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Complex magnetic materials hosting topologically non-trivial particle-like objects such as
skyrmions are under intensive research and could fundamentally change the way we store and pro-
cess data. One important class of materials are helimagnetic materials with Dzyaloshinskii-Moriya
interaction. Recently, it was demonstrated that nanodisks consisting of two layers with opposite
chirality can host a single stable Bloch point of two different types at the interface between the lay-
ers. Using micromagnetic simulations we show that FeGe nanostrips consisting of two layers with
opposite chirality can host multiple coexisting Bloch points in an arbitrary combination of the two
different types. We show that the number of Bloch points that can simultaneously coexist depends
on the strip geometry and the type of the individual Bloch points. Our simulation results allow us
to predict strip geometries suitable for an arbitrary number of Bloch points. We show an example
of an 80-Bloch-point configuration verifying the prediction.

Magnetic quasiparticles with non-trivial topology [1], such as vortices and skyrmions, are of great fundamental
interest and could play an important role in novel technological applications [2]. One of the quasiparticles is the Bloch
point: a single point of vanishing magnetisation [3, 4]. A stable and manipulable Bloch point of two different types
was predicted in helimagnetic two-layer nanodisks [5] where the two layers have opposite chirality, and the Bloch
point nucleates at the interface between the layers.

In this work, we demonstrate that two-layer nanostrips can host multiple Bloch points in an arbitrary combination
of different Bloch-point types. Using finite-difference micromagnetic simulations, we explore the parameter space of
strip geometry to understand for which geometry constraints such magnetisation field configurations can be realised.
The Bloch point as a (meta)-stable topological excitation and quasiparticle opens up new avenues of fundamental
research. In particular, we can now start to investigate individual and collective behaviour of Bloch points towards
discovering Bloch-point-based meta-materials. We conclude our study with a demonstration of encoding a 10-byte
string using 80 Bloch points: we identify one Bloch-point type with the binary “1” and the other type with the binary
“0” to encode and store the equivalent of an 80-bit long sequence.

The concept of a Bloch point in a two-layer system [5] is explained in Fig. 1, where we start from vortex configurations
in single-layer materials, and then stack them on top of each other to obtain the Bloch-point configuration of the
magnetisation field. Figure 1a shows schematically the four possible vortex configurations we can encounter in a thin
layer of ferromagnetic material due to the competition between ferromagnetic exchange and demagnetisation energy.
The vortex core (polarisation P ), pointing in the out-of-plane (z) direction, can either be pointing to +z (P = +1) or
−z (P = −1) direction, and – independently – the circularity c of the magnetisation around the vortex core can either
be clock-wise (c = −1) or counter-clock-wise (c = +1) [6]. By adding the Dzyaloshinskii-Moriya (DM) interaction to
the system, the relation between polarisation and circularity is fixed through the chirality, i.e. the sign of the DM
interaction strength D: for a given D only two of the four vortex realisations are energetically favourable.

Figure 1b shows how a Bloch-point configuration can be realised by stacking vortex configurations with the same
circularity and opposite polarisation on top of each other. The Bloch point emerges at the interface between the
two vortex cores of opposite polarisation, and the top- and bottom-layer materials must have opposite signs of D to
stabilise the Bloch-point configuration. Despite the high exchange energy density at the Bloch point, the configuration
is stabilised by the exchange coupling across the comparatively large interface area between the layers that ensures
the same circularity in both layers. Two different types of Bloch points can be realised with the magnetisation vectors
of the vortex cores pointing either inwards (head-to-head Bloch point, Fig. 1b HH) or outwards (tail-to-tail Bloch
point, Fig. 1b TT).

Figure 1c shows the magnetisation vector field for a single head-to-head Bloch point from our finite-difference
micromagnetic simulations, and the colour represents the z component of the magnetisation. Figure 1d shows the
corresponding plot for a tail-to-tail Bloch point. In the simulation, the Bloch point forms at the centre of eight
discretisation cells as shown in the insets of Fig. 1c and d where the magnetisation of the discretisation cells is
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FIG. 1. (a) In a single layer of magnetic material four different vortices, with polarisation P = ±1 and circularity c = ±1, can
form as a consequence of the competition between exchange energy and demagnetisation. Adding DMI couples circularity and
polarisation. (b) By stacking two layers with opposite sign of the DM energy constant D, a Bloch point can be stabilised. The
Bloch point can be of type head-to-head (left) or tail-to-tail (right). In the figure, the two layers are, for better clarity, separated
in z direction as indicated by the grey dashed lines. (c, d) Simulation result for a single head-to-head (c) and tail-to-tail (d)
Bloch point. The isosurfaces (of paraboloidal-like shape) near the centre show mz = ±0.9, colour indicates the z component.
They are convenient to locate the Bloch point that is situated between them. The insets show three isosurfaces for mx = 0,
my = 0, and mz = 0, respectively. The Bloch point is located at the intersection of the three isosurfaces where the magnetisation
vanishes. The cones in the insets indicate the magnetisation directions in the eight discretisation cells surrounding the Bloch
point.

visualised by the cones. The Bloch point is located at the intersection of the three isosurfaces mx,y,z = 0 where the
magnetisation vanishes.

