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a b s t r a c t 

Polyhydroxyalkanoates are a promising material for a broad range of plastic products. Due to the high 

production costs, the proportion of industrial produced polyhydroxyalkanoates is low compared to con- 

ventional plastics. One possibility to reduce the costs is to reduce the price of the substrates using organic 

carbon-rich wastes streams. Using mathematical modeling, the microbial production process can be opti- 

mized by adjusting process conditions like the oxygen supply or initial substrate ratios. This contribution 

outlines a multiscale model for the poly(3-hydroxybutyrate) production in Cupriavidus necator using the 

carbon-sources fructose and acetate. The model comprises a hybrid cybernetic model to describe the 

macroscopic dynamics and a polymerization model which describes the chain length dynamics. The mul- 

tiscale model is used to analyze the effects of different initial carbon to ammonium ratios and dissolved 

oxygen levels on the poly(3-hydroxybutyrate) concentration and chain length distribution. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Polyhydroxyalkanoates (PHAs) are biopolymers that have a 

umber of beneficial properties from an ecological point of view. 

HAs are degradable in the environment and they can be pro- 

uced microbially using wide variety of inexpensive substrates. As 

 result, no fossil fuels are required for the production. In addi- 

ion, PHAs are biocompatible and non-toxic, which allows a large 

umber of possible applications ( Bugnicourt et al., 2014 ). Unfor- 

unately, the production yields remain significantly behind those 

f conventional petroleum-based plastic production and the pro- 

ess is relatively costly in comparison to the established process 

 da Cruz Pradella, 2020 ). 
Abbreviations: AM, active mode; CLD, chain length distribution; CN, carbon to 

mmonium ratio; DAE, differential algebraic equation; DO, dissolved oxygen; EM, 

lementary mode; ESS, normalized error square sum; GM, generating mode; HB, 

onomer unit of poly(3-hydroxybutyrate); HCM, hybrid cybernetic model; HPLC, 

igh performance liquid chromatography; MW, molecular weight; PDI, polydis- 

ersity index; PHA, polyhydroxyalkanoate; PHB, poly(3-hydroxybutyrate); PHBV, 

oly(3-hydroxybutyrate-co-3-hydroxyvalerate); TBM, total biomass. 
∗ Corresponding author. 

E-mail address: stefanie.duvigneau@ovgu.de (S. Duvigneau). 
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In order to make the PHA process economically more compet- 

tive, many research is focused on process optimization strategies. 

or example, the use of inexpensive (or even free) substrates, such 

s waste animal fats, can not only make the process cheaper due 

o the free available substrate, but also reveal new, advantageous 

onditions for maximizing the PHA yield ( Riedel et al., 2015 ). Fur- 

her approaches for the use of waste feedstocks are summarized 

n the reviews ( Tsang et al., 2019; Koller and Braunegg, 2018 ) and

mpressively show the diversity of the production process by only 

ooking at the different substrates. In addition to minimizing the 

osts for the substrate, different process modes as well as mixed 

ultures are also investigated experimentally in order to increase 

io-plastic production ( Lopar et al., 2013; Sabapathy et al., 2020 ). 

In order to save time and costs for experimental investigations, 

athematical models can be used for analysis, for example to eval- 

ate suitable process or substrate conditions ( Jiang et al., 2011; 

ang et al., 2007; Chatzidoukas et al., 2013 ). Conventional kinetic 

odels neglect regulation and aim at a global description of sub- 

trate consumption and product yield dynamics ( Scandola et al., 

998; Dias et al., 2005; Koller et al., 2006 ). In contrast, cyber- 

etic modeling accounts for intracellular regulation, in particular 

ptimal regulation in view of available resources is assumed. Hy- 

rid cybernetic models (HCMs) combine cybernetic modeling and 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Table 1 

Cultivation conditions. 

Data set [FRU(0), ACE(0), NH 4 Cl(0)] in g/L DO Cultivation Volume 

I [22, 0, 1.7] 70% bioreactor 1.2 L 

II [26, 4.4, 1.4] 5% bioreactor 1 L 

III [0, 9.94, 1.4] 70% a shake flask 0.2 L 

a Assumed as controlled aerob cultivation with 70% dissolved oxygen (DO). 
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etabolic flux analysis in a systematic way ( Ramkrishna and Song, 

018; Song et al., 2009a ). 

An HCM approach was also used in the present paper to sim- 

late the substrate and product processes. Here, the homopolymer 

oly(3-hydroxybutyrate) (PHB) was produced in Cupriavidus neca- 

or using fructose and acetate, two carbon sources that occur in 

aste streams from e.g. juice or wine production. However, since 

t is not just the pure yield but also other polymeric properties, like 

edium chain length and polydispersity that determine the price 

f the polymer, model approaches should also take these into ac- 

ount. 

With the chain length distribution (CLD) physical properties 

f the produced polymer can be concluded ( Krevelen and te Ni- 

enhuis, 2009 ). The first model approaches to describe the poly- 

erization of PHB were developed by the research groups around 

rienc and later Kiparissides ( Mantzaris et al., 20 01; 20 02; Sali- 

kas et al., 2007; Roussos and Kiparissides, 2012; Penloglou et al., 

010; 2012a; 2012b; 2017; Kiparissides, 2004 ). A simplified ap- 

roach for the simulation of the CLD was also used in the present 

rticle ( Dürr et al., 2021 ) and coupled with the recently pub- 

ished HCM ( Duvigneau et al., 2021c ). In contrast to the model in

enloglou et al. (2010) , intracellular regulation was taken into ac- 

ount due to the HCM approach. In addition to the dynamics of 

ubstrates and product concentration, with the polymerization ap- 

roach it is now possible to observe the CLD over time and to de- 

ermine the characteristic variables of the distribution which affect 

olymeric properties, like weight average molecular weight (MW), 

ithin the production process. 

