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Singlet fission (SF), the conversion of one singlet exciton into two triplet excitons, could significantly enhance solar cell efficiency.
Molecular crystals that undergo SF are scarce. Computational exploration may accelerate the discovery of SF materials. However,
many-body perturbation theory (MBPT) calculations of the excitonic properties of molecular crystals are impractical for large-scale
materials screening. We use the sure-independence-screening-and-sparsifying-operator (SISSO) machine-learning algorithm to
generate computationally efficient models that can predict the MBPT thermodynamic driving force for SF for a dataset of 101
polycyclic aromatic hydrocarbons (PAH101). SISSO generates models by iteratively combining physical primary features. The best
models are selected by linear regression with cross-validation. The SISSO models successfully predict the SF driving force with errors
below 0.2 eV. Based on the cost, accuracy, and classification performance of SISSO models, we propose a hierarchical materials
screening workflow. Three potential SF candidates are found in the PAH101 set.
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INTRODUCTION

Singlet fission (SF) is the conversion of one photo-generated
singlet-state exciton into two triplet-state excitons'™"". Intermole-
cular SF, where the triplet-state excitons are localized on different
chromophores than the singlet exciton, occurs in molecular
crystals'?"'%. SF may be utilized in solar cells to exploit the excess
energy of high-energy photons and reduce the energy loss due to
thermalization. Harvesting two charge carriers from one photon
via SF could potentially increase the power conversion efficiency
of solar cells beyond the Shockley-Queisser limit'>. However,
commercial SF-based solar cells have yet to be realized owing to
the dearth of suitable materials''®. Certain classes of molecular
materials, such as oligoacenes, oligorylenes, and their derivatives,
are experimentally known to undergo SF'7~%%, Although 200%
quantum yield and ultra-fast SF have been observed experimen-
tally?”-%8, most of the known SF materials are not practical for use
in commercial modules because they are chemically unstable and
would degrade under operating conditions. It is therefore
imperative to find new SF materials, possibly from different
chemical families, in order to expand the available options.
Computational exploration of the chemical space may significantly
accelerate the discovery of candidates for SF in the solid state and
guide experimental efforts in promising directions.

The primary criterion for SF to occur is the thermodynamic
driving force. The energy difference between the initial singlet
state and final state of two triplets (Es — 2E7) must be positive or at
most slightly negative'>293°, Organic molecular crystals that meet
this requirement are rare, which explains why most known SF
materials belong to restricted classes of molecules. Yet, most of
the vast chemical space remains largely unexplored. Computa-
tionally efficient density functional theory (DFT) based on semi-
local exchange-correlation functionals has been used extensively
for high-throughput screening of materials®'~34. However, DFT is a
ground-state theory. Hence, it cannot directly describe the

excited-state properties of chromophores that are of interest for
SF. Time-dependent DFT (TDDFT) may be used to calculate the
excitation energies of isolated molecules®>3®, This relatively low-
cost option has been adopted to screen molecules with up to 100
atoms in search of SF candidates®”. However, SF-based solar cells
utilize solid-state materials, i.e, molecular crystals', whose
performance depends not only on the properties of the molecular
constituents but also on crystal packing®®. Therefore, it is desirable
to screen molecular crystals, rather than isolated molecules, in
search of potential SF materials. Many-body perturbation theory
(MBPT) within the GW approximation paired with the
Bethe-Salpeter equation (GW -+ BSE) is the state-of-the-art
method for predicting the excitonic properties of organic
molecular crystals with periodic boundary conditions**~*'. Using
this method, we have already identified several potential
candidate materials for intermolecular SF in the solid
state'®2%42-%5 However, the high computational cost of GW +
BSE calculations is prohibitive for large-scale screening of
materials databases. Therefore, it is desirable to identify descrip-
tors that are fast to evaluate and yield models that accurately
predict GW + BSE results. To this end, machine-learning (ML)
algorithms for feature selection may be used.

ML is increasingly employed in conjunction with first-principles
simulations for materials discovery®®=>, Typically, large datasets
are required to train ML models, making data acquisition the
computational bottleneck. The growing availability of datasets
and repositories of DFT calculations®*°%52 has facilitated the
application of ML to the ground-state properties of materials.
Applications of ML to excited-state properties are still relatively
rare, owing to the high cost of data acquisition®3-%¢, Incorporating
physical and chemical knowledge may enable the construction of
predictive ML models with small datasets.

