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The temporal and spatial pattern of gene expression is encoded 
in the DNA sequence; this information is read and inter-
preted by TFs, which recognize and bind specific short DNA 

sequence motifs1. Major efforts have been undertaken to determine 
the DNA-binding specificities of TFs in vitro2–5 and map their binding 
positions in vivo6,7. TFs regulate gene expression by binding to distal 
enhancer elements and to promoters located close to the TSS8,9. Both 
enhancers and promoters are characterized by RNA transcription10, 
the presence of open chromatin11 and histone H3 lysine 27 acetylation 
(H3K27ac)12. In addition, promoters and enhancers are preferentially 
marked by histone H3 lysine 4 trimethylation and monomethylation13, 
respectively. Although these features can be mapped genome-wide in 
a high-throughput manner, they are correlative in nature and do not 
establish that an element can act as an enhancer, increasing expression 
from a promoter irrespective of position and orientation8. To more 
directly measure enhancer activity, MPRAs have been developed to 
study the activity of yeast14, Drosophila15 and human16 gene regulatory 
elements on a genome-wide scale. However, unbiased discovery of 
sequence determinants of human gene expression using only genomic 
sequences is made difficult by the fact that the genome is repetitive 
and has evolved to perform multiple functions. Furthermore, the 
human genome is too short to even encode all combinations, orien-
tations and spacings of approximately 1,639 human TFs in multiple 
independent sequence contexts1. Thus, despite the vast amount of 
information generated by genome-scale experiments, most sequence 
determinants that drive the activity of human enhancers and promot-
ers, and the interactions between them, remain unknown.

Results
Ultracomplex MPRAs with 100 times human genome coverage. 
To systematically characterize the sequence determinants of human 

gene regulatory element activity, we developed a set of four MPRA 
libraries that cover more than 100 times the sequence space of the 
human genome (Fig. 1a and Methods). The libraries are based on the 
self-transcribing active regulatory region sequencing (STARR-seq) 
design15, in which putative enhancers are cloned downstream of a 
minimal promoter to the 3′ untranslated region (UTR) of a reporter 
gene. The constructs are transfected to cells, and the enhancer activ-
ity of the UTRs are then determined by RNA sequencing (RNA-seq) 
(Fig. 1b). Three libraries were designed to measure enhancer activi-
ties of combinations of known TF binding motifs embedded within 
two different 49-bp sequence contexts, ~500-bp fragments of 
genomic DNA and synthetic random 170-bp sequences; a fourth 
library was designed to measure both enhancer and promoter 
activities of synthetic random 150-bp sequences. Sequencing of the 
input libraries revealed their ultrahigh complexity, reaching billions 
of unique fragments (Supplementary Fig. 1a,b and Methods).

Few TFs display strong transcriptional activity in cells. To mea-
sure the enhancer activity of the known TF consensus sequences, we 
transfected GP5d colon carcinoma cells with the motif libraries (Fig. 
1a, i) and purified total poly(A)+ RNA from the transfected cells. 
The synthetic motif sequences that were transcribed to RNA were 
recovered using reverse-transcription PCR, and the abundance of 
each sequence was then quantified by massively parallel sequencing 
(Methods). Comparison of the median activities of the individual TF 
consensus sequences revealed that several TFs had enhancer activ-
ity in GP5d cells (Fig. 1c, Extended Data Fig. 1a–c, Supplementary 
Note and Supplementary Table 5). The consensus sequence corre-
sponding to the p53 protein family (p53, p63 and p73) displayed 
the strongest enhancer activity in this assay, suggesting that there is 
constitutive p53 activity in GP5d cells (Fig. 1c and Supplementary 
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Fig. 1c–f). As the library contained each single-base substitution to 
the consensus sequences, we were able to generate activity position 
weight matrices (PWMs) for the motifs. For 11 motifs, the activ-
ity PWMs were highly similar to that of the motifs derived from 
an in vitro binding-specificity assay (high-throughput system-
atic evolution of ligands by exponential enrichment, HT-SELEX; 
Fig. 1d; Extended Data Fig. 1d), indicating that the measured 
enhancer activity originated from the TFs that bound to the motifs,  
demonstrating that the assay can be used to faithfully measure TF 
activities in cells.

Comparison of enhancer activities of motifs with the 
DNA-binding activities of respective TFs measured from the nuclear 
extract of GP5d cells by an active TF identification (ATI) assay17 
(Methods) revealed that the transcriptional and DNA-binding 
activities were only weakly correlated (log2 fold change, Pearson 
R = 0.032; Fig. 2a and Supplementary Note). These results suggest 
that largely distinct sets of TFs display strong enhancer activity and 
strong DNA-binding activity in a cell.

Synergy, additivity and saturation of activity. Apart from simple 
cellular alarm signals, most transcription is thought to require com-
binatorial action of many TFs18–20. Consistent with this, we observed 
that the average activity of all consensus sequences was very low, 
and for the majority of the TFs, the enhancer activity increased as 
a function of the number of consensus sequences (Extended Data  
Fig. 1e, red horizontal lines). Conversely, for the TFs that can activate 
transcription alone (e.g., p53 and IRF), two consensus sequences 
had lower activity than that predicted from an additive model  
(Fig. 2b, red dotted line), presumably due to saturation of both 
the occupancy and the downstream transcriptional activation. For 
TFs with intermediate activity levels (e.g., NFAT and YY), activ-
ity increased linearly rather than synergistically as a function of 
the number of binding sites (Extended Data Fig. 1e). The simplest 
model consistent with these observations is that human enhancer 
activation requires overcoming a repressive activity, after which acti-
vation is linear (additive) until it starts to saturate as it approaches 
a maximum level.

Enhancers show weak TF spacing and orientation preferences. 
To discover sequence features that contribute to human enhancer 
activity in an unbiased manner, we used extremely complex ran-
dom enhancer library (Fig. 1a, iii) in GP5d cells. Motif mapping 
across replicate experiments indicated that motif activities were 
highly reproducible (Pearson R = 0.963; Extended Data Fig. 2a), 
displaying additivity and saturation similar to that observed with 
the motif library (Extended Data Fig. 2b,c). Enrichment of motifs 
corresponding to known TFs specific to colon cancer and intestinal 
lineage, such as TCF/LEF, GRHL and HNF4, was clearly observed 
(Extended Data Fig. 2b). De novo motif mining identified 22 TF 

motifs; most of these were for individual TFs or conventional het-
erodimers (Extended Data Fig. 2d and Supplementary Fig. 2a). 
One strong de novo ETS-bZIP composite motif was also identi-
fied, revealing a potential role for ETS-bZIP combinatorial control 
in colon cancer cells (Extended Data Fig. 2d). Analysis of spacing 
between motif matches identified few significantly overrepresented 
spacing preferences for motif pairs such as p53 family–p53 family, 
GRHL–ETS class I and GRHL–ATF6 (Fig. 2c); weak overall prefer-
ence for motifs that were relatively close (<50 bp) was also observed 
(Extended Data Fig. 2e,f; Supplementary Note). These results sug-
gest that TF grammar is strong at the level of heterodimers (analo-
gous to ‘compound words’) but relatively weak at the level of specific 
combinations and spacing and orientation preferences between  
TFs (‘sentences’).

To determine sequence features present in the de novo enhanc-
ers, we used machine learning classifiers. First, we determined the 
importance of known motif features using a logistic regression 
model (Methods); we found that only a handful of known TF bind-
ing motifs are needed for optimal classification, as only 26 out of 
19,150 features had regression coefficient absolute values within 
10% of the largest regression coefficient (Fig. 2d, Extended Data 
Fig. 3a and Methods). The most predictive features were motifs for 
known TFs important for tumorigenesis and colon development 
(Fig. 2d). These motifs were enriched, suggesting that the cor-
responding TFs act as transcriptional activators. The interactions 
between the motifs were largely additive, as specific pairwise com-
binations did not add substantially to the predictive power.

Next, to identify possible novel sequence features that would 
allow more optimal classification, we trained a convolutional neu-
ral network (CNN)–based classifier similar to DeepBind21 on the 
sequence data. This method is capable of learning the sequence 
motifs, their combinations and their relative weights de novo. The 
CNN classifier performed substantially better than logistic regres-
sion using the same training, validation and test sets (11% increase 
in the area under the precision-recall curve (AUprc); Extended Data 
Fig. 3a,b and Methods). Analysis of the CNN classifier revealed that 
it had learned motif features similar to those identified by logistic 
regression (Fig. 2e, Extended Data Figs. 3c and 4, Supplementary 
Fig. 2 and Supplementary Note). In conclusion, these results indi-
cate that individual TFs contribute to de novo enhancer function 
mostly without specific interactions between them.

