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a b s t r a c t 

Clinical heterogeneity has been one of the main barriers to develop effective biomarkers and therapeutic strategies 
in autism spectrum disorder (ASD). Recognizing this challenge, much effort has been made in recent neuroimag- 
ing studies to find biologically more homogeneous subgroups (called ‘neurosubtypes’) in autism. However, most 
approaches have rarely evaluated how much the employed features in subtyping represent the core anomalies 
of ASD, obscuring its utility in actual clinical diagnosis. To address this, we combined two data-driven methods, 
‘ connectome-based gradient ’ and ‘ functional random forest ’, collectively allowing to discover reproducible neurosub- 
types based on resting-state functional connectivity profiles that are specific to ASD. Indeed, the former technique 
provides the features (as input for subtyping) that effectively summarize whole-brain connectome variations in 
both normal and ASD conditions, while the latter leverages a supervised random forest algorithm to inform diag- 
nostic labels to clustering, which makes neurosubtyping driven by the features of ASD core anomalies. Applying 
this framework to the open-sharing Autism Brain Imaging Data Exchange repository data (discovery, n = 103/108 
for ASD/typically developing [TD]; replication, n = 44/42 for ASD/TD), we found three dominant subtypes of 
functional gradients in ASD and three subtypes in TD. The subtypes in ASD revealed distinct connectome profiles 
in multiple brain areas, which are associated with different Neurosynth-derived cognitive functions previously im- 
plicated in autism studies. Moreover, these subtypes showed different symptom severity, which degree co-varies 
with the extent of functional gradient changes observed across the groups. The subtypes in the discovery and 
replication datasets showed similar symptom profiles in social interaction and communication domains, confirm- 
ing a largely reproducible brain-behavior relationship. Finally, the connectome gradients in ASD subtypes present 
both common and distinct patterns compared to those in TD, reflecting their potential overlap and divergence 
in terms of developmental mechanisms involved in the manifestation of large-scale functional networks. Our 
study demonstrated a potential of the diagnosis-informed subtyping approach in developing a clinically useful 
brain-based classification system for future ASD research. 
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. Introduction 

Autism spectrum disorder (ASD) is a pervasive developmental con-
ition characterized by substantial heterogeneity across multiple symp-
oms such as impaired social cognition and altered sensory sensitiv-
ties ( GUZE, 1995 ). While this heterogeneity is likely derived from
he multiple underlying etiologies ( Ronald et al., 2006 ; Masi et al.,
017 ), overarching pathogenic mechanisms remain poorly understood,
ainly due to a lack of system-level evidence linking the molecular

ases and behavioral manifestation ( Kozak and Cuthbert, 2016 ). To
ll this gap, recent neuroimaging studies based on fully data-driven
lustering have sought to decompose ASD individuals showing com-
lex brain-wide anomalies into more homogeneous subgroups, so-called
eurosubtypes ( Hong et al., 2018 ; S.J. Hong et al., 2020 ; Feczko et al.,
019 ; Wolfers et al., 2019 ). Indeed, regardless of imaging modality
nd method, these studies converged to indicate 2–4 ASD subtypes
 Hong et al., 2018 ; S.J. Hong et al., 2020 ), each showing distinct cor-
ical morphology ( Hong et al., 2018 ; Chen et al., 2019 ) or functional
onnectivity (FC) reconfiguration ( Easson et al., 2019 ; Tang et al.,
020 ), the patterns associated with different levels of behavioral
ymptoms. 

So far, ASD subtyping has been less established in actual diagnosis.
t is partly due to suboptimal subtyping approaches, as previous stud-
es have mainly attempted to partition ASD individuals without con-
idering how to tie the subtyping with clinical variables of interest at
he level of a clustering step ( Feczko et al., 2019 ). In other words,
urrent approaches usually do not evaluate how much the employed
euroimaging features ( e.g., FC or cortical thickness) reflect the core
haracteristics of ASD when performing clustering; thus, even if the
tudy discovers seemingly distinct subtypes, their clinical relevance may
ot be immediately obvious. Another issue limiting the current sub-
yping effort is that the clustering has been so far conducted mainly
ithin the ASD population. Although simpler and parsimonious, this
SD-focused approach tends to ignore the fact that their brain-level
ariability often overlaps with that of other developmental conditions as
ell as even healthy individuals ( Kanai and Rees, 2011 ; Kernbach et al.,
018 ), which significantly hampers to reveal a complete picture of ASD-
pecific neurobiology. This perspective (treating ASD as an indepen-
ent pathological entity) may preclude the understanding of a full pic-
ure of ASD neurobiology. Recognizing all these issues, a recent study
roposed a novel method called ‘ functional random forest ’, a hybrid su-
ervised ( i.e., random forest ( Breiman, 2001 ) for diagnostic label pre-
iction) and unsupervised ( i.e., Infomap-based clustering ( Rosvall and
ergstrom, 2008 )) algorithm in order to find ASD and TD subtypes. By

ncorporating diagnostic information to clustering and profiling the vari-
bility of both groups, the study provided a promising proof of concept
n identifying ASD subtypes which are both biologically and clinically
eaningful. 

Given this improvement, however, there are remaining issues in the
SD subtyping research. First, which neuroimaging features would cap-

ure the main biological variability of autism is unclear, especially for
hose in functional magnetic resonance imaging (fMRI). Indeed, while
umerous features have been proposed to reveal FC patterns specific
o ASD ( Maximo et al., 2013 ; Martínez et al., 2020 ; Cardinale et al.,
013 ), our understanding of atypical organization of functional brain
ystems in this condition remains incomplete. Notably, however, an
merging literature has reported a utility of dimensionality reduction
echniques to represent large-scale FC as a series of low-dimensional
patial axes, each visualizing smoothly changing connectome transi-
ion along the cortical mantle ( Margulies et al., 2016 ). This so-called
 connectome gradient ’ metric has been recognized to effectively summa-
ize high-dimensional connectome variations, for instance, those related
o sensory-transmodal differentiation, in humans and non-human pri-
ates. Moreover, several clinical studies adopting this method showed
igh sensitivity in revealing pathological effects across multiple devel-
pmental conditions such as autism ( Hong et al., 2019 ) and schizophre-
2 
ia ( Dong et al., 2020 ; Wang et al., 2020 ), demonstrating a potential as
 useful imaging biomarker ( S.J. Hong et al., 2020 ). Another issue in the
urrent subtyping research is a lack of reproducibility assessment. Most
revious subtyping results have been rarely tested using independent
atasets, remaining as a proof of concept without a clear demonstra-
ion of whether they are not the consequence of overfitting to the given
ataset or to hyperparameters for the employed clustering algorithm
 Hosseini et al., 2020 ). 

