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Abstract 
The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time 

resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving 

pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory 

to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time 

duration and show that a Floquet state can be established already within 10 cycles of the driving field. For shorter pulses, 

down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet 

theory. By demonstrating that the population of the Floquet sidebands can be controlled not only with the driving laser 

pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering. 

  

 

Due to its potential impact in many technological fields, the modification and control of materials 

properties with optical pulses has attracted a lot of attention from the scientific community 1–3. Most 

notably it led to the recent proposal of Floquet engineering, whose ultimate goal is to induce new 

properties and functionalities in driven materials that are absent in the equilibrium counterpart by 

using time periodic external fields4. Light-induced superconductivity5, Floquet topological states6,7, 

Floquet phase transitions8,9, anomalous Hall effects10 and Spin-Floquet magneto-valleytronics11 are 

but a few remarkable examples of phenomena that can be induced by periodic light driving12. All this 

becomes even more relevant when combined with ultrashort driving pulses13,14, as it could provide 

us with the fascinating possibility to switch the physical properties of quantum materials on ultrafast 

time scales, establishing the ultimate switching limits for the next-generation devices. In graphene, 

for example, the combination of Floquet engineering with an ultrashort driving could be used to 

induce anomalous Hall effect10 thus potentially giving unprecedented ultrafast control of a device 

current. In spite of its interest, it is not yet clear to what extend Floquet states can be created in a 
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material, because a truly continuous driving pulse would damage the material. Hence, it is of 

paramount importance to clarify whether the Floquet formalism can be applied with short pulses and 

to what degree the effect of not perfectly periodic driving pulses can be described with the Floquet 

theorem15. Can a theory originally developed for continuous periodic driving field be extended to 

ultrashort pulses? Recent studies of the optical Stark effect in monolayer WS2 suggest that Floquet 

theory should hold with pulses as short as ~15 optical cycles, but fail in identifying its limit which 

should lie at even shorter pulse durations16. Therefore, the number of optical cycles needed for a 

Floquet state to establish remains unclear. 

To find an experimental answer to these important questions without losing generality, we 

investigated the formation of a Floquet state of the simplest system: the free electron. In particular, 

we ionized a Ne atom with 12-fs extreme-ultraviolet (XUV) pulse while the system was dressed by 

few-fs infrared (IR) pulses of various time duration down to ~3.4 optical cycles. The IR dressing 

creates additional sidebands (SBs) in the photoelectron spectrum that can be directly linked to the 

spectral components of the Floquet state (the so called Floquet ladder). In combination with an 

analytical model, our results demonstrate that a Floquet-like approach can be still used to describe 

the light-induced state, if both the XUV and IR last for more than 2 cycles of the driving field. 

Furthermore, we found that the number of driving-field cycles necessary for the Floquet state to 

establish depends both on the number of SBs involved (i.e., on the driving intensity) and on the time 

duration of the XUV pulse. In the short-pulse and low-intensity limit, our results prove that a Floquet 

state can be fully formed already within 10 optical cycles. Proving the applicability of the Floquet 

formalism to ultrashort driving pulses, our work deepens the comprehension of fundamental light-

induced phenomena and suggests a possible new pathway to realize metastable exotic quantum 

phases of matter and to exert control over their unique properties with unprecedented speed17–19. Note 

that besides the creation of  Floquet states discussed here, also their stability20–22 and population23
 are 

important factors that affect the applicability of this concept for novel technologies.  

 

Results 
 

Monochromatic driving 

When a system is irradiated by a monochromatic field of frequency ��, its Hamiltonian becomes 

periodic in time with a periodicity � = 2�/��. In analogy to the Bloch theorem for spatial crystals, 

the Floquet theorem predicts that the solution of the system Hamiltonian is given by the product of a 

time-periodic function and a characteristic phase factor4,24: |Φ
�t
� = ������|ψ
�t
�. The index � 

runs over the states of the unperturbed system, the periodic function |ψ
�t
� = |ψ
�t + T
� 
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represents the Floquet state while �
, defined up to an integer multiple of ��, is called Floquet quasi-

energy in analogy with the Block quasi-momentum �25. Each Floquet state can be developed in 