Only small number of TFs are specific for each cell type. To deter-
mine whether enhancers are cell-type specific, we used the random 
enhancer library (Fig. 1a, iii) to identify sequence features impor-
tant for enhancer activity in HepG2 hepatocellular carcinoma cells. 
Comparison of enhancer motifs between the GP5d and HepG2 cells 
revealed that most motifs had similar enhancer activity across the 
cell lines (Pearson R = 0.78; Fig. 2f). The motifs with differential 

Fig. 1 | Few TFs display strong transcriptional activity in cells. a, Schematic representation of the MPRA (STARR-seq) libraries. For enhancer activity 
assays, a DNA library comprising synthetic TF motifs (i), human genomic fragments (ii) or completely random synthetic DNA oligonucleotides (iii) is 
cloned within the 3′ UTR of the reporter gene (open reading frame (ORF)) driven by a minimal δ1-crystallin gene (Sasaki) or EF1α promoter. For binary 
promoter–enhancer (iv) activity assays, random synthetic DNA sequences are cloned in place of the minimal promoter and in the 3′ UTR (Methods, 
Supplementary Note and Supplementary Tables 3 and 4). b, MPRA (STARR-seq) reporter construct and its variations, and the experimental workflow for 
measuring promoter or enhancer activity. The MPRA libraries are transfected into human cells, and RNA is isolated 24 h later, followed by enrichment of 
reporter-specific RNA, library preparation, sequencing and data analysis. The active promoters are recovered by mapping their transcribed enhancers to 
the input DNA and identifying the corresponding promoter. c, Enhancer activity of HT-SELEX motifs measured from the synthetic TF motif library in GP5d 
cells. Median fold change of the sequence patterns containing a single instance of the motif consensus or its reverse complement over the input library 
is shown. Red line marks 1% activity related to the strongest motif. Dimeric motifs are indicated by orientation with respect to core consensus sequence 
(GGAA for ETS, ACAA for SOX, AACCGG for GRHL and GAAA for IRF; HH, head to head; HT, head to tail; TT, tail to tail), followed by gap length between 
the core sequences. Asterisk indicates an A-rich sequence 5′ of the IRF HT2 dimer. Supplementary Table 5 describes the naming of the motifs in each 
figure. d, The effect of a mismatch on enhancer activity of the p53 family (p63) motif when a consensus base is substituted by any other base one position 
at a time. The log2 fold change compared to input is plotted for the same motif pattern in two different sequence contexts. The PWMs for HT-SELEX and 
STARR-seq motifs are shown; note that mutating G to any other base (H) at position 5 (H05) leads to almost complete loss of activity.
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activity corresponded to lineage-determining TFs (GRHL in GP5d) 
and TFs important for tissue function (TEAD and ATF4:CEBPB in 
HepG2 cells). Importantly, the lineage-determining factors showed 
clear differential expression between the two cell types (Fig. 3a), 
indicating that activities of individual TFs are commonly affected 
by their expression level, although the overall correlation between 
motif activity and expression of corresponding TF family was weak 
(Extended Data Fig. 1a–c). These results show that the transcrip-
tional landscape of a cell is dominated by cell-biological or ‘house-
keeping’ TFs that show comparable activity across cell types and 

that the largest differences of motif activity between cell types are 
driven by TFs important for lineage specification.

Genomic analysis reveals three types of active enhancers. To 
determine how sequence features combine to generate functional 
genomic enhancers, we assayed genomic enhancer activity in GP5d 
and HepG2 cells at ~1.5-bp resolution (Fig. 1a, ii, Supplementary 
Fig. 1a,b, Extended Data Fig. 5a,b and Methods) before and after 
methylation of the library (Fig. 3b). To determine the role of TP53 
in enhancer activity, we performed similar experiments in TP53−/− 
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GP5d cells. The signal was highly specific, as indicated by the fact 
that loss of TP53 resulted in loss of most enhancer peaks containing 
its motif (Fig. 3c,d). However, despite being the strongest activa-
tor in both cell types (see Fig. 2f), TP53 contributed to a relatively 
small proportion of the overall enhancer activity in both GP5d and 
HepG2 cells; only 16% and 4.9% of the genomic STARR-seq peaks 
overlapped with TP53 chromatin immunoprecipitation sequenc-
ing (ChIP-seq) peaks (Extended Data Fig. 5c,d and Supplementary 
Note). Analysis of the methylated libraries revealed that activities 
of methylated genomic elements were consistent with the known 
effect of methylation on TF DNA binding (Fig. 3d and Yin et al.5). 
Consistent with the known association between accessible chroma-
tin, TF binding and enhancer activity, the STARR-seq peaks over-
lapped significantly with chromatin accessibility; specifically, 30% 
of the STARR-seq peaks in GP5d and 27% in HepG2 cells overlap 
with assay for transposase-accessible chromatin using sequencing 
(ATAC-seq) peaks in the same cell types (Figs. 3e and 4a–c and 
Extended Data Figs. 5c and 6a,b). Furthermore, ATAC-seq peaks 
could be predicted by a CNN trained using genomic or random 
synthetic STARR-seq sequences (AUprc 0.80 and 0.71, respectively; 

Extended Data Fig. 6c), indicating that the sequence features dis-
covered using STARR-seq correspond partially to the features that 
are associated with open chromatin in vivo.

We next used the differential signals for chromatin accessibil-
ity (ATAC+ or ATAC−) and classical enhancer activity (STARR+ or 
STARR−) for defining different classes of gene regulatory elements 
along with ChIP-seq data for individual TFs; the histone marks 
H3K27ac, H3K9me3 and H3K27me3; and the structural chroma-
tin protein CTCF (Fig. 4a,c). This analysis revealed six classes of 
elements: (1) closed-chromatin enhancers (STARR+ and ATAC−),  
(2) cryptic enhancers (silenced STARR+ and ATAC− regions),  
(3) promoters (ATAC+ and STARR+/−), (4) chromatin-dependent 
enhancers (STARR−/low and ATAC+ with active histone mark 
H3K27ac), (5) structural chromatin elements (STARR−, ATAC+ and 
CTCF+) and (6) classical enhancers (STARR+ and ATAC+).

Analysis of the methylated genomic elements revealed that 
the cryptic enhancers were not silenced by methylation (Fig. 3b). 
Instead, they were inactive due to the presence of either H3K27me3 
(polycomb; ‘poised’ enhancer22) or H3K9me3/HP1 repressive chro-
matin marks. The three other types of enhancers (closed chromatin, 
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chromatin dependent and classical) appeared active based on the 
fact that inclusion of the corresponding features improved predic-
tion of differential gene expression between GP5d and HepG2 cells 
(Supplementary Table 6 and Methods). Analysis of ChIP-seq peaks 
and motifs present in the different classes of elements revealed that 
classical and closed-chromatin enhancers bound to TFs and con-
tained motifs that were similar to those that were found in active 
elements selected from random sequences (Extended Data Fig. 7a  
and Fig. 2f). Classical enhancers were preferentially bound by 
TFs with strong activator domains (e.g., FOS and JUN), whereas 
chromatin-dependent enhancers displayed relatively weak pref-
erence for HLF and FOXA motifs, and both types of enhancers 
were bound by HNF4A (Fig. 3e and Extended Data Fig. 7b). These 
results indicate that cells contain three distinct classes of enhanc-
ers (Supplementary Note): (1) classical enhancers8 that overlap  
with open chromatin and transactivate a heterologous promoter 

regardless of position or orientation; (2) chromatin-dependent 
enhancers that cannot be effectively detected using STARR-seq (see 
also Inoue et al. 23) and have strong signal for open chromatin and 
the activating histone mark H3K27ac; and (3) closed-chromatin 
enhancers whose detection requires STARR-seq, as these elements 
are not strongly enriched for chromatin marks associated with 
enhancer activity.

Consistent with few TFs determining the overall transcrip-
tional landscape of a cell, the genomic STARR-seq peaks were 
enriched for relatively few motifs (Extended Data Fig. 2d). The 
motifs themselves were similar to known monomeric, dimeric and 
composite TF motifs determined using HT-SELEX4 and consecu-
tive affinity-purification systematic evolution of ligands by expo-
nential enrichment (CAP-SELEX)24 (Extended Data Fig. 2d). The 
motifs discovered from genomic and random enhancers were also 
largely similar (Extended Data Fig. 2d). The main difference was 
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Fig. 3 | Cell type–specific gene expression and the effect of methylation on enhancer activity. a, Differential expression of genes encoding TFs (from 
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chromatin regions. 5FU, 5-fluorouracil (treatment to induce p53 binding to the genome); met, methyl. c, Genome browser snapshot showing the active 
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the enrichment of pioneer factor motifs such as GATA and SOX 
in genomic fragments (Extended Data Fig. 7c); these motifs may 
be specifically associated with classical genomic enhancers because 
of the ability of the corresponding TFs to displace nucleosomes 
and/or open higher-order chromatin. Many discovered genomic 
STARR-seq motifs also displayed strong DNA-binding activity in 
an ATI assay (Extended Data Fig. 2d), indicating that strong DNA 
binders are important for in vivo enhancer activity, potentially 
because they are capable of opening chromatin17. In summary, the 
sequence features of classical genomic enhancers are highly simi-
lar to those enriched from random sequence; these motifs define 
the classical enhancer activity of a cell. In addition to this activity, 
additional chromatin-dependent enhancers confer tissue speci-
ficity to genes; these elements are characterized by motifs for TFs 

that have lower transactivation activity, suggesting that these TFs 
act via chromatin to facilitate the activity of promoters and asso-
ciated classical enhancers. Consistent with this view, the strongest 
cellular enhancers, superenhancers, typically consist of arrays of 
chromatin-dependent elements associated with a classical enhancer 
(Fig. 4b and Extended Data Fig. 7d).