In the present work, the dynamic behavior of the PHB CLD is 

imulated in a setup using the carbon sources fructose and acetate 

nd ammonium chloride as nitrogen source. Here, disturbances 

aused by substrate pulses are considered in the simulations. In 

ddition, we use the approach to predict the PHB yield and the 

LD with the corresponding characteristic values at different dis- 

olved oxygen (DO) concentrations and carbon to ammonium (CN) 

atios. It is already known that the availability of oxygen has an 

nfluence on PHB production ( Pratt et al., 2012 ), and our approach 

ow additionally allows to investigate the composition of the pro- 

uced polymer chains without additional measurements. With the 

haracteristic values of the CLD such as weight average MW, num- 

er average MW or polydispersity index (PDI), material properties 

an be inferred and with that, explore possible application fields. 

. Experimental methods 

.1. Overview data sets and experimental setting 

For the parameter identification of the hybrid cybernetic model 

hree experimental data sets were used. The cultivation and ini- 

ial conditions of each data set are given in Table 1 . The analytical

rocedures to obtain substrate concentrations, PHB and biomass 

re described in the following sections. All experiments were per- 

ormed with Cupriavidus necator (H16, DSM 428) obtained from 

SMZ GmbH Braunschweig in M81 media at a constant temper- 

ture of 30 ◦C and pH 6.8. Bioreactor cultivations were performed 

n a DASGIP parallel bioreactor system (Eppendorf, Jülich). Before 

tarting the main cultivation in the bioreactor, the bacteria were 
2 
recultured at 30 ◦C and 150 rpm with 10 vol% filled 1 L shake 

asks with the same initial substrates as supplemented in the 

ain cultivation (see data set I + II in Table 1 ). For the experi-

ent with acetate as single carbon source (data set III) 1 L shake 

asks was filled with 200 mL culture and incubated at 30 ◦C and 

50 rpm for 120 h. 

.2. Substrate concentration 

For the determination of all substrate concentrations the su- 

ernatant after centrifugation of the biomass was used. The sub- 

trate acetate was obtained with an Agilent 1100 high performance 

iquid chromatography (HPLC). For this, the supernatants of each 

ample were filtered trough a 0.2 μm nylon membrane. After 

hat, 10 μL of the filtered supernatants were loaded on a reversed 

hase column (Inertsil 100A ODS-3, 5 μm pore size, 250 × 4 . 6 mm, 

Z-Analysentechnik GmbH, Mainz, Germany) and eluted isocrat- 

cally with 1 mL min 

−1 and 0.1 M NH 4 H 2 PO 4 at pH 2.6 and

0 ◦C . The ammonium concentrations were determined using an 

nzymatic test kit (Kit No. 5390, R-Biopharm AG, Darmstadt, Ger- 

any) and following the manufactures instructions. For data set 

I, fructose concentrations were determined by HPLC by loading 

0 μL of the filtered supernatants on a RHM monosaccharide col- 

mn (Phenomenex, Torrance, USA) and eluted isocratically with 

.6 mL min 

−1 deionidized water. The column oven was heated to 

0 ◦C and the refractive index detector was tempered to 60 ◦C . The 

ructose concentrations of the other two data sets were determined 

sing the enzymatic test kit (Kit No. 10139106035, R-Biopharm AG, 

armstadt, Germany) and following the manufactures instructions. 

.3. Polyhydroxybutyrate concentration 

Concentrations of hydroxybutyrate (HB) in the PHB poly- 

er were determined applying the procedure published in 

uvigneau et al. (2021c) using an Agilent 1260 HPLC. For this, 

 mL of the culture broth was alkaline digested as reported in 

atoh et al. (2016) . The samples were filtered through a 0.2 μm 

ylon membrane and 10 μL were loaded on the reversed phase 

olumn (Inertsil 100A ODS-3, 5 μm poresize, 250 × 4 . 6 mm, MZ- 

nalysentechnik GmbH, Mainz, Germany) and eluted isocratically 

ith 1 mL min 

−1 at 60 ◦C with 92% low concentrated H 2 SO 4 

0.025% solution, Carl Roth, Karlsruhe) and 8% acetonitrile (Carl 

oth, Karlsruhe). Detection was performed with a photodiode-array 

etector (G7115A, Agilent,Waldbronn, Germany) at 210 nm. The 

HB concentrations in the polymer chains of the samples were de- 

ermined by using crotonic acid (Carl Roth, Karlsruhe, Germany). 

n parallel, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) sam- 

le (12% 3-Hydroxyvalerate, Sigma-Aldrich /Merck, Darmstadt, Ger- 

any) with known concentration was measured to calculate the 

onversion yields as described in Duvigneau et al. (2021c) . 

.4. Determination of biomass 

For the determination of total biomass (TBM), 1 ml of culture 

roth was collected and centrifuged for 10 min at 9600 × g and 

 

◦C (VWR MicroStar 17R, Pennsylvania, USA). After that, the cell 

ellet was dried over night at 80 ◦C and weighted. 

. Mathematical modeling 

The developed metabolic framework includes two parts: a hy- 

rid cybernetic and a polymerization model. For the setup of the 

CM a metabolic model is necessary, that can be reduced using 

etabolic yield analysis ( Song and Ramkrishna, 2009 ). This is ex- 

lained in the next section. In contrast, the polymerization model 
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ccounts for the dynamics of the CLD (see Section 3.3 ). Both mod- 

ls are coupled and thus coupling conditions must be given to 

uild a linkage between HCM and polymerization kinetics (see 

ection 3.4 ). Finally, numerical solution of the coupled model is 

iscussed in Section 3.5 . 

.1. Metabolic model and yield analysis 

The metabolic model published in Franz et al. (2011) was up- 

ated using the data base KEGG ( KEG, 2020 ) and extended by 

he consumption of acetate as shown in Yu and Si (2004) . The 

esulting metabolic model used in this work was first presented 

n Duvigneau et al. (2020) . The metabolic reactions are shown in 

ppendix A . 