Here, we employ the sure-independence-screening-and-sparsi-
fying-operator (SISSO)®” ML algorithm to identify low-cost
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Fig. 1 Statistics of the PAH101 set. Distributions of a the number
of atoms per molecule, b the number of atoms per unit cell, and
c the GW-+BSE@PBE SF driving force in the PAH101 dataset. SF
candidates and non-SF candidates are colored in red and blue,
respectively in panel c.

predictive models for SF. The input of SISSO is a set of primary
features, which are physical descriptors that could be correlated
with the target property. SISSO generates a huge feature space by
iteratively combining the primary features using linear and
nonlinear algebraic operations. Subsequently, linear regression is
performed to identify the most predictive models. SISSO
essentially performs a computer experiment in which hypotheses
are systematically generated and tested against reference data.
Physical and chemical knowledge is leveraged in the choice of
primary features and in the rules for combining them. An
important advantage of SISSO is that it can work well with a
relatively small amount of data. It has been demonstrated in
several applications that SISSO can produce predictive models
with as little as a few hundred®®="", or even a few tens of training
data points’?. Moreover, SISSO-generated models are based on
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interpretable physical descriptors that may provide insight into
which features are correlated with the target property®®’".

To train SISSO, we compile a purpose-built dataset of GW + BSE
calculations of the SF driving force, Es — 2E7, of 101 molecular
crystals of polycyclic aromatic hydrocarbons (PAHs). Most known
SF materials are PAHs, in particular acenes, rylenes, and their
derivatives'’~2%, However, PAHs, broadly defined as compounds
comprising carbon and hydrogen atoms and containing multiple
aromatic rings, encompass a multitude of chemical families, which
have not been explored in the context of SF. To maximize the
chances of discovering new classes of SF materials, we have
selected a set of PAH crystals, representing diverse chemical
families. For the same set of materials, 16 physically motivated
primary features are calculated. Because the properties of
molecular crystals depend on both the single-molecule properties
and the crystal packing in the solid state, the primary features
include both single-molecule and crystal features. SISSO produces
several predictive models with varying degrees of complexity. The
most accurate models generated yield a training set root-mean-
square error (RMSE) below 0.2 eV, which is on par with GW + BSE.
Moreover, the best-performing models have a near-perfect
classification accuracy for determining whether or not a given
material is a promising SF candidate. Based on considerations of
the model accuracy vs. the computational cost of primary feature
evaluation, a hierarchical screening approach is proposed to
narrow down the candidate pool. The variance between the
predictions of different SISSO-generated models may be used as a
measure of uncertainty. Based on the SISSO-generated models,
three potential SF candidates are identified: 9-(4-biphenyl)
cyclopentalalphenalene (BCPP), tetrabenzolde,hi,op,stlpentacene
(TBPT), and 5,6-11,12-diphenylenenaphthacene (DPNP). These
compounds belong to chemical families of PAHs that have not
been previously explored in the context of SF.

RESULTS AND DISCUSSION
The PAH101 dataset

Because most known SF materials are PAHs, we focus on this class
of compounds to maximize the chances of discovery. In addition,
restricting the chemical space means that ML models trained on
small data are more likely to succeed in producing accurate
predictions. A set of 101 PAH crystal structures was extracted from
the Cambridge Structural Database (CSD)’3. The systems in the
PAH101 set represent diverse chemical families within the larger
PAH class. The chromophore size in the PAH101 set ranges from
12 to 136 atoms and the crystal unit cell size ranges from 44 to
544 atoms, as shown in Fig. 1a-b . Figure 1c shows the SF driving
force distribution obtained for the PAH101 set with GW + BSE,
based on the Perdew-Burke-Ernzerhof (PBE)’* DFT functional,
denoted as GW + BSE@PBE. We note that GW + BSE@PBE system-
atically underestimates the thermodynamic driving force for SF.
This is partly owing to the underlying approximations and partly
because additional effects, such as electron-phonon coupling”®,
entropic effects®?, and kinetics are not considered. Therefore, we
assess prospective SF candidates based on their predicted SF
driving force relative to the known SF materials pentacene,
tetracene, and rubrene'®2%42-44 Pentacene has been observed to
undergo rapid SF with a 200% triplet yield?”-%, SF in tetracene is
slightly endoergic?®’. Rubrene is known to undergo both SF and
the reverse process of triplet-triplet annihilation (TTA), where two
triplet excitons are converted into one singlet exciton’”~%°,
Therefore, we consider the GW + BSE@PBE SF driving force of
rubrene, —0.62 eV, which is even lower than that of tetracene, as
the lower limit for viable SF candidates. Indeed, the SF driving
force of anthracene, a well-known TTA material®'?, is below that
of rubrene. Thus, even if renormalization of the exciton energies
due to phonons were considered, which may tilt the energy
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balance in favor of SF in some cases’”, materials with a GW +
BSE@PBE SF driving force below that of rubrene would still be
unlikely to exhibit SF. The PAH101 set contains materials with a
broad range of SF driving force in order for the SISSO-generated
models to be able to distinguish between materials that are likely
and those that are unlikely to undergo SF.