Fourier series to be written as a sum of Floquet SBs of order �, amplitude �� and normalized spatial 

function |α�,
�26: |ψ
�t
� =  ∑ �����"#�|α�,
��  . The index � can be interpreted as a position in the 

Floquet dimension, or equivalently, as the number of driving field photons involved27. Due to its 

generality, the Floquet theory finds application in a variety of scientific fields, from electronic 

systems, to cold atoms28 and photons in waveguide arrays29. Here we used a time-delay compensated 

monochromator30 (TDCM, Fig. 1a) to generate short XUV pulses around 35.1-eV photon energy31 

(Figs. 1b,c) and ionize a Ne gas target. Few-femtosecond pulses centered around 800 nm and of 

controlled duration (Figs. 1d,e) dress the free electron. If the IR pulse is long enough to be considered 

monochromatic (red curve in Figs. 1d,e), it induces a particular Floquet state called Volkov state32 

(Fig. 2a), where the SB amplitudes and quasi-energy are given by (atomic units are used hereafter):  

$  � =  %&
' + (%���), *�, ��
 =  +,� -. )∙*#"#& , . 012'"#3 .        (1) 

)  is the electron final momentum, *�  is the driving field amplitude, (% =  5�' 4��'⁄  is its 

ponderomotive energy and +,�  indicates the generalized Bessel function of order �  (see 

Supplementary Section S2.2). Since the IR field can efficiently dress only the free-electron state, here 

we consider a single Floquet state and drop the index � in the notation. 

 

 

Fig. 1 | Experimental setup and light pulses. a, Scheme of the experimental setup showing the second stage of the TDCM used to 
select the 23rd harmonic while preserving its time duration (T1 and T2: toroidal mirrors; GS: grating; FM: focusing mirror; Pol.: 
polarizer). The IR beam is compressed with a hollow-core fiber (HCF) setup and collinearly recombined to the XUV radiation through 
a drilled mirror (DM). Both beams are focused onto a Ne gas target where the photoelectron spectra are collected by a time-of-flight 
(TOF) spectrometer. b, c, Spectral and temporal properties of the XUV radiation used in the experiment. The spectral phase in b has 
been retrieved with a reconstruction algorithm (see Supplementary Section S1.2.1). d, e, Spectra and temporal profiles of the IR pulses 
used in the experiment. 
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Under the strong-field (SFA) and dipole approximations33, the  photoelectron spectrum resulting from 

the ionization to the final dressed state |Φ�t
⟩ can be calculated as33 9: ⟨Φ�t
|<5=�>
|0⟩@�@ A>9'
 where 

|0⟩ =  ϕ��C
��D2� is the atomic initial state of binding energy E%, 5=�>
 = 5=��>
���"F�  is the XUV 

electric field and < is the atomic electric dipole moment. Using the Floquet state defined by Eq. (1), 

it is possible to show that the resulting photoelectron spectrum is characterized by discrete SB peaks 

(Fig. 2b) with energy profile of the form (see Supplementary Section S2.4): 

GH���
 =  9: ���I, 5�, ��
5=��>
����"�"J
�A>@�@ 9' =  ��' �I�, 5�, ��
95K=��� . ��
9'
,           (2) 

where we have applied the central momentum approximation within the SB bandwidth to substitute 

I → I� = M2�� in the expression for ��. The frequency �� =  �= + ��� . (% . E%  is the central 

energy of the SB of order �, 5K=���
 is the Fourier transform of the XUV pulse envelope and � is the 

final photoelectron energy. Equation (2) suggests that a direct estimation of �� can be obtained by 

integrating GH���
 in energy and dividing it by the area of the photoelectron spectrum obtained 

without the driving field (black curve in Fig. 2b), E� =  : 95K=���
9'A�@�@ . Figure 2c shows the value 

of ��'  extracted from the experimental photoelectron spectra with this procedure (open markers) 

while varying the IR field intensity, EDN =  O&�#P5�' , between 3×1010 and 2×1012 W/cm2. In this 

intensity range we observe the formation of six SBs whose normalized amplitudes, ��, nicely follows 

the prediction of Eq. (1) (solid curves with shaded area) and exhibits a non-monotonic behaviour 

which depends on the Floquet order. Above ~1012 W/cm2 the amplitude of the Floquet ladder states 

with � = Q1 starts to decrease while the population of the higher order increases causing higher 

frequency components to become visible in the time evolution of the photoelectron wave-packet |s�t
|' (upper panels in Fig. 2c, see Supplementary Section S2.4). Therefore, this proves that by 

varying EDN it is possible to change the time profile of the population on final dressed state |ψ�t
⟩. 
 

