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Bloch points in nanostrips
Martin Lang 1,2*, Marijan Beg 1,3, Ondrej Hovorka 1 & Hans Fangohr 1,2,4

Complex magnetic materials hosting topologically non-trivial particle-like objects such as skyrmions 
are under intensive research and could fundamentally change the way we store and process data. 
One important class of materials are helimagnetic materials with Dzyaloshinskii-Moriya interaction. 
Recently, it was demonstrated that thin nanodisks consisting of two layers with opposite chirality 
can host a single stable Bloch point of two different types at the interface between the layers. Using 
micromagnetic simulations we show that FeGe nanostrips consisting of two layers with opposite 
chirality can host multiple coexisting Bloch points in an arbitrary combination of the two different 
types. We show that the number of Bloch points that can simultaneously coexist depends on the strip 
geometry and the type of the individual Bloch points. Our simulation results allow us to predict strip 
geometries suitable for an arbitrary number of Bloch points. We show an example of an 80-Bloch-point 
configuration verifying the prediction.

Magnetic quasiparticles with non-trivial  topology1, such as vortices and skyrmions, are of great fundamental 
interest and could play an important role in novel technological  applications2. One of the quasiparticles is the 
Bloch point: a single point of vanishing  magnetisation3,4. Bloch points in single-layer materials have been stud-
ied in detail using  micromagnetic5 and atomistic  simulations6 and play an important role as dynamical objects 
in vortex-antivortex  annihilation7 and vortex core  reversal8,9. Their static structure has recently been imaged 
experimentally using X-ray vector  nanotomography10, their dynamics was measured using transmission X-ray 
 microscopy11. Long magnetic cylinders can host a stable Bloch point in the core of a vortex domain  wall12. In 
this configuration the Bloch point is stabilised by the demagnetisation field if the cylinder is sufficiently large. 
A stable and manipulable Bloch point of two different types was also predicted in thin helimagnetic two-layer 
 nanodisks13 where the two layers have opposite chirality, and the Bloch point nucleates at the interface between 
the layers. The demagnetisation field in these systems would not be strong enough to stabilise the Bloch point 
configuration. Instead, the Bloch point is stabilised by the different chiralities of the two layers. The Bloch point 
observed in Ref.13 is structurally equivalent to the meta-stable Bloch point studied in Ref.5. The important 
difference between a single-layer system and the two-layer system is that the latter stabilises the Bloch-point 
configuration over the vortex configuration in thin samples.

In this work, we demonstrate that two-layer nanostrips can host multiple Bloch points in an arbitrary combi-
nation of different Bloch-point types. Using finite-difference micromagnetic simulations, we explore the parame-
ter space of strip geometry to understand for which geometry constraints such magnetisation field configurations 
can be realised. The Bloch point as a (meta)-stable topological excitation and quasiparticle opens up new avenues 
of fundamental research. In particular, we can now start to investigate individual and collective behaviour of 
Bloch points such as the melting transition of a “crystal” of Bloch points similar to vortices in high-temperature 
 superconductors14 or skyrmion  lattices15,16. We conclude our study with a demonstration of encoding a 10-byte 
string using 80 Bloch points: we identify one Bloch-point type with the binary “1” and the other type with the 
binary “0” to encode and store the equivalent of an 80-bit long sequence.

The concept of a Bloch point in a two-layer  system13 is explained in Fig. 1, where we start from vortex con-
figurations in single-layer materials, and then stack them on top of each other to obtain the Bloch-point con-
figuration of the magnetisation field. Figure 1a shows schematically the four possible vortex configurations we 
can encounter in a thin layer of ferromagnetic material due to the competition between ferromagnetic exchange 
and demagnetisation energy. The vortex core (polarisation P), pointing in the out-of-plane (z) direction, can 
either be pointing to +z ( P = +1 ) or −z ( P = −1 ) direction, and—independently—the circularity c of the 
magnetisation around the vortex core can either be clock-wise (c = −1 ) or counter-clock-wise (c = +1)17. The 
product of polarisation and circularity can be defined as the chirality of the vortex and describes the relative 
orientation of the moments in the vortex (i.e. the handedness of the vortex). By adding the Dzyaloshinskii-Moriya 
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(DM) interaction to the system, the preferred combination of polarisation and circularity is determined by the 
chirality of the material (not to be confused with the chirality of the vortex), i.e. the sign of the DM interaction 
strength D. For a given nonzero D two of the four vortex realisations are energetically favourable: vortices in a 
chiral material have a lower energy if their vortex chirality (handedness) matches the chirality of the material.