The paper is organised as follows. First, we discuss two different configurations containing two Bloch points each
in Sec. I A. We distinguish between configurations of two same-type Bloch points and two opposite-type Bloch points.
These two pairs of Bloch points exhibit all features of a configuration containing multiple Bloch points. In Sec. I B,
we demonstrate that multiple Bloch points can coexist in rectangular two-layer nanostrips using micromagnetic
simulations. We find that all possible sequences of head-to-head and tail-to-tail Bloch points can be realised. Different
combinations have different energy densities depending on the number of neighbouring Bloch points of the same type.
We focus on systems containing up to eight Bloch points initially. Based on our results, we can predict a suitable strip
geometry for an arbitrary number of Bloch points. To verify this prediction we present one example configuration
containing 80 Bloch points in Sec. I C.

I. RESULTS

A. Two Bloch points

A pair of neighbouring Bloch points in multi-Bloch-point configurations can occur in two fundamentally different
combinations. The Bloch points can either be of the same type, for example: a head-to-head (HH) Bloch point next
to another HH Bloch point (HH-HH) as shown in the right column of Fig. 2. Alternatively, they can be of opposite
type, for example a HH Bloch point next to a tail-to-tail (TT) Bloch point (HH-TT) as shown in the left column of
Fig. 2.

The topmost row (Fig. 2a, b) shows a schematic drawing of the nanostrip highlighting the two-layer structure and
the geometry. Additionally, position and type of the Bloch points visible in the simulations are indicated with arrows,
where the colour of the arrows encodes the z component of the magnetisation (red: +z, blue: −z).

Figure 2c and d show 3D renderings of the simulation results. The isosurfaces show mz = ±0.9 (m is the normalised
magnetisation), colour indicates the z component. The isosurfaces above/below the Bloch point have a paraboloidal-
like shape pointing towards the Bloch point (similar to the single-Bloch-point simulation results in Fig. 1c, d). The
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Bloch point itself is not directly visible in this visualisation. The configuration in Fig. 2d additionally contains one
antivortex between the two Bloch points. The mz = 0.9 isosurface of the antivortex extends throughout the whole
thickness (z direction) of the two-layer system. The antivortex core shrinks towards the top sample boundary.

To reveal the full three-dimensional structure of the magnetisation field surrounding the Bloch points the mag-
netisation of each configuration is plotted in five different cut planes for each column (as indicated in the schematic
drawings Fig. 2a, b). Four different cut planes show the magnetisation in the xy plane (Fig. 2e – l), at the top
sample boundary (z = 10 nm) in Fig. 2e and f, above the interface (z = 1 nm) in Fig. 2g and h, below the interface
(z = −1 nm) in Fig. 2i and j, and at the bottom sample boundary (z = −20 nm) in Fig. 2k and l. Colour encodes the
z component of the magnetisation vector field, arrows the in-plane component.

Figure 2m and n show the z component of the magnetisation in an xz cut plane going through the Bloch points
at y = 50 nm. Magnified subplots show the full magnetisation around the Bloch-point positions and in the centre
region between the two Bloch points. The colour of the cones in the magnified areas encodes the y component of the
magnetisation vector field.

The results shown in Fig. 2 show that Bloch points form at x ≈ 100 nm and x ≈ 300 nm in both cases, i.e. in both
columns. Bloch-point pairs of the opposite type (Fig. 2, left column) show opposite circularity of the magnetisation
within the xy plane around the Bloch-point cores. In this case, the in-plane magnetisation (xy component) between
the two Bloch points (from x ≈ 100 nm to x ≈ 300 nm) shows a smooth transition from one Bloch point to the other.
In contrast, an additional antivortex forms between two same-type Bloch points (Fig. 2, right column) at x ≈ 200 nm
to mediate between the incompatible magnetisation configurations that originate from the Bloch points. Differing
from the magnetisation of the Bloch-point cores, the magnetisation of the antivortex core (at x ≈ 200 nm) does not
change significantly along the z direction (inset in Fig. 2n).