Sequence features of de novo promoters and enhancers. To iden-
tify sequence determinants of human promoter activity, we assayed 
the activity of the binary STARR-seq library consisting of random 
sequences placed in the position of both the promoter and the 
enhancer (Fig. 1a, iv). For this analysis, we used two tumor cell lines 
(GP5d and HepG2; endodermal origin) and an untransformed cell 
line derived from retinal pigment epithelium (RPE1; ectodermal 
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origin). Robust promoter activity was observed in all three cell lines 
from a subset of the random sequences, and motif mapping across 
replicate experiments in GP5d cells showed that motif activities were 
highly reproducible (Pearson R = 0.997; Extended Data Fig. 2a). As 
observed for the motifs at active enhancers, most motifs enriched 
at promoters were similar in all cell types (Fig. 5a). The motifs that 
displayed differential activity were linked to lineage determina-
tion (e.g., HNF1A) and specialized cell functions (ATF4:CEBP in 
HepG2 cells; Fig. 5a). Comparison of the active sequences in GP5d 
cells revealed that many sequence motifs were enriched in both the 
promoter and enhancer positions (Fig. 5b). However, some specific-
ity in the enrichment was also observed. For example, although p53 
and YY motifs were similarly enriched at promoters and enhanc-
ers, ETS (promoters vs. enhancers 9.5 versus 2.1 in linear scale) 
and recently discovered BANP25 motifs (17.7 versus 2.0) were pref-
erentially, and NRF1 (8.4 versus 1.3) as well as HNF1 motifs (4.3 
versus 0.9) almost exclusively enriched at promoters (Fig. 5b,c). No 
motif enriched only at enhancers, indicating that all motifs with 
enhancing activity can also act from a proximal position at the pro-
moter (Fig. 5b). Of note, some negative effects were also observed  
(Fig. 5b), consistent with previously known repressive functions of 

the corresponding TFs (e.g., OVO-like transcriptional repressor 1 and 
cut-like homeobox). In summary, these results indicate that human 
promoters can be enriched from random sequences and that active 
promoter elements are highly similar among different cell types.

A G-rich element that interacts with the TSS. To evaluate the posi-
tioning of the different features relative to the TSS, we first deter-
mined the TSS position within the promoters derived from random 
sequences by recovering the 5′ end of the transcript using a template 
switch (Fig. 6a), yielding 85,217 unique TSS positions. Alignment of 
the recovered sequences with respect to the TSS positions (Methods) 
revealed a relatively high information content feature located at 
the TSS that corresponded to the classic initiator motif (Fig. 6b). 
In addition, a clear AT-rich region was observed at the canonical 
−30 position of the TATA box. However, we did not detect other 
TSS-proximal motifs that have previously been described (BRE, 
DPE, MTE, DCE, X-core promoter element and TCT20,26). The 
transcript side was characterized by a modest increase in G across a 
relatively wide region (+10 to +35); this feature is also observed in 
genomic promoters (Supplementary Fig. 3). To identify interactions 
between the features, we performed mutual information analysis 
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(Methods). The strongest signal was for short-range interactions 
located 5ʹ to the TSS, excluding a region just upstream of the TATA 
box; this signal represents enrichment of individual TF motifs. Two 
mutually exclusive longer-range interactions were detected: one 
between the TATA box and the TSS and the other between the TSS 
and the G-rich downstream sequence (Fig. 6c). This pattern is con-
sistent with the loading of the RNA polymerase II either ‘heel first’ 
(TFIID) or ‘toe first’ (TFIIH) with respect to the TSS.

Motif mapping revealed that many TF motifs were also spe-
cifically positioned and oriented relative to the TSS (Fig. 6d,e). 
The strongest positional signals were observed for the TATA box, 
initiator and YY (YY1). YY1 motifs were mainly enriched on the 
transcript side (the first C of the CCAT sequence occurring on the 
minus strand at position +12), oriented in a manner that the YY1 
protein can position and orient the RNA polymerase II to direct 
transcription toward the YY motif (Fig. 6d and Houbaviy et al.27). 
In addition, many TF motifs preferentially enriched close to the 
TSS (Fig. 6d). On the 5ʹ side, the strongest enrichment occurs close 
to the TSS, slowly decreasing toward the TATA box; preferential 
enrichment upstream of the TATA box was also observed for some 
TFs (e.g., BANP25). On the 3ʹ side, the enrichment declines more 
sharply with very little motif enrichment observed beyond the +20 
position from the TSS (Fig. 6d,e). In summary, these results high-
light that some, but not all, TFs have positional dependency related 
to the TSS.

Predicting transcriptional activity from sequence features. To 
determine how well transcription can be predicted based on the 
de novo promoter sequences, we trained a CNN model (Methods) 
to predict the TSS positions genome-wide. To test the CNN, we 
first used it to score wild-type and mutant forms of the TERT pro-
moter28,29 (Methods); the model correctly predicted that known 
cancer-associated mutations29 increase the activity of this promoter 
(Fig. 6f and Extended Data Fig. 8a–d). We next used the CNN to 
predict the positions of active TSSs in GP5d cells using TSS annota-
tion derived from the Eukaryotic Promoter Database (EPD)30, and 
the activity of the TSSs was determined using cap analysis of gene 
expression (CAGE; Methods). This analysis revealed that promot-
ers enriched from random sequences were more predictive than 
the genomic sequences themselves; 33% of the positions of unseen 
genomic TSSs were accurately predicted by the CNN trained on 
the promoters enriched from random sequences, as opposed to 
7% predicted by the CNN trained on the EPD promoters (Fig. 6g 
and Extended Data Fig. 8e). A mutual information–based analysis 
of interactions learned by the CNN classifiers (Methods) revealed 
that the classifiers trained on STARR-seq data learned a stronger 
position-specific signal than the classifiers trained on the EPD data, 
which relied more on information present at a relatively short region 
around the TSS (Extended Data Fig. 8f,g and Methods). These 
results highlight the power of unbiased interrogation of sequence 
space that is 100 times larger than that of the human genome.

Enhancer–promoter interactions are additive. The binary 
STARR-seq approach allows identification of interactions between 
promoters and enhancers. For this analysis, we counted single motif 
matches at the promoter and enhancer positions and all pairs of 
motif matches. When promoters and enhancers were analyzed sep-
arately, almost all pairs of TF motifs enriched independently of each 
other. Strikingly, even across promoters and enhancers, all motifs 
were independently enriched (Fig. 7a), suggesting that TFs bound 
to enhancers activate promoters, but in a very nonspecific man-
ner. Some highly enriched TF–TF motif pairs, however, displayed 
weaker activity than that expected from a model that assumes addi-
tive action of the enhancer and promoter (Fig. 7b). In addition, three 
TF–TF motif pairs displayed stronger transcriptional activity than 
that expected from independent action of the individual TFs (Fig. 7a  

and Extended Data Fig. 9a); all three pairs combined a p53 fam-
ily motif at the promoter with a repressive motif at the enhancer  
(Fig. 7a). These results are consistent with a model in which 
enhancer and promoter activities are integrated into total transcrip-
tional activity; the observed saturation is consistent with a strong 
promoter not needing an enhancer and with a strong enhancer ren-
dering weak and strong promoters equally active.

Unbiased machine learning analysis also supported a general 
mechanism of integration of promoter and enhancer activities  
(Fig. 7c). A CNN classifier using only promoter sequences outper-
formed a classifier using only enhancer sequences. As expected, 
combining the promoters with the correct enhancer sequences 
increased performance substantially. However, permutating the 
pairings between the promoters and enhancers resulted in similar 
performance (Fig. 7c), indicating that there was no predictive power 
in the specific pairing of individual promoters and enhancers. Taken 
together, our results indicate that the mechanisms that control tran-
scription are very general and that the activities of almost all TFs 
can independently contribute to transcriptional activity.

Discussion
Learning the rules by which DNA sequence determines where and 
when genes are expressed has proven surprisingly hard, despite the 
availability of full genome sequences of several mammals, exten-
sive maps of genomic features6,11,13 and genome-scale data about TF 
protein expression levels and TF DNA binding in vitro2,4,5. Direct 
comparison of activities between TFs has remained difficult, and 
therefore, we generally lack parameters describing the relative 
strength of the different sequence features and their interactions—
features that are critically important for prediction of transcriptional 
activity. To address this, we have here defined sequence determi-
nants of human regulatory element activity in an unbiased man-
ner, using an approach in which genomic, designed and random 
sequences are identified that display promoter or enhancer activity.

We found that the cellular gene regulatory system is relatively 
complex, consisting of several distinct kinds of elements. Motif 
grammar is relatively strong at the level of heterodimers but weaker 
at the level of spacing and orientation of specific TF motif combi-
nations. In transcriptionally active sequences, precise TF arrange-
ments such as those found in the interferon enhanceosome31 are 
rare, with most elements consisting of TFs acting together in a 
largely additive manner18,20,32–35. Our results are consistent with a 
recent report showing that independent actions of TFs can explain 
over 92% of the transcriptional activity measured from random 
yeast promoters14. The presence of a weak motif syntax is also con-
sistent with known existence of spacing and orientation preferences 
of TFs in vitro24 and at human genomic enhancers36 and synthetic 
yeast promoters37.

Our results also show that different cell types have very similar 
TF activities and that the topology of the gene regulatory network 
is hierarchical, with few TFs displaying very strong transactivation 
activity. This is consistent with our previous work showing that rela-
tively few TFs show strong DNA-binding activity in a cell and that 
many of the strong binders are common to various cell types17. Our 
findings contrast with the known tissue specificity of many puta-
tive enhancer elements in vivo38. Interestingly, the level of conser-
vation of many endogenous promoters and enhancers appears to 
be higher39 than the elements selected in our assay (Extended Data  
Fig. 9b). The simplest explanation for these two facts is that enhanc-
ers in vivo evolve to be specific and that due to the similarity 
between cells, specificity is more difficult to achieve than activity. 
Specificity will naturally require specific TF combinations and also 
fine-tuning using motif number, spacing, orientation and affinity 
(e.g., Panne et al.31 and Crocker et al.40). Specificity is also required 
to silence strongly active elements in cell types in which their target 
protein is not needed due to the substantial fitness cost of protein 
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expression41. Further analysis using main cell types representing 
all three germ layers is needed to determine whether and to what 
extent differentiated human cell types have retained the regulatory 
mechanisms that existed in their common unicellular ancestor. 
Moreover, the contribution of specific TFs to the transcriptional 
activity in the cell could be further dissected, for example, by testing 
mutated genomic fragments in MPRAs.