Figures 1b and c show how a Bloch-point configuration can be realised by stacking vortex configurations 
with the same circularity and opposite polarisation on top of each other. The Bloch point emerges at the interface 
between the two vortex cores of opposite polarisation and the top- and bottom-layer materials must have opposite 
signs of D to stabilise the Bloch-point configuration. Despite the high exchange energy density at the Bloch point, 
the configuration is stabilised by the exchange coupling across the comparatively large interface area between the 
layers that ensures the same circularity in both layers. Two different types of Bloch points can be realised with 
the magnetisation vectors of the vortex cores pointing either inwards (head-to-head Bloch point (HH), Fig. 1b) 
or outwards (tail-to-tail Bloch point (TT), Fig. 1c). Other combinations of vortices in the two layers either have 
a higher energy or are not stable: when we stack two vortices with the same circularity and polarisation (in a 
handedness that matches the material’s chirality in the bottom layer) we find a vortex extending throughout the 
two layers (and shrinking in diameter in the top layer) that is higher in energy because the vortex handedness 
does not match the material’s chirality in the top layer (resulting in a large DMI energy). If we stack two vortices 
with the same polarisation but opposite circularity the handedness of the vortices matches the chirality of the 
material in both layers. However, this stacking results in a large interface with magnetic moments pointing in 
opposite direction (due to the opposite circularity) which has a large exchange energy. This configuration could 
not be stabilised and instead converts to the Bloch-point configuration with vortices having the same circularity 
but opposite polarisation.

Figure 1d shows the magnetisation vector field for a single head-to-head Bloch point from our finite-difference 
micromagnetic simulations, and the colour represents the z component of the magnetisation. Figure 1e shows 
the corresponding plot for a tail-to-tail Bloch point. In the simulation, the Bloch point forms at the centre of 
eight discretisation cells as shown in the insets of Fig. 1d and e where the magnetisation of the discretisation 
cells is visualised by the cones. The Bloch point is located at the intersection of the three isosurfaces mx,y,z = 0 
where the magnetisation vanishes. The tail-to-tail Bloch point is similar to the circulating Bloch point in the 
nomenclature of Malozemoff and Slonczewski [Figure 9.1,18], however the rotation of the magnetic moments in 
the interface plane deviates from the perfect 90◦ rotation around the z axis. For the head-to-head Bloch point no 
direct equivalent is shown in Ref.18. Using the nomenclature of Malozemoff and Slonczewski to describe both 
configurations, one could call the tail-to-tail Bloch point a “divergent circulating” Bloch point and the head-
to-head Bloch point a “convergent circulating” Bloch point. Other literature refers to such configurations as 

Figure 1.  (a) In a single layer of magnetic material four different vortices, with polarisation P = ±1 
and circularity c = ±1 , can form as a consequence of the competition between exchange energy and 
demagnetisation. Adding DMI couples circularity and polarisation. (b, c) By stacking two layers with opposite 
sign of the DM energy constant D, a Bloch point can be stabilised. The Bloch point can be of type head-to-head 
(b) or tail-to-tail (c). In the figure, the two layers are, for better clarity, separated in z direction as indicated by 
the grey dashed lines. (d, e) Simulation result for a single head-to-head (d) and tail-to-tail (e) Bloch point. The 
isosurfaces (of paraboloidal-like shape) near the centre show mz = ±0.9 , colour indicates the z component. 
They are convenient to locate the Bloch point that is situated between them. The insets show three isosurfaces 
for mx = 0 , my = 0 , and mz = 0 , respectively. The Bloch point is located at the intersection of the three 
isosurfaces where the magnetisation vanishes. The cones in the insets indicate the magnetisation directions in 
the eight discretisation cells surrounding the Bloch point. The magnetisation around the Bloch point is show 
in more details in (f, h) for the HH configuration and in (g, i) for the TT configuration. See the main text for 
additional details.
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spiraling Bloch  points11 or vortex Bloch  points19. To better show the magnetisation around the Bloch point we 
show the eight magnetisation discretisation cells surrounding the Bloch point in Fig. 1f and g for the HH and 
TT configuration, respectively. We interpolate the magnetisation in the eight cells to obtain the magnetisation 
direction on the cell corners (using  VTK20). We highlight the Bloch point position with a small green sphere to 
guide the eye. Figure 1h and i show a reduced number of magnetisation directions around the Bloch-point posi-
tions. Here, we see that the magnetic moments above and below the Bloch point point towards the Bloch point 
in the HH configuration and away from the Bloch point in the TT configuration. Furthermore, we can see the 
in-plane circularity at the interface. Figure 1h and i show that the numerically obtained configurations closely 
match the circulating Bloch point described in the book by Malozemoff and  Slonczewski18.

The paper is organised as follows. First, we discuss two different configurations containing two Bloch points 
each in the "Two Bloch points" section. We distinguish between configurations of two same-type Bloch points 
(e.g. two HH Bloch points) and two opposite-type Bloch points (e.g. one HH and one TT Bloch point). These two 
pairs of Bloch points exhibit all features of a configuration containing multiple Bloch points. In the "Parameter-
space diagram and energy density" section, we demonstrate that multiple Bloch points can coexist in rectangular 
two-layer nanostrips using micromagnetic simulations. We find that all possible sequences of head-to-head and 
tail-to-tail Bloch points can be realised. We find that micromagnetic configurations that contain different combi-
nations of Bloch points have different energy densities depending on the number of neighbouring Bloch points 
of the same type. We focus on systems containing up to eight Bloch points initially. Based on our results, we can 
predict a suitable strip geometry for an arbitrary number of Bloch points. To verify this prediction we present one 
example configuration containing 80 Bloch points in the "Predicting strip geometries for larger systems" section.