To use the stoichiometric information of the metabolic model 

n a hybrid cybernetic modeling approach, a suitable subset of re- 

ctions to describe the conversion from substrates to products is 

ecessary. The sets of reactions explaining the consumption of a 

ertain substrate to produce, e.g. biomass or PHB, are called ele- 

entary modes (EMs). EMs of our metabolic model were calcu- 

ated using the program Metatool 5.1 ( Metatool, 2019 ), resulting in 

 total number of 4857 EMs. In a next step, the calculated EMs 

eed to be classified into different sub-models according to the in- 

ut substrates in order to keep functionality of the overall model. 

his procedure was suggested in Song et al. (2009a) for the first 

ime and was also used for our case. After the definition of sub- 

odels the MATLAB command convhulln can be used to design the 

onvex hull in yield space for each of the sub-models. The con- 

ex hull is spanned by generating modes (GMs), which is defined 

s the relevant set of EMs of each submodel to describe process 

ynamics. For further information regarding the analysis in yield 

pace we refer to the publication of Song and Ramkrishna (2009) . 

or the presented model, 38 GMs were selected to describe the 

rocess dynamics. 

In a next step, further reduction takes place by selecting active 

odes (AMs) relevant to experimental data. The selection of AMs 

as done during the estimation of the parameters k r,i (explanation 

n the next section). With that, the set of GMs with the smallest 

ormalized error square sum (ESS, (1) ) was chosen as AM set used 

n the HCM. 

SS = 

n ∑ 

i =1 

(
x exp (t i ) − x sim 

(t i ) 

max ( x exp ) 

)2 

(1) 

he differences between n simulated and experimental data points 

 x sim 

and x exp ) at time t i were used to calculate the ESS. The ESS 

s weighted with the corresponding maximum experimental value. 

he vector x is defined as x = 

[
c f ru , c ace , c N , x HB , c 

]
. 

.2. Hybrid cybernetic model 

The dynamics for the fructose ( c f ru ), acetate ( c ace ) and am-

onium ( c N ) concentrations, the HB proportion of the total 

iomass x HB and the total biomass concentration c can be de- 

cribed by the following ordinary differential equations: 

d 

dt 

[ 

c f ru 

c ace 

c N 

] 

= S s Z r M 

c , 
d x HB 

dt 
= S HB Z r M 

, 
dc 

dt 
= μc . (2) 

he AM matrix in yield space for the substrates S S Z was deter- 

ined as described in the previous section. The values can be seen 

n Table B.1 . The influence of substrate availability in the i th AM 

an be expressed by the kinetic r M,i : 

 M,i = v i k r,i e rel 
i r core,i . (3) 
h

3 
he relative enzyme level e rel 
i 

of the i th AM is given in Eq. 7 . The

ate r core,i of the i th AM is a Monod-type kinetic consisting of math 

ractions for n consumed substrates s: 

 core ,i = 

s 1 
K s 1 + s 1 

· · · · · s n 

K s n + s n 
. (4) 

he hybrid cybernetic control variable v i describes enzyme activ- 

ty of the i th AM and can be calculated as shown in Eq. (9) . The

arameters k r for every AM can be found in Table B.2 . 

In order to use the metabolic information within the HCM, 

t is assumed that substrates and products have slow dynam- 

cs in comparison to internal metabolites and intermediates. For 

hat reason, dynamics of the latter can be neglected and no 

odel equations are needed for them. To describe the dynamics of 

iomass production using metabolic information, a definition for 

he growth rate μ with the rate vector r M 

, the AM vector S c Z (row 

 in Table B.1 ) for biomass production and an oxygen-dependent 

actor K μ is necessary. 

= S c Zr M 

K μ (5) 

he oxygen-dependent factor K μ describes the proportion between 

he growth rate of a certain DO level and the growth rate applying 

erobic conditions with a DO of 70%: 

 μ = 

μ( pO 2 ) 

μ(70%) 
with μ(pO 2) = −0 . 151 pO 2 + 0 . 256 . (6) 

he linear equation μ(pO 2) was developed with multiple datasets 

rom our lab (unpublished data). With the introduction of the fac- 

or K μ it is possible to introduce data sets with different oxygen 

vailability and investigate the process behavior at different DO 

evels. 

Beside the description of the substrate and product dynamics 

ifferential equations for enzymes of each AM are given as fol- 

ows 

de 

dt 
=α + r EM 

b − βe , where e rel 
i = 

e i 
e max 

i 

with e max 
i = 

αi + k e,i 

βi + k r,i ( S c Z ) i 
. 

(7) 

he enzyme levels increase with a constitutive enzyme synthesis 

ate α and the enzyme synthesis due to metabolic activity b = 1 −
 PHB (second term). Enzyme degradation by a protein turnover ( β) 

s given in the third term −βe . 

The kinetic rates r EM 

describe the enzyme synthesis due to 

etabolic activity and can be expressed for the i th AM as fol- 

ows: 

 EM ,i = u i k e,i r core ,i. (8) 

he rate r core,i expresses the influence of all consumed substrates 

s shown in Eq. (4) . The rate constants k e for all AMs are given in

able B.2 . 

One major advantage of the HCM approach is the ability to de- 

cribe intracellular regulation via enzyme synthesis and activity. 

or this, the hybrid cybernetic control variables for enzyme synthe- 

is and activity u and v are introduced and calculated as described 

n ( Young and Ramkrishna, 2007 ): 

 = 

p 

‖ 

p ‖ 1 

v = 

p 

‖ 

p ‖ ∞ 

. (9) 

he return on investment p can be calculated under the assump- 

ion that the bacteria always try to maximize carbon source up- 

ake. With that objective, p can be defined as 

 = diag ( f c ) diag 
(
e rel 

)
diag ( k r ) r core (10) 

he vector of uptaken carbon units f c is normalized by using the 

ighest carbon uptake ( f c (1)) and is illustrated in Table B.1 . 
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.3. Polymerization model 