Here, we sought to address these critical issues by implementing
 neurosubtyping framework that incorporates the connectome gradi-
nt into the functional random forest (FRF) and evaluating its repro-
ucibility based on the Replication dataset from the open-sharing ASD
ata repositories ( i.e., Autism Brain Imaging Data Exchange, ABIDE-I/-
I ( Di Martino et al., 2014 , 2017 )). We constructed whole-brain con-
ectome gradients from resting-state fMRI (rs-fMRI) of each individual
sing principal component analysis, which has been previously sug-
ested to show a high predictive power for various phenotypic vari-
bles ( S.J. Hong et al., 2020 ). In clustering ASD individuals, the FRF
nabled our subtyping to utilize the features that are particularly spe-
ific to the targeted condition ( = ASD). While the meaning of “spe-
ific to ASD ” may vary depending on the context, here we chose the
ne that allows for predicting an ASD diagnostic label, and fed these
SD-specific features into the FRF ( Feczko et al., 2018 ). We hypoth-
sized that i) with such a clustering model constructed by diagnosis-
nformed features, reproducible and clinically useful subtypes can be
ecovered from heterogeneous individuals with autism, and ii) depend-
ng on which brain areas are affected in the functional gradients, group-
evel profiles of symptom severity may also vary across the identified
eurosubtypes. 

. Method 

.1. Participants 

We analyzed the two sets of multicentric neuroimaging data: i) Dis-
overy (ABIDE-I ( Di Martino et al., 2014 ); 143 Autism spectrum dis-
rder [ASD] and 144 typically developing [TD] individuals) and ii)

eplication (the ABIDE-II ( Di Martino et al., 2017 ); 60 ASD and 59
D) datasets. The former included only the subjects with a moderate-
o-small head motion (framewise displacement < 0.3 mm) ( Hong et al.,
019 ). Only the sites with at least 10 subjects were considered: NYU
angone Medical Center (NYU, 35/51, ASD/TD); University of Utah,
chool of Medicine (USM, 49/37, ASD/TD); University of Pittsburg,
chool of Medicine (Pitt, 19/20, ASD/TD), resulting in 211 subjects
103 ASD and 108 TD) in total. The age was not different between
he groups (mean ± SD [years]: 20.8 ± 8.1 vs. 19.2 ± 7.1 for ASD
nd TD, respectively, t = 1.54, p = 0.12). The replication dataset was
 total of 86 subjects (44 ASD and 42 TD) across the following sites:
rinity centre for Health Sciences, Trinity College Dublin (TCD, 15/17,
SD/TD); NYU Langone Medical Center (NYU, 20/18 ASD/TD); Insti-

ut Pasteur/Robert Debré Hospital (IP, 9/7 ASD/TD). This dataset did
ot show age differences between the two groups (mean ± SD [years]:
2.7 ± 5.2 vs. 14.1 ± 5.6 for ASD and TD, respectively, t = 1.20,
 = 0.23). Still, to rule out the potential remaining effect from age,
e regressed out this variable from main metrics ( i.e., functional gra-
ient) using a statistical linear model in both discovery and replication
atasets. We included only male individuals in our study, given their
reponderant rate of occurrence. The symptom severity of ASD was as-
essed with Autism Diagnostic Observation Schedule (ADOS) total cal-
bration score which takes into account for different language and age
evels across the individuals, as well as subscores ( i.e., communication,
ocial interaction, repeated behaviors/interests) and Social Responsive-
ess Scale (SRS) score ( Constantino and Gruber, 2005 ; J.N. Constantino,
nd Gruber 2014 ). Table 1 has clinicodemographic variables for both
atasets. 
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Table 1 

Clinicodemographic variables. 

ASD TD ASD vs TD t (p-value) 1 

N Discovery 103 108 

Replication 44 42 
Age (SD) 20.8 (8.1) 19.2 (7.1) 1.31 (0.19) 

12.7 (5.2) 14.1 (5.6) 1.16 (0.24) 
IQ (SD) 104.4 (15.7) 114.2 (12.3) 4.72 ( < 0.001) 

103.8 (22.5) 116.8 (19.2) 3.1 ( < 0.01) 
FD (SD) 0.094 (0.057) 0.083 (0.050) 1.48 (0.14) 

0.114 (0.066) 0.078 (0.040) 2.72 ( < 0.01) 
Site PITT 19 (18.4%) 20 (18.5%) –

USM 49 (47.6%) 37 (34.3%) –
NYU 35 (34%) 51 (47.2%) –
TCD 15 (34.1%) 17 (40.5%) –
NYU 20 (45.5%) 18 (42.9%) –
IP 9 (20.5%) 7 (16.7%) –

Abbreviation: ASD, Autism spectrum disorder; TD, typically developing control; DS, discovery; RP, replication; 
SD, Standard deviation; FD, Framewise displacement. 1 The p value from two-sample t-tests between autism spec- 
trum disorder and typically developing control datasets is reported. The elements for discovery set are colored by 
white, whereas those for replication by gray. 

2

 

s  

n

2

 

w  

t  

2  

T  

r  

p  

e  

fl  

p  

t  

h  

W  

C  

2  

c  

e  

a  

t  

l  

i  

C  

n  

w  

g

2

 

(

2

 

v  

t  

e  

fi  

(  

u  

C  

e  

c  

o  

w  

t  

g  

(  

a  

p  

G  

a  

g  

2  

(  

(
 

t  

f  

w  

f  

l  

t  

t  

t  

t  

n  

t  

o  

(  

f  

d  

p  

s  

l  

u  

t  

s  

n  

f  
.2. MRI acquisition 

All sites provided T1-weighted (T1w) MRI and rs-fMRI that were
canned using 3T Siemens (NYU, PITT, USM) or Philips (TCD, IP) scan-
ers (see Supplementary Table S1 for details). 