Results
Two Bloch points. A pair of neighbouring Bloch points in multi-Bloch-point configurations can occur in 
two fundamentally different combinations. The Bloch points can either be of the same type, for example: a head-
to-head (HH) Bloch point next to another HH Bloch point (HH-HH) as shown in the right column of Fig. 2. 
Alternatively, the Bloch points can be of opposite type, for example a HH Bloch point next to a tail-to-tail (TT) 
Bloch point (HH-TT) as shown in the left column of Fig. 2.

The topmost row (Fig. 2a, b) shows a schematic drawing of the nanostrip highlighting the two-layer structure 
and the geometry. Additionally, position and type of the Bloch points visible in the simulations are indicated 
with arrows, where the colour of the arrows encodes the z component of the magnetisation (red: +z , blue: −z).

Figure 2c and d show 3D renderings of the simulation results. The isosurfaces (as used by Hertel and 
 Schneider7 to visualise magnetic vortices) show mz = ±0.9 ( m is the normalised magnetisation), colour indicates 
the z component. The isosurfaces above/below the Bloch point have a paraboloidal-like shape pointing towards 
the Bloch point (similar to the single-Bloch-point simulation results in Fig. 1c, d). The Bloch point itself is not 
directly visible in this visualisation. The configuration in Fig. 2d additionally contains one antivortex between the 
two Bloch points. The mz = 0.9 isosurface of the antivortex extends throughout the whole thickness (z direction) 
of the two-layer system. The antivortex core shrinks towards the top sample boundary.

To reveal the full three-dimensional structure of the magnetisation field surrounding the Bloch points the 
magnetisation of each configuration is plotted in five different cut planes for each column (as indicated in the 
schematic drawings Fig. 2a, b). Four different cut planes show the magnetisation in the xy plane (Fig. 2e – l), at 
the top sample boundary ( z = 10 nm ) in Fig. 2e and f, above the interface ( z = 1 nm ) in Fig. 2g and h, below 
the interface ( z = −1 nm ) in Fig. 2i and j, and at the bottom sample boundary ( z = −20 nm ) in Fig. 2k and l. 
Colour encodes the z component of the magnetisation vector field, arrows the in-plane component.

Figure 2m and n show the z component of the magnetisation in an xz cut plane going through the Bloch 
points at y = 50 nm . Magnified subplots show the full magnetisation around the Bloch-point positions and in 
the centre region between the two Bloch points. The colour of the cones in the magnified areas encodes the y 
component of the magnetisation vector field.

The results shown in Fig. 2 show that Bloch points form at x ≈ 100 nm and x ≈ 300 nm in both cases, i.e. 
in both columns. Bloch-point pairs of the opposite type (Fig. 2, left column) show opposite circularity of the 
magnetisation within the xy plane around the Bloch-point cores. In this case, the in-plane magnetisation (xy 
component) between the two Bloch points (from x ≈ 100 nm to x ≈ 300 nm ) shows a smooth transition from 
one Bloch point to the other. Focusing only on the top layer (or focusing only on the bottom layer), the configu-
ration can also be described as a micromagnetic configuration containing two vortices of opposite polarisation 
and circularity (most clearly seen in Fig. 2e). In contrast, an additional antivortex forms between two same-type 
Bloch points (Fig. 2, right column) at x ≈ 200 nm to mediate between the incompatible magnetisation configura-
tions that originate from the two same-circularity vortices. Differing from the magnetisation of the Bloch-point 
cores, the magnetisation of the antivortex core (at x ≈ 200 nm ) does not change significantly along the z direc-
tion (middle inset in Fig. 2n). This configuration can be described as a micromagnetic configuration containing 
a cross-tie domain  wall21,22 in each layer. The cross-tie wall consists of alternating vortices and antivortices, the 
structure is most clearly visible in Fig. 2f.

Parameter-space diagram and energy density. The spatially averaged energy density (total energy 
of the system divided by the system volume) of a Bloch-point configuration depends on the number of Bloch 
points, their individual types, and the strip geometry. Furthermore, different spatial arrangements can be real-
ised, e.g. four Bloch points on a line, or in the corners of a rectangle or diamond shape. Here, we only consider 
magnetisation configurations containing between one and eight Bloch points in a row, distributed in x direction 
(strip length) and centred in y direction (strip width).
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Figure 2.  Magnetisation profile of the two fundamentally different configurations containing two Bloch points: 
opposite-type Bloch points (head-to-head and tail-to-tail, left column) and same-type Bloch points (head-to-
head and head-to-head, right column). The 3D renderings in (c) and (d) show isosurfaces for mz = ±0.9 , colour 
indicates the z component. Several different cut planes in xy and xz are shown to reveal the three-dimensional 
structure of the Bloch points forming at the interface ( z = 0 nm ). For the xz plane (subfigures m and n) we 
also show enlarged plots around the Bloch point and antivortex position. The cones in (m) and (n) are coloured 
according to their my component, as indicated by the small colour bar in the right bottom corner of the figure.
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In Fig. 2 we have seen the two fundamentally different configurations containing two Bloch points, head-
to-head and tail-to-tail (HH-TT), and head-to-head and head-to-head (HH-HH). Now we investigate a system 
containing three Bloch points. In total, eight configurations can be realised. Three configurations are fundamen-
tally different, namely HH-HH-HH, HH-HH-TT, and HH-TT-HH, because they contain distinct numbers of 
additional antivortices. The other five configurations are equivalent either because HH and TT swap roles (e.g. 
TT-TT-TT), or because of the symmetry of the system geometry along the x axis (e.g. TT-HH-HH).