To account for the dynamics of the CLD, the HCM is 

omplemented with a population balance model ( Vale and 

cKenna, 2005 ). Here, polymers are distinguished into active (liv- 

ng) and inactive (dead) polymer species. The dynamics of their 

LDs are described by 

d [ LP ] i 
d t 

= δ(i − 1) k ini [ HB - Syn ] ︸ ︷︷ ︸ 
init iat ion 

+ k m 2 [ HB ] 
(
[ LP ] i −1 − [ LP ] i 

)︸ ︷︷ ︸ 
propagation 

− k term 

[ LP ] i ︸ ︷︷ ︸ 
change 

d [ DP ] i 
d t 

= k term 

[ LP ] i ︸ ︷︷ ︸ 
change 

− k dep 

(
[ DP ] i − [ DP ] i +1 

)︸ ︷︷ ︸ 
d egrad ation 

(11) 

here [ ◦] i denotes the number density distribution of chains with 

istinct chain length i . Active polymer chains (LP) have the abil- 

ty to elongate after initiation of initial chain with length i = 1 . 

he corresponding rate constant is k ini . Termination of living poly- 

er chains of arbitrary length to inactive polymer chains (DP) 

ith rate constant k term 

is assumed to be independent of the 

hain length. Depolymerization, i.e. chain length shortening, can 

nly take place on inactive polymer chains (DP). In contrast to 

enloglou et al. (2017) , the species of intermediate polymers is ne- 

lected in our formulation. The dynamics of the monomer concen- 

ration and the monomer-synthase complex are given by 

d [ HB ] 

d t 
= −k 1 [ HB ] [ Syn ] − k m 2 [ HB ] 

∞ ∑ 

i =1 

[ LP ] i + M 

+ , 

d [ HB - Syn ] 

d t 
= k 1 [ HB ] [ Syn ] − k ini [ HB - Syn ] . (12) 

he equations above describe the coupling of a first monomer [ HB ] 

o a synthase dimer complex [ Syn ] with the rate constant k 1 . Af-

er successful attachment of the monomer to the enzyme complex, 

onversion to LP of length 1 takes place with k ini . Furthermore, 

onomers are required to elongate active polymers LP with the 

ate constant k m 2 . The monomer production rate M 

+ represents the 

eneration of new monomer units by metabolization of substrates. 

urther information is given in the next section. 

With abundance of synthase dimer complexes [ Syn ] the first 

erm in both equations reduces to 

 1 [ HB ] [ Syn ] = k m 1 [ HB ] . (13) 

urthermore, it is assumed that monomer units generated by de- 

olymerization of the DPs are directly converted into biomass and 

hus do not flow back into the pool of monomers as described in 

he equation above. For later computational implementation those 

re defined as “dead” monomers [ HB BIO ] and their overall balance 

s given as 

d [ HB BIO ] 

d t 
= 

∞ ∑ 

i =1 

k dep [ DP ] i . (14) 

ll constant parameter values for the polymerization model are 

iven in Table C.1 

.4. Coupling between HCM and polymerization model 

As a matter of fact, the polymerization kinetics (11) and 

12) can be implemented as an augmentation of the macroscopic 

etabolic model (2) –(10) . Dynamics of the first depend on the dy- 

amics of the latter and are coupled via the monomer production 

ate M 

+ , which must take values such that the overall model is 

onsistent, i.e., the total concentration of PHB (concentration of all 

onomers HB in all chains) from the polymerization model has to 
4 
atch its counterpart predicted by the macroscopic model at all 

imes. The corresponding algebraic condition reads as 

1 

MW HB 

m HB = 

∞ ∑ 

i =1 

i ( [ LP ] i + [ DP ] i ) (15) 

nd the corresponding derivative as 

1 

MW HB 

d m HB 

d t 
= 

d 

d t 

{ 

∞ ∑ 

i =1 

i ( [ LP ] i + [ DP ] i ) 

} 

 k ini [ HB - Syn ] + k m 2 [ HB ] 

∞ ∑ 

i =1 

[ LP ] i − k dep 

∞ ∑ 

i =1 

[ DP ] i ︸ ︷︷ ︸ 
r −

HB 
M W HB 

−1 

. (16) 

The degradation rate r −
HB 

can be derived from the HCM. Using 

his rate, the depolymerization rate parameter k dep for the poly- 

erization model can be calculated with the molecular weight of 

 HB monomer ( MW HB = 86 g/mol) as follows 

 dep = 

r −
HB 

MW HB 

∑ ∞ 

i =1 [ DP ] i 
. (17) 

n contrast to the model presented in Dürr et al. (2021) , the cur-

ent formulation omits steady state assumptions on the dynamics 

f monomers [ HB ] and monomer-synthase complex [ HB - Syn ] re- 

ulting in a differential algebraic system of equations for the com- 

ined polymerization and macroscopic model. The solution strat- 

gy is discussed in the next section. 

.5. Numerical solution approach 

While the macroscopic HCM represents a rather low dimen- 

ional system of ODEs, the polymerization model represents a 

igh dimensional ordinary differential equation system. In princi- 

le both models could be solved individually with appropriate nu- 

erical solution software, e.g., Matlab2019b , eventually after com- 

lexity reduction using (approximate) moment methods for the 

atter ( Dürr and Bück, 2020 ). However, solution of the combined 

odel formulation, i.e. macroscopic and polymerization dynamics, 

s more challenging. In fact, the overall multiscale model repre- 

ents a differential algebraic equation (DAE) system. In our previ- 

us publication ( Dürr et al., 2021 ), we chose a pragmatic solution 

pproach based on steady-state assumptions of the monomer and 

he monomer-synthase complex. Thereby, the DAE system could be 

educed to a set of ODEs. 

In this contribution, we abstain from the steady-state assump- 

ion and follow an alternative approach described in the follow- 

ng: The complete model solution can also be viewed in terms of a 

ontrol problem where a monomer production rate has to be de- 

ermined as a feedback control law 

 

+ = F ( e HB ) . (18) 

here, the error between the mass of PHB (mass of all HB 

onomers in all chains) predicted by the polymerization model, 

nd the reference value, i.e. the mass of HB computed with the 

CM, 

 HB = m HB − MW HB 

∞ ∑ 

i =1 

i ( [ LP ] i + [ DP ] i ) (19) 

s attenuated. Obviously, such an approach only represents the ap- 

roximate solution of the underlying DAE. In principle, any con- 

roller could be chosen, however its dynamics have to be fast and 

eliable to provide a reasonably accurate approximate solution to 
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Table 2 

Modules of the implemented PREDICI model. HB bio is the amount of polymer 

converted to biomass caused by degradation of inactive polymers DP. Only 

active polymers (LP) can prolong. 

