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Abstract
In this paper we investigate, from a graph theoretical point of view, the notion of accept-
ability in Dung semantics for abstract argumentation frameworks. We advance the state of
the art by introducing and analyzing combinatorial structures exploited for taming, in par-
ticular cases, the exponential blowout of acceptance algorithms. We conclude the paper by
a series of observations allowing to deepen the intuition with respect to the practical use of
Dung acceptance based semantics.
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1 Introduction

Dung’s Theory of Formal Argumentation [13] is founded on admissible sets in argumen-
tation frameworks. An argumentation framework is a digraph with vertices interpreted as
(abstract) arguments and directed edges as attacks between arguments. A set S of argu-
ments in an argumentation framework is an admissible set if it is conflict-free – that is,
there is no attack between members of S– and, for any attack from an argument a outside
S on an argument b in S, there is an argument in S attacking a. In order to make a distinc-
tion among acceptable and unacceptable arguments in a given argumentation framework,
Dung defined the admissibility-based semantics, using different families of admissible sets
(referred as extensions) and representing sets of collectively accepted arguments. Most deci-
sion problems concerning the acceptability of a specified argument in a given argumentation
framework (also referred as reasoning tasks) was later proved to be NP-complete, �P

2 -
complete, or �P

2 -complete: [9, 12, 16], see also the survey [18]. In order to speed-up the
exponential combinatorial search to solve them, we make in this paper a graph-theoretical
in-depth study of the family of admissible sets in Dung’s Argumentation Frameworks.
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The two main contributions of this paper are as follows:

1. In Section 3 we prove that if a set of arguments A in an argumentation framework D

induces an argumentation framework having exactly one preferred extension (maxi-
mal admissible set), then there is also a unique maximal admissible set in D contained
in A (Theorem 1). The above hypothesis holds trivially for A = S, where S is a
conflict-free set in the argumentation framework D. The unique maximal admissible
set in D contained in S, denoted Sadm, is called the admissibility basis of the conflict-
free set S. Ideal extension, [14], or eager extension, [6], are admissibility basis of the
intersection of all preferred extensions, respectively of all semi-stables extensions (The-
orem 2, Remark 1). We show (in Theorem 3) that the admissibility basis of a given
conflict-free set can be found in polynomial-time (with respect to the number of argu-
ments in the argumentation framework containing this conflict-free set). Using this,
we develop an efficient algorithm for skeptical acceptance of a given argument in a
bipartite argumentation framework (Lemma 1, Proposition 1, Theorem 4).

2. In Section 4 we consider a specific family of conflict-free sets, out-and-out conflict-free
sets. A conflict-free set S is out-and-out if any argument outside S is either attacked by
an argument in S or is attacked by an argument attacked by S. We give a linear algorithm
to construct such a conflict-free set in a given argumentation framework (Theorem 5
and its proof) and show that if the argumentation framework is transitive (that is, for
any distinct arguments a, b, c, if a attacks b and b attacks c, then a attacks c) then any
out-and-out conflict-free set is a stable extension (Theorem 6) and, as a consequence,
any preferred extension is a stable extension. The same result can be extended to what
we call near-transitive argumentation framework (Theorem 7), that is argumentation
framework in which for any intransitive triple a, b, c (three distinct arguments a, b, c

with a attacking b, b attacking c, and a not attacking c), if c attacks an argument d , then
the set {a}∪{d} is not conflict-free. We show that in general argumentation frameworks
any preferred extension is contained in an out-and-out conflict-free set (Theorem 8).
We call such an out-and-out conflict-free set sound and deduce that the ideal extension
is the admissibility basis of the intersection of all sound out-and-out conflict free sets
(Proposition 3).

In Section 5 we further our analysis by a set of observations meant to deepen practi-
cal insights when employing admissibility based semantics in applications. We discuss the
asymmetry in the strength of attacks when they are used to defeat or to attack a conflict-
free set in an argumentation framework. Also, we introduce a decomposition of the set of
arguments outside of a conflict free set S into different sets of arguments determined by the
number of attacked and attacking arguments from S. This fine-grained decomposition can
be used as a dynamic labeling of the arguments in the search algorithms for deciding the
acceptability of a given argument, and also to define a score to distinguish between different
extensions of the same type. We conclude the paper with Section 6.

2 Background

In this section we present the basic concepts used for defining classical semantics in abstract
argumentation frameworks introduced by Dung in 1995, [13].

Definition 1 [13] An argumentation framework is a digraph D = (ARG(D),

ATT(D)), where the vertices in ARG(D) are called arguments and, if (a, b) ∈ ATT(D)
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is a directed edge, then (a, b) is called an attack and referred as: argument a attacks
argument b, argument b is attacked by argument a, and a is an attacker of b. The set of
attackers of an argument a ∈ ARG(D) is denoted by a−, and the set of arguments attacked
by a is denoted by a+. If S ⊆ ARG(D) then S− = ∪a∈S a− and S+ = ∪a∈S a+. The
set of arguments S defends an argument a if a− ⊆ S+ (i.e., any a’s attacker is attacked
by an argument in S). The set of arguments defended by a set of arguments S ⊆ ARG(D)

is denoted by F(S). The map F , assigning to each set of arguments, S, the set F(S) of
arguments defended by S, is called the characteristic function.

A conflict-free set in D is a set S ⊆ ARG(D) such that S+ ∩ S = ∅. An admissible set
is a conflict-free set such that S− ⊆ S+.

An admissible set S is called a complete extension if F(S) = S. A preferred extension
is a maximal (w.r.t. set inclusion) complete extension. A grounded extension is a minimal
(w.r.t. set inclusion) complete extension. A stable extension is a conflict-free set S such
that ARG(D) − S = S+. An argument a ∈ ARG(D) is credulously admissible acceptable
in D if there is an admissible set S such that a ∈ S.

For σ ∈ {complete, grounded, preferred, stable}, an argument a ∈ ARG(D) is cred-
ulously σ -acceptable in D if there is a σ extension S such that a ∈ S. An argument
a ∈ ARG(D) is skeptically acceptable w.r.t. preferred semantics in D if it belongs to
each preferred extension.

Definition 2 (Other admissibility based semantics) Let D be an argumentation framework.

– [14] The ideal extension of D is the unique maximal (w.r.t. set-inclusion) admissible
set contained in every preferred extension in D.

– [5] A semi-stable extension in D is a complete extension S with the property that
S ∪ S+ is maximal w.r.t. set-inclusion (if T is a complete extension in D such that
S ∪ S+ ⊆ T ∪ T +, then S ∪ S+ = T ∪ T + ).