The fundamentally different configurations (HH-HH-HH, HH-HH-TT, HH-TT-HH) are shown in Fig. 3d in 
a system with strip length l = 400 nm . We find one and two additional antivortices (AVs) for configurations HH-
HH-TT and HH-HH-HH, respectively. The table in Fig. 3 lists all eight configurations and the respective number 
of antivortices. In different terms, the three configurations in Fig. 3d could also be described as (in each layer) 
containing one long cross-tie wall (top), a cross-tie wall and one vortex (middle), and three vortices (bottom).

Figure 3.  (a) Energy densities for energetically different micromagnetic configurations containing at most 
three Bloch points for different strip lengths l at a strip width w = 100 nm . Simulations have been performed in 
steps of δl = 25 nm , the solid lines are shown to guide the eye. (b–d) Magnetisation profiles for the six different 
configurations shown in (a) at l = 400 nm . Isosurfaces show mz = ±0.9 , colour indicates the z-component. (e) 
Energy density for all possible configurations containing three Bloch points. The first three configurations are 
show in (d) as indicated with the distinct marker symbols (at a different strip length). The table in (a) lists all 
different configuration containing three Bloch points, highlighting the number and position of the additional 
antivortices in the different configurations. (f) Energy densities for all configurations containing eight Bloch 
points. Energy densities for a fixed number of antivortices are nearly identical but cause some “smearing” of the 
marker symbols.
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For each of the three fundamentally different configurations, we compute the spatially averaged energy density 
of the micromagnetic configuration and plot the three values in Fig. 3a (at l = 400 nm).

We find that the micromagnetic configuration containing three Bloch points in the HH-TT-HH configuration 
has the lowest energy density and the micromagnetic configuration containing three Bloch points in the HH-
HH-HH configuration the highest energy density. Hereinafter, we will refer to a micromagnetic configuration 
containing n Bloch points as the n-Bloch-point configuration to simplify the text. Note that we always mean the 
entire micromagnetic configuration with embedded Bloch points and not isolated Bloch points, e.g. when talk-
ing about the “energy of the Bloch points” (which should be read as “energy of the micromagnetic configuration 
containing Bloch points”). It is well-known that the Bloch points “them-self ”, i.e. the point singularities, do not 
affect the energy of the micromagnetic  configuration3. We will later discuss in more detail that the presence of 
antivortices between Bloch points generally increases the energy density of the system. The alternating configura-
tion HH-TT-HH does not contain any antivortices, as these are only needed to mediate the local rotation of the 
magnetisation between neighbouring vortices that enclose Bloch points of the same type.

The three yellow lines (filled and open diamonds) in Fig. 3a show the spatially averaged energy density for the 
three different configurations as a function of strip length. Not all configurations are stable for all strip lengths: 
for example the HH-HH-TT configuration is only stable for l ≥ 300 nm . If we try to create the three-Bloch-
point configuration HH-HH-TT in a shorter nanostrip, e.g. at l = 275 nm , then the configuration is not stable 
and will change into a lower-energy configuration, in this case the HH-TT configuration containing only two 
Bloch points. In other words, the cross-tie walls enclosing the HH-HH Bloch-point pair are not stable in too 
short nanostrips and collapse. This has in detail been studied for cross-tie walls in single-layer  materials7. We 
can see that the energy generally increases with increasing number of antivortices as mentioned in the previ-
ous paragraph. However, there is a deviation visible for l ≤ 225 nm where the HH-HH-HH configuration has a 
lower energy density than the HH-TT-HH configuration. This deviation is a result of the short strip length near 
the stability limit. We exclude these regions near the minimal stability strip length in the rest of our discussion.

The blue filled and open squares in Fig. 3a show the energy density for a system containing only two Bloch 
points. The corresponding magnetisation field for l = 400 nm is visualised in Fig. 3c, and in more detail in Fig. 2. 
The green circles in Fig. 3a show the energy density for a configuration containing a single Bloch point, and its 
magnetisation configuration for l = 400 nm is shown in Fig. 3b.