Name Reaction Coefficient 

Elemental reaction HB → HB-Syn k m 1 
Initiation by decay HB-Syn → LP(1) k ini 

Propagation LP(i) + HB → LP(i + 1) k m 2 
Change LP(i) → DP(i) k term 

Degradation DP(i) → DP(i-1) + HB bio k dep 

Extraction DP(1) → HB bio k dep 
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he DAE system. The probably most pragmatic solution for the de- 

ign of the feedback law (18) is a PID control law 

 

+ (t) = K P e HB (t) + K I 

∫ t 

0 

e HB (τ ) d τ + K D ̇ e HB (t) . (20) 

ith some manual or rule-based tuning of the parameters an ac- 

urate solution can be obtained. The controller complexity suffi- 

ient for the simulations in this paper is a P-controller, parameters 

re given in Table C.2 . However, overall stability of the control sys- 

em is generally not guaranteed and thus performance in terms of 

he control error has to be monitored closely. Due to the one-way 

oupling, the model solution was implemented as follows: At first, 

he macroscopic part (HCM) was solved in MATLAB. The resulting 

verall PHB masses were exported to PREDICI where the previ- 

usly described polymerization model was implemented with the 

feedback”-solution to guarantee matching between the two model 

ypes. More information about the implementation and solution in 

REDICI is given in the next section. 

.6. Simulation of polymer systems in PREDICI 

PREDICI ( Wulkow, 2008 ) is a commercial software package for 

he general simulation of polymer kinetics and population bal- 

nces with discrete or continuous property coordinates, in particu- 

ar for chain-length distributions P i (t) (in the present context [ LP ] i 
nd [ DP ] i ). These distributions are efficiently approximated on the 

hain-length axis (index i ) by means of a self-adaptive Galerkin-h- 

-method. The Galerkin-FEM is connected to a special time loop 

hat discretizes first in time and then on the property axis with 

rids that may vary from time step to time step for maximal adap- 

ivity. The solved balances are entered in terms of modular reac- 

ion step patterns that allow arbitrary combinations. The system 

escribed in (11) and (12) consists of the reactions in Table 2 . 

The respective input in PREDICI principally leads to the equa- 

ions shown in (11) and (12) , but these are solved directly in the

pproximating space for any chain-length range. The treatment in 

REDICI includes all side balances of monomers and reactor vari- 

bles, in particular the closed mass balance, and also provides en- 

ineering operations like controllers. 

Since in the present model the monomer balance - that is al- 

eady connected to reaction steps - has to be controlled by the re- 

ults of the MATLAB model, an additional differential equation for 

 

HB ] has been added that in turn uses a controller (20) . By that the

onomer concentration is forced to be close to the path given by 

he PREDICI-external model. The results of the simulation are the 

ull chain-length distributions given for each single chain length, 

.e. [ LP ] i and [ DP ] i ( i = 1 , 2 , . . . , ∞ ) and all variables that can be de-

ived from them, in particular moments and important mean val- 

es. 

.7. Characteristic values of a chain length distribution 

In this contribution, we compare three common characteris- 

ic values of the distribution P i (t) : number average MW ( M 

P 
n (t) ),
5 
eight average MW M 

P 
w 

(t) and polydispersity index (PDI). All of 

hem can be calculated by using the zeroth, first and/or second 

tatistical moment of the distribution. The general rule to calcu- 

ate the k th moment for a general chain-length distribution P i (t) 

s: 

p 

k 
(t) = 

∞ ∑ 

i =1 

i k · P i (t) . (21) 

he definitions for calculating the characteristic values of a distri- 

ution are: 

 

P 
n (t) = 

λp 
1 
(t) 

λp 
0 
(t) 

· M 

P 
M 

, (22) 

 

P 
w 

(t) = 

λp 
2 
(t) 

λp 
1 
(t) 

· M 

P 
M 

, (23) 

DI = 

M 

P 
w 

(t) 

M 

P 
n (t) 

. (24) 

he average molecular mass per monomer unit M 

P 
M 

corresponds to 

he molar mass of a monomer in case of producing polymers with 

nique monomers, e.g. the homopolymer PHB. For the presented 

odel, the characteristic values are computed for the overall poly- 

er, i.e., the sum of active and inactive polymer chains 

 i = [ LP ] + [ DP ] i . (25) 

ote, that the first moments of the individual polymeric species 

 

LP ] i and [ DP ] i are already used in (15) and related balances. 

. Results 

In the following, we apply the presented multiscale model ap- 

roach to PHB production using fructose and acetate as carbon 

ources and ammonium chloride as nitrogen source. Once the ni- 

rogen concentration is almost zero, PHB is accumulated in the 

ells by conversion of the given carbon sources. Disturbances such 

s an ammonium chloride shot or an increase of one or both car- 

on source concentrations introduced by the operator of the ex- 

erimental plant were made to challenge the model with different 

iological behaviors. 

In the following, we show and discuss the performance and 

utcomes of the two parts of the multiscale model. First, the 

acroscopic HCM is used to simulate the substrate and product 

ynamics from the above described experimental setting. Then, the 

etup was evaluated with regard to the CLD and their characteristic 

alues using the polymerization model. Finally, we use our estab- 

ished model to investigate different CN ratios and DO levels on 

aximum PHB yield and the corresponding chain length distribu- 

ions. 

.1. HCM simulation 

In the first step, a kinetic model is required, which describes 

he degradation of substrates and the production of PHB and 

iomass on a macroscopic level. The simulation result for the con- 

entration profiles using our recently published HCM can be seen 

n Fig. 1 ( Duvigneau et al., 2021b ). The model is able to quali-

atively reflect the experimental data (diamond) for the substrate 

egradation, the polymer accumulation and non-PHB biomass 

rowth. Additionally, the approach can account for pulsed sub- 

trate changes. 

