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We investigate quantum inspired algorithms to compute physical observables of quantum many-
body systems at finite energies. They are based on the quantum algorithms proposed in [Lu et al.
PRX Quantum 2, 020321 (2021)], which use the quantum simulation of the dynamics of such systems,
as well as classical filtering and sampling techniques. Here, we replace the quantum simulation by
standard classical methods based on matrix product states and operators. As a result, we can address
significantly larger systems than those reachable by exact diagonalization or by other algorithms.
We demonstrate the performance with spin chains up to 80 sites.

I. Introduction

Computing the properties of quantum systems in equi-
librium is of central interest in many-body physics. For
a system at finite temperature, there exists a wide spec-
trum of techniques that are used in practice. For large
systems, where exact solutions are unreachable, they typ-
ically approximate the corresponding Gibbs state using
variational, sampling, or series expansion methods [1–7].
For systems at a finite energy, e.g. in the microcanonical
ensemble, methods are more scarce [8–10].

A possible approach consists in simulating the dynam-
ics and extracting the equilibrium properties from there.
For instance, one can use spectral filters in order to re-
trieve expectation values of an observable O, by aver-
aging them at different times. In this way, one obtains
results connected to the diagonal ensemble corresponding
to the initial state [11], namely

Ō =
∑
n

|cn|2〈En|O|En〉 (1)

where |En〉 are the energy eigenstates and cn the coeffi-
cients of the initial state in that basis. For local Hamil-
tonians and initial states with finite correlation length
(like product states), the values of cn are significant if

|En − E| < δ = O(
√
N), where E is the mean energy of

the initial state. Under the eigenstate thermalization hy-
pothesis (ETH) [12–14], Ō converges to the equilibrium
value in the thermodynamic limit, and it is not neces-
sary to average the results at different time but just to
wait for a sufficiently long time. Quantum computers and
analog quantum simulators are very well suited for that
task, since they can deal with the dynamics of many-body
quantum systems in a very natural way [15, 16]. Clas-
sical methods to simulate the dynamics typically suffer
from the linear growth of entanglement [17], which gives
an exponential cost with time. Even if the (weak) ETH
applies, the thermalization time can be very long [18, 19],
and this severely restricts the applicability of such clas-
sical algorithms.

In this work we propose and analyze a classical algo-
rithm to compute expectation values of the form (1). In
particular, for cn that are Gaussian functions of |En−E|

with a variance δ, this can be achieved by simulating
the dynamics for a time O(1/δ). This allows us, for

instance, to reach δ = O(
√
N) by just using standard

time-evolution techniques for tensor networks for very
short times, when the entanglement is still very small
and thus the techniques work well. One can also reach
values of δ = O(1) with modest computational resources.
The algorithm is inspired by a quantum algorithm pre-
sented in [10] that allows one to compute expectation
values of the form (1). This algorithm combines classical
sampling (Monte Carlo) techniques with time series and
Loschmidt echo-like measurements [20, 21] that can be
obtained by quantum simulation of the dynamics. Our
main modification is to replace the latter by a classical
simulation using tensor network states [22–27]. This al-
lows us to compute (1) for times O(1/δ) instead of the
thermalization time, thus circumventing the problem of
entanglement growth. This is done at the expense of hav-
ing to sample, which just involves the repetition of the
whole procedure until convergence. We apply the algo-
rithm to one dimensional systems, sample over a basis of
product states and use matrix product states (MPS) and
operators (MPO) to simulate the evolution [28]. We illus-
trate the performance of the method for a non-integrable
Ising chain, for which we obtain convergence to the mi-
crocanonical values for systems up to 80 sites, far larger
than what is possible with exact diagonalization.

Apart from that, in [10] another quantum algorithm
was proposed to compute physical observables in a state
where an energy filter of width δ is applied. For lo-
cal Hamiltonians, the computational time also scales as
O(1/δ). Here we also analyze a classical algorithm in-
spired in that method. We notice that this method typi-
cally requires much narrower δ (thus longer times) to ap-
proach thermodynamic quantities. However, the filtering
achieved with a limited evolution time can be optimized if
the initial state is chosen with already a reduced energy
width. Here we demonstrate this possibility by apply-
ing the classical version of the first algorithm on matrix
product states found by minimizing the energy variance.

The rest of the paper is organized as follows. In sec-
tion II we briefly review the concept of energy filters,
introduce the filter ensemble and discuss its applications
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to determine microcanonical and diagonal properties. We
also review briefly the quantum algorithms [10] that mo-
tivate this work. In section III we discuss the details of
a TNS simulation of the quantum algorithms, the differ-
ent possibilities and associated parameter choices. Sec-
tion IV presents our numerical results for Ising chains,
for each of the algorithms implemented. The paper is
closed with the discussion in section V.

II. Filters and quantum algorithms

We start by recalling the definition and properties of
the energy filters that are at the basis of the algorithms
in [10] and this work.

A. Energy filters

The main tool used by the finite energy algorithms dis-
cussed here is a filtering operator that suppresses energy
eigenstates outside a target energy interval. In particu-
lar, given the Hamiltonian H, we define a Gaussian filter
centered in energy E and of width δ as the following op-
erator

P̂δ(E) = exp

[
−
(
Ĥ − E

)2
/2δ2

]
. (2)

Notice that, up to normalization, P̂δ(E) is a diagonal
ensemble in the energy basis. We refer to it as the filter
ensemble

ρ(E,δ) =
P̂δ(E)

tr
[
P̂δ(E)

] . (3)

The corresponding expectation values are precisely of the
form (1), with coefficients |cn|2 distributed according to
a Gaussian of width δ. For local Hamiltonians and large
systems, product states have that kind of spectral decom-
position, with δ ∼ O(

√
N) [29, 30] but, since they contain

coherences in the energy basis, the corresponding expec-
tation values are very different. An ensemble as (3) could
nevertheless be obtained from a product state, but only
after evolving and averaging over a long time.