For a given strip length l we describe the configuration with the lowest energy density as the energetically most 
favourable configuration: below l = 250 nm a single Bloch point (green circles) has the lowest energy density. 
(Note that the energy of the micromagnetic configuration containing one Bloch point is lower than the energy 
of a vortex expanding throughout the system because of the two-layer system with opposite chirality in the two 
layers.) Two opposite-type Bloch points (blue squares) have the lowest energy density for 250 nm < l ≤ 400 nm 
and three Bloch points of alternating opposite type (yellow diamonds) have the lower energy density above 
l = 400 nm.

Figure 3e shows a representation of the energy densities for all possible three-Bloch-point configurations 
at l = 600 nm . As already discussed, there are three fundamentally different configurations characterised by 
the number of additional antivortices contained in the configuration (as shown in the table in Fig. 3). Different 
realisations of the same configuration type (swapping HH and TT or using the strip symmetry) exhibit the same 
energy density.

In Fig. 3a we have seen that the number of Bloch points in the energetically most favourable configuration 
changes depending on the strip length l. Figure 4 contains a parameter-space diagram showing the energetically 
most favourable configuration as a function of the strip length and strip width, using the Bloch point number as a 
label. To create Fig. 4, we ask for each strip length l and a given strip width w, which configuration has the lowest 

Figure 4.  Parameter-space diagram showing the energetically most favourable Bloch point number as a 
function of length l and width w. All configurations contain Bloch points of alternating opposite type (so the 
micromagnetic configurations do not contain additional antivortices). Magnetisation profiles for selected 
configurations reveal the similarity of the different configurations, isosurfaces show mz = ±0.9.
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energy density. For example: all data points in Fig. 3a are for a width of w = 100 nm . Close to l ≈ 400 nm , we see 
that for l ≤ 400 nm the two-Bloch-point configuration HH-TT (blue squares) has the lowest energy density but 
that for l > 400 nm the three-Bloch-point configuration HH-TT-HH (yellow diamonds) has the lowest value. Fig-
ure 4 shows (for w = 100 nm on the y axis) that the two-Bloch-point configuration has the lowest energy density 
up to l ≈ 400 nm , and the three-Bloch-point configuration for larger l (up to l ≈ 600 nm ). All configurations with 
lowest energy density are of the alternating Bloch-point type, i.e. left and right neighbours of a HH Bloch point 
are always of type TT, and vice versa (see discussion below), and hence do not contain additional antivortices.

Figure 4 shows that with increasing strip length, the number of Bloch points that are present in the lowest-
energy-density configuration (as shown Fig. 3a for l ≤ 600 nm ) increases: for nanostrips with lengths above 
l ≈ 1300 nm and width w = 100 nm , we find eight Bloch points. Furthermore, Fig. 4 shows that increasing 
the width of the nanostrip leads to a reduced number of Bloch points in the energetically most favourable 
configuration.

Figure 4 also shows magnetisation profiles for selected configurations revealing the similarities in the magneti-
sation profile in different strip geometries. The isosurfaces show mz = ±0.9 , colour indicates the z component. 
All configurations shown in Fig. 4 contain Bloch points of alternating opposite type, i.e. all the lowest-energy 
configurations do not contain antivortices.

In the discussion of the fundamentally different configurations containing three Bloch points, we have noted 
that the different configurations can be characterised by the number of additional antivortices contained in the 
structure. Figure 3f summarises similar findings for eight Bloch points where configurations can contain between 
zero antivortices (Bloch points of alternating opposite type) and seven antivortices (all Bloch points of the same 
type). In total, 256 configurations can be realised. The plot in Fig. 3f shows the data for all configurations and a 
linear fit to the data. Different realisations with the same number of antivortices cannot be distinguished in this 
plot as their energies are nearly identical but cause slight vertical shifts of the blue open circles used to mark the 
energy densities of the different configurations for intermediate numbers of antivortices. The energy density 
increases linearly with the number of antivortices (or equivalently, the cross-tie wall size).

There is an important difference between three Bloch points (Fig. 3e) and eight Bloch points (Fig. 3f). For 
a fixed number of antivortices, all different three-Bloch-point configurations are equivalent because of the sys-
tem’s symmetry (globally replacing HH with TT and vice versa (and adjusting the antivortex polarisation) or π 
rotations around the z direction) and therefore must have the same energy density. Let us give two examples: we 
start from the configuration HH-HH-TT. First, we can obtain an equivalent configuration by swapping HH and 
TT Bloch points, namely the configuration TT-TT-HH. Globally swapping all Bloch-point types (and adjusting 
the antivortex polarisation) does not affect the system’s physics in the context discussed here. Second, we can 
rotate the system around the z direction and obtain the configuration TT-HH-HH. Again, the two configura-
tions are equivalent. However, for eight Bloch points we additionally find that different configurations that are 
not related via symmetry (globally swapping HH and TT or rotating the system around the z direction) also 
have the same energy density if they contain the same number of antivortices. For example, the configurations 
HH-HH-HH-HH-HH-HH-HH-TT and HH-HH-HH-HH-TT-TT-TT-TT both contain 6 antivortices (located 
between neighbouring same-type Bloch points, i.e. HH-HH and TT-TT pairs) but cannot be transformed into 
each other by swapping HH and TT or rotating the system. Yet, they exhibit the same spatially averaged energy 
density. Our findings suggest that the energy density of the micromagnetic configuration around the Bloch 
points is independent of the configuration around other Bloch points in the system (the Bloch point itself, i.e. 
the point singularity, is known to not affect the energy of the micromagnetic configuration containing  it3). The 
energy density of any Bloch-point configuration can be obtained from a configuration containing Bloch points 
of alternating opposite type with additional contributions originating from the additional antivortices between 
neighbouring same-type Bloch points.