.3. Data preprocessing 

The ABIDE-I database provided preprocessed T1w and rs-fMRI data,
hich are openly shared through the Preprocessed Connectomes initia-

ive ( http://preprocessed-connectomes-project.org/ ) ( Craddock et al.,
013 ). Briefly, T1w structural data were preprocessed using FreeSurfer.
he preprocessing pipeline includes gradient nonuniformity correction,
egistration to the stereotaxic space, intensity normalization, skull strip-
ing, and white matter segmentation. White and pial surfaces were gen-
rated through triangular surface tessellation, topology correction, in-
ation, and spherical registration to fsaverage. The rs-fMRI data were
reprocessed using the configurable pipeline for the analysis of connec-
omes ( Cameron et al., 2013 ). The pipeline includes slice timing and
ead motion correction, skull stripping, and intensity normalization.
hite matter and cerebrospinal fluid signals were removed using the

ompCor tool based on the top five principal components ( Behzadi et al.,
007 ). Band-pass filtering (0.01 – 0.1 Hz) was applied, and the data were
o-registered to MNI152 space. Surface alignment was confirmed for
ach individual, and voxel-wise rs-fMRI time-series were interpolated
long the mid-thickness surface. While the original surface model was
he Freesurfer fsaverage (160k vertices), to reduce the computational
oad as well as to take advantage of vertex-wise hemispheric symmetric-
ty, the data were resampled to the Conte69 10k model of the Human
onnectome Project ( Van Essen et al., 2012 ; Glasser et al., 2016 ). Fi-
ally, the mapped fMRI timeseries were smoothed with a 5 mm full
idth at half maximum kernel. The same pipeline implemented in our
roup was applied to the ABIDE-II dataset for the image processing. 

.4. Subtyping using connectome gradient 

Fig. 1 provides an overview of the proposed functional random forest
FRF) approach based on the connectome gradients. 

.4.1. Connectome gradient generation 

We estimated the functional connectivity (FC) gradients from indi-
idual rs-fMRI data ( Margulies et al., 2016 ). The cortex-wide FC ma-
rix was constructed by Pearson’s correlation of time series between
3 
very pair of the two brain areas, for which boundaries were de-
ned by a multimodal parcellation atlas of Human Connectome Project
 https://balsa.wustl.edu/ ) ( Glasser et al., 2016 ). The resulting individ-
al 360 ×360 FC matrices were harmonized for the site effects using
ombat, a Bayesian approach to linearly regress out site effects by mod-
ling site-specific scaling factors ( Fortin et al., 2018 ). The correlation
oefficients underwent Fisher’s r-to-z transformation and were thresh-
lded, leaving only the top 50% elements per row to remove relatively
eaker connections spanning across the brain areas (see Results for

he validation of this thresholding procedure). We derived functional
radients using principal component analysis (PCA), via Brainspace
 https://github.com/MICA-MNI/BrainSpace ) ( Vos de Wael et al., 2020 ),
s this has been demonstrated as having generally a high reliability and
rediction power in our recent biomarker study ( S.J. Hong et al., 2020 ).
roup-level gradients were estimated in an unbiased manner using the
veraged FC matrix from both ASD and TD cohorts, to which individual
radients were aligned based on the Procrustes algorithm ( Langs et al.,
015 ). Apart from age, we also regressed out the effect of head motion
 i.e., FD) from the gradients based on a linear model, as in prior work
 Hong et al., 2019 ). 

Functional Random Forests . Before the main analyses, we first split
he discovery dataset into training (60%) and validation (40%) samples
or unbiased tests. The first gradient ( = principal component score) of
hole-brain connectivity from the training data was selected as an input

or the FRF algorithm (see Results for the validation of component se-
ection). Notably, prior to the FRF, we have performed feature selection
o determine the candidate brain regions that can discriminate between
he ASD and TD labels based on their gradient. To this end, we applied
he least absolute shrinkage and selection operator ( Tibshirani, 1996 )
o the whole-brain gradient values (of training samples), with the diag-
ostic labels as the response variable. This procedure served to reduce
he feature search space for the random forest algorithm. The training
f random forest was then conducted based on these selected features
see Supplementary Table S2). Briefly, randomly subsampling cases and
eatures, the random forest iteratively built 1000 ‘weak’ learners ( i.e.,
ecision tree) to generate a final ensemble classifier which greatly im-
roves both accuracy and generalizability of the classification. In this
upervised learning process, the cases are naturally subgrouped in the
eaf nodes, depending on their similarity of input data ( = gradient val-
es), which results in a proximity (or similarity) matrix. Each cell of
his matrix indicates the number of times given two subjects were clas-
ified into the same label, thus becoming input for a following commu-
ity detection algorithm ( = Infomap, an unsupervised module of FRF)
or the subtyping purpose ( Rosvall and Bergstrom, 2008 ). It should be

http://preprocessed-connectomes-project.org/
https://balsa.wustl.edu/
https://github.com/MICA-MNI/BrainSpace
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Fig. 1. Overview of the method. A. A FC matrix was constructed by Pearson correlation between the BOLD timeseries of the brain regions and r-to-z transformation. 
PCA was then applied to this FC matrix to yield connectome gradients. B-C. The gradient becomes an input to the following FRF algorithm, which was designed 
to classify each participant between the ASD and TD labels. This classification leads to generating a proximity matrix, where each cell represents the number of 
times that the two given participants fall into the same leaf node. The Infomap algorithm divides this proximity matrix into smaller subgroups, resulting in putative 
subtypes in the ASD and TD groups. Abbreviations: FC, functional connectivity; BOLD, blood oxygen level-dependent; PCA, principal component analysis; ASD, autism 

spectrum disorder; TD, typically developing control; FRF, functional random forest. 
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oted that this community detection was performed in both ASD and
D groups to compare the individual variabilities captured in ASD to
hose of the TD cohort. The algorithm used 1000 bootstraps to produce
obust subtyping results. 