As the width δ is reduced, the filter approaches the
microcanonical ensemble. Thus we can make use of the
filter to access the microcanonical properties of the quan-
tum system in the following two different ways.

a. Filtering a state. Given a state |ψ〉, its lo-
cal density of states (LDOS) is defined as Dψ(E) =

〈ψ|δ(E − Ĥ)|ψ〉. A broadened version can be computed
with the filter as

Dδ,ψ(E) =
1√
2πδ
〈ψ|P̂δ(E)|ψ〉 . (4)

We can also use the filtered state to explore the mi-
crocanonical ensemble expectation value Omicro(E) of an

δ

απ

E0

F̂δ,α(E0)

P̂δ(E0)

E

FIG. 1. Approximating P̂δ(E0) with F̂δ,α(E0).

observable Ô. In generic cases in which ETH is satisfied,
and for a value E at which the LDOS does not vanish,

Oδ (E, |ψ〉) =
〈ψ|P̂δ(E)ÔP̂δ(E)|ψ〉
〈ψ|P̂δ(E)2|ψ〉

(5)

will converge to Omicro(E) in the limit δ → 0.
b. Filtering the whole spectrum. The filter ensem-

ble itself converges to the microcanonical ensemble as
the width is reduced. Hence, we can also use it without
specifying a state, but directly taking its trace. In partic-
ular, the density of states (DOS) of the Hamiltonian H,

defined as D(E) = tr
[
δ(E − Ĥ)

]
, can be approximated

through the broadening of the δ functions as

Dδ(E) = tr
[
P̂δ(E)

]
. (6)

Moreover, the expectation values in the filter ensemble

Oδ(E) = tr
[
Ôρ(E,δ)

]
= tr

[
ÔP̂δ(E)

]
/ tr

[
P̂δ(E)

]
(7)

will converge to the microcanonical values as δ → 0.
Whereas in generic cases one can in principle approach

the microcanonical expectation values with either (5) or
(7), the convergence of the second with δ is much faster,
since the filter ensemble is diagonal in the energy basis,
while (5) contains contributions from off-diagonal matrix
elements [31–33], which can converge much slower than
the diagonal part [14, 34].

Implementing the filter

For the purpose of numerical, but also quantum, sim-
ulations of the filter, it is convenient to substitute an
approximation for the Gaussian filter. In this paper, fol-
lowing the quantum algorithms in [10], we focus on the
cosine filter [35, 36] defined as

F̂δ,α(E) = cos
[(
Ĥ − E

)
/α
]M
≈ P̂δ(E), (8)

where α is a parameter (with dimensions of energy) that
controls the validity of the approximation, and M =
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bα2/δ2c2 with b· · ·c2 giving the closest smaller even in-

teger. The approximation is valid if
∥∥∥Ĥ − E∥∥∥ ≤ απ/2,

when the spectrum of Ĥ lies in one period of the co-
sine function [37]. (8) can be further approximated by a
truncated series of evolution operators

F̂δ,α(E) ≈ F̂ xδ,α(E) =

R∑
m=−R

cme
−i(Ĥ−E)tm , (9)

where R = bxα/δc, tm = 2m/α, x is a constant
that bounds the truncation error in operator norm as∥∥∥P̂δ(E)− F̂δ,α(E)

∥∥∥ ≤ 2e−x
2/2 and

cm =
1

2M

(
M

M/2−m

)
. (10)

With the cosine filter the problem is turned into evolving
states or computing the traces of time evolution opera-
tors, which leads itself to a natural implementation in
quantum simulators.

B. The quantum algorithms

In Lu et al.’s paper [10], two hybrid classical-quantum
algorithms corresponding to the two different ways of ap-
plying the filter were introduced. We sketch them here
for completeness.

The first one computes (5) for a state |ψ〉 that can be
easily prepared. Suppose the quantum device can effi-
ciently obtain the following quantities

aψ(t) = 〈ψ|e−iĤt|ψ〉
aO,ψ(t1, t2) = 〈ψ|eiĤt1Ôe−iĤt2 |ψ〉 ,

(11)

then (5) can be determined by classical postprocessing as

Oδ(E, |ψ〉) =

∑R
m,n=−R c

∗
mcnaO,ψ(tm, tn)∑R

m,n=−R c
∗
mcnaψ(tn − tm)

, (12)

without explicitly preparing the filtered state. The re-
quired time scale is proved to be a polynomial of system
size N , the inverse of the width of filter 1/δ and the in-
verse of the error, provided the state |ψ〉 can be prepared
efficiently, for a value of E in a small interval around the
mean energy of |ψ〉.