This is the reason for the lowest-energy-density configurations shown in Fig. 4 consisting of pairs of Bloch 
points of alternating type: for same-type neighbours an antivortex is required to mediate the magnetisation 
between the Bloch points of the same type, and the presence of such antivortices would increase the spatially 
averaged energy density.

We can make one additional observation in Fig. 3a. The energy density of a configuration changes as a func-
tion of strip length l. All configurations containing two or three Bloch points have one energy minimum at a 
certain length that we call the optimal length lo . For example, the optimal length for the HH-TT configuration 
(blue filled squares in Fig. 3a) is lo ≈ 275 nm.

Predicting strip geometries for larger systems. So far, we have focused on small systems containing 
at most eight Bloch points. Based on this information we can predict strip geometries suitable for an arbitrary 
number of Bloch points.

Figure 3a shows that meta-stable configurations containing multiple Bloch points can be realised over a broad 
range of strip lengths but need a certain minimal strip length. This minimal length depends on the number of 
Bloch points and additional antivortices in the configuration. In our simulations we also see that a certain maxi-
mum strip length cannot be exceeded for a given configuration. If the strip is too long the configuration could 
not be stabilised and additional Bloch points appear. Furthermore, Fig. 3a shows that all configurations have a 
minimum in the energy density at a certain optimal length lo.

To predict strip geometries suitable for an arbitrary number of Bloch points we focus on configurations con-
taining up to eight Bloch points of alternating opposite type. We find that the optimal length lo increases linearly 
with the number of Bloch points (Fig. 5c) with the slope defining the optimal Bloch point spacing so . Further-
more, we find that so increases linearly with increasing strip width (Fig. 5d). We obtain so,w=100 nm ≈ 165 nm 
and so,w=200 nm ≈ 272 nm with an estimated accuracy of δso ≈ 3 nm . These observations lead to our working 
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hypothesis that the ideal Bloch-point spacing so is independent of the number of Bloch points in the system 
and suitable to predict geometries for more than eight Bloch points. This prediction can be used for arbitrary 
configurations not only alternating opposite-type Bloch points.

As an illustrative example, we simulate one specific configuration containing 80 Bloch points, encoding the 
10-character word Blochpoint in ASCII code (eight bits per letter). We simulate a strip with the predicted 
length l = 80so = 13.2µm at a width of w = 100 nm and with so = 165 nm.

We minimise the energy of a suitable initial configuration resulting in the 80-bit configuration as shown in 
Fig. 5a, b. The cross sections show the xy plane at z = 1 nm (Fig. 5a) and the xz plane at y = 50 nm (Fig. 5b). 
Note that the aspect ratio is not correct in order to improve visibility. Figure 5e shows contour lines for mz for a 
part of the nanostrip (correct aspect ratio) as indicated in Fig. 5a. Bloch points in Fig. 5e are located at the small 
red and blue dots. The larger red circles ( mz > 0.5 ) show antivortices between same-type Bloch points.

To test the stability of the 80-Bloch-point configuration we apply a short magnetic field pulse in the +y direc-
tion ( H = 25mT/µ0 , applied for t = 0.5 ns ). The modified magnetisation field configuration at the end of the 
0.5 ns period is shown in Fig. 5f. Then, we set the applied field back to zero and let the system evolve freely by 
carrying out a time-integration. We find that the magnetisation converges back to the initial state: Fig. 5g shows 
the configuration after t = 5 ns of free relaxation.

To understand the robustness of the predicted geometry, we vary the strip length l and find that the desired 
80-Bloch-point configuration can be stabilised over a range of strip geometries. The minimal strip length is 
around 0.66lo the maximal strip length around 4lo.

Within the range of stability of the 80-bit configuration ( 0.66lo ≤ l ≤ 4lo ), we find that the length lo is closer 
to the lower stability boundary ( ≈ 0.66lo ) than to the upper limit ( ≈ 4lo ). This is consistent with the energy 
density curve for the HH-TT configuration in Fig. 3a (blue filled squares) where we see that the energy density 
as a function of the strip length is asymmetric, and that its energy minimum, located at strip length lo , is located 
at a comparatively small strip length within the range of possible strip lengths over which the configuration is 
meta-stable (stability limits are not visible in Fig. 3).

