Σ̂, where Q+

is a basis of the invariant subspace of A associated with positive
eigenvalues, Q− is a basis of the invariant subspace of A associated
with negative eigenvalues.

1 S ← sign(A).
2 P+ ← 1

2
(In + S).

3 Compute rank of P+, r+ ← tr(P+).
4 [L+, D+]← ldl(ΣP+).
5 Diagonalize D+ if it has blocks on the diagonal: [V+, D+]← eig(D+), such

that D+(1 : r+, 1 : r+) contains the nonzero diagonal values of D+.
6 R+ ← (L+V+(:, 1 : r+)D+(1 : r+, 1 : r+)

1
2 )T, Σ̂+ ← sign(D+(1 : r+, 1 : r+)).

7 P− ← 1
2
(In − S).

8 Compute rank of P−, r− ← n− rp.
9 [L−, D−]← ldl(ΣP−).

10 Diagonalize D− if it has blocks on the diagonal: [V−, D−]← eig(D−), such
that D−(1 : r−, 1 : r−) contains the nonzero diagonal values of D−.

11 R− ← (L−V−(:, 1 : r−)D−(1 : r−, 1 : r−)
1
2 )T, Σ̂− ← sign(D−(1 : r−, 1 : r−)).

12 Σ̂← diag(Σ+,Σ−)

13 Q+ ← ΣRT
+Σ̂, Q− ← ΣRT

−Σ̂.

The indefinite variant of Algorithm 9.4 is given in Algorithm 9.5. In contrast to the
MATLAB chol command, the ldl command is not bothered by singular matrices,
such as the given projectors. This is why steps 5 and 9 in Algorithm 9.4 do not have
a correspondence in Algorithm 9.5. The Cholesky-based algorithm (Algorithm 9.4)
computes the Cholesky factorization of the upper left block and expands it in order
to get a low-rank version. The LDLT-based algorithm (Algorithm 9.5) on the other
hand computes an LDLT decomposition of the whole matrix and truncates it in Steps
6 and 11. In a performance-aware implementation this approach may be reconsidered
to decrease the number of necessary operations. Within this thesis we are mainly
interested in a prototypical implementation. This way, we see if the approach is
promising, possibly directing further research endeavors.

9.4 Definite pseudosymmetric matrices

In this section, we consider pseudosymmetric matrices with an additional property.
We call a pseudosymmetric matrix A with respect to a signature matrix Σ definite
if ΣA is positive definite. The matrices resulting from the Bethe-Salpeter equation
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(BSE) approach in computational quantum physics often fulfill this property, specified
in property (4.3).

9.4.1 Decoupling the indefinite eigenvalue problem into two
symmetric definite problems

In the following, we explain how the spectral divide-and-conquer algorithm described
in Section 9.2.3 simplifies for definite pseudosymmetric matrices. The problem is
reduced to two Hermitian positive definite eigenvalue problems after just one spectral
division step.

As a first result, we present the following theorem, clarifying the spectral structure
of definite pseudosymmetric matrices. It is an extension of Theorem 4.5, additionally
clarifying the structure of the eigenvectors, and a more general variant of Theorem
3 in [159]. Our version is independent of the additional structure of Bethe-Salpeter
matrices given in (4.1) and (4.2). It can be proven in a similar fashion relying on the
simultaneous diagonalization of ΣA and Σ.

Theorem 9.6:
Let A ∈ Kn×n be a definite pseudosymmetric matrix with respect to Σ, where Σ has p
positive and n−p negative diagonal entries. Then A has only real, nonzero eigenvalues,
of which p are positive and n− p are negative. There is an eigenvalue decomposition

AV = V Λ, Λ = diag(λ1, . . . , λn) ,

where λ1, . . . , λp > 0, and λp+1, . . . , λn < 0, such that

V ∗ΣV =

[
Ip
−In−p

]
. (9.6)

♦

Proof. The first part of the proof is given in the proof of Theorem 4.5. We see, that
there are eigenvectors of A, given as a matrix X, that fulfill

XHΣX = Λ, (9.7)

where Λ contains the eigenvalues of A. They are all real and nonzero. The columns of
X can be arranged such that the positive eigenvalues are given in the upper left part
of Λ and the negative ones are given in the lower right part. It is left to observe that
due to (9.7), X can be scaled in form of V := X|Λ|− 1

2 , where |.| denotes entry-wise
absolute values, such that (9.6) holds.