B. Parameter-space diagram and energy density

The spatially averaged energy density of a Bloch-point configuration depends on the number of Bloch points, their
individual types, and the strip geometry. Furthermore, different spatial arrangements can be realised, e.g. four Bloch
points on a line, or in the corners of a rectangle or diamond shape. Here, we only consider magnetisation configurations
containing between one and eight Bloch points in a row, distributed in x direction (strip length) and centred in y
direction (strip width).

In Fig. 2 we have seen the two fundamentally different configurations containing two Bloch points, head-to-head
and tail-to-tail (HH-TT), and head-to-head and head-to-head (HH-HH). Now we investigate a system containing three
Bloch points. In total, eight configurations can be realised. Three configurations are fundamentally different, namely
HH-HH-HH, HH-HH-TT, and HH-TT-HH, because they contain distinct numbers of additional antivortices. The
other five configurations are equivalent either because HH and TT swap roles (e.g. TT-TT-TT), or because of the
symmetry of the system geometry along the x axis (e.g. TT-HH-HH).

The fundamentally different configurations (HH-HH-HH, HH-HH-TT, HH-TT-HH) are shown in Fig. 3d in a system
with strip length l = 400 nm. We find one and two additional antivortices (AVs) for configurations HH-HH-TT and
HH-HH-HH, respectively. The table in Fig. 3 lists all eight configurations and the respective number of antivortices.

For each of the three fundamentally different configurations, we compute the spatially averaged energy density
(E/V ) and plot the three values in Fig. 3a (at l = 400 nm). We find that the HH-TT-HH configuration has the lowest
energy density and the HH-HH-HH configuration the highest energy density. We will later discuss in more detail
that the presence of antivortices between Bloch points generally increases the energy density of the system. The
alternating configuration HH-TT-HH does not contain any antivortices, as these are only needed to mediate between
neighbouring Bloch points of the same type.

The three yellow lines (filled and open diamonds) in Fig. 3a show the spatially averaged energy density for the three
different configurations as a function of strip length. Not all configurations are stable for all strip lengths: for example
the HH-HH-TT configuration is only stable for l ≥ 300 nm. If we try to create the three-Bloch-point configuration
HH-HH-TT in a shorter nanostrip, e.g. at l = 275 nm, then the configuration is not stable and will change into
a lower-energy configuration, in this case the HH-TT configuration containing only two Bloch points. We can see
that the energy generally increases with increasing number of antivortices as mentioned in the previous paragraph.
However, there is a deviation visible for l ≤ 225 nm where the HH-HH-HH configuration has a lower energy density
than the HH-TT-HH configuration. This deviation is a result of the short strip length near the stability limit. We
exclude these regions near the minimal stability strip length in the rest of our discussion.

The blue filled and open squares in Fig. 3a show the energy density for a system containing only two Bloch points.
The corresponding magnetisation field for l = 400 nm is visualised in Fig. 3c, and in more detail in Fig. 2. The green
circles in Fig. 3a show the energy density for a single Bloch point, and its magnetisation configuration for l = 400 nm
is shown in Fig. 3b.
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FIG. 2. Magnetisation profile of the two fundamentally different configurations containing two Bloch points: opposite-type
Bloch points (head-to-head and tail-to-tail, left column) and same-type Bloch points (head-to-head and head-to-head, right
column). The 3D renderings in (c) and (d) show isosurfaces for mz = ±0.9, colour indicates the z component. Several different
cut planes in xy and xz are shown to reveal the three-dimensional structure of the Bloch points forming at the interface
(z = 0 nm). For the xz plane (subfigures m and n) we also show enlarged plots around the Bloch point and antivortex position.
The cones in (m) and (n) are coloured according to their my component, as indicated by the small colour bar in the right
bottom corner of the figure.
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FIG. 3. (a) Energy densities for energetically different Bloch-point configurations containing at most three Bloch points for
different strip lengths l at a strip width w = 100 nm. Simulations have been performed in steps of δl = 25 nm, the solid lines
are shown to guide the eye. (b – d) Magnetisation profiles for the six different configurations shown in (a) at l = 400 nm.
Isosurfaces show mz = ±0.9, colour indicates the z-component. (e) Energy density for all possible configurations containing
three Bloch points. The first three configurations are show in (d) as indicated with the distinct marker symbols (at a different
strip length). The table in (a) lists all different configuration containing three Bloch points, highlighting the number and
position of the additional antivortices in the different configurations. (f) Energy densities for all configurations containing eight
Bloch points. Energy densities for a fixed number of antivortices are nearly identical but cause some “smearing” of the marker
symbols.