The original functional definition described enhancers as 
genetic elements that can activate a promoter from a distance, 
irrespective of their orientation relative to the TSS8. We find here 
that in addition to these elements, two other types of enhancing 

gene regulatory elements exist: chromatin-dependent enhancers 
and closed-chromatin enhancers (Fig. 7d). Chromatin-dependent 
enhancers are characterized by forkhead motifs, binding of 
Mediator and p300 protein and a strong signal for H3K27 acetyla-
tion. Unlike classical enhancers, chromatin-dependent enhancers 
do not transactivate a heterologous promoter strongly, most likely 
due to lack of binding of TFs with strong transactivator domains. 
Their presence is, however, strongly predictive of tissue-specific 
gene expression, suggesting that they act to increase gene expression 
via chromatin modification or structural changes in higher-order 
chromatin. Several chromatin-dependent enhancers also combine  

a b

c d

A
U

pr
c

Hyperparameter combinations

0 10

Pi + Ei Binary STARR-seq CNN (paired)

Binary STARR-seq CNN (permutated)Pi + Ek

Binary STARR-seq CNN (enhancer from input)Pi + Ik

Binary STARR-seq CNN (promoter from input)Ik + Ei

0.85

0.75

0.65

20

Opening of
higher-order
chromatin

Chromatin modifications, phase transition

Indirect steric hindrance
(size exclusion)

Direct steric hindrance
(nucleosomes)

Indirect and direct
binding to Pol II

Mediator

Classical enhancer
Chromatin-dependent
enhancers

FOXA1
SOX

Pol II

TATA

CREB
NRF1
ETS

–2

0

2

4

−2 0 2 4

1,000

2,000

3,000

Count

Expected, log2 pair fold changeExpected, log2 pair fold change

O
bs

er
ve

d,
 lo

g 2
 p

ai
r 

fo
ld

 c
ha

ng
e

O
bs

er
ve

d,
 lo

g 2
 p

ai
r 

fo
ld

 c
ha

ng
e

ETS class I + p53 family (adjusted P value: 2.6 × 10
−175

) 

ETS class II + p53 family (adjusted P value: 2 × 10
−163

)
 

1.5

2.0

3.0

4.0

1.5 2.0 3.0 4.0

Pair subset
1. Other

7. p53 family enhancer
6. p53 family promoter
5. YY enhancer
4. YY promoter
3. ETS enhancer
2. ETS promoter

p53 family + FOX
p53 family + MEF

p53 family + OVOL

Opening of
local chromatin

RNA Pol II
recruitment

and positioning

ETS
YY1

YY1

Fig. 7 | Enhancer–promoter interactions are additive and nonspecific in nature. a, Activity of promoter–enhancer pairs detected from the binary STARR-seq 
experiment; the observed log2 fold change of each pair compared to input DNA (y axis) against the expected change (x axis), assuming that the promoter 
and enhancer motifs act independently of each other (with a background probability of a motif match as 5 × 10−5; Methods). Significant interactions (multiple 
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with classical (orange) and chromatin-dependent (dark blue) enhancers interacting with Mediator (light blue) and a promoter (brown) is shown. TFs with 
chromatin-dependent enhancer (FOXA and SOX), classical enhancing (YY1 and ETS), promoting (ETS, CREB and NRF1) and TSS-determining (TATA and 
YY1) activities are also indicated. The relative nonspecificity of interactions among TFs, classical enhancers and promoters suggests an important role of 
nonspecific interactions such as steric hindrance (size exclusion47 and nucleosome-mediated cooperativity49) in transcriptional regulation. The model is also 
consistent with other low-selectivity processes such as phase separation and recruitment in transcription50.
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with a single classical enhancer to form superenhancers (see  
Fig. 4b), indicating that these elements may be required for driving 
high levels of gene expression from distal promoters. The third ele-
ment type, closed-chromatin enhancers, are located in regions that 
show little or no signal for DNase I hypersensitivity or ATAC-seq. 
They are not silenced by CpG methylation. These elements appear 
to consist of only a single TF (e.g., p53; see also Peng et al.42) or 
a set of closely bound TFs that fit between or associate directly 
with well-ordered nucleosomes43. The prevalence of both the 
closed-chromatin enhancers and chromatin-dependent enhancers 
suggests that they may contribute substantially to regional control 
of gene expression35.

By using machine learning approaches, we show here that tran-
scriptional activity in human cells can be predicted from sequence 
features (see also Avsec et al.36 and Agarwal and Shendure44). 
Interestingly, we found that the promoters enriched from com-
pletely random synthetic sequences in a single experimental step are 
even more predictive of transcriptional activity than the genomic 
sequences themselves. By analysis of de novo promoters enriched 
from random sequences, we discovered a G-rich element that inter-
acts with the TSS, potentially positioning RNA polymerase II to the 
TSS independently of the TATA box. Overall, TF activities could 
be classified into three groups: TSS position–determining activ-
ity (e.g., TATA box and YY), short-range promoting activity (e.g., 
NRF1) and enhancing activity (many TFs). We did not detect a sep-
arate class of distal enhancing activity, suggesting that activities that 
would allow an enhancer to selectively act at a very long range are 
likely to be associated with chromatin-dependent enhancers and 
not classical enhancers45,46. The three classes of activities detected 
are not mutually exclusive, suggesting that TFs act at multiple lev-
els and/or scales to regulate transcription (Fig. 7d). For example, 
YY1 acts as both an enhancing TF and a TSS-determining one, and 
FOXA motifs are present at both chromatin-dependent and clas-
sical enhancer elements. Our results thus indicate that TF motifs 
are the atomic units of gene expression and should be the ultimate 
basis of analysis and prediction of genomic elements controlling 
gene regulatory activity.

Our random promoter–enhancer design allowed unbiased 
discovery of features that facilitate interactions between classi-
cal enhancers and promoters at a relatively short range. No spe-
cific pair of motifs controlling such interactions was found. This, 
together with the fact that no specific TF that only acts from an 
enhancer was found, is consistent with a generic and indirect 
mechanism of action, where the activities of individual TFs bound 
to an enhancer are aggregated and their total activity then activates 
the promoter. Molecularly, these results are consistent with media-
tion of the effect by the least specific type of biochemical inter-
action, steric hindrance. The simplest mechanism for enhancer 
action would involve opening of higher-order and local chromatin 
in such a way that the steric hindrance that prevents large mac-
romolecular complexes such as Mediator or RNA polymerase II 
from loading to DNA is decreased (Fig. 7d and Maeshima et al.47). 
However, in the highly evolved genomic context, more specific 
interactions can exist between chromatin-dependent enhanc-
ers and particular promoters, as reported in a few cases, such as 
multichromosome structures that control the expression of the 
repertoire of olfactory receptor genes or the complex regulatory 
landscape of HOX genes48.

In summary, we show here that direct experimentation to inter-
rogate transcriptional activities of sequences that represent on 
aggregate >100 times larger sequence space than that of the human 
genome can be used to determine mechanisms of action of, and 
interaction between, gene regulatory elements. The experiments 
revealed unexpected simplicity of gene regulatory logic. The dis-
covery of the relative simplicity of the interactions, together with 
the ability to measure transcriptional activities of all TFs in a cell, 

represents a major step toward achieving the ultimate aim of regula-
tory genomics: predicting gene expression from a sequence.
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Methods
STARR-seq vector design. We designed a modified STARR-seq reporter construct 
pGL4.10-Sasaki-SS (a) based on an earlier published design15 in the pGL4.10 
backbone (Promega, E6651). The sequence between SacI and AfeI was replaced 
with a sequence containing CG-depleted chicken lens δ1-crystallin gene (Sasaki) 
promoter51, a synthetic intron (pIRESpuro3; Clontech, 631619), an ORF (fusion 
of Nanoluc-EmGFP), homology arms for library cloning with AgeI and SalI 
restriction enzyme (RE) sites flanking the ccdB gene, a small 52-bp DNA stuffer 
(a part of the neomycin resistance cassette) and a 20-bp sequence from the 
3ʹ-Illumina adapter for optimally sized final library for Illumina sequencing and 
the SV40 late poly(A) signal from the pGL3 backbone (Promega, E1751).

To enable the analysis of CpG methylation on enhancer activity, we  
designed modified STARR-seq vectors in a CpG-free backbone with Lucia  
reporter gene (Invivogen, pcpgf-promlc) driven either by the EF1α promoter  
(b. pCpG-free-EF1α-SS) or the Sasaki promoter (c. pCpG-free-Sasaki-SS-v1) 
as above. To facilitate the cloning of the synthetic DNA library to the 3ʹ UTR of 
the reporter gene, the cloning cassette from the pGL4.10-Sasaki-SS vector (a) 
containing the homology arms with AgeI and SalI RE sites, the 52-bp DNA stuffer 
and the 20-bp sequence from the 3ʹ-Illumina adapter as above was introduced to 
the CpG-free vectors using the NheI site.