For pseudosymmetric matrices that are definite, the structure-preserving spectral
divide-and-conquer algorithm (Algorithm 9.3) shows a special behaviour we exploit.
Generally, after one step of spectral division, we get two smaller matrices that are
pseudosymmetric with respect to two submatrices of the original signature matrix
Σ, denoted Σ+ and Σ− in Algorithm 9.3. The p positive and the n − p negative
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values on the diagonal of Σ split up in an unpredictable way. For definite matrices,
they split up neatly: The positive values gather in Σ+ = Ip and the negative values
gather in Σ− = −In−p. After spectral division, the upper left block A11 is definite
pseudosymmetric with respect to Ip, i.e. symmetric positive definite. The lower right
block A22 is definite pseudosymmetric with respect to −In−p, i.e. symmetric negative
definite. The theory explaining this behavior is given in the following theorem.

Theorem 9.7:
Let A ∈ Kn×n be a definite pseudosymmetric matrix with respect to Σ with p positive
and n − p negative diagonal values. Let H be a basis of the invariant subspace of
A associated with the p positive (respectively n − p negative) eigenvalues, such that
H∗ΣH = Σ̂, where Σ̂ is another signature matrix. Then H†AH is Hermitian positive
(respectively negative) definite and Σ̂ = Ip (respectively Σ̂ = −In−p). ♦

Proof. We first show that Σ̂ = Ip. Let AV = V Λ be the eigenvalue decomposition
given in Theorem 9.6. Let Vp =

[
v1 . . . vp

]
denote the first p columns of V , associated

with the positive eigenvalues Λ+ = diag(λ1, . . . , λp). Then AV+ = V+Λ+ and

V ∗+ΣV+ = Ip. (9.8)

As H spans the same subspace as V+ there must be X ∈ Kp×p such that H = V+X.
Then H∗ΣH = X∗V ∗+ΣV+X = X∗X ≥ 0. The only signature matrix with this
property is the identity. Then it holds H† = H∗Σ and therefore

H†AH = H∗ΣAH

is Hermitian positive definite, as ΣA is Hermitian positive definite. Concerning the
negative eigenvalues it can be shown, that Σ̂ = −In−p and therefore

H†AH = −H∗ΣAH

is Hermitian negative definite.

Theorem 9.7 greatly simplifies the divide-and-conquer method for definite pseu-
dosymmetric matrices (Algorithm 9.3). We only need one spectral division step and
can then fall back on existing algorithms for symmetric positive matrices. They can
be of the divide-and-conquer variety, e.g. developed in [133], but do not have to be.
In a high-performance setting, parallelized algorithms implemented in libraries such
as ELPA [119] can be used.

9.4.2 Computing (Σ, Σ̂)-orthogonal representations

The computation of pseudoorthogonal subspace representations described in Section
9.3 also simplifies. In step 6 of Algorithm 9.5 the smaller signature matrix Σ+ related
to the subspace associated with positive eigenvalues, is computed by taking the signs
of the diagonal matrix D of the previously computed LDLT decomposition. Because
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Algorithm 9.6: Compute (Σ, Σ̂)-orthogonal invariant subspace representa-
tions of a definite pseudosymmetric projection matrix via Cholesky.
Data: Signature matrix Σ with r+ positive and r− negative diagonal values,

A ∈ Rn, such that ΣA is symmetric positive definite.
Result: A (Σ, Σ̂)-orthogonal basis Q =

[
Q+ Q−

]
, where Σ̂ = diag

(
Ir+ ,−Ir−

)
,

i.e. QTΣQ = Σ̂, where Q+ is a basis of the invariant subspace of A
associated with positive eigenvalues, Q− is a basis of the invariant
subspace of A associated with negative eigenvalues.