For a given strip length l we describe the configuration with the lowest energy density as the energetically most
favourable configuration: below l = 250 nm a single Bloch point (green circles) has the lowest energy density. Two
opposite-type Bloch points (blue squares) have the lowest energy density for 250 nm < l <= 400 nm and three Bloch
points of alternating opposite type (yellow diamonds) have the lower energy density above l = 400 nm.

Figure 3e shows a representation of the energy densities for all possible three-Bloch-point configurations at l =
600 nm. As already discussed, there are three fundamentally different configurations characterised by the number of
additional antivortices contained in the configuration (as show in the table in Fig. 3). Different realisations of the
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FIG. 4. Parameter-space diagram showing the energetically most favourable Bloch point number as a function of length l and
width w. All configurations contain Bloch points of alternating opposite type. Magnetisation profiles for selected configurations
reveal the similarity of the different configurations, isosurfaces show mz = ±0.9.

same configuration type (swapping HH and TT or using the strip symmetry) exhibit the same energy density.
In Fig. 3a we have seen that the number of Bloch points in the energetically most favourable configuration changes

depending on the strip length l. Figure 4 contains a parameter-space diagram showing the energetically most
favourable configuration as a function of the strip length and strip width, using the Bloch point number as a la-
bel. To create Fig. 4, we ask for each strip length l and a given strip width w, which configuration has the lowest
energy density. For example: all data points in Fig. 3a are for a width of w = 100 nm. Close to l ≈ 400 nm, we
see that for l ≤ 400 nm the two-Bloch-point configuration HH-TT (blue squares) has the lowest energy density but
that for l > 400 nm the three-Bloch-point configuration HH-TT-HH (yellow diamonds) has the lowest value. Figure 4
shows (for w = 100 nm on the y axis) that the two-Bloch-point configuration has the lowest energy density up to
l ≈ 400 nm, and the three-Bloch-point configuration for larger l (up to l ≈ 600 nm). All configurations with lowest
energy density are of the alternating Bloch-point type, i.e. left and right neighbours of a HH Bloch point are always
of type TT, and vice versa (see discussion below).

Figure 4 shows that with increasing strip length, the number of Bloch points that are present in the lowest-energy-
density configuration (as shown Fig. 3a for l ≤ 600 nm) increases: for nanostrips with lengths above l ≈ 1300 nm and
width w = 100 nm, we find eight Bloch points. Furthermore, Fig. 4 shows that increasing the width of the nanostrip
leads to a reduced number of Bloch points in the energetically most favourable configuration.

Figure 4 also shows magnetisation profiles for selected configurations revealing the similarities in the magnetisation
profile in different strip geometries. The isosurfaces show mz = ±0.9, colour indicates the z component. All configu-
rations shown in Fig. 4 contain Bloch points of alternating opposite type, i.e. all the lowest-energy configurations do
not contain antivortices.

In the discussion of the fundamentally different configurations containing three Bloch points, we have noted that
the different configurations can be characterised by the number of additional antivortices contained in the structure.
Figure 3f summarises similar findings for eight Bloch points where configurations can contain between zero antivor-
tices (Bloch points of alternating opposite type) and seven antivortices (all Bloch points of the same type). In total,
256 configurations can be realised. The plot in Fig. 3f shows the data for all configurations and a linear fit to the
data. Different realisations with the same number of antivortices cannot be distinguished in this plot as their energies
are nearly identical but cause broadening of the marker symbols for intermediate numbers of antivortices. The energy
density increases linearly with the number of antivortices.

There is an important difference between three Bloch points (Fig. 3e) and eight Bloch points (Fig. 3f). For a fixed
number of antivortices, all different three-Bloch-point configurations are equivalent because of the system’s symmetry
and therefore must have the same energy density. However, for eight Bloch points we additionally find that different
configurations that are not related via symmetry also have the same energy density if they contain the same number of
antivortices. For example, the configurations HH-HH-HH-HH-HH-HH-HH-TT and HH-HH-HH-HH-TT-TT-TT-TT
both contain 6 antivortices (located between neighbouring same-type Bloch points) but cannot be transformed into
each other using the symmetries we discussed. Yet, they exhibit the same spatially averaged energy density. Our
findings suggest that the energy density of the Bloch points is independent of the configuration of other Bloch points in
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the system. The energy density can be obtained from a configuration containing Bloch points of alternating opposite
type with additional contributions originating from the additional antivortices between neighbouring same-type Bloch
points.