In the second algorithm (quantum-assisted Monte
Carlo), importance sampling is applied to compute (7).
Let us rewrite that expression as

Oδ(E) =

∫
dµφDδ,φ(E)Oδ,φ(E)∫

dµφDδ,φ(E)
, (13)

where { | φ〉 } is an (over-)complete basis, with dµφ
the appropriate measure to ensure the closure relation∫

dµφ |φ〉 〈φ| = 1 (a simple choice is for instance the com-
putational basis). Dδ,φ is the LDOS defined in (4) and

Oδ,φ = 〈φ|ÔP̂δ(E)|φ〉/〈φ|P̂δ(E)|φ〉. (14)

Both Dδ,φ(E) and Oδ,φ(E) can be obtained by measuring
the quantities defined in (11), as long as we can run the
first algorithm with the quantum device for the states
in the basis { | φ〉 }. Then a Metropolis-Hastings step
can be applied classically with regard to the probabil-
ity distribution Dδ,φ(E)/

∫
dµφDδ,φ(E), and the value of

Oδ(E) can be estimated. Because Dδ,φ(E) is positive,
this method does not encounter a sign problem.

Given δ, this second algorithm provides access to ob-
servables in the filter ensemble at the cost of simulating
time evolutions for times O(1/δ), at the expense of re-
peating the procedure until the sampling converges. This
is especially remarkable because one could obtain a simi-
lar result from the time evolution of an initial state with
the same distribution of coefficients, but this would re-
quire evolving for as long as the thermalization time. As
a particular application, if one chooses δ = o(

√
N), the

expectation values of intensive quantities will (under the
ETH) already be equivalent to those in the Gibbs ensem-
ble at the same mean energy (see III B 1), and therefore
this algorithm is an inexpensive way of accessing thermal
properties.

If we are interested in microcanonical expectation val-
ues, we can use either algorithm, but we need to reduce
the width of the filter. Since the trace quantities con-
verge faster in δ to the microcanonical values, a shorter
evolution time is required with this second algorithm. In
exchange, the procedure needs to be repeated over many
states, to perform the classical Monte Carlo sampling.

Extreme values of energy

Both algorithms above rely on the evolution of eas-
ily preparable states (a requirement for the single initial
state in the first algorithm or the whole sampling basis in
the second). A most practical choice is that of product
states. The mean energies of such states are contained in
an extensive but generally restricted interval within the
spectrum [38], such that values close to the edges of the
spectrum may be out of reach. As indicated in [10], the
accessible range of energies can be extended by consider-
ing larger sets of states. In particular, MPS can be used
to circumvent the limitation.

For the first algorithm, the initial state |ψ〉 can be
found as an MPS with a small bond dimension such
that its energy expectation value is close enough to E,
as MPS serves as a good representation of the ground
state and low-lying excited states. This can be done,
for instance, by first finding the MPS with that bond
dimension and minimal energy (Emin), and then chang-
ing its parameters until the desired energy E > Emin is
reached. Another possibility is to find the MPS minimiz-
ing (H − E)2 [39, 40].

For the second algorithm, a different basis for Monte
Carlo sampling can be chosen, where we start from any
state |φ0〉 whose mean energy is close to E, obtained in
the same way, and apply a random Pauli matrix σx, σy
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or σz on a random site in each proposed move. This
strategy gives a complete basis set, as

1

2N

3∑
µi=0

1≤i≤N

σµNN · · ·σµ1

1 |φ0〉 〈φ0|σµ1

1 · · ·σµNN = 1 (15)

for any state |φ0〉. The change in mean energy is O(1) in
each move, and thus this choice of basis ensures enough
states for sampling.

III. Classical simulation

The methods that we study in this paper replace the
quantum simulation of the dynamics in the quantum
algorithms of [10] by classical simulations using tensor
networks. The longest evolution time required in (9),
which is the deciding factor for the efficiency, is deter-
mined by the width of the filter δ as tmax = tR ≈ 2x/δ.
A quantum simulator should be able to deal efficiently
with times t = O(poly(N)), which gives access to δ =
Ω(poly(1/N)) [41]. This should be sufficient for both (5)
(in the case ETH is satisfied [34]) and (7) to converge to
the microcanonical values. On a classical computer, TN
techniques provide the possibility to simulate the time
evolution of a local Hamiltonian [22, 23, 28], but the
bond dimension required to do so can increase exponen-
tially with time. Thus, starting from a product state, we
can simulate times tmax ∝ logN with a bond dimension
polynomial in system size, which would allow us to effi-
ciently perform classical simulations of the algorithm for
δ = Ω(1/ logN). For the actual implementation of the
classical simulation of the dynamics, there exist several
options, some of which we discuss in this section.

A. Tensor network implementation

There are multiple different approaches to simulate
time evolution with TN techniques (see [28] for a re-
cent review). Some of the most commonly used meth-
ods are based on a Suzuki-Trotter approximation of the
time evolution operator. One possibility is then to re-
peatedly apply the approximated short time evolution
steps onto a matrix product state (MPS), to obtain a
representation of the time-evolved state. Alternatively,

the time-evolution operator itself, e−iĤt, can be approxi-
mated by a matrix product operator (MPO), constructed
also from the iteration of trotterized steps. Therefore, we
can use various techniques for the classical simulation of
the quantum methods above.