Next, the simulated macroscopic PHB concentration as well 

s the PHB consumption rates are extracted and loaded into the 

REDICI as described in the previous section. To ensure the con- 

ervation of mass ( Eq. (19) ) of the two model parts, a controller 
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Fig. 1. Model simulation and experimental data set (fructose and acetate co- 

feeding, diamonds) using the HCM approach. Legend: FRU, fructose; NH 4 Cl, am- 

monium chloride; ACE, acetate; BIO, total biomass; PHB, polyhydroxybutyrate. All 

concentrations are given in g/L. 
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Fig. 2. Chain length distributions for the experiment with two initial carbon 

sources and disturbances. 

Fig. 3. Total monomer concentration of all chain lengths based on polymerization 

model and HCM. 
as used in the polymerization approach ( Eq. (20) ). The parame- 

ers of the PI controller were set for the simulations in a way that 

he conservation of mass is fulfilled as precisely as possible. This is 

articularly challenging when abrupt changes in the process setup 

re present, e.g., in the present setting due to the pulses with am- 

onium chloride. The performance of the controller with regard to 

he conservation of mass of the two models is shown in Fig. 3 . 

.2. Polymer chain length dynamics 

With the polymerization model, chain length distributions can 

e simulated, evaluated at different times ( Fig. 2 ) and their charac- 

eristic values can be determined ( Fig. 4 ). The characteristic quan- 

ities presented in this article are number average MW, weight av- 

rage MW and the PDI. 

Focusing on the chains’ MW, one can choose whether a certain 

ime point is illustrated or the whole chain molecular weight dy- 

amics in the 3D plot is shown ( Fig. 2 a and b). Characteristic time

oints were selected in Fig. 2 a. If one compares the selected dis- 

ributions at 12 h with the corresponding molar PHB concentra- 

ions of the model ( Fig. 3 ), it can be seen that the shown distribu-

ion at 12 h is in the first PHB production phase. The PHB produc- 

ion in this phase is an interesting phenomenon, which can also 

e seen in the experimental data and thus, provides an indication 

hat the cellular polymerases were already synthesized and active, 
6 
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Fig. 4. Characteristic values of the distribution from the model data using fructose and acetic acid as carbon sources. 
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lthough there was still sufficient amount of ammonium chloride 

n the medium. Acetate was the preferred substrate in this first 

hase ( Fig. 1 ). The characteristic values shown in Fig. 4 correspond 

o the literature values from PHB ( Sudesh et al., 20 0 0; Brandl et al.,

990; Peña et al., 2014 ). 

According to the definition provided in Peña et al. (2014) , the 

roduced PHB belongs to “polymers with ultra high molecular 

eight”, which is characterized by a tensile strength that is above 

he usual value of polypropylene. The peak in the CLD at 12 h 

t a molecular weight of approx. 2.1 10 
5 

g/mol is probably due 

o the initial distribution for active polymers (LP) shown in Ap- 

endix Fig. C.1 , which has not been completely degraded by the 

epolymerases at this point. After another 4.5 h, i.e. after a pro- 

ess time of 16.5 h, the maximum PHB concentration in the first 

lateau is reached. The maximum of the distribution has increased 

nd the peak of the starting population has disappeared. Except 

or a slight broadening of the population ( Fig. 2 b), the properties 

f the distribution have not changed significantly. With the distri- 

ution at 24 h, a snapshot was recorded showing the PHB mini- 

um between the two increases. At this time point, the distribu- 

ion is very disperse (PDI approximately 3), since all chains were 

egraded simultaneously and thereby, the weight average MW ini- 

ially decreases significantly more than the number average MW. 

urther selected time points show the state at PHB concentration 

aximum at 31.25 h and the state after degradation at 34.75 h 

fter a shot with fructose and nitrogen (see Figs. 1 and 3 ). The dis-

ribution after degradation shows higher molecular weight chains, 

hich makes the distribution appear unsymmetrical. Compared to 

he previous distributions, the last distribution at 40 h has more 

olymer chains that are larger than 10 6 g/mol. From this, it can 

e concluded that the repeated polymerization and breakdown of 

olymer chains facilitates the formation of high molecular weight 

HB. If one aims at monodisperse distributions (small PDI), which 

ould be a desirable production goal due to the broad options in 

arious process applications, one should refrain from such process 

ontrol strategies. 

.3. Computational study: effects of different CN ratios and DO levels 

With the developed HCM approach it is possible to evaluate dif- 

erent CN ratios with different oxygen availability, since biomass 

rowth was related to the DO level ( Eq. (6) ) as investigated in

uvigneau et al. (2021b) . Fig. 5 of this contribution shows three 

elected curves, one for an aerobic DO of 70%, an O 2 availability 

f 20% and a quasi-anaerobic process setting with 0.1% DO. The 

alue of 20% DO was chosen by comparison with the investigation 

resented in Chatzidoukas et al. (2013) , where the maximum PHB 

ontent for different DOs was investigated experimentally. In the 

resent simulation study, the following can be stated: 

• The smaller the dissolved oxygen, the more PHB can be formed 

after 120 h with the corresponding initial substrate concentra- 

tions. 
7 
• With lower oxygen availability, the ammonium chloride con- 

centration can be reduced accordingly, so that more carbon is 

available for the accumulation of PHB. The optimal ratio de- 

pends on the DO, since the availability of oxygen has a strong 

influence on the biomass production. 

With the two adjustable screws, an optimal balance between 

on-PHB biomass formation, which is essential for accumula- 

ion, and PHB accumulation can be found. Chatzidoukas and 

oworkers investigated this with another Cupriavidus necator strain 

 Chatzidoukas et al., 2013 ): Therein, the ammonium sulfate con- 

entration (nitrogen source) was varied and the availability of 

arbon remained the same, a similar dynamics as shown in 

ur Fig. 5 was found. Our results differ in the influence of the 

vailability of oxygen: In Chatzidoukas’ article, a clear optimum 

an also be found here at approx. 20% DO, while our model 

chieves even higher PHB concentrations with decreasing DOs 

 Chatzidoukas et al., 2013 ). On the one hand, this can be due 

o the different strains; on the other hand, our model is sim- 

lified to the extent that the formation of anaerobic metabolic 

roducts (succinate, fumerate, etc.) were not taken into ac- 

ount. In future work, the model prediction should be validated 

xperimentally. 