– [6] The eager extension of D is the unique maximal (w.r.t. set-inclusion) admissible
set contained in every semi-stable extension in D.

Throughout this paper we consider only finite argumentation frameworks (that is, argu-
mentation frameworks D with ARG(D) finite) without self-attacking arguments (that is,
there is no argument a ∈ ARG(D) with (a, a) ∈ ATT(D)). Also if D is an argumenta-
tion framework and A ⊆ ARG(D), then we denote by D[A] the argumentation framework
(induced in D by A) with ARG(D[A]) = A and ATT(D[A]) = A×A∩ATT(D). We prefer
this notation although most authors use D ↓A.

3 Admissibility basis

Let S ⊂ ARG(D) be an admissible set in the argumentation framework D. It is not difficult
to see that S remains an admissible set in the argumentation framework D[A], for any set
of arguments A such that S ⊆ A ⊆ ARG(D). However, if S is a maximal admissible set in
D contained in A (i.e., if T ⊆ A is an admissible set in D and S ⊆ T , then S = T ) it is
possible that S is not a preferred extension in D[A]. Nevertheless, if D[A] has exactly one
preferred extension, then there is also a unique maximal admissible set in D contained in
A, as the following theorem shows.
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Theorem 1 (Unique maximal admissible set contained in a set inducing an argumentation
framework with exactly one preferred extension)

Let A ⊂ ARG(D) be a set of arguments in the argumentation framework D such that
D[A] has exactly one preferred extension. Then, there is Aadm ⊆ A, an admissible set in D

that contains any admissible set in D contained in A.

Proof LetA be the set of all admissible sets S in D satisfying S ⊆ A.A is non-empty since
∅ ∈ A. Let Aadm = ∪S∈AS. We show that Aadm is an admissible set in D.

Clearly, Aadm ⊆ A. Since each S ∈ A is an admissible set in D, we have S− ⊆ S+.
Hence (Aadm)− = ∪S∈AS− ⊆ ∪S∈AS+ = (Aadm)+. It remains to prove that Aadm is a
conflict-free set.
Let P ⊆ A the unique preferred extension of D[A]. For each S ∈ A we have S− ⊆ S+,
hence S− ∩ A ⊆ S+ ∩ A. Also, S remains conflict-free in D[A]. It follows that each S ∈ A
is a subset of P . Therefore Aadm ⊆ P , and therefore it is a conflict-free set.

Prominent examples of sets A satisfying the hypothesis of the above theorem are those
with the property that there is no even circuit in D[A] (by a result of [16]) and conflict-
free sets. The case of conflict-free sets deserves a particular investigation as the rest of this
section shows.

Theorem 2 (Admissible basis of a conflict-free set)
Let S ⊂ ARG(D) be an arbitrary conflict-free set in the argumentation framework D.

There is an admissible set Sadm ⊆ S that contains any admissible set contained in S.
Moreover, if S satisfies F(S) ⊆ S, then Sadm is a complete extension.

Proof Since S is a conflict-free set in D, we have ATT(D[S]) = ∅, S is the unique preferred
extension inD[S], and Theorem 1 applies. For the second assertion, we prove that if F(S) ⊆
S then F(Sadm) = Sadm. Indeed, since Sadm is an admissible set, we have Sadm ⊆ F(Sadm).
Let a ∈ F(Sadm). From Sadm ⊆ S, we have F(Sadm) ⊆ F(S). By hypothesis F(S) ⊆ S,
hence a ∈ S. It follows that Sadm ∪ {a} ⊆ S is a conflict-free set and because a ∈ F(Sadm)

and Sadm is an admissible set we obtain that Sadm ∪ {a} is an admissible set contained in S.
Therefore Sadm ∪ {a} ⊆ Sadm, that is a ∈ Sadm. Hence F(Sadm) ⊆ Sadm.

By the proof of Theorem 2, Sadm is unique and will be referred to as the admissible basis
of the conflict-free set S. Its significance is revealed by the following remark (see also [17]).

Remark 1 (Ideal and Eager Semantics) Let D be an argumentation framework.

– [14] If S is the conflict free set obtained by intersecting all preferred extensions of D,
then its admissible basis, Sadm, is the ideal extension of D.

– [6] If S is the conflict free set obtained by intersecting all complete extensions T of D

with the property that T ∪ T + are maximal with respect to set-inclusion (semi-stable
extensions), then its admissible basis, Sadm, is the eager extension of D.

By Theorem 2, we can define a function S → Sadm, which associates to each conflict
free set S its admissible basis Sadm. Interesting enough, this function can be evaluated in
polynomial time, as the following theorem shows.
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Fig. 1 Bipartite argumentation framework

Theorem 3 (Computing the admissible basis) For every conflict-free set S in the argumen-
tation framework D, its admissible basis, Sadm, is given by the following algorithm:

Sadm ← S

while Sadm is not admissible do
Sadm ← Sadm − ((Sadm)− − (Sadm)+)+

return Sadm.

Proof If the current conflict-free set, Sadm, is an admissible set, then the algorithm returns
it. Otherwise, the set (Sadm)− − (Sadm)+, of attackers of Sadm that are not counterattacked
by Sadm, is not empty. The arguments of Sadm attacked by this set can not be members
of any admissible set contained in Sadm. Hence they can be deleted from Sadm. At each
while iteration, at least one argument is deleted from the current conflict-free set, hence the
algorithm terminates.

We note that, when the uniqueness of the maximal (w.r.t. inclusion) admissible set con-
tained in S is assured, an equivalent (fixed point) form of the above algorithm is given in
[17].

Theorems 2 and 3 can be combined to decide in polynomial time the acceptability of
an argument in a bipartite argumentation framework. An argumentation framework D is
bipartite if ARG(D) is the disjoint union of two conflict-free setsL andR, ARG(D) = L∪̇R.
An example is given in Fig. 1, where L = {a1, a2} and R = {b1, b2, . . . , bn}. It is not
difficult to see that, in this case, we have Ladm = L and Radm = ∅.

Parts of the following lemma are well-known, but some of them are new. We prove all of
them for the sake of completeness.

Lemma 1 (Admissible sets in bipartite AFs)

i) (Graph theory folklore, [13]) In every bipartite argumentation framework there is a
stable extension.

ii) Let D be an argumentation framework, S ⊆ ARG(D) be an admissible set, and D′ =
D[ARG(D) − (S ∪ S+)]. If D′ is bipartite, then S is contained in a stable extension
of D.

iii) [16] In a bipartite argumentation framework any preferred extension is a stable
extension.
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iv) If S is an admissible set in the bipartite argumentation framework D, ARG(D) =
L∪̇R with L and R conflict-free sets, then SL = S ∩ L and SR = S ∩ R are both
admissible sets in D. Conversely, if SL ⊆ L and SR ⊆ R are admissible sets in D

and S = SL ∪ SR is a conflict-free set, then S is an admissible set in D.
v) Let D be a bipartite argumentation framework with bipartition ARG(D) = L∪̇R.