Finding the MPO representation of each term e−iĤtm

as an MPO allows us to estimate tr(P̂δ(E)) as linear com-
bination of the corresponding traces, which for MPOs can
be computed very efficiently. This strategy will however
fail as we approach the edge of the spectrum for large

system sizes while considering small values of δ. The rea-
son is the extremely imbalanced distribution of the DOS
D(E), which becomes exponentially small when E is far
from the center of the spectrum. For a traceless, local and
bounded Hamiltonian, in the thermodynamic limit D(E)
converges weakly to a Gaussian distribution with mean
energy E = 0 and width proportional to

√
N [29, 30]:∫ E0

−∞
D(E)dE

N→∞−−−−→
∫ E0

−∞

dNe−E
2/2Nσ2

0

√
2πNσ0

dE, (16)

where d is the local Hilbert space dimension and σ0 is
some constant independent of the system size. Thus,
for energies ≈

√
N , we expect D(E) to become expo-

nentially smaller than its value at the center. Therefore

given all tr
(
e−iĤtm

)
that are reasonably precise, the ra-

tio in (7) could still not be properly achieved all through
the whole spectrum: the applicable energy range will be
proportional to the square root of the system size, and
hence O(1/

√
N) in energy density, a restriction we also

observed in a previous work [9].
Fortunately, this difficulty can be overcome with the

importance sampling method described in II B. To be-
gin with, in this method we only need to evaluate the
ratio (14) for states for which the probability factor

〈φ| P̂δ(E) |φ〉 is above some threshold. In particular,
when E is away from the center of the spectrum, con-
tributions from the exponentially large maximum of the
DOS will be suppressed. Of course, one needs that the
chosen basis {|φ〉} has enough states around the target
energy E. Since for our numerical simulations we are free
to choose any basis from which we can sample efficiently
and whose states can be written as MPS, we can exploit
this freedom to try to ensure this condition. A product
basis minimizes the cost of the contractions and is often
a good choice, since, as mentioned above, it covers an
extensive window of the energy spectrum. If this is not
the case, we can use any of the methods mentioned at
the end of section II to find an MPS with small bond
dimension close to the desired energy, and use it to con-
struct a complete basis of the form (15). For the cases
we consider in this paper, the computational basis is al-
ready an adequate choice, sufficient to produce accurate
numerical results over the full spectrum, as we illustrate
in the next section.

In the Monte Carlo simulation, the time evolution can
be done either at the level of the states, i.e. directly
evolving the sampled state as an MPS, or at the level
of the operators, i.e. approximating the evolution uni-
taries for each state as MPOs, storing them in mem-
ory, and using them later to do contractions with states
randomly sampled from the basis. The second option
has the advantage of simulating the dynamics a single
time, as the same operators can be reused when doing
the sampling over different states. Hence it is faster, but
it also consumes much more memory to store the required
MPOs [42]. Also, the bond dimension needed to approx-
imate an evolution operator as an MPO is significantly
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larger than the one used to approximate a time-evolved
MPS for the same time. As a concrete example, for sys-
tem size N = 80, we find bond dimension DMPS = 40
to be enough for evolving MPS, and DMPO ∼ 100 for
storing the MPOs, for (δ, α) ∝ (1,

√
N) and 5× 104 sam-

ples. The typical time scales taken are 1 week and 1 day,
respectively with Intel® Xeon® Gold 6138 processor.

B. Filter parameters and the microcanonical limit

The cosine filter depends on two parameters: the width
δ and the period of the filter α. As mentioned, δ deter-
mines the maximum time we need to evolve, tmax = 2x/δ,
while for a fixed δ, α determines the number of terms in
the expansion R = xα/δ. Additionally, in the Monte
Carlo algorithm we introduce a cutoff parameter ε and
discard states for which the probability is found to be
below this threshold.

In this section we discuss the significance of these pa-
rameters, as well as which choices ensure approaching
the microcanonical limit. Note that the conclusions are
valid for both the classical and the quantum version of
the algorithms.

1. Filter width δ

A width δ and mean energy E0 determine the proper-
ties of the filter ensemble P̂δ(E0). But to estimate the
corresponding energy distribution we need to take into
account the density of states. Assuming a Gaussian DOS
as in (16), the energy distribution of the filter ensemble
will also be a Gaussian given by

Dρ(E0,δ)
(E) = D(E) exp

[
− (E − E0)2

2δ2

]
∼ exp

(
− E2

0

2γNσ2
0

)
exp

[
− γ

2δ2
(E − E0/γ)

2
]
,

(17)

where γ = 1 + δ2/Nσ2
0 . We omitted an energy-

independent factor in (17). It can be concluded that in
the thermodynamic limit, the mean energy and width of
the filtered ensemble are given by

Eρ(E0,δ)
= E0/γ, ∆ρ(E0,δ)

= δ/
√
γ. (18)

If we choose δ ∝
√
N , the mean energy of the ensemble

is shifted with respect to the parameters of the filter, as
explicitly shown in Fig. 4. A filter width that scales as
δ = o(

√
N) is enough to ensure that Eρ(E0,δ)

→ E and
∆ρ(E0,δ)

→ δ as N → ∞. This observation is especially
relevant if we are interested in approaching the micro-
canonical limit: in general, assuming ETH, in the ther-
modynamic limit a microcanonical energy shell centered
at E will yield the thermal values for intensive quantities
at energy density E/N if the width ∆ satisfies ∆/N → 0.
This condition is already satisfied for the filter ensemble
with δ ∝

√
N , which means that the expectation values

will converge to the thermal ones, only at shifted ener-
gies, according to the previous argument (see Fig. 4).