.5. Characterization of the ASD subtypes 

The identified subtypes were profiled with respect to their whole-
rain connectome gradients and symptom severity. For connectome
radients, we first assessed the differences between each ASD subtype
nd TD controls. We used a non-parametric rank-sum test on 360-ROIs
hole-brain gradient values to compare the two groups ( e.g., ASD sub-

ype vs. TD). The significant areas were then used as input to Neurosynth
 Yarkoni et al., 2011 ; Rubin et al., 2017 ), a meta-analytical decoding
atabase in order to evaluate which cognitive functions are generally
ssociated to those brain areas. After this case-control comparison, the
ext analyses assessed the changes across the subtypes by performing
 non-parametric one-way analysis of variance (ANOVA; Kruskal-Wallis
 test) on the gradient values. Post-hoc analysis further compared the
radient values between each pair of ASD subtypes based on the rank-
um test. The use of non-parametric tests was to address unbalanced
ample sizes across the identified subtypes (see Results). Following the
rain profiling, we also assessed the behavioral relevance for the iden-
ified subtypes. Specifically, we compared the symptom severity scores
easured by ADOS and SRS between the ASD subtypes using the rank-

um tests. The multiple comparisons across the brain regions and symp-
om severity scores were corrected using false-positive discovery rate
FDR) ( Benjamini and Hochberg, 1995 ). To compute the effect size for
he non-parametric rank-sum tests and Kruskal-Wallis H tests, effect size
4 
 r ) and eta-squared measure ( 𝜂2 ) were computed ( Tomczak and Tom-
zak, 2014 ). 

.6. Correlation between connectome gradient and degree centrality of FC 

While the connectome gradient provides an effective summary for
hole-brain functional organization, how the alteration in this feature is

elated to specific connectivity changes in local areas is often not clear.
o further unpack connectivity alterations across identified subtypes,
herefore, we targeted the brain areas showing significant gradient dif-
erences in ASD subtypes and correlated the differences in their gradi-
nt values with those of degree centrality ( i.e., a summed connectivity
trength in a given brain area), which is one of the widely tested graph-
heoretical measures for whole-brain network topology ( Moseley et al.,
015 ; Tusche et al., 2014 ; Fallahi et al., 2021 ). Specifically, we com-
uted the differences of gradients from all possible pairs of subjects in
wo subtypes ( e.g., if there are x and y subjects in the two subtypes re-
pectively, in total x × y gradient difference values were aggregated from
very pair of subjects). After performing the same aggregation for de-
ree centrality as well, we correlated these two sets of difference values
o contextualize the gradient changes from the connectivity perspective.

.7. Reproducibility analysis 

All analyses were repeated using a replication dataset. Notably, to
est the generalizability of the subtypes, the exact FRF model trained us-
ng the training samples of discovery dataset was reused ( i.e., no further
raining), while only the input to this model was changed with the gradi-
nt values from the replication dataset, which resulted in its own (repli-
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ation) proximity matrix. The Infomap identified the subtypes based on
his proximity matrix. The profiles of subtypes ( i.e., gradient and ADOS
cores) were then re-evaluated. Finally, we compared ADOS profiles
cross the subtypes between the discovery and replication datasets to
uantitatively assess their generalizability. 

.8. Data and code availability 

In performing these analyses, functional connectivity gradients
ere calculated based on the BrainSpace toolbox ( https://brainspace.

eadthedocs.io/en/latest/ ), and the FRF was derived from ( https:
/github.com/DCAN- Labs/functional- random- forest ). All other codes
hat were used for main analyses ( e.g. , statistical comparisons, con-
rol analysis, main running codes) in this study will be uploaded
pon the acceptance of this paper ( https://github.com/gudtls17/ASD.
eurosubtyping ). The data analyzed in this study were all down-

oaded from ABIDE repositories: http://preprocessed-connectomes-
roject.org/ and http://fcon_1000.projects.nitrc.org/indi/abide/ . 

. Result 

.1. Algorithmic validity of FRF 

Before the main analyses, we first performed a simulation analysis
o demonstrate if the FRF is indeed capable of properly subtyping the
argeted features ( e.g., gradient) while tying the identified subtypes to
he variables of interests ( e.g., diagnostic labels). For this, we created
ynthetic ASD and TD data (as analogous of gradient values) of the same
ample size ( = 210) to the current study. We purposely made this data
ave three subtypes in each group by differentiating their global means,
hile adding the noise in the simulated features. As expected, the FRF

ould correctly identify 6 subtypes (3 for ASD and 3 for TD) with a
oderate-to-high accuracy for diagnostic label classification across all
atasets with different noises, which suggests the validity of FRF as a
ubtyping method. For full details of this control analysis, please see the
upplementary Material and Supplementary Figure S1. 

.2. Functional random forest 

For the input to the FRF, we selected the first primary gradient ( i.e.,
st PC). This gradient was derived from the FC matrix which was top
0% row-wise thresholded in both ASD and TD groups. This particu-
ar analytical setting was chosen as it provided a maximum accuracy
f the random forest algorithm ( i.e., diagnostic label prediction) in the
alidation samples of the discovery dataset, compared to that of other
ombinatory settings between the gradient order and threshold (see Sup-
lementary Table S3 and Figures S2, S3). Indeed, when using the 1st
radient as an input for FRF, it correctly classified the label in the 73%
n the training samples of discovery dataset, while yielding 58% of accu-
acy in the validation samples ( Fig. 2 ), which results were significantly
igher than a random chance and those from other component order
f gradients ( p < 0.001; permutation). Similar to the previous study
 Margulies et al., 2016 ), our first gradient revealed the pattern of a corti-
al hierarchy stream differentiating the low-level sensory and high-order
ransmodal systems. 

The subsequent application of the Infomap algorithm to the proxim-
ty matrix for the full discovery dataset revealed four putative subtypes
n both ASD ( n = 68, 14, 13, 8) and TD ( n = 72, 20, 11, 5) groups
 Fig. 2 ). To guarantee adequate statistical power in the following pro-
ling analyses, we focused on those subtypes with ≥ 10 subjects, i.e.,
SD1 ( n = 68), ASD2 ( n = 14) and ASD3 ( n = 13), and TD1 ( n = 72),
D2 ( n = 20) and TD3 ( n = 11). For transparency, however, we also
rovided symptom severity profiles of those small samples of subtypes
 n < 10) (Supplementary Figure S4). 