 

Fig. 2 | Pulse intensity dependence. a, Cartoon of the experiment: an XUV femtosecond pulse ionizes the Ne atom to a state in the 
continuum which is dressed by an IR pulse inducing a time periodicity. In frequency this corresponds to the creation of a Floquet ladder 
whose states, (called sidebands, SBs) are spaced by almost an IR photon. b, Photoelectron spectra collected at selected IR intensities 
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using the quasi-monochromatic pulse (~ 146 fs). c, Behavior of ��'  as a function of the IR intensity. The experimental values (markers) 
nicely follow the prediction of Eq. (1) (solid lines). The shaded areas represent the uncertainty over the calibration of the TOF transfer 
function. The upper panels show the time evolution of the populated final state for IIR equal 109, 5×1011 and 2×1012 W/cm2. 

 

Pulsed driving 

Now that a direct link between the normalized amplitude of the photoelectron SB and the population 

of the Floquet ladder state has been established, it is natural to ask how the picture will change when 

the dressing light has a finite duration in time. In this case the SB amplitude is expected to depend on 

the relative delay τ between the pulses34. Indeed, under the slowly-varying envelope approximation 

(SVEA) and for relatively low IR intensities (i.e. for 5��>
 → 0), it is possible to show that the SB 

intensity becomes (see Supplementary Section S2.6): 

GH���, T
 =  U: +,� -.I V#"#& , . 02'"#3 W�>
|�|5�=�> . T
����"�"J
�A>@�@ U'
.            (3) 

Equation (3) is formally identical to Eq. (2), suggesting that the photoelectron spectrum at each delay 

can still be thought as the squared modulus of the dipole matrix element between the initial state |0⟩ 
and a Floquet-like final state |ψ′�t
⟩ =  ∑ ��W�>
|�|���"#�� , where each Floquet ladder state is the 

one generated by an equivalent monochromatic driving field of amplitude 5Y�, multiplied by n-th 

positive power of the normalized pulse envelope, W�>
.  

Figures 3a and 3b show the collection of photoelectron spectra as a function of τ, obtained for EDN =5 × 10\\ W/cm2 and a full-width half-maximum (FWHM) duration of the IR pulse ]DN = 9 and 45 fs, 

respectively. As expected, longer driving pulses generate a SB signal that lasts for a longer delay 

reange31. In addition, even if the intensity  EDN is kept constant, we found that longer pulses lead to 

more efficient SB population as indicated by the signal at � =  Q2, visible only in Fig. 3b. To 

understand the origin of this behaviour we can follow the same procedure adopted for the 

monochromatic driving and estimate �� directly from the experimental traces. For Gaussian pulses, 

it is possible to show that this yields the following quantity (see Supplementary Section S2.7): 

Λ�' =  _J&
`|J|ab&acd& e\ ,         (4) 

where ]f is the FWHM time duration of the XUV pulse. Once the experimental spectra are corrected 

for the residual intensity fluctuations, the blue shift of the IR central wavelength and the deviations 

of the pulse envelopes from an ideal Gaussian shape (see Supplementary Section S1.2.1), Λ�'  can be 

directly extracted from the photoelectron traces and compared to the prediction of Eq. (4). Open 

markers with error bars in Fig. 3c display the experimental results for .2 ≤ � ≤ 2, ]f ≅ 12 fs and 

an IR time duration variable between 9 and 146 fs (i.e., 3.4 and 55 cycles). The theoretical prediction 



6 

is indicated by the solid curves. The shaded area represents the uncertainty associated with the TOF 

transfer function calibration (see Supplementary Section S1).  