We can similarly estimate the energy distribution of
the pure state resulting from the application of the filter
onto an individual state |ψ〉. There is actually a similar

argument for P̂δ(E) |ψ〉 if |ψ〉 is a product state, as such
states also have essentially Gaussian LDOS whose widths
are proportional to

√
N [43]. With a spectral decomposi-

tion |ψ〉 =
∑
k ck |Ek〉, where |Ek〉 are energy eigenstates,

the filtered state results as

|P̂δψ〉 :=
√

ΓP̂δ |ψ〉 =
√

Γ
∑
k

cke
− (E−Ek)2

2δ2 |Ek〉 , (19)

where Γ = 1/ 〈ψ|P̂δ(E)2|ψ〉 is the normalization factor.
By choosing the center of the filter at the mean energy
of the state E = 〈ψ|Ĥ|ψ〉 =: Eψ, the average energy of
the filtered state does not change. Assuming the LDOS
of |ψ〉 has a Gaussian form with width σψ

√
N , where

σψ is independent of system size, the energy variance
of |ψ〉 can be estimated through substituting the sum
over eigenstates by an integral over energy values with
Gaussian weights. We obtain

∆2
P̂δψ

:= 〈P̂δψ|H2 |P̂δψ〉 − 〈P̂δψ|H |P̂δψ〉
2

≈ δ2

2 + δ2/Nσ2
ψ

. (20)

Again, we may want to consider how this affects ap-
proaching the microcanonical limit as the width of the
filter is decreased. A major difference in this respect be-
tween the filter ensemble and the filtered state is that
the second contains coherent contributions from differ-
ent energy eigenstates. Thus (5) includes contributions
from off-diagonal matrix elements in the energy basis,
which only become negligible when the width of the en-
ergy distribution decreases sufficiently fast with N . More
concretely, from canonical typicality arguments we can
expect that, for non-integrable systems, the expectation
value of a local observable converges to the thermal value
when the energy deviation of the state decreases as a
polynomial of 1/N [34]. In [35] we observed a trend to
convergence already with a slower decrease ∼ 1/ log(N).
For these scalings of the filter width, according to (20),
the width of the filtered state will scale in the same way.

2. Period of cosine filter α

Different to the Gaussian one, the cosine filter (8) is
periodic, but it remains a good approximation of the for-
mer when the argument is bounded within one period.
More concretely, operators P̂δ(E) and F̂δ,α(E) are close

to each other when
∥∥∥Ĥ − E∥∥∥ ≤ απ/2. At the same time,

because the number of terms that need to be evaluated
in the sum (9) is proportional to α, it is convenient to
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choose the smallest possible value that ensures the pre-
vious property. For a local Hamiltonian, a value α ∝ N
is enough for the condition to hold for all values of E
within the energy spectrum. If the operator acts only on
a limited energy window, a smaller value of α can be cho-
sen, as long as all relevant states are almost supported
in [E −απ/2, E +απ/2]. This can be used, for instance,
when the filter acts on a product state, whose energy dis-
tribution is approximately Gaussian, with support on an
energy interval ∝

√
N . If additionally, the filter is cen-

tered near the mean energy of the state and δ = o(
√
N),

it is enough to choose α ∝
√
N [10]. In practice, we find

α = 3 max(σφ
√
N, δ) to work well for all system sizes.

3. Monte Carlo cutoff threshold ε

For the discussions in III B 2, it should be ensured that
the samples in Monte Carlo simulations not stepping into
other energy periods of the cosine filter when α ∝

√
N .

In other words, the weights of the states whose mean en-
ergy are close the edges of [E − απ/2, E + απ/2] should
be small enough. A cutoff threshold ε can be applied to
the weights of samples to improve numerical stability in
Monte Carlo simulations. To be more concrete, a pro-
posed state |φ〉 will be directly discarded (its probability
assimilated to 0) if Dδ,φ < ε. Besides making the nu-
merics more stable, the presence of the cutoff prevents
the peak of the DOS from shifting the ensemble when
we target energies near the edges, because it restricts the
visited energy range in more general cases, as we show
next.

If we consider a product state basis, an individual state
|φ〉 will have mean energy Eφ and width σφ

√
N . Again,

assuming a Gaussian distribution, we can estimate its
weight in the sum as

Dδ,φ(E) =

∫
dµ

1√
2πNσφ

exp

[
− (µ− Eφ)2

2σ2
φN

− (µ− E)2

2δ2

]

=

√
δ2

δ2 +Nσ2
φ

exp
[
−(E − Eφ)2/(δ2 +Nσ2

φ)
]

(21)

so that Dδ,φ < ε holds if

|E − Eφ| > νφ :=

(δ2 +Nσ2
φ) ln

 δ

ε
√
δ2 +Nσ2

φ

1/2

.

(22)

When δ = Ω(
√
N), it follows that νφ ∼ δ for all states

in the basis. While if δ = O(
√
N), νφ = O(

√
N) holds

as well. Hence for any δ = o(N), the cutoff ε itself can
restrict the sampling space within an energy interval of
width o(N) that screens the peak of the DOS.