Then R − Radm ⊆ (Ladm)+ and L − Ladm ⊆ (Radm)+.

Proof i) We use induction on |ARG(D)|. In the inductive step, if every a ∈ ARG(D) =
L∪̇R satisfies a− �= ∅, then both L and R are stable extensions. Otherwise, let a ∈
ARG(D) with a− = ∅. The argumentation framework D′ = D[ARG(D) − ({a} ∪
a+)] has a stable extension S (by the induction hypothesis). Then, S ∪ {a} is a stable
extension in D.

ii) By i), D′ has a stable extension S′. Since S is an admissible set, it follows that S ∪ S′
is a stable extension in D.

iii) Let S be a preferred extension in the bipartite argumentation framework D. In the
above proof of ii) S is a subset of the stable extension S ∪ S′. The only possibility is
that S′ = ∅, that is ARG(D′) is empty, and, therefore, S is a stable extension.

iv) Since S is a conflict-free set and SL and SR are subsets of S, it follows that these
are also conflict-free sets. Since S is an admissible set, we have S− ⊆ S+, that is
S− ∩ L ∪ S− ∩ R ⊆ S+ ∩ L ∪ S+ ∩ R. Since S− ∩ L = S−

R , S− ∩ R = S−
L ,

S+ ∩ L = S+
R , and S+ ∩ R = S+

L , we obtain S−
R ∪ S−

L ⊆ S+
R ∪ S+

L . Since L and R

are disjoint, the last inclusion holds if and only if S−
R ⊆ S+

R and S−
L ⊆ S+

L . It follows
that SR and SL are admissible sets.
Conversely, since SL and SR are admissible sets, we have S−

L ⊆ S+
L and S−

R ⊆ S+
R .

Hence S− = S−
L ∪ S−

R ⊆ S+
L ∪ S+

R = S+. By hypothesis S is a conflict-free set,
therefore it is an admissible set in D.

v) Let S be a stable extension in D (by i), S exists). By iv), SL = S ∩L and SR = S ∩R

are admissible sets contained in L, respectively R, satisfying R − SR ⊆ S+
L . By

Theorem 2, SL ⊆ Ladm and SR ⊆ Radm. Hence, R − Radm ⊆ R − SR ⊆ S+
L ⊆

(Ladm)+. Similarly, we can prove that L − Ladm ⊆ (Radm)+ holds.

Proposition 1 (Admissible basis and bipartite credulous evaluation) The following algo-
rithm is correct:

Bipartite Credulous Acceptance
Input: a ∈ ARG(D) = L∪̇R; L and R conflict-free sets in D

Output: YES, if a is credulously accepted, NO, otherwise
if a ∈ L then S ← L else S ← R;
Compute Sadm;
if a ∈ Sadm then return YES else return NO.

Proof Suppose that a ∈ L, that is, S = L (the case a ∈ R is similarly). Then, by Lemma 1
iv), there is an admissible set T such that a ∈ T if and only if a ∈ TL. By Theorem 2, this
happens if and only if a ∈ Ladm.

We note that, essentially, the above algorithm has been previously also given in [16] (see
also [15]).
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Theorem 4 (Admissible bases and bipartite skeptical evaluation) The following algorithm
is correct:

Bipartite Skeptical Acceptance
Input: a ∈ ARG(D) = L∪̇R; L and R conflict-free sets in D

Output: YES, if a is skeptically accepted, NO, otherwise
if a ∈ L then S ← L, T ← R else S ← R, T ← L;
Compute Sadm;
if a �∈ Sadm then return NO ;
Compute T adm;
if a− ∩ T adm �= ∅ then return NO ;
return YES.

Proof Suppose that a ∈ L, that is, S = L and T = R (the case a ∈ R is similarly).
By the above theorem, if a �∈ Ladm then a is not credulously accepted, and the answer is
NO. Suppose a ∈ Ladm and there is a preferred extension U such that a �∈ U . Then, by
Lemma 1 iii), U is a stable extension and, therefore a− ∩ U �= ∅. By Lemma 1 iv), we have
a− ∩ UR �= ∅, and the algorithm returns NO, since a− ∩ UR ⊆ a− ∩ Radm, by Theorem
2. Hence if a ∈ Ladm and a− ∩ Radm = ∅, then every preferred extension contains a and,
therefore, the algorithm returns YES.

Please note that the above algorithm improves that given in [7] (see also, [15]), since it
avoids testing if there is an argument in a− that is credulously accepted, by the use of the
admissible bases. For example, testing if a1 is skeptical accepted in the bipartite argumenta-
tion framework in Fig. 1, needs only to compute Ladm = {a1, a2} and, since Radm = ∅, the
answer is positive. On the other hand, the algorithm in [7] requires O(n) credulously accep-
tance testing of the arguments bi ∈ a−

1 . It is well-known that the acceptability problems on
bipartite argumentation problems can be solved in polynomial time (see, e.g., [18]) but the
speed-up of a factor of |ARG(D)| of the worst time complexity is important.

4 Out-and-out conflict free sets

In this section we consider a specific family of conflict-free sets and use it to obtain results
on the existence of stable extensions in special argumentation frameworks. A conflict-free
set S in an argumentation framework D is called an out-and-out conflict-free set if any
argument in ARG(D) − (S ∪ S+) is attacked by an argument in S+. This corresponds to
quasi-kernels in Graph Theory terminology (introduced by [10], see [11]) and appears also
in the Theory of Voting in the study of uncovered sets (see, e.g., [3]).

Definition 3 (Out-and-out conflict-free set) Let D be an argumentation framework.
A conflict-free set S in D is called an out-and-out conflict-free set if

S ∪ S+ ∪ (S+)+ = ARG(D).

Example. In the argumentation framework D in Fig. 2, S1 = {a, c, e} is an out-and-out
conflict-free set, since {a, b, c, d, e, f } = ARG(D) = S1 ∪ S+

1 . Also, S2 = {a, d, f } is an
out-and-out conflict-free set, since ARG(D) − (S2 ∪ S+

2 ) = {c} and c ∈ (S+
2 )+.
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Fig. 2 {a, d, f } and {a, c, e} are out-and-out conflict free sets

Theorem 5 (Out-and-out conflict-free sets in AFs)
In every argumentation framework, D, there is an out-and-out conflict-free set.