1 S ← sign(A).
2 P+ ← 1

2
(In + S).

3 Q1,+ ← chol(Σ(1 : r+, 1 : r+)P+(1 : r+, 1 : r+)).

4 Q+ ←
[

Σ(1 : r+, 1 : r+)QH
1,+

P+(r+ + 1 : n, 1 : r+)Q−1
1,+

]
.

5 P− ← 1
2
(In − S).

6 Q1,− ← chol(−Σ(1 : r−, 1 : r−)P−(1 : r−, 1 : r−)).

7 Q− ←
[

Σ(1 : r−, 1 : r−)QH
1,−

P−(r− + 1 : n, 1 : r−)Q−1
1,−

]
.

of Theorem 9.7 we know, that Σ+ = Ip. The LDLT decomposition was taken of ΣP+,
which hence must be positive semidefinite. Therefore, the LDLT decomposition can
be substituted by a low-rank Cholesky factorization, similar to the symmetric case
described in Algorithm 9.4. The computation of the rank (Step 3 in Algorithm 9.5)
is omitted because we know that A has as many positive eigenvalues as Σ has pos-
itive diagonal values according to Theorem 9.6. The operations are summarized in
Algorithm 9.6.

Numerical experiments (in particular examples from electronic structure theory,
presented in Section 9.5.2) show that Algorithm 9.6 can break down due to roundoff
errors in floating point arithmetic. This happens, when numerical errors lead to ΣP+

having negative eigenvalues or ΣP− having positive eigenvalues, such that the Cholesky
decomposition breaks down. In order to intercept this case, we implement a more
robust variant based on a truncated LDLT decompositions given in Algorithm 9.7.

9.5 Numerical experiments

In this section we apply one step of spectral divide-and-conquer (Algorithm 9.3) on
definite pseudosymmetric matrices. The matrix sign function is computed by the
hyperbolic Zolo-PD algorithm (Algorithm 8.3), or algorithms based on the ΣDWH
iteration presented in Chapter 8 or a Newton iteration with suboptimal scaling pre-
sented in [61]. We expect these algorithms to show the same convergence properties
as in the symmetric case, due to Corollary 8.6. Zolo-PD should converge in 2 steps,
ΣDWH in 6 steps and Newton in 9 steps. We compute (Σ, Σ̂)-orthogonal subspace
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Algorithm 9.7: Robust computation of (Σ, Σ̂)-orthogonal invariant subspace
representations of a definite pseudosymmetric projection matrix via LDLT.
Data: Signature matrix Σ with r+ positive and r− negative diagonal values,

A ∈ Rn, such that ΣA is symmetric positive definite.
Result: A(Σ, Σ̂)-orthogonal basis Q =

[
Q+ Q−

]
, where Σ̂ = diag

(
Ir+ ,−Ir−

)
,

i.e. QTΣQ = Σ̂, where Q+ is a basis of the invariant subspace of A
associated with positive eigenvalues, Q− is a basis of the invariant
subspace of A associated with negative eigenvalues.

1 S ← sign(A) .
2 P+ ← 1

2
(In + S).

3 [L+, D+]← ldl(ΣP+).
4 Diagonalize D+ if it has blocks on the diagonal: [V+, D+]← eig(D+), such

that the diagonal entries of D+ are given in descending order.

5 Q+ ← ΣL+V+(:, 1 : r+)D
1
2
+(1 : r+, 1 : r+).

6 P− ← 1
2
(In − S).

7 [L−, D−]← ldl(−ΣP−).
8 Diagonalize D− if it has blocks on the diagonal: [V−, D−]← eig(D−), such

that the diagonal entries of D− are given in descending order.