This is the reason for the lowest-energy-density configurations shown in Fig. 4 consisting of pairs of Bloch points of
alternating type: for same-type neighbours an antivortex is required to mediate the magnetisation between the Bloch
points of the same type, and the presence of such antivortices would increase the spatially averaged energy density.

We can make one additional observation in Fig. 3a. The energy density of a configuration changes as a function of
strip length l. All configurations containing two or three Bloch points have one energy minimum at a certain length
that we call the optimal length lo. For example, the optimal length for the HH-TT configuration (blue filled squares
in Fig. 3a) is lo ≈ 275 nm.

C. Predicting strip geometries for larger systems

So far, we have focused on small systems containing at most eight Bloch points. Based on this information we can
predict strip geometries suitable for an arbitrary number of Bloch points.

Figure 3a shows that meta-stable configurations containing multiple Bloch points can be realised over a broad range
of strip lengths but need a certain minimal strip length. This minimal length depends on the number of Bloch points
and additional antivortices in the configuration. Furthermore, Fig. 3a shows that all configurations have a minimum
in the energy density at a certain optimal length lo.

To predict strip geometries suitable for an arbitrary number of Bloch points we focus on configurations containing
up to eight Bloch points of alternating opposite type. We find that the optimal length lo increases linearly with the
number of Bloch points (Fig. 5c) with the slope defining the optimal Bloch point spacing so. Furthermore, we find that
so increases linearly with increasing strip width (Fig. 5d). We obtain so,w=100 nm ≈ 165 nm and so,w=200 nm ≈ 272 nm
with an estimated accuracy of δso ≈ 3 nm. These observations lead to our working hypothesis that the ideal Bloch-
point spacing so is independent of the number of Bloch points in the system and suitable to predict geometries for more
than eight Bloch points. This prediction can be used for arbitrary configurations not only alternating opposite-type
Bloch points.

As an illustrative example, we simulate one specific configuration containing 80 Bloch points, encoding the 10-
character word Blochpoint in ASCII code (eight bits per letter). We simulate a strip with the predicted length
l = 80so = 13.2 µm at a width of w = 100 nm and with so = 165 nm.

We minimise the energy of a suitable initial configuration resulting in the 80-bit configuration as shown in Fig. 5a, b.
The cross sections show the xy plane at z = 1 nm (Fig. 5a) and the xz plane at y = 50 nm (Fig. 5b). Note that
the aspect ratio is not correct in order to improve visibility. Figure 5e shows contour lines for mz for a part of the
nanostrip (correct aspect ratio) as indicated in Fig. 5a. Bloch points in Fig. 5e are located at the small red and blue
dots. The larger red circles (mz > 0.5) show antivortices between same-type Bloch points.

To test the stability of the 80-Bloch-point configuration we apply a short magnetic field pulse in the +y direction
(H = 25 mT/µ0, applied for t = 0.5 ns). The modified magnetisation field configuration at the end of the 0.5 ns period
is shown in Fig. 5f. Then, we set the applied field back to zero, and let the system evolve freely by carrying out a
time-integration. We find that the magnetisation converges back to the initial state: Fig. 5g shows the configuration
after t = 5 ns of free relaxation.

To understand the robustness of the predicted geometry, we vary the strip length l and find that the desired 80-
Bloch-point configuration can be stabilised over a range of strip geometries. The minimal strip length is around 0.66lo
the maximal strip length around 4lo.

Within the range of stability of the 80-bit configuration (0.66lo ≤ l ≤ 4lo), we find that the length lo is closer to the
lower stability boundary (≈ 0.66lo) than to the upper limit (≈ 4lo). This is consistent with the energy density curve
for the HH-TT configuration in Fig. 3a (blue filled squares) where we see that the energy density as a function of the
strip length is asymmetric, and that its energy minimum, located at strip length lo, is located at a comparatively small
strip length within the range of possible strip lengths over which the configuration is meta-stable (stability limits are
not visible in Fig. 3).

II. DISCUSSION

The Bloch-point configuration originates from vortices with identical circularity, but opposite polarisation, which
are stabilised through the DMI of the material, which fixes the core orientation relative to circularity through the left-
or right-handed chirality. The Bloch points form an interesting topological excitation in a helimagnetic system, which
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FIG. 5. (a, b) ASCII encoding of the string Blochpoint using 80 Bloch points. Cross sections show (a) the xy plane at z = 1 nm
and (b) the xz plane at y = 50 nm. The strip length is chosen according to the predicted value for a nanostrip with width
w = 100 nm. Labels on the x axis mark blocks of eight Bloch points, i.e. individual bytes. Note that the aspect ratio is not
correct in order to improve visibility. (c) Optimal lengths lo for two to eight Bloch points. The fit is used to predict lengths
for more than eight Bloch points. (d) Optimal Bloch point distance so as a function of strip width w. (e – g) show an enlarged
part of the nanostrip (correct aspect ratio) as highlighted in (a) to demonstrate the stability of the configuration: (e) initial
configuration after energy minimisation; (f) an external magnetic field H = 0.25 T/µ0 is applied in the +y direction for 0.5 ns;
(g) after removing the external field the system evolves freely and converges back to the initial state (snapshot after 5 ns).
(e – g) show contour lines of the mz component to improve visibility of the disturbance introduced by the external magnetic
field. Bloch points are located at the small red and blue dots, the larger red circles show the additional antivortices.