Directly applying this FRF model (trained by training samples of the
iscovery dataset) using the replication dataset led to a comparable clas-
5 
ification accuracy of 60% (sensitivity: 50%, specificity: 69%), which
as, again, significantly higher ( p < 0.001) compared to the random

hance ( Fig. 2 ). While the accuracy seems only moderate, it in fact falls
ithin the comparable range of previous studies (59–67%; Supplemen-

ary Table S4) ( Heinsfeld et al., 2018 ; Niu et al., 2020 ; Plitt et al., 2015 ;
ejwani et al., 2017 ; Fredo et al., 2018 ), some of which have been con-
ucted based on the rigorous setting of generalizability assessments ( e.g.,

eave-one-site out test). The subsequent community detection found 3
SD subtypes ( n = 18, 16, 10) similarly to the discovery findings, as well
s 2 TD subtypes ( n = 31, 11). As a baseline model, we also evaluated the
ubtyping results derived from the Infomap applied to the whole-brain
unctional gradient ( i.e., without the random forest classification). This
nalysis revealed only one subtype, suggesting no existence of statisti-
ally meaningful subgroups in the data (Supplementary Figure S5). This
esult highlights the necessity of tying the clustering algorithm to the
ain clinical variables in subtyping procedure. 

Notably, the degree of head motion was not different between the
iscovery and replication datasets ( t = 0.87, p = 0.39). While these sub-
ypes found in both discovery and replication datasets did not show any
oticeable association with head motion (ANOVA F 2,3 < 1.1, p > 0.35),
he site composition was found to be differential across the subtypes
ANOVA F 3,3 , < 10.52, p = 0.03; non-significant after FDR correction)
see the Supplementary Tables S5, S6). Although this may indicate a
otential batch effect on the extraction of the subtypes, the facts that
his is the result even after the successful ComBat (Supplementary Fig-
re S6) process and that it did not occur in the replication nor in the
ypically developing brains (that are from the same data repositories)
ule out the possibility of 100% attribution only to the batch effect but
ay reflect the true subtype profile as the data represents. 

Notably, our analytical choice also included many other options re-
ated to a type of dimensionality reduction algorithms (to generate con-
ectivity gradients), a statistical correction strategy for nuisance vari-
bles, with- vs. -without a feature selection procedure, and whether us-
ng multiple or single gradients. To demonstrate if our original set-
ing was indeed the optimal one that provided us the best classifi-
ation rate and subtyping results in a fully unbiased manner, we re-
eated all analyses above, systematically changing the analytical con-
itions. It should be noted that these analyses were all conducted
ased on the validation samples of the discovery data (without touch-
ng the replication data to avoid data leakage). First, when we tested
iffusion Embedding, a conventional non-linear dimensionality reduc-

ion algorithm, we obtained a lower accuracy for ASD-TD classifica-
ion (accuracy = 55%, sensitivity = 50%, and specificity = 60%; Supple-
entary Figure S7). Second, when we statistically corrected for site,

ge, and mean FD effects in a single linear model (instead of the Com-
at for the site effect followed by a separate statistical linear model
or other nuisance variables, which is what we have done in this
tudy), we observed a slightly worse classification rate (accuracy = 54%,
ensitivity = 60%, and specificity = 48%) and idiosyncratic subtyping re-
ults ( i.e., too many isolated small subgroups; Supplementary Figure S8).
hird, when training the random forest without feature selection, the
esult was similarly suboptimal (accuracy = 48%, sensitivity = 51%,
pecificity = 45%, and identified subtypes included too small groups;
upplementary Figure S9). Finally, when merging multiple gradients,
gain we found a lower accuracy (accuracy = 50%, sensitivity = 59%,
pecificity = 42%) in the diagnostic label prediction. In sum, this series
f control experiments confirmed the validity of our original analytical
esign. 

.3. Characteristics of ASD subtypes 

Connectome gradient and cognitive profiles. After identifying the sub-
ypes, we turned into in-depth profiling of their gradients. To this end,
e first compared the functional gradient maps between ASD subtypes
nd TD groups but also directly between the ASD subtypes, assessing
heir specific brain anomalies. 

https://brainspace.readthedocs.io/en/latest/
https://github.com/DCAN-Labs/functional-random-forest
https://github.com/gudtls17/ASD.Neurosubtyping
http://preprocessed-connectomes-project.org/
http://fcon_1000.projects.nitrc.org/indi/abide/
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Fig. 2. The FRF results in discovery and replication datasets. The proximity matrix with the subgroups identified using Infomap (upper) as well as the classification 
accuracy of FRF (bottom) are presented (left: discovery, right: replication). For the proximity matrix, each row and column represent the participants, while the 
cell of the matrices indicates the number of times that the two given participants were classified into the same class using FRF models. Abbreviations: ASD, autism 

spectrum disorder; TD, typically developing control. 
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In the case-control comparison, multiple ASD-specific brain areas
ere observed across the subtypes. Specifically, ASD1 showed signifi-

ant differences in the frontal, default mode, limbic, sensory-motor net-
orks as well as the fusiform area (FDR = 0.05, Fig. 3 A, Supplementary
able S7). Subsequent Neurosynth-based analyses related these brain
reas to multiple cognitive terms such as ‘Default’, ‘Objects’, ‘Motor’,
nd ‘Somatosensory’, which are relevant to major behavioral character-
stics of autism ( Assaf et al., 2010 ; Abbott et al., 2016 ; Cerliani et al.,
015 ). In ASD2, significant gradient differences were observed in the
rontal, motor, and fusiform areas (FDR = 0.05, Fig. 3 B, Supplementary
able S8), which were also associated with the Neurosynth terms ‘Con-
ruent’, ‘Categories’, ‘Orthographic, and ‘Visual word’. ASD3 showed no
ignificant difference across the whole brain but only the tendency in the
usiform area (FDR = 0.06, Fig. 3 C, Supplementary Table S9). Brain re-
ions involved in each subtype in the replication dataset were presented
n the Supplementary Figure S10. 

The ANOVA by which we compared the connectome gradients across
he ASD subtypes revealed multiple brain areas showing a significant
ain group effect ( Fig. 4 A). When directly comparing between the ASD

ubtypes, differences were found in the frontal, sensory-motor, and de-
ault mode networks as well as fusiform areas between ASD1 and 2, the
ensory-motor and auditory regions between subtype ASD1 and 3, and
uditory regions and fusiform areas between ASD2 and 3 ( Fig. 4 B-D).
n the post-hoc analysis, we found significant associations between the
onnectome gradients and graph-theoretical degree centrality metrics
FDR < 0.001), which reflects underlying connectivity-level substrates
or gradient changes across the subtypes. 