 

Fig. 3 | Pulse duration dependence. a, b, Experimental spectrograms obtained by ionizing Ne with a 12-fs XUV pulse and an IR pulse 
with duration of 9 fs and 45 fs, respectively. c, Behavior of the SB normalized intensities, i�' , as function of the ratio between the XUV 
and IR time durations. The experimental data (open markers) are obtained by changing the IR pulse duration while keeping its intensity 
fixed to ~ 5×1011 W/cm2. The solid line and shaded area represent the theoretical prediction of Eq. (4). The dashed curves with dots 
correspond to the same quantity extracted from the SFA calculations. The top panels show the time evolution of the populated final 
state for �]DN ]=⁄ 
' of about 0.6, 3.1, 13 and 148. 

Also in this case the theoretical model nicely follows the experimental data nicely, suggesting that 

the driving pulse duration can be used to control the temporal characteristic of the population on the 

final Floquet-like state |ψ′�t
⟩ (upper panels in Fig. 3c).  

To test the validity of the approximations upon which the model of Eq. (4) is based we simulated the 

experiment using only the SFA35 (see Methods). The dash-dotted curves in Fig. 3c show the values 

of Λ�'  as extracted from the SFA35 simulations using the same procedure followed for the 

experimental data. The model (solid curves) nicely follows the SFA simulations (dash-dotted curves), 

deviating only for values of ]DN ≃ ]f. The main reason for the deviation can be traced back to the 

relatively high value of EDN used in the experiment to guarantee a reasonable signal to noise ratio and 

the fact that, for Eq. (4) to be accurate, the generalized Bessels, +,�, need to be monotonic in their 

argument (see Supplementary Section S2.6). In the momentum range under examination this is true 

if EDN ≲ 1 × 10\' W/cm2 where the deviation from the model stays below 10%. For intensities below 10\\ W/cm2, the agreement is instead almost perfect (provided that the pulses are long enough).  

 

Discussion 

Once the theoretical model has been validated, Eq. (4) can be used to estimate the minimum number 

of driving cycles needed for a Floquet state |ψ�t
⟩ to be established. Figures 4a and 4b show the 

simulated SB normalized intensity as a function of the IR and XUV number of cycles, respectively, 

for EDN = 1 × 10\� W/cm2. In Fig. 4a ]f =  11 fs while in Fig. 4b ]DN =  10�DN. Open dots represent 

the SFA simulations while the solid curves are the predictions of Eq. (4). The normalized curves for 
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� l 0, not shown, are identical. For a pulse duration bigger than 2�DN, the model correctly describes 

the system. Below two optical cycles, in Fig. 4a the SVEA fails while in Fig. 4b the photoelectron 

trace is no longer characterized by discrete SB peaks as the XUV bandwidth becomes comparable to 

the IR photon energy.  

 

 

Fig. 4| Expected scaling with the number of cycles. a, b Ratio between i�'  and its asymptotic value ��'  (monochromatic case), as a 
function of the IR and XUV pulse durations, while keeping fixed ]f =  11 fs and ]DN =  10�DN, respectively. Open circles represent the 
SFA calculation while the solid lines the model of Eq. (4). The higher the SB order n, the stronger the effect of the finite duration of the 
pulses. The blue dash-dotted vertical line sets the validity of the approximations used in the theoretical model. The black horizontal 

line corresponds to the monochromatic limit while the red dashed line corresponds to the 3τ-convergence. c, Number of IR cycles (also 
depicted by the false colours) necessary to reach 3τ-convergence as a function of the XUV time duration and the SB order. Floquet 
states composed by a higher number of SBs and generated by longer XUV pulses require longer times to establish. 