Primary features

The primary features are a collection of descriptors that may be
physically relevant to the target property5*53, in this case, the SF
driving force. The excitonic properties of molecular crystals
depend on the single-molecule properties as well as the crystal
packing?>384284-91 " Therefore, we consider single-molecule
descriptors, denoted by an “S” superscript, and crystal descriptors,
denoted by a “C” superscript, as primary features. For computa-
tional efficiency, the primary features are calculated at the
DFT@PBE level, as described in the Methods section. For single-
molecule features, we consider properties that could be correlated
with the excitation energies of the chromophore, including the
DFT HOMO-LUMO gap (Gap®), ionization potential (IP%), electron
affinity (EA®), triplet-state formation energy (£3), and the trace of
the polarization tensor (PolarTensor®). The IP° and EAS are
calculated based on DFT total energy differences between neutral
and charged species. Similarly, the triplet-state formation energy is
obtained from the DFT total energy difference between the triplet-
state and singlet-state systems. PolarTensor® is calculated using
the PBE exchange-correlation functional coupled with the many-
body dispersion (MBD) method (PBE + MBD)?2. In addition, we
consider a DFT-based estimation of the thermodynamic driving
force for SF, where the singlet excitation energy is approximated
by the HOMO-LUMO gap and the triplet excitation energy is
approximated by the triplet-state formation energy:
DF® = Gap® — 2F3.

Crystal features include the DFT bandgap (Gap®), the triplet-state
formation energy (ES), as well as the DFT estimate of the SF
thermodynamic driving force, DF¢ = Gap® — 2E€. In addition, we
consider features that reflect the effect of crystal packing and the
strength of coupling between neighboring molecules. The funda-
mental gap of a crystal is narrower than that of a single molecule
owing to the combined effect of band dispersion and polariza-
tion®>. Therefore, the crystal features include the valence-band
dispersion (VBSESP) and conduction-band dispersion (CBgiSp)%, as
well as the dielectric constant (e) as descriptors of the screening
effect in a crystal. € is calculated using the Clausius-Mossotti
relation, with the static polarizability obtained from PBE +
MBD**4, Because the intermolecular SF process involves charge/
energy transfer between neighboring chromophores, we also
consider a descriptor of the intermolecular electronic coupling, the
transition matrix element, Hy, = (®,|H|®y), between the initial
state ®, of molecule a, and the final state ®, of molecule b, where
H is the Hamiltonian. For hole transport, molecule a is positively
charged and molecule b is neutral. The states ®,and @y, represent
the corresponding HOMO. H,, is calculated within the frozen
orbital DFT approach®~%’. Different dimers extracted from the
same molecular crystal result in different values of H,,. Hence, we
use the average of the three highest H,, values to represent the
intermolecular coupling strength in a given crystal. Finally, we
consider chemical descriptors, including the molecular weight
MolWt®, the crystal density o, and the number of atoms in the unit
cell AtomNum®. A full list of the primary features and their
descriptions is provided in Supplementary Table 1.

To evaluate the relative computational cost of calculating
different primary features, we used a representative system with
62 atoms per molecule and a total of 248 atoms (four molecules)
in the unit cell. The CPU time spent on one single-molecule
DFT@PBE calculation is considered the basic unit of computational
cost. The computational cost of calculating each primary feature is
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expressed as multiples of that basic unit. For features whose
evaluation requires multiple DFT calculations (for example, EA®
requires two DFT@PBE calculations for the neutral and anion) the
computational cost of all calculations is summed up. Descriptors
such as p© do not require any calculations and therefore have a

cost of zero. A full list of the primary features with their relative
computational cost is provided in Supplementary Table 2.

Model generation with SISSO

The SISSO training was performed with the SISSO package available
at the SISSO GitHub Repository:*” https://github.com/rouyang2017/
SISSO. SISSO can generate a huge feature space with billions (or
even trillions) of elements by iteratively combining the primary
features using linear and nonlinear elementary mathematical
operations®”. To avoid generating unphysical features, addition
and subtraction are allowed only for primary features with the same
units. Two key parameters of SISSO are the model dimension and
feature rung, which is the number of iterations used to build
combined features. Here, the maximal rung (Rung) was set to 3 and
the maximal dimension (Dim) was set to 4. These values are found
to be sufficient to identify the optimal model complexity, as shown
below. The resulting models are denoted as Mpim, rung- The

operator set H={+,— x,+,exp.log, 07,07 0, /. o/}
was used for feature construction. The maximum complexity, i.e.,
the maximum number of operators in one combined feature, was
set to 10. With these settings, a total of 584, 5x 10° and 5x 10"
features were generated with Rung =1, 2, and 3, respectively.