4. Choosing the parameters for microcanonical values

According to the discussions above, we can summarize
in Table I some possible choices of parameters for the
various algorithms, such that we obtain convergence to
thermal values in the thermodynamic limit. The table
shows the scaling with system size of α and δ, as well as
the resulting cost (in terms of maximum evolution time
and number of evolutions to run) and the energy range
where the methods are applicable. The fastest method
[(I) in the table] is directly computing (7) by taking the
traces of the evolution operators approximated as MPOs,
but, as discussed in section III A, it is only applicable in
an energy interval of width proportional to

√
N around

the center of the spectrum. With Monte Carlo sampling
(II), in contrast, it is possible to reach the whole spec-
trum. The filter width required to obtain convergence
to thermal values in the thermodynamic limit should
scale at most as O(

√
N). A larger width corresponds

to a shorter evolution time tmax, and hence a smaller
bond dimension required for the MPS or MPO, but it
also shows slower convergence to the thermal values as
the system size is increased. We thus show two possible
choices (IIa) and (IIb), both of which we explore numer-
ically, using different approaches for time evolution, in
IV A. In (IIa), a cutoff threshold is applied in the Monte
Carlo simulations to avoid the energy shift due to DOS
when δ ∝

√
N . Finally, when filtering a state (III), the

time tmax required to approach microcanonical values is
polynomial in the system size, which means that with
TN techniques we will be able to extract microcanonical
values with this method only for small system sizes. For
this last method, however, the achievable width can be
optimized by applying the algorithm on a state with re-
duced energy width. We present a way to implement this
improvement by using MPS obtained after a variational
minimization of the variance.

IV. Results

To demonstrate and benchmark the various methods
described above, we apply them to a quantum Ising chain
with open boundary conditions,

ĤIsing = J

N−1∑
i=1

σzi σ
z
i+1 +

N∑
i=1

(gσxi + hσzi ). (23)

The model is integrable if either g = 0 or h = 0.
Here we choose a particular set of parameters (J, g, h) =
(1,−1.05, 0.5) far from integrability [44]. In the thermo-
dynamic limit, the corresponding energy density lies in
the interval E/N ∈ [−1.33, 1.72]. For the observable, we
focus on the average magnetization

m̂z =

N∑
i=1

σzi /N. (24)
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Method δ α tmax R Applicable energy range

(I) Spectrum filtering, direct trace o(
√
N) N ω(1/

√
N) ω(

√
N) O(

√
N)

(IIa)
Spectrum filtering, Monte Carlo

O(
√
N) N Ω(1/

√
N) Ω(

√
N)

Full spectrum(IIb) O(1) Ω(
√
N) Ω(1) Ω(

√
N)

(III) State filtering poly(1/N) Ω(
√
N) poly(N) poly(N)

TABLE I. Possible choices of the filter parameters (δ, α) that ensure approaching the microcanonical values in the thermody-
namic limit for the various methods, and corresponding maximum evolution time and number of steps.

A. Filter ensemble

We start by illustrating the performance of the Monte
Carlo algorithm to estimate expectation values in the fil-
ter ensemble (3) at all values of energy. Since the largest
time we need to simulate is tmax ∝ 1/δ, the classical sim-
ulation can efficiently treat widths δ = O(1/ logN) and
larger.

For the numerical benchmarking, we choose widths
δ ∝
√
N and δ = const, which, according to the discus-

sions above, are enough to approach the microcanonical
values in the thermodynamical limit [see (II) in table I].
In the non-integrable model we consider, the values are
thus expected to converge to the thermal ones. Thus,
we can compare the results of the algorithm with the
exact values in thermal equilibrium at the correspond-
ing energies, which we can compute independently using
standard TN techniques [6].

The calculations can be done using different options for
the TN evolution (section III A). As long as the results
are converged in bond dimension, both approximating
the evolution operators as MPO or the individual evolved
states as MPS are valid strategies, and we show results
obtained with both of them.

1. MPO version of Monte Carlo simulation

Figure 2 demonstrates the success of the method to
find expectation values in the filter ensemble, for sys-
tem sizes up to N = 80. In particular, for this plot, we
chose to simulate and store the MPOs for all evolution
operators before realizing the sampling over the compu-
tational basis. For the filter, we used filter parameters
(δ, α) ∝ (

√
N,N), which, as argued in section III B, in

a generic case is enough for the observable to converge,
in the thermodynamic limit, to the thermal expectation
value if introducing a cutoff threshold (section III B 3).
We choose to sample over the computational basis and
the cutoff threshold ε = 10−4Dδ,φ0

(E), where |φ0〉 is the
initial state in the Monte Carlo simulation, obtained by
minimizing 〈φ|(Ĥ − E)2|φ〉 for |φ〉 in the basis set.

As shown in the upper panel of fig. 2, the results clearly
converge to the thermal value as the system size N is in-
creased or δ is reduced. The inset shows explicitly this
convergence for energy density E/N = 1.44, relatively
close to the edge of the spectrum. Errors have two main
sources, which are shown in this plot: the statistical error
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FIG. 2. Magnetization (24) in the non-integrable Ising
chain (23) with (J, g, h) = (1,−1.05, 0.5), computed by the
MPO version of the Monte Carlo method with parameters
(δ ∝

√
N, α =

√
J2 + g2 + h2N) and a cutoff (see main

text). The sample size is 5× 104 for each energy and δ. Up-
per panel: Convergence over the whole spectral range. The
black dashed line is the thermal value for N = 80. Data
points are (mz)δ, where different colors stand for different
system sizes and different shapes for different δ. The inset
plots the difference with respect to the thermal value as a
function of δ/

√
N at the point E/N = 1.44 (indicated by a

box in the main plot), with error bars indicating the variance
of the Monte Carlo sampling, while the shadowed region rep-
resents errors from finite MPO bond dimensions (D = 100 vs.
D = 150). Lower panels: Convergence with the sample size

at E/N = 1.44 for δ =
√
N (left) and δ = 0.5

√
N (right).

from the Monte Carlo sampling (error bars) and the trun-
cation error from the finite bond dimension of the MPO
(shown as shadowed region). Only for the largest system

size N = 80 and smallest width δ = 0.5
√
N we observe

a small discrepancy, but compatible with our estimated
errors from both sources.
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The lower panels of fig. 2 show explicitly the conver-
gence of the Monte Carlo sampling at the same energy
density E/N = 1.44, for various system sizes and bond
dimensions, and for two different values of the width. In
all these cases we observe that, after 50000 steps, the
results are practically converged, even though some fluc-
tuations can be appreciated.