extends the set of well-known magnetic structures such as domain walls, vortices, and skyrmions. In the geometry
described here, the Bloch points are in equilibrium and can be manipulated.

We have found remarkable features of multiple interacting Bloch points in two-layer nanostrips. The two different
types – head-to-head (HH) and tail-to-tail (TT) – can be geometrically arranged in any arbitrary order, and this
magnetisation configuration resembles a meta-stable configuration (within certain constraints on the strip width and
length). The spatially averaged energy density for a system with n Bloch points increases in fixed steps. The
number of steps scales – within our accuracy – exactly linearly with the number of antivortices in the configuration
(or equivalently: the number of neighbouring same-type Bloch points). We can determine an optimal Bloch-point
spacing so between Bloch points within a line of Bloch points (corresponding to a distance over which a Bloch point
extends).

In the following, we speculate about possible future applications of Bloch points. One key-feature distinguishing
Bloch points from many other particle-like magnetic configurations is the demonstrated coexistence of Bloch points
of two different types in a single sample making Bloch points an interesting candidate for binary data representation.
In the racetrack-like designs [7, 8], when realised with magnetic excitations of which only one type exists – such as
skyrmions – we need to ensure that skyrmions keep their relative positions to be able to interpret the presence of
a skyrmion as 1 and the absence of a skyrmion as 0. The two different types of Bloch points presented here could
be used to encode binary data without the need to rely on fixed spacing of magnetic objects: a HH configuration
could represent “1” and a TT configuration could represent “0”. In the context of skyrmion-based realisation of
the racetrack approach, other ideas to overcome the fixed-spacing requirement include the use of a combination of
skyrmion tubes and chiral bobbers [9] and the two-lane racetrack memory [10].

On the way towards possible applications of Bloch points many more questions need to be addressed. These are
related to Bloch point manipulation (movement, switching, creation/annihilation), sensing of Bloch points, and to the
thermal stability of Bloch points in general and energy barriers between different configurations containing multiple
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Bloch points.

In summary, we have demonstrated that two-layer FeGe nanostrips can host multiple Bloch points in any combi-
nation of head-to-head and tail-to-tail. Based on our simulations containing up to eight Bloch points, we can predict
strip geometries suitable for an arbitrary number of Bloch points. We have verified this prediction by studying a
system containing 80 Bloch points.

All results obtained in this work can be reproduced from the repository in Ref. [11] which contains Jupyter note-
books [12] to rerun the micromagnetic simulations and recreate all plots. In the repository pre-computed datasets are
also available.

III. METHODS

A. System

We simulate rectangular two-layer nanostrips with opposite chirality (opposite sign of D) in the two layers. We
vary strip length and width, the thickness of both layers is fixed (bottom layer: 20 nm, top layer: 10 nm). We focus
on up to eight Bloch points and accordingly choose nanostrips with lengths between 100 nm and 1400 nm, and widths
between 100 nm and 200 nm. The energy equation

E =

∫
d3r (wex + wdmi + wd) (1)

contains exchange energy density wex, bulk Dzyaloshinskii-Moriya energy density wdmi, and demagnetisation energy
density wd. The magnetisation dynamics is simulated using the Landau-Lifshitz-Gilbert equation [13, 14]:

∂m

∂t
= γ∗m×Heff + αm× ∂m

∂t
, (2)

where γ∗ = γ(1 + α2), with γ being the gyromagnetic ratio and α Gilbert damping. Material parameters are
based on FeGe [15]: A = 8.87 pJ m−1, D = 1.58 mJ m−2, Ms = 384 kA m−1, α = 0.28. We use finite-difference
micromagnetic simulations to minimise the energy. All simulations are done using Ubermag [16–18] with OOMMF [19]
as computational backend and an extension for DMI of crystalclass T [20, 21].