Standard Illumina adapters harbor CG dinucleotides, and to make our 
modified STARR-seq design completely CpG-free, we designed custom 
adapters for Illumina sequencing (oligos 3 and 4 in Supplementary Table 2). To 
accommodate the cloning of genomic DNA and random sequence inserts with 
flanking CpG-free custom adapters, the cloning cassette in CpG-free-Sasaki-SS-v1 
was modified by removing the 3ʹ-Illumina adapter and the 52-bp stuffer. In 
addition, this vector was further improved by replacing the AgeI and SalI RE sites 
with the AflII and PvuII sites devoid of CG dinucleotides and introducing a DNA 
stuffer of 1.2 kb between the RE sites to the resulting pCpG-free-Sasaki-SS-v2 
vector (d) to unambiguously detect and purify the linearized reporter backbone for 
downstream cloning.

For the binary STARR-seq approach in which random sequences were cloned 
as both promoters and enhancers, the pCpG-free-Sasaki-SS-v2 vector (d) was 
modified by replacing the Sasaki promoter with a custom CpG-free 5ʹ-adapter 
sequence and an AgeI RE site and introducing a SalI RE site and a custom CpG-free 
3ʹ adapter immediately downstream of the ORF. Moreover, to optimize the 
random promoter and random enhancer library size for Illumina sequencing, the 
Lucia reporter gene was replaced by a small 11-amino-acid ORF from Drosophila 
melanogaster (Dm tal-1A) in the pCpG-free-promoter–enhancer-SS vector (e). 
The cloned random promoter–random enhancer input library is paired-end 
sequenced to map the promoter–enhancer pairs, and thus, the random enhancer 
sequences obtained after sequencing the reporter-specific RNA library can be 
used to identify the corresponding promoter sequence from the input library. In 
total, the constant sequence between promoter and enhancer elements is 872 bp 
in the pCpG-free-Sasaki-SS-v2 construct and 215 bp in the pCpG-free-promoter–
enhancer-SS construct.

The new reporter vectors (a–e) were used in different experiments as 
follows (their complete sequences are provided in Supplementary Table 1): 
a, pGL4.10-Sasaki-SS (5,754 bp) was used for experiments with the synthetic 
motif library shown in Extended Data Fig. 1b ; b, pCpG-free-EF1α-SS 
(3,497 bp) was used for all experiments with the synthetic motif library; c, 
pCpG-free-Sasaki-SS-v1 (3,388 bp) intermediate plasmid was not used in the 
experiments; d, pCpG-free-Sasaki-SS-v2 (4,458 bp) was used for all experiments 
with genomic fragments and random enhancer (N170) sequences; and e, 
pCpG-free-promoter–enhancer-SS (2,551 bp) was used for all experiments with 
random promoter (N150)–random enhancer (N150) sequences.

STARR-seq reporter library construction and cloning. STARR-seq reporter 
libraries were generated from rationally designed oligonucleotides harboring 
TF binding motifs, from fragmented human genomic DNA and from synthetic 
oligonucleotide with completely random DNA sequences as detailed in the 
Supplementary Methods. All the oligonucleotides that were used for cloning of the 
libraries were purchased from Integrated DNA Technologies, and their sequences 
are provided in Supplementary Table 2.

CpG methylation of STARR-seq input DNA library. The genomic DNA library 
was methylated using M.SssI (New England Biolabs) for 4 h at 37 °C with the reaction 
volumes scaled for 62.5 µg plasmid DNA per reaction and inactivated for 20 min at 
65 °C, followed by purification and ethanol precipitation of the methylated library.

Cell lines and generation of TP53-null cell line by genome editing. The cell  
lines used in this study were the colon cancer cell line GP5d (Sigma, 95090715),  
the liver cancer cell line HepG2 (ATCC, HB-8065) and the retinal pigment 
epithelial cell line hTERT-RPE1 (ATCC, CRL-4000). The cells were maintained  
in their respective media (GP5d in DMEM, HepG2 in MEM and RPE1 in  
DMEM/F12) supplemented with 10% fetal bovine serum, 2 nM l-glutamine  
and 1% penicillin–streptomycin.

The TP53-null GP5d cell line was generated by CRISPR-Cas9 targeting of exon 
4 of the TP53 gene using Alt-R CRISPR-Cas9 from Integrated DNA Technologies. 

Briefly, annealed sgRNA duplex from crRNA (oligo 12; Supplementary Table 2) 
and tracrRNA with atto550 were used for ribonucleoprotein complex formation 
with Cas9-HiFi protein, and the ribonucleoprotein complex was transfected to 
GP5d cells using CRISPRMAX (Invitrogen). The next day, atto550+ cells were 
FACS sorted, and single-cell colonies were cultured to produce a clonal TP53-null 
cell line. The clonal cells lines were screened for TP53 depletion by western 
blotting, and clones were verified by Sanger sequencing using oligos 13 and 14 
(Supplementary Table 2).

Transfection and RNA isolation. In STARR-seq experiments, 1 µg of each input 
library DNA was transfected per million cells. For TF motif DNA libraries, 
a total of 50 and 35 million GP5d cells were transfected for the libraries in 
the pGL4.10-Sasaki-SS (a) and pCpG-free-EF1α-SS (b) vectors, respectively. 
Experiments were performed in two replicates with random enhancer libraries 
in GP5d and HepG2 cells and random promoter–enhancer libraries in GP5d 
cells (250 million cells per each replicate). Genomic STARR-seq experiments 
were performed in two replicates in HepG2 cells (170 million cells per replicate) 
and four different conditions in GP5d cells (wild-type and TP53-null GP5d cells 
using both methylated and nonmethylated input DNA libraries; 500 million cells 
per condition). For random promoter–enhancer libraries in HepG2 and RPE1 
cells, a total of 400 and 480 million cells were transfected, respectively. Briefly, a 
day before transfection, 6.7–10 million cells were plated per 15-cm dish in their 
respective media without antibiotics. The next morning, plasmid DNA was mixed 
with transfection reagent optimized for each cell line (Transfex (ATCC) for GP5d, 
Transfectin (Bio-Rad) for HepG2 and FuGENE HD (Promega) for RPE1) at a 1:3 
ratio in Opti-MEM medium (Gibco), incubated for 15 min at room temperature 
and added dropwise to the cells. The cells were incubated for 24 h in a 37 °C 
incubator with 5% CO2.

Cells were harvested and total RNA isolated 24 h after transfection using 
the RNeasy Maxi kit (Qiagen) with on-column DNase I digestion. The poly(A)+ 
RNA fraction was purified using the Dynabeads mRNA DIRECT Purification 
kit (Invitrogen) followed by DNase treatment using TurboDNase (Ambion) and 
purification using RNeasy Minelute kit (Qiagen) as previously described15.

STARR-seq reporter library and input DNA library construction. The library 
preparation protocol was adapted from Arnold et al.15 essentially in all steps but 
with primers matching our modified STARR-seq vectors, and the exact protocol is 
described in Supplementary Methods.

Template-switch library preparation. To generate a sequencing library using a 
template-switch strategy, a 40-µg aliquot of total RNA from the random promoter–
random enhancer STARR-seq experiment in the GP5d cell line was used. See 
Supplementary Methods for the detailed protocol and section ‘Mapping TSS 
positions based on template switching’ for respective data analysis.

ChIP-seq, RNA-seq, CAGE, DNA methylation and ATAC-seq. ChIP-seq 
was performed as previously described52 using the following antibodies (2 μg 
per reaction): H3K27ac, H3K9me3 and H3K27me3 (Diagenode, C15410196, 
C15410193 and C15410195, respectively); FOXA1 (Abcam, ab23738); p53, HNF4a, 
IRF3 and CTCF (Santa Cruz Biotechnology, sc-126x, sc-8987x, sc-33641x and sc-
15914x, respectively); SMC1 (Bethyl Laboratories, 300-055A); and normal rabbit, 
mouse and goat IgG (Santa Cruz Biotechnology, sc‐2027, sc‐2025 and sc‐2028, 
respectively). To analyze the genomic occupancy of TP53, GP5d cells were treated 
with 350 µM 5-fluorouracil (Sigma) 24 h before harvesting the cells. To analyze the 
effect of STARR-seq plasmid transfection on cellular alarm signals by ChIP-seq, 
RNA-seq and ATAC-seq, HepG2 cells were collected 24 h after the following 
treatments: mock (DMSO), 350 µM 5-fluorouracil treatment and transfection of 
the genomic STARR-seq library using similar conditions as in the STARR-seq 
experiments described above. The details of conditions, protocols and analysis 
parameters are described in Supplementary Methods.

For RNA-seq, total RNA was isolated using RNeasy Mini kit (Qiagen) and 
RNA-seq libraries were generated using KAPA stranded mRNA-seq kit for 
Illumina (Roche). CAGE library was prepared from total RNA isolated from GP5d 
cells as previously described53 from 1 µg total RNA. The bisulfite sequencing data 
for DNA methylation in GP5d cells were obtained from Yin et al.5. The ATAC-seq 
libraries were prepared from 50,000 cells as previously described54 for GP5d and 
HepG2 cells. All samples were paired-end sequenced using Illumina platforms.

ATI and TT-seq assay. The ATI assay in GP5d cells and processing of the data 
were done as previously described17. Transcribed enhancer regions defined using 
TT-seq data are based on Lidschreiber et al.55. The experiments were performed 
from GP5d cells in two biological replicates as previously described56. The details of 
the protocols and analyses are described in Supplementary Methods.