After feature generation, linear regression is performed to yield
the model prediction (each model is the scalar product of the
SISSO-identified descriptor with the vector of fitted coefficients,
via linear regression) and the models are ranked based on their
prediction performance. Optimal subspaces are selected from the
huge feature space by sure-independence screening (SIS). The
number of features saved after SIS is set to 500. On each such
subspace, the sparse solution is determined by /, normalization
(the sparsifying-operator, SO). To assess the optimal model
complexity (i.e, Rung and Dim), leave-N-out cross-validation
(LCV) is performed, i.e., the performance of the trained models is
assessed on unseen data. N data points are held out as an unseen
validation set and the remaining data points are used for model
training. This process is repeated several times. Here, we use
N=10. In the LCV practice, data points are typically randomly
assigned to the validation set. Here, rather than the model with
the smallest overall prediction error, we are interested in a
regression model with higher prediction accuracy at the high SF
driving force range in order to identify promising SF candidates
with high confidence. Hence, a modified LCV scheme is used,
which prioritizes the selection of PAHs with a higher SF driving
force than rubrene for the validation set. The selection probability
of materials with Es — 2Er > —0.62eV is boosted by a factor of 10
compared to other PAHs. For each combination of Rung and Dim,
40 rounds of LCV are performed. In each round, the model with
the lowest RMSE for the validation set is selected. Finally, the
model that yields the lowest RMSE of the 40 models for the
combined training and validation data is selected as Mpjm rung- We
note that the regression coefficients may have units, such that the
overall units of the resulting models are eV. A subset of 10 PAH
crystals of different sizes with a range of SF driving force values
are completely left out of the SISSO training to serve as the test set
of unseen data. The SISSO training is performed using the
remaining 91 crystals. As a baseline for assessing the performance
of SISSO-generated models we use our human-generated models,
the DFT estimates of the single molecule and crystal SF driving
force DF® and DF<.

Because each SISSO-generated model comprises different
primary features, each model has a different computational cost.
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Here, the computational cost for each model is evaluated by
summing over the costs of all the primary features included in the
model. The cost of features that appear in the model more than
once is counted only once because no additional calculation is
required. As mentioned above, SISSO is adopted to train
regression models, ie., predicting the SF driving force, by
minimizing the prediction error. However, the same model can
also be assessed (without retraining) as a classification model if
the two classes of interest are SF vs. non-SF materials. To this end,
the materials are classified based on the value of the SF driving
force with a threshold of —0.62eV, corresponding to the SF
driving force of rubrene, as explained above. True positive and
true negative are defined here based on whether the ML model is
in agreement with the GW+-BSE reference data regarding whether
or not the SF driving force of a certain material is above or below
—0.62¢eV. The classification performance of each model is
assessed based on sensitivity, specificity, and accuracy. Sensitivity
is the fraction of correctly identified SF candidates, defined as the
number of true positives (TP) divided by the total number of
positive labels, which includes true positives and false negatives
(FN), TP/(TP + FN). Conversely, specificity is the fraction of
correctly identified non-SF candidates, defined as the number of
true negatives (TN) divided by the total number of negative labels,
which includes true negatives and false positives (FP), TN/(TN +
FP). Accuracy measures the overall fraction of correct classifica-
tions, which is given by the sum of true positives and true
negatives divided by the sum of all labels, (TP + TF)/(TP 4+ FN +
TN + FP). The classification performance of all SISSO-generated
models for the test set and training set are reported in
Supplementary Tables 3, 4, respectively.

Model selection and performance evaluation

Table 1 summarizes the training set and test set RMSE of the best
models produced by SISSO with each combination of Dim and
Rung. The training set comprises all data used for training,
including both the training and validation data in all cross-
validations, and the test set comprises the ten data points unseen

Table 1. The computational cost and prediction accuracy, represented

by the RMSE for the training set and test set, of SISSO-generated

models.

Model Cost Training Test RMSE (eV)
RMSE (eV)