Proof Let {a1, a2, . . . , an} be an arbitrary ordering of the arguments in ARG(D), and let us
consider the following algorithm

Construction of an out-and-out conflict-free set
S ← ∅; Discard ← ∅;
for i = 1 to n do

if ai �∈ Discard then
S ← S ∪ {ai}
Discard ← Discard ∪ (a+

i ∩ {ai+1, . . . , an});
for i = n downto 2 do

if ai �∈ Discard then

S′ ← S ∩ (a+
i ∩ {a1, . . . , ai−1})

S ← S − S′
Discard ← Discard ∪ S′;

return S.

Clearly, the set S constructed by the algorithm is non-empty: in the first scan at least a1
is added to S, and in the second scan at least the last argument added to S in the first scan,
remains in S.

Also, S is a conflict-free set: in the first scan, the attacks (ai, aj ) ∈ ATT(D)with ai, aj ∈
S and i < j are cleared, and in the second scan the attacks (ai, aj ) ∈ ATT(D) with ai, aj ∈
S and i > j are avoided.

Clearly, at the end of the algorithm, we have ARG(D) = S ∪̇ Discard . The arguments
in Discard are those attacked by the returned set S, that is S+, and those attacked by the
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arguments added to S in first scan and deleted from S in the second scan. Therefore, these
arguments belongs to (S+)+, and the theorem holds.

For the argumentation framework D in Fig. 2, taking {a1, . . . , a6} = {b, c, d, e, f, a},
the set S constructed by the above algorithm in the first scan is {b, d, f, a}, and after the
second scan, the algorithm returns {a, f, d}. Also, taking {a1, . . . , a6} = {a, b, c, d, e, f },
we obtain after the first scan {a, c, e}, which is not modified by the second scan. We already
verified that these are out-and-out conflict-free sets.

Out-and-out conflict-free sets can be used to obtain admissibility results in particular
argumentation frameworks.

An argumentation framework D is transitive if for any distinct arguments a, b, c ∈
ARG(D),

if (a, b), (b, c) ∈ ATT(D) then (a, c) ∈ ATT(D).

Theorem 6 (Admissible sets in transitive argumentation frameworks)

i) In every transitive argumentation framework there is a stable extension.
ii) Let S ⊆ ARG(D) be an admissible set in the argumentation framework D and let

D′ = D[ARG(D) − (S ∪ S+)]. If D′ is transitive, then S is contained in a stable
extension of D.

iii) In a transitive argumentation framework any preferred extension is a stable extension.

Proof i) By Theorem 5, there is in D an out-and-out conflict-free set S such that S ∪
S+∪(S+)+ = ARG(D). If there is an argument c ∈ (S+)+−(S∪S+), this means that
there is a ∈ S and b ∈ S+ such that (a, b), (b, c) ∈ ATT(D) and (a, c) �∈ ATT(D).
But, this contradicts the hypothesis that D is transitive. Hence (S+)+ − (S ∪S+) = ∅.
It follows that S ∪ S+ = ARG(D), that is, S is a stable extension.

ii) Since D′ is a transitive argumentation framework, by i), D′ has a stable extension S′.
Since S is an admissible set, no argument in ARG(D′) attacks S, therefore we obtain
that S ∪ S′ is a conflict-free set in D attacking all arguments outside it, that is, it is
stable extension in D.

iii) Let S be a preferred extension in the transitive argumentation framework D. Note that
D′, as defined in ii), is also a transitive argumentation framework. In the above proof
of ii) S is a subset of the stable extension S ∪ S′. Since S is a maximal admissible set,
it follows that S′ = ∅, that is, ARG(D′) is empty. Hence, S is a stable extension in D.

The above proof can be adapted to obtain similar results for a class of argumentation
frameworks containing the transitive ones.

An intransitive triple in the argumentation framework D is a set of three distinct
arguments {a, b, c} ⊆ ARG(D), such that (a, b), (b, c) ∈ ATT(D) and (a, c) �∈ ATT(D).

The argumentation framework D is called near-transitive if, for any intransitive triple
{a, b, c}, if (c, d) ∈ ATT(D), then the set {a}∪{d} is not conflict-free. This means that d �= a

(since there are no self-attacking arguments) and that (a, d) ∈ ATT(D) or (d, a) ∈ ATT(D).
Since in a transitive argumentation framework there are no intransitive triples, it follows that
any transitive argumentation framework is a near-transitive argumentation framework. On
the other hand, there are near-transitive argumentation frameworks which are not transitive.
A simple example is 4-cycle D = ({x, y, z, t}, {(x, y), (y, z), (z, t), (t, x)}).
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Theorem 7 (Admissible sets in near-transitive AFs)

i) In every near-transitive argumentation framework there is a stable extension.
ii) Let S ⊆ ARG(D) be an admissible set in the argumentation framework D and let

D′ = D[ARG(D)− (S ∪S+)]. If D′ is near-transitive, then S is contained in a stable
extension of D.

iii) In a near-transitive argumentation framework any preferred extension is a stable
extension.

Proof i) By Theorem 5, there is in D an out-and-out conflict-free set S such that S ∪
S+ ∪ (S+)+ = ARG(D). The set U = (S+)+ − (S ∪ S+) can be decomposed
U = U1∪̇U2, whereU1 = U∩S− andU2 = U−U1. If there is c ∈ U1, this means that
there is a ∈ S and b ∈ S+ such that (a, b), (b, c) ∈ ATT(D) and (a, c) �∈ ATT(D),
that is, {a, b, c} is an intransitive triple. Since c ∈ S− it follows that there is d ∈ S

such that (c, d) ∈ ATT(D). Because D is a near-transitive argumentation framework,
it follows that the set {a}∪ {d} ⊆ S is not conflict-free, a contradiction. It follows that
U1 = ∅, that is S is an admissible set. Moreover, it follows that: (*) there is no attack
between an argument in S and an argument in U .

Let c ∈ U , and as above, the intransitive triple {a, b, c} implied by the definition
of U . There is no attack from c against an argument in U , that is U is a conflict-free
set. Otherwise, if there is d ∈ U such that (c, d) ∈ ATT(D), then (since D is a near-
transitive argumentation framework) the set {a}∪{d} is not conflict-free, contradicting
the above remark (*) . It follows that S ∪ U is a conflict-free set in D, hence a stable
extension, since ARG(D) − (S ∪ U) = S+ = (S ∪ U)+.

ii) Similar to the proof of Theorem 6 ii).
iii) Similar to the proof of Theorem 6 iii), with the observation that ifD is a near-transitive

argumentation framework, then D′ is also a near-transitive argumentation framework.