Discussion
The Bloch-point configuration originates from vortices with identical circularity, but opposite polarisation, which 
are stabilised through the DMI of the material, which fixes the core orientation relative to circularity through 
the left- or right-handed chirality. The Bloch points form an interesting topological excitation in a helimagnetic 

Figure 5.  (a, b) ASCII encoding of the string Blochpoint using 80 Bloch points. Cross sections show 
(a) the xy plane at z = 1 nm and (b) the xz plane at y = 50 nm . The strip length is chosen according to the 
predicted value for a nanostrip with width w = 100 nm . Labels on the x axis mark blocks of eight Bloch points, 
i.e. individual bytes. Note that the aspect ratio is not correct in order to improve visibility. (c) Optimal lengths 
lo for two to eight Bloch points. The fit is used to predict lengths for more than eight Bloch points. (d) Optimal 
Bloch point distance so as a function of strip width w. (e – g) show an enlarged part of the nanostrip (correct 
aspect ratio) as highlighted in (a) to demonstrate the stability of the configuration: (e) initial configuration after 
energy minimisation; (f) an external magnetic field H = 0.25 T/µ0 is applied in the +y direction for 0.5 ns ; (g) 
after removing the external field the system evolves freely and converges back to the initial state (snapshot after 
5 ns ). (e–g) show contour lines of the mz component to improve visibility of the disturbance introduced by the 
external magnetic field. Bloch points are located at the small red and blue dots, the larger red circles show the 
additional antivortices.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6910  | https://doi.org/10.1038/s41598-023-33998-z

www.nature.com/scientificreports/

system, which extends the set of well-known magnetic structures such as domain walls, vortices, and skyrmions. 
In the geometry described here, the Bloch points are in equilibrium and can be manipulated (e.g. with external 
magnetic fields).

We have found remarkable features of multiple interacting Bloch points in two-layer nanostrips. The two dif-
ferent types—head-to-head (HH) and tail-to-tail (TT)—can be geometrically arranged in any arbitrary order, and 
this magnetisation configuration resembles a meta-stable configuration (within certain constraints on the strip 
width and length). The spatially averaged energy density for a system with n Bloch points increases in fixed steps. 
The number of steps scales linearly with the number of antivortices in the configuration (or equivalently: the 
number of neighbouring same-type Bloch points). We can determine an optimal Bloch-point spacing so between 
Bloch points within a line of Bloch points (corresponding to a distance over which a Bloch point extends).

In the following, we speculate about possible future applications of Bloch points. One key-feature distin-
guishing Bloch points from many other particle-like magnetic configurations is the demonstrated coexistence 
of Bloch points of two different types in a single sample making Bloch points an interesting candidate for binary 
data representation. In the racetrack-like  designs23,24, when realised with magnetic excitations of which only 
one type exists—such as skyrmions—we need to ensure that skyrmions keep their relative positions to be able 
to interpret the presence of a skyrmion as 1 and the absence of a skyrmion as 0. The two different types of Bloch 
points presented here could be used to encode binary data without the need to rely on fixed spacing of magnetic 
objects: a HH configuration could represent “1” and a TT configuration could represent “0”. In the context of 
skyrmion-based realisation of the racetrack approach, other ideas to overcome the fixed-spacing requirement 
include the use of a combination of skyrmion tubes and chiral  bobbers25 and the two-lane racetrack  memory26.

On the way towards possible applications of Bloch points many more questions need to be addressed. These 
are related to Bloch point manipulation (movement, switching, creation/annihilation) in the two-layer system 
with precise control over individual Bloch points, sensing of Bloch points, and to the thermal stability of Bloch 
points in general and energy barriers between different configurations containing multiple Bloch points. Previous 
works have studied the manipulation of Bloch points in bubble  memories18. Creation and annihilation of Bloch 
points as dynamic objects during vortex-antivortex annihilation has been studied in Ref.7. While these works 
demonstrate that manipulating Bloch points is possible more insights into manipulation of stable Bloch points 
in the two-layer system will be required.

In summary, we have demonstrated that two-layer FeGe nanostrips can host multiple Bloch points in any 
combination of head-to-head and tail-to-tail. Based on our simulations containing up to eight Bloch points, we 
can predict strip geometries suitable for an arbitrary number of Bloch points. We have verified this prediction 
by studying a system containing 80 Bloch points.

Methods
System. We simulate rectangular two-layer nanostrips with opposite chirality (opposite sign of D) in the 
two layers. We vary strip length and width, the thickness of both layers is fixed (bottom layer: 20 nm , top layer: 
10 nm ). We focus on up to eight Bloch points and accordingly choose nanostrips with lengths between 100 nm 
and 1400 nm , and widths between 100 nm and 200 nm . The energy equation

contains exchange energy density wex , bulk Dzyaloshinskii-Moriya energy density wdmi , and demagnetisation 
energy density wd . The magnetisation dynamics is simulated using the Landau-Lifshitz-Gilbert  equation27,28:

where γ ∗ = γ (1+ α2) , with γ being the gyromagnetic ratio and α Gilbert damping. Material parameters are 
based on  FeGe29: A = 8.87 pJm−1 , D = 1.58mJm−2 , Ms = 384 kAm−1 , α = 0.28 . We use finite-difference 
micromagnetic simulations to minimise the energy. All simulations are done using  Ubermag30–32 with  OOMMF33 
as computational backend and an extension for DMI of crystalclass  T34,35.