Mean 0 0.85 0.85

DF® 4 0.51 0.50

DF€¢ 124 0.77 0.69

[, 7 0.25 0.24

=, 54 0.21 0.28

=, 95 0.18 0.20

E|,, 131 0.17 0.20

=, 7 0.22 0.25

E,, 181 0.17 0.19

5, 213 0.15 0.21

Z,, 251 0.14 0.19

|5 130 0.18 0.21

|, 130 0.15 0.18

1IN 304 0.13 0.25

|, 304 0.1 0.26

The mean value, and the human-generated models, DF® and DF<, are

shown as a baseline for comparison. SISSO models are denoted as Mp;n,

Rung-
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by the SISSO training process. The formulas of all models are
provided in the Supplementary Notes and some models are
selected for further discussion in the main text. Overall, all the
SISSO-generated models have a higher prediction accuracy than
the baseline models DF® and DF€. Both SISSO-generated models
and the baseline DFT estimation model perform significantly
better than the mean value. The prediction error is expected to
decrease with the model complexity, i.e., with increasing Rung and
Dim, until a saturation point is reached, beyond which the
accuracy deteriorates because of overfitting. For Rung = 1 models,
the training set RMSE decreases monotonically with increasing
model dimension. The test set RMSE, however, peaks at M, ; with
both three and four-dimensional models achieving lower RMSE.
The better performance of higher dimensional models indicates
that the SISSO training does not saturate at M, ;. Rather, some
PAHs may be more sensitive to the descriptors included in M, ;.
The improvements from three dimensions to four dimensions for
both the training and test sets are marginal, suggesting that the
model complexity has saturated. For Rung=2 models,
the training RMSE decreases with increasing dimension, whereas
the test RMSE increases slightly for Ms,. The slightly worse
performance of M5, for the test set, compared to M,, and M, ,, is
negligible, suggesting the model complexity is saturating but the
optimum is not reached. For models with Rung = 3, the training
RMSE decreases monotonically with the increase in model
dimension. However, for the test set, the model performance
deteriorates significantly from two dimensions to three and four
dimensions. This suggests that Dim =2 is the saturation point.
Similarly, increasing the Rung for models with the same dimension
improves the accuracy until an optimum is reached. In general, at
fixed Dim, the test RMSE shows a minimum at Rung =3 for one
and two-dimensional models, Rung=2 for three and four-
dimensional ones. The overall lowest test RMSE of 0.18eV is
achieved with M, 3, suggesting that this model has the optimal
complexity. We note that most of the features included in the low-
complexity models are single-molecule properties. These results
imply that the SF driving force is heavily dependent on the
molecular characteristics. However, because the PAH101 set only
contains four sets of polymorphs (rubrene, perylene, diindeno
[1,2,3-cd:1",2’,3/-Im]perylene, and p-quaterphenyl), the effect of
crystal packing may be underrepresented.

To decide which model(s) to use for materials screening, we
consider the computational cost in addition to the model
accuracy. The relative computational cost of SISSO-generated
models is given in Table 1. Figure 2 shows a Pareto chart, in which
the model accuracy, represented by the validation and test set
RMSE, is plotted against its relative computational cost. The
validation set RMSE is calculated using the corresponding train/
validation split that produces the final SISSO model. A Pareto chart
based on the training RMSE is provided in Supplementary Fig. 3,
which leads to similar conclusions. More complex models tend to
have a higher computational cost because they require evaluating
more primary features. However, some primary features have a
higher computational cost than others. In general, crystal features
cost more than single-molecule features. Therefore, models with
similar complexity may have a different computational cost
depending on the specific features they contain. It is worth
noting that a GW + BSE@PBE calculation for a mid-sized molecular
crystal with 180 atoms per unit cell may consume more than 10°
CPU hours, which is higher than the computational cost of all the
primary features by a factor of 10%. Both M, ; and M, , are on the
Pareto front. However, M, , yields a lower validation RMSE with
the same computational cost. Hence, M;; is not considered
further for materials screening. M3 and M, 5 are on the validation
set Pareto front. M, 3 is also on the test set Pareto front. The test
set RMSE for M43 suggests this model may overfit the training
data. Therefore, M, 3 is selected as a second-level screening model
after M ,.
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Fig. 2 Pareto charts. Pareto Chart of the accuracy, represented by
the a training set validation RMSE and b unseen test set RMSE, vs.
the relative computational cost of SISSO-generated models. The
dashed line indicates the Pareto front.

In order to evaluate the model performance across the PAH101
training set, in particular for materials in the region of interest for
SF, Fig. 3 shows correlation plots between the model prediction
and the reference values of the SF driving force obtained with
GW + BSE@PBE. A correlation plot for the baseline human-
generated model, DF°, is also shown for comparison. The
correlation plots for the training set and test set for all SISSO-
generated models are provided in Supplementary Figs. 1, 2. As
shown in Fig. 3a, DF® systematically underestimates the SF driving
force. The SISSO-generated models are overall more predictive
than the baseline human-generated model. For the models on the
Pareto front, the training set RMSE gradually decreases with the
model complexity. A few systems, whose molecular structures are
shown in Fig. 3, consistently appear as outliers across models. The
majority of the outliers comprise benzene rings connected by a
single covalent bond, whereas most of the systems in the
PAH101 set are conjugated aromatic compounds, in which
interconnected rings share extended m-orbitals. Hence, the lower
prediction accuracy for these systems may be attributed to their
somewhat different chemistry. Because most of these outliers are
not in the region of interest for SF, they are not a cause for
concern. One outlier in the SF candidate range is the zethrene
derivative 7,14-Di-n-butyldibenzo[de,mn]naphthacene (CSD refer-
ence code KAGGIK)®®, Its SF driving force is significantly under-
estimated by most SISSO-generated models (except for M,3z).
Because such errors are not observed for other zethrene
derivatives, we attribute this to the long alkyl side chains of
KAGGIK, which make it chemically distinct from most other
chromophores in the PAH101 set.