Le us note here the algorithmic importance of Theorem 6 ii) and Theorem 7 ii). Clearly,
verifying if the argumentation framework D′ is transitive or near-transitive can be done
in polynomial time (e.g., testing the conditions in their definitions for each triple of argu-
ments). Also, by the proofs of Theorem 6 i) and Theorem 7 i), the stable extension
containing the admissible set S in the (arbitrary) argumentation framework D can be con-
structed in polynomial time with the algorithm in the proof of Theorem 5. Hence, the stable
extension containing the admissible set S can be constructed in polynomial time whenever
the (polynomial) test whether D′ is (near)transitive is positive.

Theorem 8 (Out-and-out conflict-free set extending a preferred extension) Let P be a pre-
ferred extension in the argumentation framework D. There is an out-and-out conflict-free
set S ⊆ ARG(D) such that P ⊆ S.

Proof Let U = ARG(D) − (P ∪ P +). If U = ∅, then P is a stable extension. Since any
stable extension is an out-and-out conflict-free set, we can take S = P .

If U �= ∅, let D′ = D[U ] be the argumentation framework induced by U in D. By
Theorem 5, there is T , an out-and-out conflict-free set in D′. Since there are no attacks
between the arguments in P and U , it follows that S = P ∪ T is a conflict-free set. It is
easy to see that S ∪ S+ ∪ S++ = ARG(D).
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Note that, for the out-and-out conflict-free set S in the above theorem, we have
Sadm = P .

Proposition 2 (Maximal out-and-out conflict-free sets)
Let S be a maximal (w.r.t set-inclusion) out-and-out conflict-free set S ⊆ ARG(D). Then,

for any argument a ∈ ARG(D) − S, either a ∈ S+ or a ∈ S− − S+.

Proof Let U = ARG(D) − (S ∪ S+) and U = U1 ∪ U2, where U1 = {a ∈ U | ∃ no b ∈
S s.t. (a, b) ∈ ATT(D)}, and U2 = U − U1. If we prove that U1 = ∅, the theorem holds.

Suppose that U1 �= ∅, and let D′ = D[U1] be the argumentation framework induced by
U1 in D. By Theorem 5, there is T , an out-and-out conflict-free set in D′. Since there are no
attacks between the arguments in S and U1, it follows that S′ = S ∪ T is a conflict-free set.
By the construction of T , S′ is an out-and-out conflict set, a contradiction to the hypothesis
that S is a maximal out-and-out conflict-free set.

Definition 4 (Sound out-and-out conflict-free set) Let D be an argumentation framework.
A maximal (w.r.t set-inclusion) out-and-out conflict-free set S ⊆ ARG(D) is called a sound
conflict-free set if Sadm is a preferred extension of D. The set of all sound conflict-free sets
of D is denoted by SD .

Let PD the set of all preferred extensions in the argumentation framework D. By
Theorem 8, for every P ∈ P there is SP ∈ SD such that P ⊆ SP . It follows that
∩P∈PD

P ⊆ ∩P∈PD
SP . By the Definition 4, the set {SP | P ∈ PD} is exactly SD . Hence,

the following inclusion holds ⋂

P∈PD

P ⊆
⋂

S∈SD

S.

In fact, we have equality here.1 Indeed, suppose that there is x ∈ ∩S∈SD
S − ∩P∈PD

P .
It follows that there is P0 ∈ P such that x �∈ P0 and P0 is not a stable extension (since
a stable extension is a sound conflict-free set). Since P0 is a preferred extension, there is
y ∈ ARG(D) − (P0 ∪ P +

0 ) such that (y, x) ∈ ATT(D). In the argumentation framework
D[ARG(D) − (P0 ∪ P +

0 )] we construct an out-and-out conflict free S0 by applying the
algorithm in the proof of Theorem 5 with any ordering of its arguments starting with y.
Clearly, in the first scan of this algorithm x is discarded from S0. It follows that P0 ∪ S0 is a
sound out-and-out conflict free set not containing x, contradicting its choice (x ∈ ∩S∈SD

S).
Hence

⋂
P∈PD

P = ⋂
S∈SD

S, and using Remark 1, we obtain the following result.

Proposition 3 (Ideal extension and the family of sound out-and-out conflict-free sets)
The admissible basis of the intersection of all sound out-and-out conflict free sets in an

argumentation framework D is exactly the ideal extension of D.

5 Further observations

In this section we conclude our analysis by two types of observations aimed at deepening
the intuitive understanding of how such admissibility notions can play out in practice.

1Thanks to an anonymous reviewer for the suggestion.
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To this end we will:

1. Discuss our assumption that the argumentation frameworks considered have no self-
attacks and, also, show that we can not change the admissibility acceptance of an
argument a by adding (missing) attacks issued from the attackers of a. These two sim-
ple remarks (new to our knowledge) could be very useful from an algorithmic point of
view.

2. Decompose the set of arguments outside of a conflict free set S into different sets of
arguments determined by the number of attacked and attacking arguments from S. This
fine-grained decomposition can be used in two ways in practice. First, as a dynamic
labeling of the arguments (and, consequently, as a topological searching space by using
appropriate heuristics) and, second, in order to define a score to distinguish between
different extensions of the same type.

5.1 Self-Attacks and Reinforced Attackers

By the Definition 1 of an argumentation framework, it is possible to have self-attacking
arguments. An argument a ∈ ARG(D) is a self-attacking argument if (a, a) ∈ ATT(D).
Clearly, no self-attacking argument can be member of a conflict-free set, therefore no self-
attacking argument is acceptable in an argumentation framework. However, a self-attacking
argument can have a decisive influence in the non-acceptance of some other arguments.
The following proposition shows that we can restrict to argumentation frameworks without
self-attacking arguments without any loss of the generality.

Proposition 4 (No need for self-attacks) LetD = (ARG(D),ATT(D)) be an argumentation
framework and a ∈ ARG(D) such that (a, a) ∈ ATT(D). Let D′ be the argumentation
framework obtained from D by adding two new arguments a1, a2, and replacing the attack
(a, a) with the attacks (a, a1), (a1, a2) and (a2, a). Then, S ⊆ ARG(D) is an admissible set
in D if and only if it is an admissible set in D′.

Proof Let S ⊆ ARG(D) be an admissible set in D. Since (a, a) ∈ ATT(D) and S is a
conflict-free set in D, it follows that S ⊆ ARG(D)−{a}. By the construction of D′, S+ and
S− are the same in D and D′. It follows that S is an admissible set in D′.