 

Using Eq. (4) we can now estimate how many IR cycles ΝDN =  σDN �DN⁄  are needed for Λ�'  to reach 

its asymptotic value A�' . By expressing  the XUV pulse duration in number of IR cycles, ]f =  Ν=TDN, 

and calculating when the quantity  pJ& qrJ&pJ&  equals a threshold value s, from Eq. (4) we obtain the 

asymptotic condition: ΝDN = �\�t
M|�|√'t�t& Ν= (see Methods). Therefore, the number of required driving 

cycles does not depend on the wavelength, but it is rather dictated by the maximum SB order, and 

ultimately by EDN. Figure 4c shows the results for s =  ��v, corresponding to a 3T-convergence; most 

notably, the number of required cycles increases with the SB order and with the time duration of the 

XUV pulse. If we consider the shortest XUV pulse for which clear SBs are observed, i.e. Νf = 2, 

and assume that EDN ≤ 10\\ W/cm2 (neglecting SBs with |�| x 3), 3T-convergence is reached after 

8.5 TDN  for � = Q2  and 6 TDN  for � = Q1 . It is worth noting that the simulations of Fig. 4 are 

consistent with the time hierarchy discussed in ref.14 since the condition  Λ�' A�'⁄ → 1 is met when  σDN y σf ≫ �DN.  Most interestingly, our results show that Floquet-like bands can be observed, albeit 

with a reduced amplitude, also if the XUV (probe) pulse is longer than the IR (pump), σf y σDN, 

therefore extending the previously known regime of applicability of Floquet theory. Finally, the 

explicit dependence on |�| implies that the minimum number of pump cycles ΝDN scales differently 
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for different SBs with the important consequence that pulse duration alongside intensity can now be 

used to control the frequency components of the Floquet state. 

 

In summary, in this work we used few-fs pulses of controlled duration and intensity to induce a 

Floquet state of a free electron. For quasi-monochromatic driving pulses, we demonstrated that there 

is a direct link between the observed SBs in the photoelectron spectrum and the amplitudes of the 

Floquet ladder states. With the help of an analytical model and numerical simulations we studied the 

short-pulse limit where we found that the final state can be interpreted in a Floquet-like picture as 

long as the two pulses are longer than two cycles of the driving light. In particular, for short XUV 

pulses and moderate IR intensities, we found that only ~10 optical cycles are required to establish a 

Floquet ladder identical to the monochromatic case. Our results shed new light onto the formation of 

light-dressed states at the shortest time scales achievable with current technology, paving the way for 

the investigation and application of the ultimate speed limit of Floquet engineering. Furthermore, 

since our study proves that the Floquet ladder population is strongly influenced also by the temporal 

profile of the exciting pulse, it suggests that the different timing of the excitation mechanism could 

be used to control the ratio between Floquet bands of bound or unbound states7,22, thus allowing to 

disentangle the two channels in photoemission from solids. 

 

 

Methods 

 
Experimental setup: 

IR pulses with a time duration of about 35-40 fs, center wavelength of 811 nm, repetition rate of 1kHz 
and energy of ~0.8 mJ are focused onto a static gas cell filled with Ar to generate high-order 
harmonics. The 23rd harmonic is selected with a TDCM which works in a subtractive configuration, 
maintaining the XUV pulse time duration31. A portion of the IR beam (about 1 mJ), removed by a 
beam splitter prior to harmonic generation, is sent to a hollow-core fiber compression setup filled 
with Ne where the pulse duration is controlled by changing the pressure of the filler gas. After the 
fiber, a { 2⁄ -waveplate is used in combination with a polarizer to adjust the pulse energy without 
altering its time duration or its focal properties. A mechanical shutter is used to switch the IR radiation 
on and off during the experiments to collect the reference XUV-only signal. The IR beam is then 
recombined with the 23rd harmonic through a drilled mirror after passing through a delay stage 
equipped with a piezo controller. Both beams are focused onto a Ne gas target (Fig. 1a). The resulting 
photoelectron spectra are recorded with a time-of-flight (TOF) spectrometer, while an XUV 
spectrometer allows the inspection of the XUV spectral content at the end of the beamline. To obtain 
a quasi-monochromatic pulse, the IR beam is instead filtered by an interferential filter with 10-nm 
bandwidth. 
 