B. Simulation procedure

All simulations in this study follow a three-step initialisation and minimisation scheme: (i) initialisation, (ii) fixed
minimisation, (iii) free minimisation. In the micromagnetic framework the system is studied at zero temperature, i.e.
without thermal fluctuations. Therefore, it is only possible to find local minima that are accessible from the initial
configuration. Starting from experimentally feasible initial configurations, such as full saturation, we are able to find
magnetisation configurations containing a single or multiple Bloch points depending on the strip geometry.

To facilitate the process of studying arbitrary Bloch-point configurations, independent of the strip geometry in a
systematic way, we have developed a simulation scheme that guarantees a magnetisation configuration containing a
predictable number of Bloch points. We note that this scheme can probably not be applied directly to an experimental
set-up.

For the initialisation, step (i), we start by dividing the nanostrip into equally sized regions (in x direction), one
region per Bloch point. To enforce the formation of a Bloch point, the magnetisation in each region is initialised as
follows: for a head-to-head Bloch point we initialise the centre region of the topmost layer of cells with m = (0, 0,−1)
and all other cells with m = (0, 0, 1). A region hosting a tail-to-tail Bloch point is initialised with reversed z component
of the magnetisation (see supplementary Fig. 1 for a schematic plot of the different subregions). We then minimise the
energy in two steps (supplementary Fig. 2). During the first energy minimisation, step (ii), we keep the magnetisation
of the topmost cells – initialised with reversed magnetisation – and a similarly-sized layer of cells at the bottom sample
boundary fixed. This ensures the formation of a Bloch point at the interface between the two layers. The second
energy minimisation, step (iii), is done without any fixed cells, i.e. magnetisation in all cells can freely change, and
Bloch points could move in any direction to further minimise the energy of the configuration. In this step, the system
can find the local energy minimum.
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FIG. 6. Classification of the two configurations containing two Bloch points shown in Fig. 2. The divergence of the emergent
magnetic field for the two opposite- and same-type Bloch points is shown in panels (a) and (b), respectively. The xy plane
visualised here is located at z = 1 nm, just above the interface. (c, d) The result of the convolution (5) which is used to identify
the occurrence of Bloch points and their type due to the steps ∆S = ±1.

C. Classification

In the micromagnetic framework, it is not possible to directly observe Bloch points because of the fixed norm of
the magnetisation vector. A single Bloch point is characterised by the integral value of the topological charge density
over a closed surface A surrounding the Bloch point [22]:

S =
1

4π

∫

A

dA · F = ±1, (3)

where F is the emergent magnetic field [23, 24]. The components of F are defined as:

Fi = m · (∂jm× ∂km) , (4)

where (i, j, k) is an even permutation of (x, y, z). To detect a single Bloch point in a sample the integral can be
computed over the whole sample surface and the exact position of the Bloch point does not need to be known.

This method is not directly applicable to multiple Bloch points when their positions are unknown: the sign of the
topological charge of a Bloch point depends on its type (HH: S = −1, TT: S = +1). Therefore, contributions to the
surface integral from Bloch points of opposite type cancel out. Figure 6 shows the divergence of the emergent field
∇ · F for a HH and a TT Bloch point (a) and two HH Bloch points (b), the two configurations discussed in Fig. 2.

To classify nanostrips that potentially contain multiple Bloch points we compute the convolution of the divergence
of the emergent magnetic field with a Heaviside step function Θ:

S(x) =
1

4π

∫

V ′
d3r′Θ(x− x′)∇r′ · F(r′). (5)

Due to numerical inaccuracies the result of the integral deviates from integer values. By translating the surface
integral into a volume integral over the divergence of the emergent magnetic field using the divergence theorem the
accuracy can be improved by roughly one order of magnitude.

In our set-up Bloch points are expected to be distributed along x following the strip geometry which justifies
computing S as a function of x. This convolution can be interpreted as computing a series of integrals over increasing
subvolumes V ′ of the nanostrip starting at the left boundary (x = 0 nm). We round S(x) to integer values and count
steps ∆S in this function.

Figure 6c and d show S(x) for the two example configurations. A head-to-head Bloch point is identified by
∆S = −1, a tail-to-tail Bloch point by ∆S = +1 corresponding to the topological charge of a Bloch point being
S = ±1. Rounding to integer values is justified because deviations from integer values in the integral are a direct
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consequence of the limited accuracy due to the discretisation. The deviation from integer values decreases with
decreasing cell size (see supplementary Fig. 3 for details).
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Bloch points in nanostrips – Supplementary material

Martin Lang, Marijan Beg, Ondrej Hovorka, and Hans Fangohr

I. INITIALISATION AND ENERGY MINIMISATION SCHEME

In the main text we have explained that we divide the nanostrip into multiple subregions to initialise the system
and enforce the formation of a specific number of Bloch points during the energy minimisation. Here, we show two
different examples for configurations containing one and two Bloch points, respectively.