9 Q− ← ΣL−V−(:, 1 : r−)D
1
2
−(1 : r−, 1 : r−).

representations used in the spectral division, We use Algorithm 9.6 in Examples 1 and
2 and compare Algorithm 9.6 and 9.7 in Examples 3 and 4. The experiments were
performed on a laptop with an Intel® Core™ i7-8550U processor, running with 1.8
GHz on 4 cores, using MATLAB R2018a.

9.5.1 Random pseudosymmetric matrices

The goal of our first numerical experiment is to determine the achieved accuracy for
different methods computing the matrix sign function.

Example 1 Σ is a signature matrix, where the diagonal values are chosen to be
1 or −1 with equal probability. Given a number κ = cond(A), we generate real
250× 250 matrices as A = ΣQDQT. D is a diagonal matrix containing equally spaced
values between 1 and κ. Q is a random orthogonal matrix (Q=orth(rand(n,n))
in MATLAB). We perform 10 runs for different randomly generated matrices and
compare the backward error represented by ‖QT

+ΣAQ−‖F/‖A‖F, that is achieved by
the different methods described in Chapter 8.

The averaged results are given in Figure 9.1. All methods yield backward errors
smaller than 10−9, even for badly conditioned matrices. All show a similar behavior.
Hyperbolic Zolo-PD shows the highest backward error. Compared to the DWH-based
iteration, this is expected, because Zolotarev functions of higher order are used. The
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9 A structure-preserving spectral divide-and-conquer method

Figure 9.1: Example 1 : Average residual after one spectral divide-and-conquer step,
for 10 random matrices of size 250× 250 with certain condition numbers.
Different methods are used for computing the matrix sign function.
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direct application of Zolotarev functions of high degree is known to be unstable [131].
In the indefinite setting, this phenomenon seems to appear sooner than in the stan-
dard setting described in [131]. The accuracy of DWH can be improved by employing
permuted Lagrangian graph bases. This way, the accuracy is comparable to a Newton
approach [61]. Permuted Lagrangian graph bases can also be employed for Zolotarev
iterations of higher order, which may be explored in future work. Figure 9.2 displays
the data of the individual runs of the same experiment. Here we see, that even badly
conditioned matrices often achieve a backward-error of 10−14, but some outliers in-
crease the average. Further investigations are required in order to answer the question
of what backward error can be achieved for a given matrix, The red crosses denote
the matrices of a given κ for which hyperbolic Zolo-PD performed worst. We see, that
for the same matrices, ΣDWH with LDLIQR2 and the Newton iteration also perform
worse than on other matrices generated in the same way. The quality therefore seems
innate to the considered matrix. When PLG bases are employed, this relation can not
be observed as clearly but is still noticeable.

The second example provides first insights on the performance which can be ex-
pected by using different methods.
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9.5 Numerical experiments

Figure 9.2: Example 1 : Residuals after one step of spectral divide-and-conquer for
10 runs with randomly generated matrices of size 250 × 250 with certain
condition numbers.
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(b) ΣDWH with LDLIQR2
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(c) ΣDWH with PLG bases
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(d) Newton

Example 2 A random matrix of size 5 000× 5 000 is generated as in Example 1. We
measure the number of iterations and the runtime using different methods to compute
the matrix sign function. We measure the runtime of the sequential implementation
of Zolo-PD, as well as the runtime resulting from its critical path. This means that
we only take the runtime of one of the r independent steps in each iteration, i.e.
the first lines in iterations (8.32) and (8.33), into account. The measured runtime
reflects a performance which can be achieved when these independent computations
are implemented in parallel. We compare it to runtimes achieved by ΣDWH based
on LDLIQR2 (Algorithm 7.1) and ΣDWH based on LDLT factorizations (iteration
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9 A structure-preserving spectral divide-and-conquer method

Table 9.1: Example 2: Number of iterations, runtimes and error for different methods
of spectral division for a matrix of size 5 000× 5 000.