Hierarchical screening workflow

We propose a hierarchical screening approach based on different
SISSO-generated models with increasing cost and accuracy to
gradually narrow down the candidate pool. To select models for
hierarchical screening we also consider their classification
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performance, shown in Table 2. Correct classification of candidate
materials is important in order for the promising SF candidates to
proceed to the next step of screening and the non-promising
candidates to be discarded. If a false positive occurs, a material is
misclassified as promising, in which case it proceeds to screening
with more accurate models and may be discarded subsequently.
However, if a false negative occurs, a material is misclassified as
non-promising and discarded, which results in the loss of a
promising candidate. Therefore, screening thresholds should be
set to avoid false negatives and tolerate a small number of false
positives. The hierarchical screening workflow is illustrated in Fig.
4 for the PAH101 set. The first stage of screening is performed
with the low-cost model M; »:

M; 5 = 0.36x (Gap® — EA®) x (DF*x o) + 0.33 M

M, > only requires three DFT calculations for a single molecule and
the crystal density, which requires no calculations, and yields an
RMSE of 0.22 eV. As shown in Table 2, similar to the other SISSO-
generated models, M, , yields 100% sensitivity for the training set.
However, one of the three additional SF candidates in the test set
is not correctly classified, resulting in a sensitivity of 0.67. Both the
training set and test set produce almost 100% specificity, implying
high confidence in the classification of non-SF candidates. In order
to correctly classify all SF materials, the selection threshold is
adjusted by subtracting the model RMSE of 0.22 eV from the true
positive threshold of —0.62 eV, to give a threshold of —0.84 eV.
With this threshold, all 24 SF candidates in the PAH101 set and
nine non-promising materials pass the first stage of screening.
Thus, model M, , already eliminates the vast majority of non-SF
materials in the dataset.

As shown in Figure 2a, M, 3 yields a significantly higher accuracy
at a computational cost that is about 20 times higher than that of
M; . Equation 2 shows the features included in the model:

(ES+EA%) x (B3 x p°)
log (AtomNumc)/(AtomNume
log(p€) x (EA® — CBS,
EAS(/Cg: (—VBC ) +0.61

S
disp disp/EA

M2?3 = —0.35x
)
+4.25%

The only single-molecule features included in M, 5 are the electron
affinity EA® and triplet-state formation energy, £3. The remaining
features are crystal features, including the crystal density p®, the
number of atoms in the unit cell, the conduction band and
valence band dispersion, CB,, VB, and the triplet-state
formation energy, E3. M,s achieves almost 100% classification
accuracy for the training set. In addition, M, 3 yields 100% on all
three metrics of sensitivity, specificity, and accuracy for the test
set. Based on its performance, M, 5 is selected for the second stage
of screening with a selection threshold of —0.62—0.15 = —0.77 eV,
where 0.15eV is the training set RMSE. We note that some
materials admitted by the threshold of —0.77 eV could turn out to
be promising for SF if renormalization of the exciton energies due
to phonons is considered in post-processing””. At the second level
of screening, all 24 SF candidates in the PAH101 set and four non-
promising materials pass, filtering out almost half of the non-
promising candidates from the first stage. Owing to the high
computational cost of GW+ BSE calculations, every non-
promising material filtered out may save 10°-10° CPU hours.
The variance between the predictions of different models for a
given material may be used as a measure of uncertainty. Figure 5
shows the range of predictions produced by the two models
selected for the hierarchical screening workflow, M, ; and M, 3 for
all the materials in the PAH101 set, arranged in order of increasing
SF driving force from left to right. For almost 90% of the
PAH101 set, the predictions of the two models are within 0.2 eV of
each other. Most of the materials for which the predictions of the
two models significantly diverge are outside of the promising
region for SF. As shown in Fig. 5, the three materials with high
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Fig. 3 Correlation plots of selected models. Model prediction as a function of the GW + BSE SF driving force for a the baseline model, DF°,
and the five models on or close to the Pareto front: b M, ;, ¢ M, 5, d M3 1, @ M55, and f M, 3. The training set RMSE and molecular structures of
four outliers are also shown. The true positive region for SF candidates is colored in yellow.