Motif collection and library design for enhancer analysis. For testing activities 
of known TF motifs, a set of 3,226 HT-SELEX motifs were collected (refs. 4,5,57 and 
unpublished draft motifs). The motif collection and library design, measurement 
of enhancer activity of TF motif consensus sequences, and generation of activity 
PWM are described in detail in the Supplementary Methods. Moreover, previously 
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described promoter motifs were used in TSS analyses, including TATA box, 
initiator, CCAAT-box and GC-box58; BRE, MTE and DPE59; and BANP25.

Library complexity analysis. The complexity analysis of STARR-seq  
libraries generated from the TF motifs, genomic DNA and random enhancer 
libraries are described in Supplementary Methods; read counts are given in 
Supplementary Table 7.

Preprocessing of random enhancer library sequences. First, 150-base-long 
STARR-seq RNA and input DNA paired-end reads were combined using the 
FLASH program60 (version 1.2.11; options —min-overlap = 130 —max-overlap =  
134 −x 0.25 −z −t 4), and only combined sequences of length 170 were chosen. 
To avoid including PCR duplicates of the same sequence with few mismatches due 
to sequencing errors, the sequences were sorted four times based on 40-bp-long 
nonoverlapping subsequences from base 6 to 165, and only one sequence per 
identical subsequence at each sorting step was taken. This ensured that from 
sequences that had Hamming distance less than 4, only one was taken. Only one 
representative sequence from the similar sequences was used for downstream 
analysis, so each sequence is either present or absent in the sample. The sequences 
are sampled from a huge input DNA library, which prohibits precise determination 
of initial input frequencies of individual sequences. Thus, our analysis relies on 
finding common features of different selected sequences instead of their counts. 
The numbers of preprocessed sequences used in downstream analysis are shown in 
Supplementary Table 7.

Genomic STARR-seq analysis and its features. The active enhancers were 
identified by calling the peaks from the STARR-seq–enriched RNA fragments 
against the plasmid input sample using MACS2 (ref. 61). The preprocessing of 
genomic STARR-seq data, peak calling, overlap with genomic features, de novo 
motif mining and conservation of genomic STARR-seq elements are described in 
detail in Supplementary Methods.

Preprocessing of the random promoter–enhancer pairs. The STARR-seq enhancer 
sequences derived from RNA were mapped to corresponding promoter–enhancer 
pairs in the input DNA by exact matches of the first 20 bases of the 150-base-long 
enhancer sequences. Duplicate sequences were removed as described for random 
enhancers, except that three 40-bp-long subsequences from 16 to 135 were used, 
thus ensuring that only one of the sequences with Hamming distance less than 3 was 
chosen (Preprocessing of random enhancer library sequences). Then, promoter and 
enhancer sequences were filtered separately by removing (1) all adapter sequences 
that included some (partial) adapter sequence according to cutadapt version 1.9.1 
(ref. 62), (2) sequences that mapped to plasmid backbone sequence using bowtie2 
version 2.2.4 (ref. 63) and (3) outlier sequences in terms of nucleotide composition 
(count of any nucleotide more than three median absolute deviations higher than 
the median count) that removes, for example, those high-G-content sequences 
that are an Illumina artifact. After preprocessing, the correlation between observed 
dinucleotide frequencies and those expected based on mononucleotide frequencies 
was over 0.99 (GP5d random replicate 1 enhancers). Input DNA sequences were 
processed the same way. For promoter–enhancer pair analyses, the remaining 
promoter–enhancer pairs were collected, and pairs containing highly similar 
sequence as a promoter and an enhancer were removed. The numbers of sequences 
used in downstream analysis are shown in Supplementary Table 7.

Mapping TSS positions based on template switching. First, the synthetic random 
sequences derived from spliced transcripts were identified using the constant 
sequence spanning the splice site after intron removal (cutadapt program); other 
sequences were not processed further. Next, the UMI sequence was removed 
from the 5ʹ end of each sequence, and the last 20 bp of its random part was used 
to recognize the corresponding promoter from the input DNA. To accurately 
recognize the first base of the transcript and thus the position of the TSS, it was 
assumed that the template-switch process had added at least three and at most four 
guanines to the 5ʹ end of the transcript. On this basis, only the RNA sequences 
starting with at least three Gs were used in the analysis. Each such sequence was 
aligned to the corresponding input DNA promoter sequence using an exact 20-bp 
match starting from the sixth base to allow for the extra Gs. Finally, the Gs added 
by the template switch were trimmed and discordant sequences removed according 
to the alignment. The frequency of the four Gs instead of three was estimated from 
the sequences that do not have G at the fourth position in the alignment to the 
input. For those that did have a G also in the input sequence, removing three or 
four Gs was decided randomly but so that the frequency of the fourth G matched 
the estimate. The two GP5d template-switch libraries were processed separately 
and then merged so that only one transcript was kept for each input DNA 
promoter sequence to prevent duplicate promoter sequences. The exact positions 
of the TSSs at the promoters were recorded, and the flanking sequences were used 
for further analysis of the positioning of different sequence features relative to 
TSSs. The numbers of sequences obtained are listed in Supplementary Table 7, as 
the number of flanking sequences fitting to the random region depends on the 
flank sizes. The comparison to human endogenous promoters was done using TSS 
positions from EPD30 (hsEPDnew 006).

Matching of known motifs and analysis of motif spacing. The motif matching 
was done using MOODS version 1.9.3 (ref. 64), and fold changes were estimated 
using the function PsiLFC in R package lfc. The details of motif matching 
and motif spacing analysis in STARR-seq random enhancers are described in 
Supplementary Methods.

Analysis of interactions between the promoter and enhancer. For RNA and 
randomly sampled input DNA promoter–enhancer pairs, the number of such 
pairs that one motif occurs in the promoter and a second one in the enhancer was 
counted for each motif pair (excluding heterodimers) and motif-match strand 
combination (++, +−, −+ and −−). The counts over the strand combinations 
were summed to get the total number of pairs, and the fold change of the number 
of pairs between input DNA and RNA was estimated using the function PsiLFC 
in R package lfc. If the promoter and enhancer occurrences are independent of 
each other, then the expected frequency of the pair of sites is the product of the 
individual frequencies. The expected log2 fold change assuming independent 
actions of the promoter and enhancer motif was thus calculated as the sum of their 
individual log2 fold changes. The same analysis was done using the reversed, but 
not complemented, control motifs.

To estimate the significance of the number of observed motif pairs, our 
null hypothesis was that the probability of observing a motif-match pair in a 
promoter–enhancer sequence pair was the same as estimated from the individual 
motif-match frequencies. The two-sided binomial tests done for 528,529 motif 
pairs resulted in a significant P value (multiple hypothesis-corrected P value < 
0.05, Holm’s method) for 253 pairs.

Motif-match positioning relative to TSS and STARR-seq vector. For analyzing 
motif positioning within active promoters derived from synthetic random 
sequences, motifs were matched to sequences flanking the TSSs identified from 
the template-switch data, and for each motif, only the highest-affinity match 
per sequence was considered. The number of matches for each motif was then 
counted separately at each position and strand. To get positional activity scores for 
position-specific regression analysis, motif matching was done for TSS flanking 
sequences from position −100 to +20 in relation to TSS and for a control set 
generated by sampling for each TSS sequence a subsequence of same length from 
the same position from an input DNA promoter (background probability of a 
match 5 × 10−4). The log2 fold changes of the motif match counts between TSS 
flanking set and control set (estimated with the lfc package) were then used as a 
positional activity score for each position and strand.

To study p53 motif-match positioning relative to the STARR-seq vector, the 
motif was matched (background probability of a match 10−5) to highly selected 
sequences chosen by taking only sequences observed at least twice in both  
GP5d enhancer replicate experiments. A histogram of match start positions  
was generated by counting only the highest-affinity match in each sequence.  
A smoothed density estimate was generated using a Gaussian kernel (R ggplot 
geom_density with adjust=0.5).

Mutual information analysis. The mutual information analysis was done  
as previously described65 for the aligned STARR-seq reads (60 + 60 bp  
surrounding the TSS from the template-switch data); details are described in 
Supplementary Methods.

Data preprocessing for machine learning analysis. The datasets used in  
each machine learning analysis and their division into training, test and  
validation sets are detailed in Supplementary Table 7. To enable sequences from 
genomic measurements (genomic STARR-seq and ATAC-seq) to be scored  
on the CNNs that were trained on the random enhancer STARR-seq data and  
vice versa, the length of the sequences fed to these models was standardized to 
170 bp. Thus, additional preprocessing specific to machine learning analyses 
was done for the genomic STARR-seq and ATAC-seq data as detailed in the 
Supplementary Methods.

Machine learning analysis. The details of machine learning analyses using 
logistic regression and CNNs, discussion about the optimal classification 
of random enhancer STARR-seq data, details of differential expression 
prediction, interpretation of CNN classifiers and validation of the predicted 
promoter mutation effects with external data are described in Supplementary 
Methods. Briefly, the logistic regression classifiers were implemented using the 
LogisticRegression function from scikit-learn (version 0.21.3) library66; the  
CNN models were built on Keras (https://keras.io/; version 2.2.4) using  
TensorFlow 1.14.0 backend67; DeepLIFT version 0.6.12.0 (ref. 68) was used to 
visualize the TERT promoter mutations and study the sequence features learned  
by the random enhancer STARR-seq CNN model along with TF-MoDISco  
version 0.5.14.1 (ref. 69).