κ 102 108 1012

# iterations

Hyperbolic
Zolo-PD 2 2 2

ΣDWH with
LDLIQR2

5 6 6

ΣDWH with
LDLT 5 6 not

converged
Newton 7 9 9

runtime is s

Hyperbolic
Zolo-PD (critical
path)

941.70
(298.66)

1136.91
(255.86)

1240.86
(257.70)

ΣDWH with
LDLIQR2

883.79 988.39 1067.43

ΣDWH with
LDLT 281.95 304.27 not

converged
Newton 355.05 379.38 416.19

backward error
‖QT

+ΣAQ−‖F
‖A‖F

Hyperbolic
Zolo-PD 7.42e-14 1.05e-11 1.78e-13

ΣDWH with
LDLIQR2

7.88e-14 2.81e-12 3.29e-13

ΣDWH with
LDLT 8.50e-14 1.38e-11 not

converged
Newton 1.70e-13 6.66e-13 1.01e-13

(8.18)), and the Newton iteration [61]. This iteration was also presented in Section 8.5.
The computation of PLG bases is not yet suited for large-scale performance-critical
algorithms, which is why it is not included in the comparison. The results are found
in Table 9.1.

The methods converge as expected and all except ΣDWH with LDLT show good ac-
curacy. We saw in Chapter 8 that ΣDWH with LDLT is unstable for badly conditioned
matrices. However, if it converges, it is the fastest among the measured methods. The
computational effort of one ΣDWH iteration based on LDLT is comparable to the
effort of one Newton iteration, that is also based on an LDLT factorization. ΣDWH
converges in up to 6 steps, and Newton uses up to 9 steps. If LDLIQR2 is employed
instead of LDLT in the ΣDWH, the computational effort doubles, as a second LDLT

decomposition is used for “reorthogonalization”. This makes it slower than the New-
ton iteration. If the critical path of the hyperbolic Zolo-PD is followed, an even lower
runtime can be achieved. It could be accelerated at the cost of stability, when LDLT
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Table 9.2: Example 3: Results for Bethe-Salpeter matrix computed for Lithium Fluo-
ride.

Hyperbolic
Zolo-PD

ΣDWH with
LDLIQR2

ΣDWH with
LDLT Newton

# iterations 2 5 5 7

Zolotarev rank 4 1 1 not applica-
ble

backward error
(Chol, Alg. 9.6) 1.02e-10 7.42e-11 9.62e-11 2.48e-10

backward error
(LDL, Alg. 9.7) 6.93e-18 7.26e-18 6.99e-18 1.48e-17

decompositions are used instead of LDLIQR2.

9.5.2 Applications in electronic structure computations

We now apply the developed method on two motivating examples concerning electronic
excitations in solids and molecules.

Example 3 The exciting package [86, 178] implements various ab initio methods
for computing excited states of solids or molecules, based on (linearized) augmented
planewave + local orbital ((L)APW+lo) methods. It can be used to compute the
optical scattering spectrum of Lithium Fluoride, based on the Bethe-Salpeter equa-
tion. The main computational effort in this example is to compute eigenvalues and
eigenvectors of a matrix of the form

HLF =

[
ALF BLF

−BLF −ALF

]
∈ C2560×2560, ALF = AH

LF , BLF = BH
LF .

HLF is a Bethe-Salpeter matrix of form II (see (4.2)). It is pseudohermitian with
respect to Σ = diag(In,−In) and additionally fulfills the definiteness property (4.3),
i.e. ΣHLF > 0. As pointed out in Lemma 4.6, the eigenvalues come in pairs of ±λ. One
step of spectral division results in a positive definite matrix, from which all eigenvalues
and eigenvectors can be reconstructed. We extracted the matrix from the FORTRAN-
based exciting code as a test example for our MATLAB-based prototype.