Table 2. Classification performance of the SISSO-generated models in
terms of sensitivity, specificity, and accuracy with respect to the SF
driving force threshold of —0.62 eV.

Model Sensitivity Specificity Accuracy
Training Test Training Test Training Test
DF® 0.53 0.0 1.0 1.0 0.89 0.7
M 1.0 0.67 0.96 1.0 0.97 0.9
M > 1.0 0.67 0.97 1.0 0.98 0.9
My 1.0 1.0 0.99 1.0 0.99 1.0
My s 1.0 0.67 0.99 1.0 0.99 0.9

The DF® baseline model is shown for comparison.

prediction uncertainty in the non-SF candidate region are
molecules with singly-bonded benzene rings and a graphene
nanoflake. Both classes are rare in the PAH101 set, leading to a
high uncertainty between different models due to insufficient
training data. In the SF candidate region, no significant uncertainty
is observed. The improved model performance in the region of
interest for SF may be attributed to the preferential selection of
materials from this region for the LCV validation set. One material,
the zethrene derivative 7,14-Di-n-butyldibenzo[de,mn]naphtha-
cene (CSD reference code KAGGIK) has a relatively high prediction
error. KAGGIK is a zethrene derivative with two long alkyl side
groups, making it chemically distinct from most of the PAH101 set.
Most of the materials with high prediction variance are the same
outliers, for which the models with lower complexity have high
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prediction errors in Fig. 3. Within a hierarchical screening
workflow, materials for which the predictions of different models
significantly diverge may be selected for GW+BSE calculations
even if they are not promising candidates for SF for the purpose of
model refinement.

Promising SF candidates

Further analysis is performed, using GW+BSE, for the materials
that are consistently classified as promising by the selected SISSO-
generated models. For most of the promising SF candidates in the
PAH101 set, including pentacene, tetracene, rubrene, quaterry-
lene, phenylated acenes, pyrene-fused acenes, and zethrene
derivatives, detailed analyses have been published else-
where'62%42-44  Three additional promising SF candidates dis-
covered among the materials studied here are BCPP, TBPT, and
DPNP. Their crystal structures, reported in refs. 9%, are
visualized in Fig. 6. These compounds belong to chemical families
of PAHs not previously explored in the context of SF. BCPP and
DPNP are non-alternant PAHs containing five-membered rings
fused with six-membered rings. TBPT is somewhat reminiscent of
a rylene. In Fig. 7 BCPP, TBPT, and DPNP are compared to the
known SF materials tetracene, rubrene, diphenyltetracene (DPT),
and diphenylpentacene (DPP) with respect to a two-dimensional
descriptor for SF performance'®2?94344, The primary descriptor is
the SF driving force, plotted on the x-axis. A high driving force
indicates that a material is likely to undergo SF at a high rate.
However, an overly high driving force would lead to energy losses
in solar energy conversion. Therefore, a driving force between
tetracene and pentacene is considered optimal.

The secondary descriptor, displayed on the y-axis, is the degree
of charge transfer character (%CT) of the singlet exciton wave
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the inset. Molecular structures of non-SF materials with a prediction range higher than 0.4 eV and the SF material with the highest prediction

error are also shown.

Fig. 6 Crystal structures of SF candidates. The crystal structures of
BCPP, TBPT, and DPNP. The carbon and hydrogen atoms are colored
in brown and white, respectively.

function. This descriptor is motivated by the growing body of
experimental evidence for the involvement of an intermediate
charge transfer state in the SF process*'%271%% A singlet exciton
with a high degree of charge transfer character, i.e., with the hole
and the electron probability distributions centered on different
molecules, is thought to be favorable for SF*21106-198 The SF
driving force of BCPP is comparable to tetracene but its %CT is
significantly lower. Considering the relatively slow fission rate in
crystalline tetracene'®?~""", slow SF could be observed in the BCPP
crystal. DPNP has a comparable SF driving force to that of DPT and
a much higher %CT of almost 90%. TBPT has a slightly lower SF
driving force than pentacene and a comparable %CT. Based on
this, DPNP and TBPT may undergo faster SF than tetracene with a
smaller energy loss than pentacene.