Finally, the comparison within the TD groups ( i.e., TD1 vs. TD2 vs.

D3) revealed significant gradient differences in the brain areas that are
oth overlapped and distinct to those of ASD subtypes (Supplementary
 w

6 
igure S11). Indeed, similarity to the ANOVA result between the ASD
ubtypes ( Fig. 4 A), the inferior visual cortices as well as the precuneus
reas were found to be different between TD subtypes, while the frontal
reas (which showed significant gradient changes in ASD1) did not show
ny TD subtype-specific patterns. These results suggest that the gradient
hanges in each ASD subtype may be a mixture of both common and
SD-specific functional variations compared to the typically developed
rain, suggesting a wide spectrum of ASD-related heterogeneity. 

.4. Symptom severity of the ASD subtypes 

Distinct symptom profiles were found across the identified ASD sub-
ypes ( Table 2 ). Notably, depending on how much the gradient values
ere affected compared to TD, the symptom severity in ADOS (total

alibration score) also systematically varied across the subtypes ( i.e.,
SD1 > ASD2 > ASD3). Specifically, the ASD1 (showing the largest gra-
ient changes) revealed marked tendency of differences in ADOS Total
SS (FDR = 0.07) and communication (FDR = 0.03) scores compared to
SD3 ( Fig. 5 A). In replication dataset, the ASD 1 revealed marked dif-

erences in ADOS Total CSS (FDR = 0.04) and social (FDR = 0.02) scores
ompared to ASD3. While the ASD2 also presented some differences in
he ADOS social (FDR = 0.04) scores compared to ASD 3 and the tendency
n the Total CSS (FDR = 0.05) and the communication (FDR = 0.09) score
ompared to ASD 3, symptoms were overall milder compared to ASD1
 Fig. 5 B). Most importantly, the subtypes derived from the discovery
nd replication datasets revealed highly similar symptom severity pro-
les ( Fig. 5 C), as supported by no statistical difference between the two
atasets ( Table 2 , Supplementary Table S10). Taken together, our find-
ngs suggest that the identified subtypes have distinct symptom profiles,
hich were reproducible in the independent data. 
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Fig. 3. Gradient differences between ASD subtypes and the TD group (discovery result). A. The brain areas showing a significant group difference in connectome 
gradients between ASD1 subtype and TD are presented with non-parametric effect size ( r ) ( Tomczak and Tomczak, 2014 ). Among the significant areas, the parcels 
showing maximum statistics for increased and decreased gradients were chosen, and the differences of their gradient values and those of degree centrality were 
correlated to assess the connectivity-level change underlying the gradient differences (right scatter plots). Those significant areas were further decoded in terms of 
frequently associated cognitive functions using Neurosynth, which results were shown as a word cloud representation (under the scatter plots; bigger characters, 
higher a Neurosynth-correlation is). B-C. Results of the same analyses for ASD2 and ASD3 subtypes. Abbreviations: SM, somatosensory and motor cortex; PM, premotor 
cortex; DLPFC, dorsolateral prefrontal cortex; SPC, superior parietal cortex; IPC, inferior parietal cortex; IFC, inferior frontal cortex; MTC, medial temporal cortex; 
AC, early auditory cortex; VC, ventral stream visual cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; POC, posterior opercular cortex. 

7 
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Fig. 4. Gradient differences between ASD subtypes (discovery result). A. The ANOVA result between three identified ASD subtypes is shown. The color indicates 
the eta-squared index ( 𝜂2 ) for the effect size of between-subtype differences. All significances are based on the FDR correction. B-D. The difference between each 
pair of subtypes is presented using non-parametric effect size ( r ). In the bottom of each panel, the scatter plots show the correlation between the differences in 
gradients and those in degree centrality of FC in the areas showing the largest group differences. Abbreviations: ANOVA, analysis of variance; SM, somatosensory and 
motor cortex; PM, premotor cortex; DLPFC, dorsolateral prefrontal cortex; SPC, superior parietal cortex; IPC, inferior parietal cortex; IFC, inferior frontal cortex; TPJ, 
temporal-parietal junction; MTC, medial temporal cortex; AC, early auditory cortex; VC, ventral stream visual cortex; ACC, anterior cingulate cortex; MCC, medial 
cingulate cortex; PCC, posterior cingulate cortex; FPC, fronto-polar cortex. 

Table 2 

Symptom severity across the subtypes between discovery (DS) and replication (RP) datasets. 

ASD1 p-value 1 ASD2 p-value 1 ASD3 p-value 1 

DS RP DS RP DS RP 
N 68 18 14 16 13 10 

ADOS Total CSS (SD) 7.02 6.28 0.20 6.93 6.31 0.44 6.08 4.40 0.04 
(2.05) (2.49) (1.86) (2.25) (1.38) (2.12) 

ADOS comm (SD) 4.43 4.12 0.48 4.00 3.29 0.24 3.42 2.38 0.08 
(1.52) (1.71) (1.24) (1.82) (1.44) (0.74) 

ADOS social (SD) 8.36 8.00 0.63 8.21 7.88 0.73 7.17 5.38 0.04 
(2.80) (2.83) (2.61) (2.66) (1.95) (1.41) 

ADOS behavior (SD) 2.31 2.31 0.99 2.75 2.00 0.11 2.09 1.50 0.47 
(1.46) (1.84) (1.04) (0.58) (1.04) (0.71) 

SRS (SD) 91.33 – 101.17 – 99.42 –
(31.59) (36.22) (37.00) 

Abbreviation: ADOS, autism diagnostic observation schedule; ADOS Total CSS, total calibration score; ADOS behavior, restricted and 
repetitive behavior; SRS, social responsiveness scale. DS, discovery; RP, replication; SD, Standard deviation. 