The results in Table 9.2 show that convergence is achieved in a limited number
of iterations for all methods as expected. The reported backward error ‖Q

T
+ΣAQ−‖F
‖A‖F

depends largely on the chosen method for computing a hyperbolic subspace represen-
tation. The Cholesky-based method does not work well. The eigenvalues smallest in
modulus easily “pass over”, such that the computed quantities ΣP+ or −ΣP− have neg-
ative eigenvalues. The Cholesky-based method in Algorithm 9.6 does not accurately
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Table 9.3: Example 4: Results for Bethe-Salpeter matrix computed for N2H4.

Hyperbolic
Zolo-PD

ΣDWH with
LDLIQR2

ΣDWH with
LDLT Newton

# iterations 2 5 5 7

Zolotarev rank 5 1 1 not applica-
ble

backward error
(Chol, Alg. 9.6) 1.19e-18 9.23e-19 1.46e-17 2.04e-18

backward error
(LDL, Alg. 9.7) 1.22e-18 9.62e-19 1.46e-17 2.13e-18

capture this behavior, while the LDLT-based method in Algorithm 9.7 alleviates the
effect through pivoting.

All methods for computing the matrix sign function work equally well concerning
accuracy because HLF is well conditioned (cond(HLF ) ≈ 10).

Example 4 In [35, 32] a Bethe-Salpeter approach is explored in the context of tensor-
structured Hartree-Fock theory for molecules [148]. We consider the N2H4 example
in [35]. With real-valued orbitals the derivation arrives at a structured eigenvalue
problem similar to Example 3, but with real values.

HN2H4 =

[
AN2H4 BN2H4

−BT
N2H4

−AT
N2H4

]
∈ R1314×1314, AN2H4 = AT

N2H4
, BN2H4 ≈ BT

N2H4
.

While the original derivation in [148] yields a symmetric off-diagonal block B, in the
construction in [35], this property is lost. The property of pseudosymmetry, however,
is not affected, making our developed method applicable.

Numerical results of the spectral division are found in Table 9.3. All methods
yield good results due to cond(HN2H4) ≈ 5. In contrast to Example 3, no problem
occurs, when the Cholesky decomposition is used for computing hyperbolic subspace
representations. An explanation is probably linked to the fact that real matrices
instead of complex ones are considered but requires further investigation.

Figure 9.4 corresponds to Figure 2 in [35] and displays absolute values of the eigen-
values of HN2H4 . The red crosses denote the eigenvalues of the positive definite matrix
resulting after one step of spectral division (A11 in Algorithm 9.3). The remaining
eigenvalues have (approximately) equal modulus, but opposite sign and are found as
the eigenvalues of the negative definite matrix (A22 in Algorithm 9.3).

9.6 Conclusions

We presented a generalization of the well-known spectral divide-and-conquer approach
for the computation of eigenvalues and eigenvectors of pseudosymmetric matrices.
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Figure 9.4: Example 4 : Absolute values of eigenvalues corresponding to N2H4.
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In particular, when matrices with additional definiteness properties are considered,
many parallels to the symmetric divide-and-conquer method become apparent. These
parallels allow a computation of the matrix sign function, the key element for spectral
division approaches, in just two iteration, using Zolotarev functions. Furthermore, the
eigenvalue problem is decoupled into two smaller symmetric eigenvalue problems that
can be solved with existing techniques. The presented algorithm is a promising new
approach in the field of computing electronic excitations.

As we presented a completely new approach for structured eigenvalue computations,
naturally, many possible future research directions open up as a consequence of this
work. The numerical behavior of the subspace computations (Algorithms 9.6 and
9.7) is not yet fully understood, as the examples presented in Section 9.5.2 show.
Regarding the applications concerning electron excitation, the matrices (4.1) and (4.2)
show even more structure than has been exploited in the presented methods. Making
the proposed iterations aware of these structures, such that they operate directly on
the matrix blocks A and B, is a direction towards more efficient methods.
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10.1 Summary

In this thesis, various algorithms related to structured matrices have been developed.
Figure 10.1 gives an overview of its contents in form of a flow chart. It asks questions
about the nature and form of the computational problem at hand and guides the
reader to the section of this thesis where related material is found. Furthermore, it
shows the interdependencies of the chapters. Naturally, the chart is limited to the
scope of this thesis. It is not meant to imply, that the given algorithms are the best or
only possible solution strategies but represents the contents of this thesis in structured
form.