Due to the coupling of the HCM with the polymerization model 

t is now possible to evaluate not only the PHB concentration at 

 certain time point, it also allows to calculate the CLD and its 

haracteristic values ( Figs. 6–9 ). The Figs. 6–8 show weight aver- 

ge MW, number average MW and PDI for the CN ratios marked 

n Fig. 5 and the respective DOs: 70%, 20% and 0.1%. Independent 

f the DO, a dependency on the CN ratio can be seen in Figs. 6–

 : A decrease of the CN ratio resulted in higher number average 

W and weight average MW at 120 h. Further, it can be stated, 

hat regardless of the oxygen supply and CN ratio, the PDI value 

s at approximately 2, which is typical for PHB ( Sudesh et al., 

0 0 0 ). If the results of the different DOs are compared with an-

ther, the values for number average MW and weight average MW 

ncrease the less oxygen is available. Fig. 9 shows the dynamics 

f the CLD over the molecular weight of the chains and time. 

ere, the PHB accumulation begins later, the higher the DO and 

he lower the CN ratio is set. This effect can be explained from 

 biological point of view as follows: Due to a high availability 

f oxygen and a higher ammonium concentration, more carbon 

an be converted into non-PHB biomass over a longer time frame. 

nough biomass is required to accumulate a sufficient amount 

f PHB. However, this is a sensitive balance that can be care- 

ully investigated using the model presented here. With the help 

f the polymerization kinetics one reduces not only the amount 

f necessary bioreactor experiments to find the optimal DO and 

N ratios, but also time and cost-intensive analysis, such as the 

valuation of the polymer produced by using e.g. size exclusion 

hromatography. 
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Fig. 5. Maximum PHB concentration in dependency of the initial carbon to ammonium (CN) ratio for three dissolved oxygen concentrations. For the simulation, we chose 

three CN ratios for each DO value (triangles, squares, asterisks). 

Fig. 6. Characteristic values of the distribution using a DO Level of 70% and different carbon to ammonium (CN) ratios. 

Fig. 7. Characteristic values of the distribution using a DO Level of 20% and different carbon to ammonium (CN) ratios. 

Fig. 8. Characteristic values of the distribution using a DO Level of 0.1% and different carbon to ammonium (CN) ratios. 

8 
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Fig. 9. Dynamic behavior of chain length distribution applying different DOs and optimal CN ratios (see Fig. 5 ). 
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. Conclusion 

Multiscale modeling including metabolic information and poly- 

erization kinetics represents an important step towards tailor- 

ade biopolymers. The approach presented in this work couples 

n HCM with a polymerization model and thus, can describe not 

nly the yields but also the CLD dynamics. The CLD provides im- 

ortant information about the properties of the polymer. In the 

resent article the CLD dynamics of PHB production with fruc- 

ose and acetate as carbon sources was simulated. The results have 

hown that, among other things, cyclic polymerization and degra- 

ation of PHB is useful to increase the final average molecular 

eight of the polymer chains. If one compares the average MW 

ith data from the literature, it can be concluded that some prop- 

rties (e.g. tensile strength) are similar to those of polypropylene 

 Peña et al., 2014 ). 

In addition to the simulation of the CLD from the experiment 

ith fructose and acetate, a simulation study with different CN 

atios and DO levels was carried out. Here, the following can be 

oncluded: The smaller the DO selected, the more PHB could be 

roduced with a simultaneous decrease of the initial nitrogen con- 

entration. The evaluation of the characteristic values of the CLD 

hows that the mean molecular weights at high CN ratios (small 

mmonium chloride concentrations) are smaller than at lower CN 

atios, assuming the constant DO level for both. Finally, the follow- 

ng general statement can be made: The final process settings de- 

end on the requirements with respect to the yield and the quality 

f the polymers. 

Future work will deal with extension of the presented model 

or copolymer production. A recently developed model describing 

opolymer PHBV production considering exhaust CO 2 provides an 

xcellent starting point ( Duvigneau et al., 2021a ). Further focus will 

e on estimation of kinetic parameters from the polymerization ki- 
9 
etics using own experimental data. In addition to the pure model 

ormulation, direct relation of biopolymer composition and CLD on 

he one hand and physical as well as chemical properties of the 

roduct polymers on the other hand are still an open field and re- 

uire deeper research efforts. Extended model formulation may re- 

ult in multi-dimensional population balance equations which re- 

uire tailored efficient solution methods ( Dürr et al., 2017 ). 
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ppendix A. Metabolic model 