Conversely, let S ⊆ ARG(D) be an admissible set in D′. If a ∈ S, then a2 ∈ S− in D′.
Since a1 is the only attacker of a2 in D′, and a1 �∈ S, it follows that S does not defend a

against the attack (a1, a), a contradiction. Therefore, S ⊆ ARG(D) − {a}. As above, we
obtain that S is an admissible set in D. 2

The strength of Dung’s collective view of arguments acceptance is illustrated by the
following proposition which surprisingly shows that the admissibility based acceptability
of a given argument is not influenced by adding attacks issued from the attackers of the
specified argument, against other arguments.

Proposition 5 (Attackers reinforcement is worthless) Let D be an argumentation frame-
work, a ∈ ARG(D), and D′ the argumentation framework obtained from D by adding some

2As one anonymous reviewer observed, if we add to D′ all attacks from the arguments in a−(in D) to a1 and
a2, and all attacks from a1 and a2 to the arguments in a+(in D), then the admissible sets in D′ are exactly
the admissible sets in D.



Indepth combinatorial analysis of admissible sets for abstract...

missing attacks from the arguments in a− to other arguments in ARG(D). i.e. ARG(D) =
ARG(D′), ATT(D) ⊆ ATT(D′) and, if (b, c) ∈ ATT(D′) −ATT(D), then (b, a) ∈ ATT(D).
Then, there is an admissible set containing a in D if and only if there is an admissible set
containing a in D′.

Proof We specify the argumentation framework in the notations x+ (x−, S+, S−) by writing
x+D (x−D , S+D , S−D ).

Suppose that there is an admissible set S ⊆ ARG(D) with a ∈ S (S is conflict free in D

and S−D ⊆ S+D ). Since ARG(D) = ARG(D′), we have S ⊆ ARG(D′). Since a ∈ S and
the attacks added to D to obtain D′ are from the arguments in a−D ⊆ ARG(D) − S to other
arguments, it follows that S is a conflict-free set in D′. Also, S+D′ = S+D . Since a−D ⊆ S−

D

it follows that S−D′ = S−D . Therefore, from S−D ⊆ S+D we obtain S−D′ ⊆ S+D′ , that is,
S is an admissible set in D′ containing a.

Conversely, suppose that there is an admissible set S ⊆ ARG(D′) with a ∈ S (S is
conflict free in D′ and S−D′ ⊆ S+D′ ). Since ARG(D′) = ARG(D), we have S ⊆ ARG(D).
Since ATT(D) ⊆ ATT(D′) and S is a conflict-free set in D′, it follows that S is a conflict-
free set in D. Since a ∈ S and in D′ only attacks from a−D are added, it follows that
S+D = S+D′ . Hence S−D′ ⊆ S+D , and because S−D ⊆ S−D′ , it follows that S−D ⊆ S+D ,
that is, S is an admissible set in D′ containing a.

5.2 Dynamic labelling

An equivalent way to express Dung’s extension-based semantics is using argument labeling
as proposed by [4] (originally introduced in [24]). The idea underlying the labeling-based
approach is to assign to each argument a label from the set {I,O, U}. The label I (i.e., In)
means the argument is accepted, the label O (i.e., Out) means the argument is rejected, and
the label U (i.e., Undecided) means one abstains from an opinion on whether the argument
is accepted or rejected.

We consider here a related approach, more appropriate for the combinatorial search of
σ -extensions containing a specified argument in a given argumentation framework.

Definition 5 (Hashing ARG(D) by a conflict-free set)
Let D = (ARG(D),ATT(D)) be an argumentation framework and S ⊆ ARG(D) be a
conflict-free set in D. S decomposes ARG(D) into disjoint (possible empty) sets

ARG(D) = S ∪̇ ∪̇ |S|
i,j=0 Si,j ,

where,
S i,j = {a ∈ ARG(D) − S | |a− ∩ S| = i and |a+ ∩ S| = j}

is the set of arguments of D outside S attacked by i arguments from S and attacking j

arguments in S.

In order to capture Dung’s extension-based semantics, we need a coarser decomposition
of the argument set of an argumentation framework, as follows.

Definition 6 (A coarser split of ARG(D) by a conflict-free set)
Let D = (ARG(D),ATT(D)) be an argumentation framework and S ⊆ ARG(D) be a
conflict-free set in D. S decomposes ARG(D) into four disjoint (possible empty) sets

ARG(D) = S ∪̇Discard(S) ∪̇Attacker(S) ∪̇Neutral(S), where,
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– Discard(S) := ∪̇ |S|
i=1 ∪̇ |S|

j=0 Si,j , is the set of all arguments collectively attacked by S,
i.e., Discard(S) := S+,

– Attacker(S) := ∪̇ |S|
j=1 S0,j , is the set of all arguments attacking at least one argument

in S and not counterattacked by an argument in S, i.e., Attacker(S) := S−− S+,
– Neutral(S) := S0,0 is the set of all arguments outside S, not attacking the arguments in

S and not attacked by an argument in S.

It is not difficult to verify (using the Definition 6) that the following important property
holds.

Remark 2 Let S and S′ be conflict-free sets such that S ⊆ S′. Then,
S′ − S ⊆ Neutral(S) and Neutral(S′) ⊆ Neutral(S).

The argumentation semantics in Definition 1 can be equivalently characterized using our
decomposition. Some parts of the the following proposition are obvious, some parts are
already established (e.g. Proposition 3.2 in [2]) but they are interesting from a combinatorial
search point of view.

Proposition 6 (Rereading argumentation semantics) Let S ⊆ ARG(D) be a conflict-free
set in the argumentation framework D = (ARG(D),ATT(D)). Then S is

i) an admissible set if and only if Attacker(S) = ∅;
ii) complete extension if and only if it is an admissible set and for all a ∈ Neutral(S) we

have a− ∩ Neutral(S) �= ∅;
iii) preferred extension if and only if it is a complete extension and, in the argumenta-

tion framework induced in D by the arguments in Neutral(S), the empty set is only
admissible set.

iv) grounded extension if and only if it is a complete extension and there is a linear order
< on S such that ∀a ∈ S, if b ∈ a− then there is a′ ∈ S ∩ b− with a′ < a.

v) stable extension if and only if Discard(S) = ARG(D) − S.