2. MPS version of Monte Carlo simulation

To illustrate the performance of the algorithm when
individual states, rather than operators, are evolved, we
choose a narrower filter width, which should lead to val-
ues closer to the thermal ones, while still being reachable
by classical simulations. Notice, however, that similar
values could have been obtained with the MPO option,
at a different cost in memory and time.

In particular, considering a constant value δ = O(1),
independent of system size, requires evolution until a con-
stant time, which (for not too small values of δ) can be ef-
ficiently simulated using TN. Thus we choose parameters
(δ, α) ∝ (1,

√
N) [(IIb) in Table I], and explore two values

of the energy density, one near the center of the spectrum
(E/N = 0.72) and one close to the edge (E/N = 1.44),
and both within the reach of product states from the
computational basis, which we take again as our sam-
pling basis.

Results are shown in Fig. 3. In the upper panels, we
plot the difference between (mz)δ and the corresponding
thermal value as a function of the system size, for two
values of the bond dimension, with error bars indicating
the statistical error. We find that, within error bars, the
distance to the thermal value decreases as the system
size grows, with a relative difference smaller than 0.5%
for N = 80 and E/N = 1.44.

In the lower panels of Fig. 3, we again show explic-
itly the convergence of the Monte Carlo sampling. Note
that here the same seed for randomization was used for
different bond dimensions, so the fact that the solid and
dashed lines (representing D = 40 and D = 60 respec-
tively) are on top of each other indicates the convergence
with regard to bond dimension already at D = 40.

As illustrated above, the combination of short-time
dynamics simulation and sampling provides a powerful
method to compute the expectation values in the filter
ensemble, as long as the basis contains vectors with sub-
stantial weight in the energy region of interest. For the
computational basis that we have used in the examples,
mean energies lie in the interval E/N ∈ [−1, 1.5]. Ac-
cording to (21), the weights of basis states Dδ,φ will de-
cay exponentially with the system size for a fixed energy
density E/N outside this interval. Fig. 2 shows that, for
system size N = 80, the Monte Carlo sampling with com-
putational basis remains valid at E/N = 1.68 (rightmost
point) and E/N = −1.2 (leftmost point), much closer
to the edges of the spectrum, so that we do not need to
resort to the Pauli basis mentioned in II B. Using this
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FIG. 3. Magnetization (24) obtained by the MPS version

of the Monte Carlo method for (δ = 1, α = 6
√
N) and no

cutoff, for two values of the energy density, E/N = 0.42 (left)
and E/N = 1.44 (right). Upper panels: Difference between
(mz)δ(E) and thermal value as a function of the system size
for bond dimensions D = 40, 60. The error bars correspond
to Monte Carlo fluctuations. Lower panels: convergence of
Monte Carlo sampling with the number of steps. The results
have converged for bond dimension D = 40 in the left plots,
and hence the solid and dashed lines are on top of each other.

basis may however become necessary as we keep increas-
ing the system size, or if we consider other models or
higher dimensions. %it to finally fail as keeping increas-
ing the system size, or when we deal with other models
with larger gap between product states and the ground
(or maximally excited) state. In these cases the Pauli
basis mentioned in II B will be applicable.

3. Exploring the center of the spectrum without sampling

The fastest alternative to evaluate (7) with TN simula-
tions is to directly evaluate numerator and denominator
from traces of the evolution MPOs, without the sam-
pling iteration [(I) in Table I]. As discussed above, this is
only feasible in the central region of the spectrum, over
a width ∝

√
N , before the density of states becomes ex-

ponentially small. If the filter width is not much smaller
than this scale, the mean energy of the filter ensemble
will be effectively shifted towards the maximum of the
DOS, as explicitly computed in sec. III B 1.

Figure 4 illustrates the behavior of this alternative for
(δ, α) ∝ (

√
N,N). The upper plot shows the results ob-

tained for the magnetization mz for various system sizes
and filter widths, as a function of the energy density cor-
responding to the center of the filter. Because of the
shift discussed above, the results do not converge to the
thermal ones (indicated by the solid line) at that energy,
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FIG. 4. Magnetization (24) obtained by MPO simulation of
the evolution operators and direct evaluation of the ratio (7).
Upper panel: computed magnetization as a function of the
energy density E/N at the center of the filter for system sizes
up to N = 80 and several widths. Over most of the spectral
range the results converge to thermal values at the shifted
energy depending on δ (18) (dashed lines) instead of the ther-
mal value at E/N . At the edges of the spectrum this fails,
due to the exponentially decaying DOS in these regions, as
discussed in III B 1. Lower panel: difference between the
computed magnetization and the shifted thermal values. All
results were obtained using bond dimension D = 200 for the
MPOs.

but at a shifted value according to (18) (indicated by a
dashed line for each δ).

We observe that, while in the central part of the spec-
trum better convergence is observed as δ decreases or
N increases, near the edge of the spectrum the method
fails to give the correct microcanonical values, especially
for larger systems and smaller widths, as then it be-
comes sensitive to the exponentially smaller density of
states. This is also visible in the lower panel of the fig-
ure, where we plot the difference between the computed
values Oδ(E) ad the thermal ones at the correspond-

ing shifted energies. According to (17), the denominator

of (7), tr
[
P̂δ(E)

]
should scale as exp(−E2/2γNσ2

0), indi-

cating the range of energy densities for which the method
actually converges shrinks as 1/

√
N .