In summary, to accelerate the computational discovery of
potential materials for intermolecular singlet fission in the solid
state, we have used machine learning to generate models that are
fast to evaluate and accurately predict the thermodynamic driving
force, which is the primary criterion for singlet fission to occur. To
this end, a dataset of GW + BSE calculations of the SF driving force
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Fig. 7 2D descriptor of SF performance. BCPP, TBPT, and DPNP
compared to known SF materials, colored in red, with respect to a
two-dimensional descriptor calculated with GW + BSE. The thermo-
dynamic driving force for SF (Es — 2Er) is displayed on the x-axis and
the singlet exciton charge transfer character (%CT) is displayed on
the y-axis.

of 101 polycyclic aromatic hydrocarbons (PAH101) was compiled.
The SISSO machine-learning algorithm was used to generate models
with a varying degree of complexity by combining physically
motivated primary features. Subsequently, the most predictive
models were selected by linear regression with cross-validation.
Several SISSO-generated models demonstrated good prediction
performance with a training set RMSE below 0.2 eV. The accuracy
of the SISSO-generated models exceeded by far the accuracy of
human generated baseline models based on DFT estimates of the
single molecule and crystal SF driving force. The few outliers, most
of which were outside the region of interest for SF, were
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somewhat chemically different than most chromophores in the
PAH101 set. Based on considerations of cost, accuracy, and
classification performance we have proposed a hierarchical
screening workflow comprising two SISSO-generated models with
increasing cost and accuracy. Thresholds were set based on model
RMSE to allow a small number of false positives while ensuring
that no viable SF candidates were missed. All 24 promising SF
candidates in the PAH101 set successfully passed through the
workflow with only four false positives. In a materials screening
scenario, GW + BSE calculations would be performed only for the
materials that pass all stages of the SISSO-based screening. In
addition, we have proposed using the variance in the predictions
of different SISSO-generated models for a given material as a
measure of uncertainty. A large variance in the SISSO model
predictions for a certain material may indicate that it should be
selected for GW + BSE calculations, even if it is not a promising SF
candidate, for the purpose of model retraining and refinement.

Finally, three potentially promising SF materials that have not
been reported previously were discovered in the PAH101 set:
BCPP, TBPT, and DPNP. For these materials, further analysis was
performed using GW + BSE. They were compared to known SF
materials with respect to a two-dimensional descriptor based on
the thermodynamic driving force and the singlet exciton charge
transfer character. BCPP was found to have a thermodynamic
driving force comparable to tetracene but a significantly lower CT
character, indicating that it may undergo slow singlet fission. TBPT
and DPNP were found to have a thermodynamic driving force
between tetracene and pentacene and a high degree of singlet
exciton CT character. This indicates that they may undergo faster
SF than tetracene with a smaller energy loss (higher energy
efficiency) than in pentacene. BCPP, TBPT, and DPNP belong to
chemical families that have not been studied in the context of SF
to date. This may help steer experimental efforts in new directions.

Thus, we have successfully used the SISSO machine-learning
algorithm to find predictive models for excited-state properties of
molecular crystals, whose computational cost is sufficiently low to
enable large-scale screening in search of SF materials. In the
future, we will use the SISSO-generated models to screen
materials datasets. We note that the present models are not
expected to perform well for materials that are significantly
chemically different than PAHs because that would be an
extrapolation. However, there are many additional PAHs in the
CSD and PAH structures that continue to be solved and added at
an increasing rate with the advent of 3D electron diffraction (e.g.,
ref. *°). As additional data are acquired the SISSO-generated
models may be retrained and refined for more chemically diverse
systems. A similar approach may be used for other materials
discovery efforts where properties of interest are expensive to
compute or measure, making training data scarce.

METHODS

Primary feature calculation

Crystal features were evaluated for a locally-optimized geometry with the
unit cell lattice vectors fixed at their experimental values. Single-molecule
features were evaluated for molecules extracted from these locally-
optimized crystal structures. The primary features were calculated using
the FHI-aims package''>''® with the PBE functional, tight numerical
settings, and tier-2 basis sets'"% Details of the k-point grid settings for each
crystal are provided in the Supplementary Information.

SF driving force calculation

The SF driving force of crystals was calculated after full unit cell relaxation.
The Quantum ESPRESSO''* package was used to generate the mean-field
eigenvalues and eigenfunctions using the PBE exchange-correlation
functional with Troullier-Martins norm-conserving pseudopotentials''.
The wave functions were generated using a kinetic energy cutoff of 50 Ry.
The BerkeleyGW package''® was used to conduct many-body perturbation
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theory (MBPT) calculations within the GW approximation and to solve the
Bethe-Salpeter equation (BSE). About 550 unoccupied bands were
included in the calculation of the GW dielectric function and self-energy
operator. The static remainder correction was applied to accelerate the
convergence with respect to the number of unoccupied states''”. Twenty-
four valence bands and 24 conduction bands were included in the
calculation of the BSE kernel. The Tamm-Dancoff approximation (TDA) was
applied when solving the BSE''®. The coarse and fine k-point grid settings
for each crystal are provided in the Supplementary Discussions.

DATA AVAILABILITY

The data are available in the Supplementary Information.

CODE AVAILABILITY

The SISSO Fortran code is available at GitHub Repository: https://github.com/
rouyang2017/SISSO.
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