Proof i) and v) are obvious. ii) is Caminada’s characterization of a complete labeling [4].
iv) follows from Dung’s [13] characterization of grounded extension as the unique least
fixed point of the characteristic function. We prove only iii).

iii) Let D′ = D[Neutral(S)] the argumentation framework induced by Neutral(S) in D.
If S is a preferred extension in D then it is a complete extension and there is no complete

extension S′ such that S ⊂ S′ (S �= S′). Suppose that T �= ∅ is an admissible set in D′. Then
S∪T is an admissible set in D and (by Remark 2) Neutral(S∪T ) ⊆ Neutral(S). Since S is a
complete extension, by (ii), we have a−∩Neutral(S∪T ) = ∅, for every a ∈ Neutral(S∪T ).
Hence, again by (ii), S ∪ T is a complete extension, contradicting the maximality of S.

Conversely, suppose that the empty set is the only admissible set in D′. If there is a
complete extension S′ such that S′ − S �= ∅, then (by Remark 2) S′ − S ⊆ Neutral(S) and
Attacker(S′ − S) ∩ Neutral(S) = ∅, that is S′ − S is a non-empty admissible set in D′, a
contradiction.

We note here that, inherently, similar decompositions appear in all “labeling-approach”
algorithms or heuristics-guided backtracking algorithms for solving reasoning problems in
abstract argumentation, e.g., [8, 22], or [25].
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Our intention is to use the decomposition in Definition 6 as a dynamic labeling of the
arguments (having as parameter the conflict-free set): each argument of the argumenta-
tion framework has one of the following labels: S, A(ttacker), N(eutral) and D(iscard).
Since the conflict-free sets containing S can be obtained only by adding arguments from
Neutral(S), deciding the acceptability of a given argument can be done as follows.

Let us denote by S the set of all conflict-free sets in D containing a given argument a0.
We can decide the (credulously) acceptability of a0 by considering search algorithms that
operate on the state space S = (SI ,S∗, succ), where SI = {a0} ∈ S is the initial state, S∗ ⊆
S is the set of goal states (that are conflict-free sets corresponding the various admissibility
based semantics, as characterized in Theorem 6) and succ is a successor function that maps
each state S ∈ S (i.e., a conflict-free set in D containing a0) to a finite (possible empty) set
of successor states: succ(S) = {S ∪ {a}|a ∈ Neutral(S)}. Note that for preferred semantics,
a goal state can be recognized only by solving a set of search problems of the same type.

S can be organized as a state space topology [21] by defining heuristic functions, h :
S → R+

0 ∪{∞}, in order to speed up the search for a goal state or to add fast pruning criteria
that allow some states to be discarded.

For example, an obvious heuristic, h1, estimates the “degree of inadmissibility” of any
conflict-free set S ∈ S by the number of arguments attacking S and not counterattacked,
i.e., h1(S) = |Attacker(S)|. Clearly, h1(S) = 0 if and only if S is an admissible set in
D. Assuming that states with lower h1 values are on a path to the closest goal state, the
successor state of an arbitrary (non goal) state S will be S ∪ {xS}, selected in a greedy
best first search (GBFS) manner. Obviously, if h1(S) > 0 but Neutral(S) = ∅, then S is a
dead-end: there is no way to extend S to goal state (no admissible set extends S).

The decomposition in the Definition 5 can be also used to define the score of a conflict-
free set S with respect to an argument a ∈ ARG(D)−S. If a ∈ Si,j then Score(S, a) = i−j .
Equivalently, we have the following definition.

Definition 7 (Score of a conflict-free set against an outside argument)
Let D = (ARG(D),ATT(D)) be an argumentation framework and S ⊆ ARG(D) be a
conflict-free set in D. The score of S with respect to an argument a ∈ ARG(D) − S is

Score(S, a) = |a− ∩ S| − |a+ ∩ S|.

Note that a non-negative score, Score(S, a) ≥ 0, shows that the conflict-free set S

counter-attacks every attack from a. This is not the same as graded defense (or neutrality)
introduced in [20], but shares the motivation and significance, excellently discussed in their
paper.

Examples.

1. Let Dn = (ARG(Dn),ATT(Dn)) be the argumentation framework with ARG(Dn) =
{a0, . . . , a2n} and ATT(Dn)) = {(a0, ai)|i ∈ {1, . . . , n} ∪ {(ai, an+i ), (an+i , ai)|i ∈
{1, . . . , n} (adapted from [19]; D4 is depicted in Fig. 3). Dn has 2n stable extensions:
S0 = {a0, an+1, . . . , a2n} and SA = A ∪ {an+1, . . . , a2n} − {an+i |ai ∈ A}, for each A ⊆
{a1, . . . , an},A �= ∅. Note that each argument is credulously preferred (stable) accepted
in Dn. However, despite of the exponential number of preferred extension, no argument
is skeptically accepted, since for each argument a there is a preferred extension not
containing a. The same conclusion holds for the ideal or eager extension (which are
empty). Let us analyze the score of each such stable extensions with respect to the
outside arguments.
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Fig. 3 D4 with 2 · 4 + 1 arguments and 24 stable extensions (not all with the same strength)

– S0 : ARG(Dn) − S0 = {a1, . . . , an}; for each i ∈ {1, . . . , n}, a−
i ∩ S0 = {an+i} and

a+
i ∩ S0 = {a0, an+i}, hence Score(S0, ai) = 1 − 2 = −1.

– SA, for A = {a1, . . . , ak}:
ARG(Dn)−SA = {a0}∪{ak+1, . . . , an}∪{an+1, . . . , an+k}. a−

0 ∩SA = A and a+
0 ∩

SA = ∅, hence Score(SA, a0) = |A|. For a ∈ {ak+1, . . . , an} ∪ {an+1, . . . , an+k},
a− ∩ SA = a+ ∩ SA and, therefore Score(SA, a) = 0. Similar results are obtained
for other A ⊆ {a1, . . . , an}, A �= ∅.

It follows that S{a1,...,an} = {a1, . . . , an} is the only stable extension having non-negative
scores with respect to the arguments outside it and maximizing the sum of these scores.

2. Let Dn (n integer, n ≥ 2) be the argumentation framework with
ARG(Dn) = {a0, . . . , an} ∪ {b} and ATT(Dn)) = {(a0, b)} ∪ {(b, ai)|i ∈ {1, . . . , n}}
(D4 is depicted in Fig. 4). Clearly, S = {a0, . . . , an} is the grounded extension in Dn.
Since ARG(Dn) − S = {b}, the score of S against b is Score(S, b) = |b− ∩ S| − |b+ ∩
S| = 1 − n < 0. On the other hand, S0 = {a0} and Si = {a0, ai} are admissible sets
with non-negative scores with respect to arguments outside them: Score(S0, b) = 1
and Score(S0, ai) = 0, for all i ≥ 1; Score(Si, b) = 0 and Score(Si, aj ) = 0, for
all j ≥ 1 and j �= i. It follows that S0 is an admissible set containing and defend-
ing the argument a0 and its score against any other argument is non-negative (which is
not the case for the grounded extension). This can be more convincing for the accep-
tance of the argument a0 in some applications (of course, for non logical argumentation
frameworks). Similarly, Si can be used as a better justification for the acceptability
of ai .