B. Filtered pure state

As discussed in section III B, we can apply the filter on
a state to decrease its energy variance and, in the generic
case, obtain convergence to the microcanonical proper-
ties. Also in this case, the largest time that needs to be
simulated is tmax = 2x/δ, which can be done efficiently by
TN simulations if the width is at least O(1/ logN). But,
in contrast to the calculations for the filter ensemble, di-
agonal in the energy basis, a much smaller δ is required in
this case to approach microcanonical values in the ther-
modynamic limit. More concretely, δ = O(poly(1/N))
should be enough, but this requires tmax = Ω(poly(N)),
and thus a bond dimension that increases exponentially
with N . Additionally, when filtering a product state, the
total number of terms to probe will be (2R+ 1)2, where
R = xα/δ, which grows at least as N3.

One way to mitigate the second problem is to apply
the filter on a state with already reduced energy vari-
ance. This allows us to choose a smaller period α and
correspondingly keep a more moderate value of R and to
test the strategy for moderate sizes. We implement this
strategy using as initial states MPS with a given bond

dimension, found by variationally minimizing
(
Ĥ − E

)2
at the value of E we are interested in. To test this strat-
egy, we have targeted a value E/N = 0.72 for system
sizes 20 ≤ N ≤ 80, and obtained initial MPS with re-
duced widths from the minimization of (H − E)2 with
bond dimensions D0 ∈ {1, 2, 5, 10}. For each one of this
states, we compute the width σD, and then apply a fil-
ter with parameters δ = σD/2

√
N and α = 3σD. We

show the results in Fig. 5. To analyze the convergence
towards the thermal value as the width decreases, we plot
the relative error of the magnetization with respect to the
thermal one as a function of 1/δ (left panel) and 1/(N2δ)
(right panel) for each system size. The first case shows
no clear scaling laws, which indicates that δ = O(1) is
not enough for convergence in the thermodynamic limit.
The right panel, instead, exhibits a trend to convergence
for δ = O(1/N2), even though numerically it becomes
difficult to reach the lower right corner for large systems.

V. Summary and Discussion

We have presented a quantum-inspired classical
method, based on a TNS simulation of the quantum-
assisted Monte Carlo algorithm proposed in [10], that al-
lows us to compute microcanonical and diagonal values
for quantum many-body systems. Our method estimates
broadened spectral functions, which takes the form of the
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FIG. 5. Results computed by filtering states. E/N = 0.72.
The filtered states are MPS of bond dimension 1, 2, 5 and 10.
We compare the results of different system sizes with δ ∝ 1
in the left figure and δ ∝ 1/N2 in the right.

trace of an energy filter operator, or a product of the lat-
ter with an observable, via sampling over time-evolved
product states. Because the longest required time is pro-
portional to the inverse filter width, that is very short
and easy to simulate with tensor networks, it allows us
to find expectation values in a diagonal ensemble which
would only be reached after a much longer time evolu-
tion from an initial product state. While filter widths
O(
√
N) are enough to find the diagonal ensemble values

of generic product states, we can also reach energy filters
of constant widths, as these only require O(1) evolution
times. These scalings are enough to obtain convergence
to thermal equilibrium in the thermodynamic limit, in
the generic case.

We have benchmarked the algorithm on the non-
integrable Ising chain, for sizes up to N = 80 sites (far
beyond the reach of exact diagonalization), and we have
checked different choices of the parameters that affect
the efficiency and applicability of the method. In par-
ticular, we explicitly show diagonal expectation values
for Gaussian ensembles of width O(

√
N), obtained with

low computational cost over the whole range of energies,
and observe their convergence towards the thermal equi-
librium values. Reducing further the width, we obtain
microcanonical expectation values with high precision.

We can also classically simulate the provably efficient
quantum algorithm in [10], in which the filter is applied
on a fixed initial state. If we want to use this method
to explore the microcanonical properties, nevertheless,
the filter width needs to decrease with the system size

in order to guarantee convergence in the thermodynamic
limit, which results in increasing times and an exponen-
tially growing bond dimension. We have however opti-
mized the procedure by choosing as initial states MPS
with minimal variance. In this way, we can run the algo-
rithm and observe convergence for reasonably sized sys-
tems.

The results shown in this paper demonstrate the po-
tential of the algorithm. Accessing the microcanonical
values would be helpful to investigate all sorts of out-of-
equilibrium quantum many-body behavior, for instance
many-body localization [45] and quantum scars [46], for
large systems. Although we have only implemented it for
a translationally invariant spin chain with short-range in-
teractions, the method can be easily extended to systems
with disorder, or long-range interactions, and also to
bosonic or fermionic systems. We have recently learned
that A. Schuckert et al. are using a related method to
study long-range interacting models [47].

In principle, the same method can be also extended to
higher dimensional systems, using PEPS (projected en-
tangled pairs states) [48], which is a promising possibility,
given the absence of numerical methods for extracting
microcanonical expectation values in that case, beyond
exact diagonalization. The numerical challenge is then
higher, due to the larger computational cost of the cor-
responding algorithms, and determining the preferable
implementation option should be analyzed. Also further
extensions are possible that consider other filter functions
or combinations of filters.
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Rev. Lett. 124, 100602 (2020).
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