Data analysis: 
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Quasi-monochromatic pulses 

After background removal, the SB amplitudes are extracted from the photoelectron spectra by 
integrating the SB signals in a 1-eV energy region around the corresponding peak and by normalizing 
by the area of the XUV-only photoelectron spectrum. To correct for the not-constant transfer function 
of the TOF spectrometer (see Supplementary Section S1.1), the extracted values of each SB as a 
function of EDN are rescaled by a constant factor that minimizes the least-square distance between the 
curves. The uncertainty of this calibration factor is projected onto the theoretical curves and 
represented by the shaded area in Fig. 2c. 
Finite pulses 

In this case the experimental traces are recorded by changing the relative delay between the IR and 
XUV pulses with a step of 3-4 fs. Once the hollow-core fiber gas pressure has been set, the IR duration 
is measured with a second-harmonic FROG36 and the pulse intensity is adjusted by rotating the { 2⁄ -
waveplate to obtain EDN ≈ 5 × 10\\ W/cm2. An XUV-only spectrum is taken each 5 delay steps in 
order to correct for any deviation of the harmonic signal. The delay scan is repeated 10 times for each 
IR duration and the final trace is obtained by averaging the individual scans. After background 
removal, the SB signals are integrated in a 1-eV energy window to evaluate their maximum value as 
a function of T. The theoretical curves of Fig. 3c have been calculated for an IR wavelength of 
800 nm, EDN = 5 × 10\\  W/cm2 and perfect Gaussian pulses. To account for the experimental 
deviations of these parameters, the photoelectron traces are reconstructed with a fitting procedure 
(see Supplementary Section S1.2.1) to retrieve an accurate estimate of the exact pulse characteristics 
used in the experiment. Each experimental point is then corrected to account for the deviation of the 
experimental parameters for the ideal case to get the Λ�'  shown in Fig. 3c. Finally, the TOF transfer 
function is calibrated as done for the quasi-monochromatic measurements and its uncertainty is 
projected onto the theoretical predictions (shaded areas in Fig. 3c). 
 

Theoretical model and simulations: 

To check the validity of the our model, we computed the photoelectron traces using the following 
SFA formula35: 

G��, T
 =  U: 5=�> . T
��� : O&}2~�cd���
�&����� ��D2�A>@�@ U'
,     (5)  

where �DN  is the IR vector potential defined by 5DN =  . A�DN A>⁄  and � =  I' 2⁄ . In the 

calculations, the IR and XUV fields are Gaussians: 5��>
 = 5��� �&�cd&
, 5�=�>
 = 5�=�� �&�b& . The 

complex quantities �� , with � = �, E� for the XUV or IR pulse, are related to the intensity-FWHM 

of the pulses ]�  and the group delay dispersion, �� , by the following expression: �� =
2�- a�&M&�� �&
3' . ���& .  

For the case of monochromatic IR pulses, it is easy to show that Eq. (5) yields the same result of 
Eq. (2). Indeed, starting from the definition of |0⟩ and |Φ�t
⟩ given in the text, and assuming A� ≅ 1 
so that the dependence on the spatial part of the functions can be neglected, we can write:  

9: A>⟨Φ�t
|<5=�>
|0⟩@�@ 9' ≅  �: 5�=�>
 ∑ �����2&& �}"Fe�"#�02�D2���� A>@�@ �'
   (6) 
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which is identical to Eq. (5) if the IR field is written as 5DN = 5Y� sin���>
 and the semi-classical 
action is expanded using the Jacoby-Anger formula33 (see Supplementary Section S2.3). If the XUV 
spectrum is narrow enough, the modulus of the integral in Eq. (6) is identical to the integral of the 
modulus, hence Eq. (2) derives directly from the above equation.  

In case of finite pulse duration, starting from Eq. (5), applying the SVEA and using the following 

asymptotic limit for the generalized Bessel function of order � ≠ 0 , +,� -.I V#��
"#& , . 02��
'"# 3 ≅
+,� -.I V#"#& , . 02'"#3 W�>
|�| (see Supplementary Section S2.6), it is possible to obtain Eq. (3) from 

which Eq. (4) can be analytically derived for the case of Gaussian pulses34 (see Supplementary 
Section S2.7). The number of IR cycles needed to reach 3T-convergence can be calculated from 

Eq. (4) by evaluating  
�J& ��J&�J& = s =  ��v. Substituting the expressions for A� and Λ� one gets:  

1 . \
�|J|� �b�cd�&e\ = s, which can be inverted to obtain the expression of �DN reported in the main text. 
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