1 The p value from two sample t-tests between discovery and replication datasets is reported. 
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. Discussion 

Clinical heterogeneity remains a critical obstacle in the development
f reliable diagnostic criteria in autism ( Insel et al., 2010 ). While much
ffort has been recently made to build various subtyping strategies,
hose purely neuroimaging-based approaches may lack a component
hich can directly tie a main clinical question with an employed cluster-

ng algorithm. To address this issue, here we implemented a novel neu-
osubtyping framework combining whole-brain connectome gradient
nd the FRF clustering algorithm ( Margulies et al., 2016 ; Feczko et al.,
018 ), which collectively allows discovering ASD subgroups showing
8 
eproducible symptom severity. We identified three dominant neuro-
ubtypes in ASD and two subtypes in TD groups. These subtypes in ASD
evealed distinct patterns of functional gradient anomalies in the areas
hat have been previously implicated in autism research ( Uddin et al.,
013 ), such as default mode networks, sensory ( e.g., visual/auditory),
nd fusiform areas. Notably, they displayed an association between the
xtent of significant gradient changes (ASD1 > 2 > 3) and symptom sever-
ty across the subtypes. Indeed, ASD1 and 2 (showing relatively more ab-
ormal gradients) showed the highest ADOS scores in Total CSS, social
nteraction and communication domains, while ASD3 (showing minimal
radient changes) presented only mild symptom severity across most of
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Fig. 5. The ADOS and SRS scores of each ASD subtype. A. For the discovery data, the distribution of symptom severity at each subtype is plotted across the domains 
(ADOS Total CSS, communication, social, repeated behaviors and SRS in order). B. The same plot for the replication data. C. The trends of symptom severity scores 
between the discovery and replication datasets are shown. SRS was excluded since it was not available for the replication set. The multiple comparisons were 
corrected using false positive discovery rate. Abbreviations: ASD, autism spectrum disorder; ADOS, autism diagnostic observation schedule; ADOS Total CSS, total 
calibration score; ADOS behavior, ADOS restricted and repetitive behavior; SRS, social responsiveness scale; FDR, false discovery rate. 
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a  
he scores, suggesting a close relationship between their brains and be-
aviors. This subtype-dependent finding in symptom severity was pre-
erved when analyzing the calibrated scores, which takes into account
ifferent age and language levels ( Gotham et al., 2009 ). Most impor-
antly, these phenotypic profiles across the subtypes were largely repro-
uced in the independent data ( Fig. 5 B and C), supporting high gen-
ralizability of our subtyping findings. Finally, when performing simi-
ar Infomap-based clustering on the whole-brain gradient without the
andom forest ( i.e., no involvement of a supervised classification), we
id not find meaningful subgroups of ASD individuals, demonstrating a
nique strength of the FRF approach. 

In the current work, we opted to use functional gradients, recently
roposed metrics to compress high-dimensional data of whole-brain
onnectivity, as input to neurosubtyping. We particularly selected the
rst principal component which functional connectome axis has been
ecently associated with autism as a potential pathogenic mechanism
t the system level ( Hong et al., 2019 ; Park et al., 2021 ). Specifically,
his axis representing a large-scale cortical hierarchy stream showed less
ifferentiation of functional connectivity (FC) in both low-level sensory
nd high-order transmodal systems in ASD, providing a parsimonious
ccount to explain their altered sensory sensitivity and social impair-
9 
ent ( Margulies et al., 2016 ). The current study relying on this gradi-
nt feature indeed found atypical connectivity profiles along this hier-
rchical axis ( i.e., a substantial decrease in the default mode network
nd increase in the sensory and fusiform areas) in ASD1, which subtype
howed most deficits in social interaction and communication. Although
f lower significance, ASD2 also showed contrasting effects between vi-
ual processing areas such as the fusiform and those situated in dorsal
ttention networks. Notably, ASD3 did not reveal any significant change
n gradients compared to the TD group, mirroring the mild behavioral
mpairment in this ASD group. These findings collectively suggest that
he functional network of ASD is characterized by deficits in more over-
rching principles of connectivity organizations (rather than in focal re-
ions), and that the degree of this anomaly significantly varies across the
ndividuals, which makes it challenging to detect it as a group-common
ignature of ASD at the actual clinical setting. 

Apart from the selection of the first principal component as the main
eature in this study, our algorithmic design leveraged a combination of
everal other methodological options, such as a dimensionality reduc-
ion algorithm ( i.e. , PCA) and connectivity threshold (leaving only top
0%). Of note, this particular combination was based on the prediction
ccuracy in the validation samples from the training dataset. Thus, while
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ur particular choices in options were fully unbiased and data-driven,
he selection of each option may also be explained by its unique advan-
age in studying the high-dimensional connectivity data. For instance,
he use of PCA has been demonstrated to provide highly reliable func-
ional gradient metrics as well as excellent prediction accuracy for vari-
us cognitive task performances ( S.J. Hong et al., 2020 ). Regarding the
onnectivity threshold, normally a more stringent value ( e.g. , 90–97%)
rovides a stronger case-control group ( Dong et al., 2020 ) or aging effect
 Bethlehem et al., 2020 ) in the neuroimaging studies, given its effect to
emove noisy signals. Yet, in autistic individuals who are substantially
eterogeneous, those peripheral connections (from a relatively lower
hreshold such as top 50%) in addition to the major backbone connec-
ivity may sometimes have a more diagnostic power to separate an indi-
idual with ASD from neurotypicals. Indeed, in the recent study demon-
trating a small number but highly generalizable subgroup of functional
onnectivity in classifying ASD ( Yahata et al., 2016 ), those predictive
nes generally have only a weak-to-moderate strength of connections,
imilar to what has been analyzed in our study. These previous findings
ollectively support the heuristic optimality of our algorithmic design,
specially for subtyping high-dimensional and heterogeneous functional
onnectivity data. 

As the ASD neurosubtyping studies, especially in the functional do-
ain, are not fully mature, it is not straightforward to assess what

pecific commonalities and discrepancies exist between our and pre-
ious studies. Nevertheless, some convergence seems emerging at the
lobal scale. First, as in most ASD functional neurosubtyping studies
 Hong et al., 2018 ; Feczko et al., 2019 ; Wolfers et al., 2019 ), the iden-
ified subtypes in our study also revealed a combination of increases
nd decreases in functional gradients, which may be suggestive of both
nderlying mosaic manifestation of various etiologies and complemen-
ary effects during brain development related to the cortical plastic-
ty. Second, for all neurosubtyping studies including ours have rarely
een characterized by a spatially isolated pattern, but more distributed
etwork systems in terms of brain anomalies. As our previous review
 S.J. Hong et al., 2020 ) demonstrated relatively higher incidences of
athological effects in the transmodal systems across the subtypes, ASD
 in our study also showed decreased functional gradient in the default
ode areas, suggesting a potential vulnerability of these hub regions.
oreover, as recent studies increasingly revealed ( Tang et al., 2020 ), the

ensorimotor networks also seem to be affected in the functional brains
f ASD, providing a potential system-level mechanism underlying their
ltered sensory sensitivity. While our subtype also showed similarly af-
ected gradients in the same network, the absence of sensory-related
henotypic scores in the ABIDE dataset made it infeasible to precisely
ssess the behavior-brain relationship. One of the major differences be-
ween our and previous findings is that our subtypes also include those
ndividuals with only mildly affected functional systems, which patterns
re highly similar to neurotypical controls. It may be a signature of bi-
logical diversity in the autistic brains among which the extreme cases
all into even the normal developmental spectrum . 