Simulation procedure. All simulations in this study follow a three-step initialisation and minimisation 
scheme: (i) initialisation, (ii) fixed minimisation, (iii) free minimisation. In the micromagnetic framework the 
system is studied at zero temperature, i.e. without thermal fluctuations. Therefore, it is only possible to find local 
minima that are accessible from the initial configuration. Starting from experimentally feasible initial configura-
tions, such as full saturation, we are able to find magnetisation configurations containing a single or multiple 
Bloch points depending on the strip geometry.

To facilitate the process of studying arbitrary Bloch-point configurations, independent of the strip geometry 
in a systematic way, we have developed a simulation scheme that guarantees a magnetisation configuration 
containing a predictable number of Bloch points. We note that this scheme can probably not be applied directly 
to an experimental set-up.

For the initialisation, step (i), we start by dividing the nanostrip into equally sized regions (in x direction), 
one region per Bloch point. To enforce the formation of a Bloch point, the magnetisation in each region is ini-
tialised as follows: for a head-to-head Bloch point we initialise the centre region of the topmost layer of cells with 
m = (0, 0,−1) and all other cells with m = (0, 0, 1) . A region hosting a tail-to-tail Bloch point is initialised with 
reversed z component of the magnetisation (see supplementary Fig. 1 for a schematic plot of the different subre-
gions). We then minimise the energy in two steps (supplementary Fig. 2). During the first energy minimisation, 

(1)E =

∫

d3r(wex + wdmi + wd)

(2)
∂m

∂t
= γ ∗

m×Heff + αm×
∂m

∂t
,
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step (ii), we keep the magnetisation of the topmost cells—initialised with reversed magnetisation—and a simi-
larly sized layer of cells at the bottom sample boundary fixed. This ensures the formation of a Bloch point at the 
interface between the two layers. The second energy minimisation, step (iii), is done without any fixed cells, i.e. 
magnetisation in all cells can freely change, and Bloch points could move in any direction to further minimise 
the energy of the configuration. In this step, the system can find the local energy minimum.

Classification. In the micromagnetic framework, it is not possible to directly observe Bloch points because 
of the fixed norm of the magnetisation vector. A single Bloch point is characterised by the integral value of the 
topological charge density over a closed surface A surrounding the Bloch  point11:

where F is the emergent magnetic  field36,37. The components of F are defined as:

where (i, j, k) is an even permutation of (x, y, z). To detect a single Bloch point in a sample the integral can be 
computed over the whole sample surface and the exact position of the Bloch point does not need to be known.

This method is not directly applicable to multiple Bloch points when their positions are unknown: the sign 
of the topological charge of a Bloch point depends on its type (HH: S = −1 , TT: S = +1 ). Therefore, contribu-
tions to the surface integral from Bloch points of opposite type cancel out. Figure 6 shows the divergence of the 
emergent field ∇ · F for a HH and a TT Bloch point (a) and two HH Bloch points (b), the two configurations 
discussed in Fig. 2.

To classify nanostrips that potentially contain multiple Bloch points we compute the convolution of the 
divergence of the emergent magnetic field with a Heaviside step function �:

Due to numerical inaccuracies the result of the integral deviates from integer values. By translating the surface 
integral into a volume integral over the divergence of the emergent magnetic field using the divergence theorem 
the accuracy can be improved by roughly one order of magnitude.

In our set-up Bloch points are expected to be distributed along x following the strip geometry which justi-
fies computing S as a function of x. This convolution can be interpreted as computing a series of integrals over 
increasing subvolumes V ′ of the nanostrip starting at the left boundary ( x = 0 nm ). We round S(x) to integer 
values and count steps �S in this function.

Figure 6c and d show S(x) for the two example configurations. A head-to-head Bloch point is identified by 
�S = −1 , a tail-to-tail Bloch point by �S = +1 corresponding to the topological charge of a Bloch point being 
S = ±1 . Rounding to integer values is justified because deviations from integer values in the integral are a direct 
consequence of the limited accuracy due to the discretisation. The deviation from integer values decreases with 
decreasing cell size (see supplementary Fig. 3 for details).

(3)S =
1

4π

∫

A
dA · F = ±1,

(4)Fi = m ·
(

∂jm× ∂km
)

,

(5)S(x) =
1

4π

∫

V ′

d3r′ �
(

x − x′
)

∇r′ · F
(

r
′
)

.

Figure 6.  Classification of the two configurations containing two Bloch points shown in Fig. 2. The divergence 
of the emergent magnetic field for the two opposite- and same-type Bloch points is shown in panels (a) and 
(b), respectively. The xy plane visualised here is located at z = 1 nm , just above the interface. (c, d) The result 
of the convolution (5) which is used to identify the occurrence of Bloch points and their type due to the steps 
�S = ±1.
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Data availibility
All results obtained in this work can be reproduced from the repository in Ref.38 which contains Jupyter 
 notebooks39 to rerun the micromagnetic simulations and recreate all data and plots. In the repository pre-
computed datasets are also available.
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