We can also use the scores to pass beyond of the notion of admissibility, as follows.

Definition 8 (Strict admissibility) Let D = (ARG(D),ATT(D)) be an argumentation
framework with n = |ARG(D)| arguments and let k be an integer, 0 ≤ k ≤ n − 1. A
conflict-free set S ⊆ ARG(D) is k-strict admissible set in D if Score(S, x) ≥ k, for every
argument x ∈ ARG(D) − S. An argument a ∈ ARG(D) is k-strict admissible acceptable
if there is a k-strict admissible set containing a in D. For k = 0, 0-strict admissibility will
be referred, simply, as strict admissibility.
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Fig. 4 The grounded extension has not the best scores

Clearly, every strict admissible set S is an admissible set: if a ∈ ARG(D) − S is an
attacker of S, then there is at least one argument in S attacking a, since Score(S, a) ≥ 0.
Converse is not true, not every admissible set is strict admissible. A simple example is given
in Fig. 5. Strict admissibility, imposing an external condition is different from strong admis-
sibility introduced in [1], which imposes a supplementary internal condition on a Dung’s
admissible set.

There are particular argumentation frameworks D and a ∈ ARG(D) such that every
admissible set containing a is also a strict admissible set. A prominent example is the argu-
mentation framework in the standard proof of the polynomial time reduction of the SAT
problem to the problem of deciding if a given argument in a given argumentation framework
is credulously accepted [12, 16].

Let F = C1 ∧ . . . ∧ Cm be an arbitrary instance of SAT, where for each i ∈ {1, . . . , m},
the clause Ci is a a disjunction of literals, Ci = li1 ∨ . . . ∨ liki

, and a literal l is either a
variable xj or its negation xj , where {x1, . . . , xn} is the set of Boolean variables occurring in
F . An argumentation framework DF and aF ∈ ARG(DF ) can be constructed in polynomial
time such that F is satisfiable if and only if aF is (credulously) admissible acceptable in
DF . Firstly, the special argument aF is added to ARG(DF ). Second, for each clause Ci

an argument aCi
is added to ARG(DF ) and an attack (aCi

, aF ) is added to ATT(DF )).
Finally, for each Boolean variable xj occurring in F , two arguments axj

and axj
are added

to ARG(DF ), attacking each other in DF and adding all the attacks (axj
, aCi

), if xj is a

Fig. 5 The argument c is not strict admissible acceptable, since the conflict-free sets S1 = {c} and S2 =
{a, c}, containing it, are not strict admissible sets (S1 is not admissible, S2 is admissible, but Score(S2, b) =
1 − 2 = −1 < 0)
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Fig. 6 The argumentation frameworkDF associated to instance F = C1∧C2∧C3∧C4, where C1 = x1∨x̄2,
C2 = x̄1 ∨ x2 ∨ x̄3, C3 = x2 ∨ x̄3, C4 = x̄2 ∨ x̄3 ∨ x̄4

literal in Ci , and (axj
, aCi

), if xj is a literal in Ci , for all clauses Ci . Clearly, DF can
be constructed in polynomial time in the size of the instance of SAT. An example of this
construction is illustrated in Fig. 6.

It is not difficult to see that any admissible set in DF containing aF is of the form S =
{aF }∪T , where T selects for each variable xj at most one of the arguments axj

or axj
such

that for each clause Ci , the argument aCi
has at least one attacker in S. But this is equivalent

to the fact that F is satisfiable (by assigning the truth value to the literals corresponding
to the arguments in T ). The arguments a outside S are either of the type axj

and axj
not

selected by the set T (for which Score(S, a) = 0), or of the form aCi
(for each clause Ci),

for which Score(S, a) ≥ 0, since a attacks aF , but it is attacked by at least one argument
in T .

It follows that we proved the hardness of the problem of deciding if a specified argument
in a given argumentation framework is strictly accepted, by exhibiting a polynomial time
reduction from the CNF satisfiability problem SAT. Since the membership of this problem
to NP is obvious, the following theorem holds.

Theorem 9 (Strict admissibility acceptance is NP-complete) Deciding if a specified
argument in a given argumentation framework is strictly accepted is an NP-complete
problem.

6 Discussion

In this paper we presented a combinatorial analysis of the notion of admissibility in Dung
semantics for abstract argumentation frameworks. The two main contributions were the
study of admissibility basis of conflict free sets and the study of a specific family of conflict
free sets - the out-and-out conflict free sets. The first contribution allowed for the develop-
ment of an efficient skeptical acceptance algorithm in bipartite argumentation frameworks.
The second allowed for the development of linear algorithms to compute stable extensions
in transitive argumentation frameworks and the further study of admissibility in near tran-
sitive argumentation frameworks. Despite of the fact that the results concern very specific
sub-classes of argumentation frameworks, since their algorithmic recognition can be made
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in polynomial time, they are applicable as sub-tasks in the algorithms dedicated to reason-
ing with general argumentation frameworks (see, e.g., Lemma 1 i), Theorem 6 ii), Theorem
7 ii)). In the same line of idea, [23] reported remarkable experimental results on checking
skeptical admissibility in general argumentation frameworks using bipartite argumentation
framework recognition. It is therefore not necessary to show that they correspond to inter-
esting applications of argumentation (in order to sustain the practical applicability of these
results).

We closed the paper by providing two types of observations relevant for the practical
use of admissibility notions. In fact, the paper is conceived as a theoretical basis for devel-
oping an efficient argumentation solver using a dedicated combinatorial search space (as
suggested in Section 5.2). Several software systems for deciding acceptability in abstract
argumentation frameworks have been developed and, also, an international competition3

for empirical evaluation and comparison of solvers appeared in 2015. In the survey [8], the
existing implementation methods are classified into two categories: reduction approaches
and direct approaches. The reduction approaches transform (in polynomial time, sometimes
iteratively) the graph model into inputs for established solvers (SAT, CSP, or ASP) assessed
for well-studied problem domains. The direct methods access the framework directly (with-
out having the overhead of transformation and, as a result, a potential loss of structural
information). In a future work (carrying on this paper) we intend to introduce a new direct
approach based on a systematic and informative search method on the space of conflict-free
sets of arguments associated to the input of the problem of deciding acceptability.
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