As pointed out at numerous points in this work, the main motivation is drawn
from finding solutions to structured eigenvalue problems. Three different structures
are considered: skew-symmetric, Bethe-Salpeter and pseudosymmetric matrices. A
Bethe-Salpeter matrix can come up in two forms, which we called form I and form
II. The connections between the three structures are the following. A Bethe-Salpeter
eigenvalue problem of form I (4.1), as long as the matrix fulfills the definiteness con-
dition (4.3), can be transformed to a skew-symmetric eigenvalue problem. An HPC
implementation of a suitable algorithm was developed in Chapter 5. Bethe-Salpeter
matrices, both form I and form II, are members of the more general class of pseudosym-
metric matrices. For this class of matrices, a structure-preserving divide-and-conquer
method has been developed in Chapter 9. While the efforts to solve skew-symmetric
eigenvalue problems resulted in a production-level code implemented in the HPC li-
brary ELPA, this is not yet the case for the proposed algorithm for pseudosymmetric
matrices. However, there is a justified hope, that it could show good performance in
an HPC implementation due to its inherent parallelism and the use of communication-
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avoiding elements.
The generalized polar decomposition (Chapter 8) is used as a tool in the structured

divide-and-conquer method. The generalized QR decomposition (Chapter 7), more
specifically the hyperbolic (or indefinite) QR decomposition, is used as a tool for
computing the generalized polar decomposition. Both may be studied in their own
right and have potential other areas of applications.

Chapters 2, 3 and 4 do not appear in Figure 10.1 because they do not provide
algorithms. They provide foundations for the presented chapters. The mathematical
preliminaries (Chapter 2) are referred by all chapters. The chapters dealing exclusively
with Bethe-Salpeter eigenvalue problems (Chapters 5 and 6) refer to the physical
foundations (Chapter 3) and to mathematical results regarding the matrix structure
(Chapter 4). Chapters 2 and 3 compile known theory, while Chapter 4 provides new
results.

10.2 Future research

As becomes apparent in Figure 10.1, this thesis developed various algorithms related to
the solution of structured eigenvalue problems. Apart from the HPC implementation
presented in Chapter 5, all algorithms exist as prototypical MATLAB implementa-
tions. They do not yet exploit the available parallelism and are not optimized to run
on high performance architectures. The additional implementation effort is significant
and may be tackled in future work.

In this process, further algorithmic developments may be developed, as pointed out
in the final sections of each chapter. One example is a mix-and-match approach in
the iteration for computing the generalized polar decomposition (see Chapter 8). We
considered various ways on how to realize the proposed iterations. Future efforts can
be directed towards finding the optimal realization for different iteration steps. This
combination will depend on the circumstances and may combine the benefits of the
different realizations.

Another way towards further improvements in the structured divide-and-conquer
method applied on Bethe-Salpeter matrices, is to exploit the additional structure
during the iterations for computing the generalized polar decomposition.

The starting points of this thesis were structured matrices that have been acquired
in electronic structure calculations as presented in Chapter 3. Here, we have seen,
that the formation of these matrices follows many steps of physical and mathematical
considerations. The access point to apply concepts from applied mathematics, and
numerical linear algebra in particular does not have to be located after the formation
of extremely large matrices. Instead, methods for dimensionality reduction should be
considered in order to deduce the resulting computational load. If smaller matrices of
a similar structure result from this process, the algorithms proposed in this thesis can
be applied as a final step.

Any developments in this direction, working at the interconnections of physics and
applied mathematics, require strong interdisciplinary collaborative efforts.
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Figure 10.1: Summary of this thesis as a flow chart.
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