Our neurosubtyping model demonstrated reproducibility in the
wo different aspects. First, the FRF model trained by the discovery
ataset (ABIDE I) showed a similar performance of ASD- vs -TD classi-
cation between the internal (discovery = 58%) and external (ABIDE II
eplication = 60%) validations. These results are also comparable to those
f recent machine learning studies, confirming that our classification
ccuracy is not specific to the current dataset analyzed. In fact, while
revious studies for ASD classification reported up to 90% of the accu-
acy in the initial period ( Wolfers et al., 2019 ; Zhou et al., 2014 ), as
he time passed and the sample size of the studies increased (possibly
ue to more availability of open-sharing data), the classification rate has
onstantly reduced to ∼60%, suggesting a high likelihood of overfitting
n the earlier work that normally had only small ASD cases. Indeed,
ne of the largest multi-site classification studies on ASD to date (us-
ng the ABIDE sample) performed a strict leave-one-site-out validation
nd reported ∼60% inter-site prediction accuracy, which is not signifi-
10 
antly beyond our result. Second, because of this optimized framework,
e could demonstrate similar subtype-dependent symptom profiles be-

ween the discovery and replication datasets. Although showing a less
egree of similarity compared to symptom severity, the functional gradi-
nt per se also showed similar brain areas of gradient difference between
he discovery and replication datasets. Given that developing imaging
arkers to identify meaningful brain-symptom mapping is most priori-

ized in clinical neuroscience, future studies need to update their algo-
ithms for better encoding of information from both brain and behav-
ors during the subtyping, such as recently demonstrated approaches,
.g., Similarity Network Fusion ( Wang et al., 2014 ) or Joint Individual
ariance Explained ( Yu et al., 2017 ). 

A few points should be discussed to provide contextualized inter-
retation of our findings. First, our neurosubtyping validation was only
ased on ADOS/SRS symptom severity indices. As there are a multi-
ude of other pathological and behavioral features that can characterize
utism, our validation can be ideally more enriched by other strate-
ies, including a longitudinal follow-up of behavioral intervention re-
ponse or developmental brain changes across the subtypes. Second, our
tudy focused on only neocortical FC as a target of neurosubtyping, yet
here is a line of neuroimaging evidence indicating the role of subcor-
ical and cerebellar cortices as important pathogenic models in autism
 Stoodley et al., 2017 ; Limperopoulos et al., 2007 ). Future studies in
SD should therefore include these structures or even specifically target

hem as the main candidate for neurosubtyping. Third, our finding that
oth symptom severity and brain-level anomalies reveal monotonically
ncreasing patterns between ASD subtypes may be the sign indicating
hat those changing patterns reflect normal neurodevelopmental stages,
hus potentially a void effect of our subtyping framework for the treat-
ent strategies. On the one hand, given evidence of shared genetics and

iology between ASD and the general population ( Bralten et al., 2018 ),
his interpretation of our findings may not be merely fictitious, and thus
einforces the necessity to include normal samples in the autism neuro-
ubtying study to better delineate the ASD-related heterogeneity. This
vidence collectively suggests a highly spectral nature of autism diver-
ity ranging from mildly to severely affected ASD anomalies, which have
o be considered in future studies to develop new behavioral and genetic
herapies for this heterogeneous condition. 

The functional connectivity profiles of ASD individuals were previ-
usly reported to be differential according to the developmental age
 Holiga et al., 2019 ; Henry et al., 2018 ). In this context, the slight perfor-
ance gap between discovery and replication samples in our study may

e due to the fact that these two datasets have different age ranges. This
emographic difference resulted from the fact that the former dataset
as screened to have both children and adult samples at the initial in-

lusion procedure, whereas the latter did not have such an explicit con-
traint during the process, which aimed to increase the sample spectrum
n the generalizability test of our framework. 

Finally, as much as we highlighted the importance of assessing
ypically developing brains to obtain a broader picture of ASD het-
rogeneity, comparing their brain variability to those of other devel-
pmental disorders is also a critical task. Inclusion of other condi-
ions, such as attention-deficit hyperactivity disorder, schizophrenia
r obsessive-compulsive disorder, might thus reveal shared and dis-
inct underpinnings of heterogeneity in brain structure and function
cross neurodevelopmental disorders, a critical milestone to develop
isease-tailored biomarkers for clinical diagnosis ( Kernbach et al., 2018 ;
itelman, 2019 ). 

While many practical and biological issues remain to be resolved
o understand the heterogeneity of ASD, the current neurosubtyping re-
earch is rapidly growing, owing to increasingly advanced statistical and
attern learning algorithms ( Varoquaux, 2014 ). Paralleling these efforts,
ur diagnosis-informed and gradient-based neurosubtyping is also con-
idered as a promising candidate for the integrated and clinically sensi-
ive imaging biomarker framework, which will help the development of
ore objective stratification in ASD. 
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ata and code availability 

In performing these analyses, functional connectivity gradients
ere calculated based on the BrainSpace toolbox ( https://brainspace.

eadthedocs.io/en/latest/ ), and the FRF was derived from ( https:
/github.com/DCAN- Labs/functional- random- forest ). All other codes
hat were used for main analyses ( e.g. , statistical comparisons, con-
rol analysis, main running codes) in this study will be uploaded
pon the acceptance of this paper ( https://github.com/gudtls17/ASD.
eurosubtyping ). The data analyzed in this study were all down-

oaded from ABIDE repositories: http://preprocessed-connectomes-
roject.org/ and http://fcon_1000.projects.nitrc.org/indi/abide/ . 
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