Figure 1 shows the eight subregions that are used to obtain a configuration containing two Bloch points. Four
subregions are located below z = 0 and have a negative DM energy constant D, and four above z = 0 with positive
D. The four small subregions, shown with solid lines, are located at the top and bottom sample boundary. Each of
the small subregions is contained within one surrounding subregions shown with dashed lines. The strip geometry in
Fig. 1 is stretched in the z direction for better visibility.

FIG. 1. Subregions used for the initialisation and fixed energy minimisation, and to define the two-layer geometry with opposite
chirality (opposite sign of D) in the two layers for a nanostrip that shall contain two Bloch points. The magnetisation inside the
subregions shown with solid lines is kept fixed during the first energy minimisation. Magnetisation in the top fixed subregions
is initialised with reversed z component of the magnetisation (see Fig. 2). In the plot the z axis is stretched for better visibility.
The fixed subregions are located at the strip boundary.

As outlined in the main text, the system initialisation and energy minimisation is done in three steps. The
magnetisation after each step is show in Fig. 2 for a configuration containing a single HH Bloch point. The system
geometry is 100 nm×100 nm× (10 + 20) nm. This system only needs four subregions, i.e. one “column” of subregions
in Fig. 1 (e.g. only the subregions for x < 125 nm).

During the initialisation step the magnetisation is initialised uniformly throughout the sample with m = (0, 0, 1).
The only exception is the small subregion at the top sample boundary where the z component of the magnetisation is
reversed, m = (0, 0,−1) (Fig. 2a). During the first energy minimisation the magnetisation in the small subregions at
the sample boundary, shown with solid lines in Fig. 1 and highlighted in Fig. 2b, is fixed. This enforces the formation
of the Bloch point in a controlled manner. The first energy minimisation leads to the magnetisation configuration
shown in Fig. 2b. During the second energy minimisation, the magnetisation in all cells can freely change to allow
the system find the local energy minimum, leading to the magnetisation shown in Fig. 2c.

II. CLASSIFICATION ACCURACY

In the methods section of the main text we have introduced our classification method. In short, to classify nanostrips
that contain multiple Bloch points we compute the convolution of the divergence of the emergent magnetic field F
with a Heaviside step function Θ:

S(x) =
1

4π

∫

V ′
d3r′ Θ(x− x′)∇r′ · F(r′). (1)
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FIG. 2. Initialisation and energy minimsation for a single head-to-head Bloch point (cross-section at y = 50 nm). (a) The
magnetisation is initialised with m = (0, 0, 1) with the exeption of a top subregion where m = (0, 0,−1). (b) During the first
energy minimisation the magnetisation is kept fixed inside the yellow-highlighted subregions (see Fig. 1 for a 3D plot). The
formation of a Bloch point is enforced by the opposite mz values in the two fixed subregions. (c) During the second energy
minimisation magnetisation in all cells can freely change.

The components of F are defined as:

Fi = m · (∂jm× ∂km) , (2)

where (i, j, k) is an even permutation of (x, y, z). The integral generally has non-integer values due to numerical
inaccuracies resulting mainly from the finite discretisation cell size. To simplify the classification and counting we
round S(x) to integer values whereby we obtain sharp steps (∆S = ±1) at Bloch-point positions.

To justify the rounding to integer values we compare the deviations of S(x) from integer values for different cell
sizes. Figure 3a shows a configuration containing eight Bloch points in the pattern TT-HH-TT-TT-TT-TT-HH-TT.
We compute S(x) for three different cell sizes with cubic cells with edge lengths lc = 5 nm (Fig. 3b), lc = 2.5 nm
(Fig. 3c), and lc = 1 nm (Fig. 3d). For each cell size we show the integral result (solid lines) and rounded values
(dashed lines). We can see that the difference (i.e. the inaccuracy) significantly decreases with decreasing cell size.
For lc = 1 nm integral and rounded values cannot be distinguished visually. All simulations in the paper are done
with a cell edge length lc = 2.5 nm.
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FIG. 3. Accuracy of the classification for a configuration containing eight Bloch points. (a) shows a cross-section of the
magnetisation of configuration TT-HH-TT-TT-TT-TT-HH-TT in the xz plane located at the Bloch-point position (y = 50 nm).
With decreasing cellsize – cell edge lengths: 5 nm (b), 2.5 nm (c), and 1 nm (d) – the difference between the integral S(x) and
the corresponding integer values decreases.