Promoter–enhancer interaction analysis using machine learning. The binary 
STARR-seq design allows looking for relatively short-range interactions between 
promoters and enhancers, and the details of machine learning analysis used for 
testing such interactions are detailed in the Supplementary Methods.
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TSS prediction. All the promoter models were trained on data where the TSS is 
100 bp from the start of the training sequence. Thus, scoring any 120 bp sequence 
with these models gives a probability that the position 100 in these sequences 
is a TSS of a functional promoter sequence. Each possible TSS position within 
±500 bp from the TSSs of the active GP5d promoters was analyzed by taking 
100 bp upstream and 20 bp downstream from the candidate TSS and scoring these 
sequences with the promoter models. Active GP5d promoters were defined as 
those EPD promoters that overlapped with a GP5d CAGE peak. For each test set, 
active GP5d TSS and promoter model, the position obtaining the highest promoter 
probability from the corresponding model was taken as the predicted TSS position.

Preprocessing of genomic promoters and CAGE analysis. Human promoter 
coordinates were obtained from the EPD version 006, hg19 (ref. 30), and 
their preprocessing, together with analysis of the CAGE data, is described in 
Supplementary Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequence data generated in this study are available under GEO accession 
GSE180158. All pretrained machine learning models are available at Zenodo with 
accession https://doi.org/10.5281/zenodo.5101420. Training, test and validation 
datasets for the CNN models are available at Zenodo with accession https://doi.
org/10.5281/zenodo.5101420. The genome browser session is available at the 
University of California, Santa Cruz (UCSC) portal with tracks for all genomic 
datasets generated in this study (https://genome.ucsc.edu/s/kivioja/Sahu_et_al_
Human_regulatory_elements). ENCODE blacklisted genomic regions for hg19 
(accession ENCSR636HFF) were downloaded from ENCODE, and RepeatMasker 
file for hg19 was downloaded using the UCSC table browser. The EPD30 for human 
TSSs can be found online (https://epd.epfl.ch/EPDnew_database.php). In addition, 
transcript annotations downloaded from Ensembl (GRCh37, release 101) were used. 
The saturation mutagenesis results of the TERT promoter28 can be found online 
(https://doi.org/10.17605/OSF.IO/75B2M). GERP conservation scores for the hg19 
reference genome can be found online (http://mendel.stanford.edu/SidowLab/
downloads/gerp/). The following datasets were downloaded from the ENCODE 
portal: ATAC-seq (ENCSR042AWH, replicate 1), histone modification ChIP-seq 
experiments for H3K27ac (ENCSR000AMO), H3K27me3 (ENCSR000AOL), 
and H3K9me3 (ENCSR000ATD) and H3K4me1 (ENCFF424GUI) and ChIP-seq 
datasets for TP53 (ENCSR980EGJ), MED1 (ENCFF493UFO) and MED13 
(ENCFF003HBS). ChIP-seq peak sets were also downloaded from GEO accession 
GSE104247. Superenhancers for HepG2 were downloaded from http://www.
licpathway.net/sedb. Previously published RNA-seq data used in the study have 
been deposited to the European Genome-phenome Archive (accession https://
ega-archive.org/studies/EGAS00001002966).

Code availability
All essential custom code is available at Zenodo with accession https://doi.
org/10.5281/zenodo.5159644.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Enhancer activity from TF motifs using STaRR-seq in GP5d cells. a, Enhancer activities of the HT-SELEX motifs in two different 
sequence contexts (color). For each motif, the log2 fold change of the consensus sequence and its reverse complement (if different) compared to  
input is shown in both contexts (Pearson R = 0.90; see Methods). Details of motif naming are described in legend to Fig. 1c. b, Enhancer activities of  
HT-SELEX motifs with two different CpG-free promoters, δ1-crystallin gene (Sasaki) or EF1α promoter (red and blue dots, respectively; median log2 fold 
change of the consensus sequence and its reverse complement in both contexts compared to input are shown for both promoters; Pearson R = 0.89).  
c, Expression of TF families that bind to the motifs with strong enhancer activity (see Fig. 1c) in GP5d cells. The DNA-binding domain (DBD) assignments 
for TFs from ref. 1 were used to assign the motifs to a set of DBDs. The blue diamond symbols show the total expression of the TF family (sum of tpm 
values from RNA-seq data; tpm = transcripts per million). Names for the DBD class and for the motif (in brackets) are shown. d, The motifs generated 
based on enhancer activities measured from motif STARR-seq experiments for sequences in which each of the consensus bases in a motif was substituted 
by N (top) compared to the corresponding SELEX motif (bottom). Eleven pairs are shown for which the activity PWM had information content ≥2 bits and 
for which the original SELEX motif was the best match with similarity P value <0.05 (motif similarity test of the TOMTOM program) when compared to 
all SELEX motifs used in the study. e, The effect of the number of binding sites on enhancer activity. For each motif, the fold change (log2) compared to the 
input (y axis) was estimated by taking the median fold change of all the sequences containing the given number of the motif consensus binding sites  
(x axis). The average fold changes for different numbers of binding sites (red lines) were calculated from the motifs that were detected with all copy 
numbers (n = 459).
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Extended Data Fig. 2 | See next page for caption.

NaTuRE GENETiCS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNATuRE GENETIcS