No. Reaction 

1 FRU + PEP + ATP −→ F16P + PYR + ADP 

2 F16P −→ F6P 

3 F16P ←→ 2 G3P 

4 AMC −→ NH 3 

5 G6P + 2 NADP −→ Rl5P + CO 2 + 2 NADPH 

6 Rl5P ←→ R5P 

7 Rl5P ←→ X5P 

8 X5P + R5P ←→ S7P + G3P 

9 S7P + G3P ←→ E4P + F6P 

10 X5P + E4P ←→ G3P + F6P 

11 F6P ←→ G6P 

12 G3P + NAD + ADP ←→ 3PG + NADH + ATP 

13 3PG ←→ PEP 

14 PEP + ADP ←→ PYR + ATP 

15 OXA + ATP ←→ PEP + ADP + CO 2 

16 PYR + NAD ←→ AcCoA + NADH + CO 2 

17 AcCoA + OXA ←→ ISC 

18 ISC + NADP ←→ αKG + NADPH + CO 2 

19 αKG + NAD −→ SucCoA + NADH + CO 2 

20 SucCoA + ADP ←→ SUC + ATP 

21 SUC −→ SUCx 

22 SUC + FAD ←→ MAL + FADH 

23 MAL + NAD ←→ OXA + NADH 

24 MAL + NADP ←→ PYR + CO2 + NADPH 

25 PYR + ATP −→ OXA + ADP 

26 ISC −→ SUC + GOX 

27 AcCoA + GOX −→ MAL 

28 NH 3 + αKG + NADPH ←→ GLU + NADP 

29 GLU + NH 3 + ATP ←→ GLN + ADP 

30 2 AcCoA ←→ AcAcCoA 

31 AcAcCoA + NADPH −→ HB + NADP 

32 ACE + ATP ←→ AcCoA + AMP 

33 HB + NAD ←→ AcACE + NADH 

34 ACE + SucCoA ←→ AcAcCoA + SUC 

35 AcACE + ATP −→ AcCoA + AMP 

36 2 NADH + O 2 + 4 ADP −→ 2 NAD + 4 ATP 

37 ATP + AMP ←→ 2 ADP 

38 2 FADH + O 2 + 2 ADP −→ 2 FAD + 2 ATP 

39 0.21 G6P + 0.07 F6P + 0.9 R5P + 0.36 E4P + 0.13 G3P + 1.5 3PG + 

0.52 PEP + 2.83 PYR + 3.74 AcCoA + 1.79 OXA + 8.32 GLUT + 0.25 

GLUM + 41.1 ATP + 8.26 NADPH + 3.12 NAD −→ BIO + 7.51 αKG 

+ 2.61 CO2 + 41.1 ADP + 8.26 NADP + 3.12 NADH ( Katoh et al., 

1999 ) 

etabolite abbreviations 

3PG 3-phosphoglycerate 

αKG alpha-ketoglutarate 

ACE acetate 

AcACE acetoacetate 

AcAcCoA acetoacetyl CoA 

AcCoA acetyl CoA 

ADP adenosine diphosphate 

ATP adenosine triphosphate 

AMP adenosine monophosphate 

AMC ammonium chloride 

BIO residual biomass 

CO 2 carbon dioxide 

E4P erythrose-4-phosphate 

F16P fructose-1,6-bisphosphate 

F6P fructose-6-phosphate 

FAD flavin adenin dinucleotide, oxidized 

FADH flavin adenin dinucleotide, reduced 

FRU fructose 

G3P glyceraldehyde-3-phosphate 

G6P glucose-6-phosphate 

GLN glutamine 

GLU glutamate 

GOX glyoxylate 

HB hydroxybutyrate 
10 
ISC isocitrate 

MAL malate 

NAD nicotinamide adenine dinucleotide (ox.) 

NADH nicotinamide adenine dinucleotide (red.) 

NADP nicotinamide adenine dinucleotide phosphate (ox.) 

NADPH nicotinamide adenine dinucleotide phosphate (red.) 

NH 3 ammonia 

O 2 oxygen 

OXA oxaloacetate 

PEP phosphoenol pyruvate 

PYR pyruvate 

R5P ribose-5-phosphate 

Rl5P ribulose-5-phosphate 

S7P sedoheptulose-7-phosphate 

SUC succinate 

SucCoA succinyl-CoA 

SUCx succinate, external 

X5P xylulose-5-phosphate 

ppendix B. Hybrid cybernetic model 

able B.1 

alues for the yields in g/gC of the matrix SZ subdivided into different subsections: 

ubstrates S S Z (1), HB S HB Z (2) and total biomass S c Z (3). Furthermore the normal-

zed vector of uptaken carbon units f c is shown. 

AM 1 2 3 4 5 6 7 8 9 10 11 

Y f ru −2 .50 −0 .28 −2 .50 −2 .44 −0 .40 −1 .29 0 .00 0 .00 0 .00 0 .00 −2 .50 

Y ace (1) 0 .00 0 .00 0 .00 −0 .06 −0 .09 −1 .19 −0 .01 −2 .46 −2 .46 0 .00 0 .00 

Y N −0 .64 −0 .73 0 .00 −0 .75 −0 .50 0 .00 −0 .33 −0 .51 0 .00 −0 .001 −0 .77 

Y HB (2) 0 .31 −1 .59 1 .19 0 .00 −1 .44 0 .25 −1 .78 0 .00 1 .19 −0 .021 0 .00 

Y c (3) 1 .66 −0 .05 1 .19 1 .58 –0 .38 0 .25 −1 .08 1 .08 1 .19 −0 .018 1 .63 

f c 1 .00 0 .75 1 .00 1 .00 0 .83 0 .99 0 .72 0 .98 0 .98 0 .01 1 .00 

able B.2 

inetic parameters for the hybrid cybernetic model. 

Parameter Unit Value Parameter Unit Value 

estimated 

k r, 1 [1/h] 7 . 67 × 10 −2 k r, 7 [1/h] 1.451 

k r, 2 [1/h] 8 . 85 × 10 −1 k r, 8 [1/h] 0.433 

k r, 3 [1/h] 4 . 68 × 10 −2 k r, 9 [1/h] 0.426 

k r, 4 [1/h] 8 . 79 × 10 −2 k r, 10 [1/h] 3.154 

k r, 5 [1/h] 1 . 47 × 10 −1 k r, 11 [1/h] 0.197 

k r, 6 [1/h] 6 . 16 × 10 −1 

fixed 

k e [1/h] 0 . 1 15 x 1 

α [1/h] 0 . 01 k e 
β [1/h] 5 15 x 1 

K N [g/L] 0.01 

K FRU [g/L] 0.06 

K ACE [g/L] 0.03 

K HB [g/L] 0.05 

ppendix C. Polymerization model 

Table C.1 . 

Table C.1 

Parameters of the polymerization model. 

Parameter Unit Value 

k ini [1/h] 6 . 3 × 10 3 

k m 1 [1/h] 1 . 1 × 10 4 

k m 2 [1/h] 8 . 6 × 10 6 

k term [1/h] 1.4 

k deg [1/h] 83 
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Table C.2 

Parameters of the controller ( Eq. (20) ). 

Setting K P Figure 

CLD simulation/experiment 5 (2) , ( 3 ), ( 4 ) 

Different DO and CN ratios 1.3 (6) , ( 7 ), ( 8 ), ( 9 ) 
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Fig. C.1. Normal distribution for the LP. 
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