Extended Data Fig. 2 | Features of enhancer activity measured from synthetic random DNa sequences in GP5d cells. a, Correlation of replicate 
experiments in GP5d cells. Motif-match log2 fold change values compared between two replicates from random enhancer experiment (left) and from 
promoters in binary STARR-seq experiment (right). See legend for Fig. 1c for details of motif naming. b, Motif matches enriched in the oligonucleotides 
showing the enhancer activity measured from random synthetic DNA (see Methods). c, Comparison of the effect of number of binding sites on enhancer 
activity from enhancer assay using random synthetic DNA. For each motif, the fold-change compared to the input is shown for one versus two sites. The 
matching was done separately for each strand so that the background probability of a match was 1 × 10−5. The black dashed line and the red dotted line 
represent the expected fold changes if two sites have the same effect as one and if two sites act independently of each other, respectively. d, De novo 
motif analysis for over-representation of TF motifs within DNA fragments enriched for enhancer activity in GP5d cells from genomic STARR-seq library, 
from synthetic random DNA library, and from the active transcription factor identification (ATI) assay. The motifs identified by HT-SELEX are shown for 
comparison. Only the motifs similar to those detected from genomic STARR-seq are highlighted here. Note the ETS-bZIP composite motif enriched in 
the random STARR-seq data. e-f, Mean of mutual information between 3-mer distributions as a function of distance separating the 3-mers in random 
enhancers (e) and binary STARR-seq enhancers (f). Pairwise dependency between 3-mer distributions varies with a period of approximately 10 bp and 
decays as a function of distance separating the k-mers, indicating that most of the dependencies in the enhancers are short-ranged.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | analysis of random enhancer STaRR-seq data using machine learning models. a, Binary classification accuracy of models 
trained to separate inactive (input) and active (STARR-seq) sequences from the random enhancer STARR-seq data in GP5d cells. CNN classifier (orange) 
outperforms a logistic regression model (blue) that uses HT-SELEX motifs (see Methods). Soft voting classifier (green) combining the predictions of 
the CNN and regression models does not improve over the CNN model. Classes are balanced in the test set so that a classifier assigning samples with 
random labels with equal probabilities would obtain an AUprc score of 0.5. b, Classification of high-confidence test set (class 1 sequences observed in 
both replicates of GP5d random enhancer STARR-seq experiment, red curve) with the GP5d random enhancer STARR-seq CNN classifier results in ~4% 
better AUprc value than classifying the full test set (yellow curve; see Methods), indicating that nonspecific carryover can explain only a small part of the 
relatively poor performance of the random enhancer STARR-seq classifiers. Removing the sequences that were sequenced more than once from the input 
library (~0.02% of all sequences, violet curve) does not further improve classification accuracy, indicating that sequences present in the highly complex 
input library in multiple copies do not affect the classification performance. Note that red and violet curves are overlapping. Classes are balanced in the 
test set as described for panel a. c, CNN activity contribution weight matrices (CACWM) learned by the CNN model from the random enhancer STARR-
seq data analyzed using the ‘N-sweep’ approach. The N-sweep motifs generated using DeepLIFT68 and the random enhancer CNN model (right) for the 
20 HT-SELEX motifs (left) with the largest absolute values for regression coefficient in the simple logistic regression model (see Methods for details, 
Supplementary Table 5 for SELEX motif patterns). Note that the contributions of the repressive motifs are negative towards predicting active enhancers 
and thus they appear below zero in the CACWM logos. Hash symbol marks the motifs classified as repressive by the logistic regression analysis. Parts of 
the HT-SELEX motif replicated in the CACWM indicate patterns learned by the CNN model.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Motifs learned by CNN from random enhancer STaRR-seq data analyzed using TF-MoDiSco approach. Analysis of motifs learned 
by the CNN from random enhancer STARR-seq data using TF-MoDISco69 (transcription factor motif discovery from importance scores; see Methods). 
Patterns in metacluster 0 (top) and metacluster 1 (bottom) discovered by TF-MoDISco from unseen in silico generated random sequences classified as 
active enhancers by the CNN model using the in-built background model (see Methods for details). Number of seqlets supporting each pattern is shown 
for each pattern separately. Seqlets are segments of input that have substantial contribution to classification. Metacluster 0 from TF-MoDISco analysis 
contains patterns that increase enhancer probability according to the CNN model and metacluster 1 contains patterns that decrease enhancer probability. 
Motifs identified by TOMTOM are marked by bold typeface and the closest known motif by similarity is marked in parentheses.
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Extended Data Fig. 5 | Features of enhancer activity measured from human genomic DNa. a, Venn diagram showing the concordance of biological and 
in silico replicate IDR peaks from genomic STARR-seq in HepG2 cells, demonstrating that the IDR method yields similar peak-calls (~90% specificity if 
biological replicate analysis is considered ground truth) when it is used as an internal control approach (see Methods). b, Genome browser snapshot of 
enhancer activity and TF binding at the BBC3 gene locus in GP5d and HepG2 cells, demonstrating the excellent signal-to-noise ratio of the STARR-seq 
data. Both plus and minus-strand STARR-seq signal is shown, as well as ATAC-seq coverage and ChIP-seq for H3K27ac, TP53, and HNF4A. Cell type–
specific STARR-seq signals agree with tissue-specific TF binding with a common TP53-bound enhancer and a HepG2-sepcific HNF4A-bound enhancer 
highlighted with pink boxes. Genomic sequences at these loci with TP53 and HNF4A motifs are shown. c, Overlap between genomic STARR-seq peaks 
and genomic features (regulatory element features, ChIP-seq peaks for individual DNA-binding proteins and their motifs) in GP5d cells (see Methods). 
The total number of peaks for each experiment is the sum of the values inside its circle. The significance of the overlaps between STARR-seq and the 
other measurements (two-tailed Fisher’s exact test, see Methods for details): ATAC-seq: P < 2.2251×10−308; H3K27ac ChIP-seq: P < 2.2251×10−308; 
superenhancers: P < 2.2251×10−308; TT-seq enhancers: P < 2.2251×10−308; TP53 ChIP-seq: P < 2.2251×10−308; CTCF ChIP-seq: P = 4.1888×10−111; FOXA1 
ChIP-seq: P < 2.2251×10−308. d, Top, overlap of genomic STARR−seq peaks with TP53 ChIP-seq peaks and the p53 motif in HepG2 cells. The motif-match 
overlap was calculated using 24,176 highest affinity matches in the genome (all with score > 9). Bottom, overlap between STARR+, ATAC- peaks and 
ChIP-seq data for H3K4me1 and H3K9me3 histone modifications in HepG2 cells. Collectively, the results shown in panels c and d demonstrate that 
although p53 and IRF motifs are the strongest activators in the cells (see Fig. 1c, Fig. 2f), they contribute to a relatively small proportion of the overall 
enhancer activity, based on the overlap analysis of genomic STARR-seq peaks with TP53 ChIP-seq peaks and with p53 and IRF3 motifs (see also 
Supplementary Note).
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Extended Data Fig. 6 | Overlap analysis of human genomic STaRR-seq and aTaC-seq data. a, Overlap between ATAC-seq peaks (left) and STARR-seq 
peaks (right) with different genomic features in HepG2 cells. Full lists of interactions related to Euler plots in Fig. 4a are shown here, and the ones not 
shown in the Euler plots are highlighted with orange color. The horizontal bars show the total number of each type of feature overlapping the top quartile 
of the ATAC-seq peaks (15125 peaks; panel on the left) or STARR-seq peaks (3010 peaks; panel on the right) according to the maximum fragment coverage. 
The vertical bars show the size of the intersection indicated by the circles in the matrix. b, Comparison of active genomic regions in GP5d and HepG2 
cells. Color scales indicate STARR-seq and ATAC-seq fragment coverages for three groups of peaks: STARR-seq peak in both cell lines (Common), and 
only in GP5d or in HepG2 cells. From each group, the top 1000 highest ranking peak regions (±1 kb of the summit) according to fold-change over control 
are shown (sum of ranks used for common peaks). The ‘Merged STARR-seq’ column shows the sum of fragment coverages from the two cell lines. The 
tracks are centered according to individual peak summits, or to the middle point of the two summits (for common peaks). c, Binary classification between 
ATAC-seq peaks and randomly sampled background from the genome (see Methods) using different CNN classifiers trained on GP5d ATAC-seq peaks 
(orange), sequences from the GP5d genomic STARR-seq experiment (blue), or sequences from the GP5d random STARR-seq experiment (black). Note 
that the classifier performs well even when trained using genomic STARR-seq data, suggesting that the sequence features in the two types of elements are 
similar. Classes are balanced in the test set, meaning that a classifier assigning samples with random labels with equal probabilities would obtain an AUprc 
(area under precision-recall curve) score of 0.5.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of regulatory features of different enhancer classes. a, De novo motif analysis for over-representation of TF motifs 
within different enhancer classes in HepG2 cells defined on the basis of genomic STARR-seq and ATAC-seq signals (intersections as in Fig. 4a and 
Extended Data Fig. 6a, but the TSS-overlapping sequences have been excluded from the analysis, see Methods). b, Motif matches enriched in the 
chromatin-dependent enhancers (STARR-seq-, ATAC-seq+) and the classical enhancers (STARR-seq+, ATAC-seq + ) in HepG2 cells; intersections as in 
Fig. 4a and Extended Data Fig. 6a, but the TSS-overlapping sequences have been excluded from the analysis, see Methods). c, Motif matches enriched in 
the oligonucleotides showing the enhancer activity measured from the synthetic random enhancer library (y axis) compared to the genomic STARR-seq 
peaks (x axis) in GP5d cells. For each motif, the overlaps of the 100,000 highest affinity matches in the genome (or all with a score at least 9 if no 100,000 
such matches) with the STARR-seq in silico IDR peaks (3250; see Methods for details) were included. Dimeric motifs are indicated by orientation with 
respect to core consensus sequence as described in legend to Fig. 1c. Asterisk indicates an A rich sequence 5’ of the IRF HT2 dimer. d, Genome browser 
snapshot of the regulatory region of the MYC gene showing STARR-seq signal from GP5d and HepG2 cells along with ATAC-seq, and ChIP-seq for 
H3K27ac. Superenhancers for HepG2 are from http://www.licpathway.net/sedb and for GP5d analyzed as described in Methods. Enhancers 3 and 4 have 
been previously described in ref. 70.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | STaRR-seq promoter CNN model for scoring TERT promoter mutants and analyzing promoter features. a, All recurring TERT 
promoter mutants from ref. 29 scored with the STARR-seq promoter CNN model and visualized with DeepLIFT68 (see Methods). The predicted promoter 
probability and location, and the type of the mutation are shown above each sequence (TSS at position 100). b–d, TERT promoter point mutations 
predicted by the CNN model trained using active promoters enriched from random sequences in GP5d cells (logarithm of odds ratio between the 
predicted promoter probability of the mutated vs. the wild-type sequence, see Methods) correlated to the measured effect of the same mutations in a 
saturation mutagenesis MPRA study (data for HEK293T and SF7996 cells from ref. 28): predicted effect vs. measurements in HEK293T (b; Spearman 
R = 0.737, two-sided P = 1.768×10−5) and vs. SF7996 cells (c; Spearman R = 0.604, two-sided P = 8.455×10−4). Cross-correlation between HEK293T 
and SF7996 cells (d; Spearman R = 0.785, two-sided P = 1.674×10−36). In each panel, only mutations with P < 0.05 in both of the correlated predictions/
measurements are shown (see Methods for details). e, The CNN trained on promoter data from binary STARR-seq experiment (blue) outperforms the 
CNN trained on the Eukaryotic Promoter Database (EPD, orange) on all but one of the 72 hyperparameter combinations tested (paired Student’s t test, 
two-sided P = 9.68 × 10−23) in predicting the TSS position on unseen genomic test data. The fraction of predicted TSS positions within ±25 bp of the 
annotated TSS positions (y axis) vs. hyperparameter combinations (x axis; see Supplementary Table 8) is shown. f, g, Mutual information (MI)-based 
comparison of pairwise interactions learned by the CNN models trained on the STARR-seq active promoters (f) and the human genomic promoters (g). 
The triangle-shaped upper panels show the MI values between 3-mer distributions at each position of the models (see ref. 65). Below is a zoomed-in view 
of the diagonal of the MI matrix showing the positional enrichment of TF binding sites. For both models, random sequences with predicted promoter 
probability over 0.9 according to 10 best individual CNNs were used for the MI analysis (see Methods and Supplementary Note for details).
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Extended Data Fig. 9 | Enhancer–promoter interactions and conservation of mammalian enhancers in STaRR-seq data. a, A control plot with 
comparison similar to that shown in Fig. 7a but performed using a set of PWMs that were reversed but not complemented. Note that the enrichment 
overall is much lower, and that the variance is similar to that observed in Fig. 7a, suggesting that most of the variance in Fig. 7a can be explained by 
random sampling and not biological effect. b, Conservation of GP5d genomic STARR-seq peaks (orange) and genomic STARR-seq input fragments (blue) 
measured with average GERP (genomic evolutionary rate profiling) scores. Higher GERP score means higher conservation. Three well-known mammalian 
enhancers are highlighted (see Methods for details). The average number of base pairs that are more conserved than the average coding base pair in the 
genomic STARR-seq peaks (170-bp region centered on the peak) was 51 for average peak and 119 for a set of known conserved and biologically important 
enhancers (MYC335, SOX9 and SHH); this clearly exceeds the ~7 bp conservation expected from the ~15-bit complexity of the TF motifs contained in the 
active elements derived from random sequence. These results suggest that regulatory elements in vivo are under more complex selection than elements 
selected for transcriptional activity in our assay.
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