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Electro-optical trap for polar molecules
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A detailed treatment of an electro-optical trap for polar molecules, realized by embedding an optical trap
within a uniform electrostatic field, is presented and the trap’s properties analyzed and discussed. The electro-
optical trap offers significant advantages over an optical trap that include an increased trap depth and conversion
of alignment of the trapped molecules to marked orientation. Tilting the polarization plane of the optical field
with respect to the electrostatic field diminishes both the trap depth and orientation and lifts the degeneracy of the
±M states of the trapped molecules. These and other features of the electro-optical trap are examined in terms
of the eigenproperties of the polar and polarizable molecules subject to the combined permanent and induced
electric dipole interactions at play.
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I. INTRODUCTION

Although keenly anticipated almost three decades ago
[1,2], the heyday of optical trapping of molecules arrived only
recently along with the techniques to laser-cool molecular
translation down to the ultracold regime (less than or equal to
1 mK) (see Refs. [3–15] as well as recent reviews in [16–18]).
However, optical traps had been loaded as early as 1998 with
ultracold molecules produced by dimer formation from ultra-
cold atoms in a magneto-optical trap [19] and in the 2000s by
magnetoassociation [20–22] or by photoassociation [23,24] of
ultracold atoms.

Based on high-field-seeking states created by the purely
attractive interaction of molecular polarizability with a far-off-
resonant optical field, optical traps have been coveted for their
ability to trap ground-state molecules (as these are always
high-field seeking) as well as their versatility (weak species
dependence). The reliance of optical traps on a maximum
of electric field strength in free space produced by focusing
a laser beam circumvents limitations on molecular trapping
imposed by Earnshaw’s theorem for magnetic and other traps
based on low-field seekers (see, e.g., Refs. [25,26]).

Among the recently demonstrated advantages of optical
traps (or of optical tweezers, their variant that makes use
of tight diffraction-limited focusing of the optical field) are
long coherence times of the trapped samples [27]. These
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are key to such applications as searches for physics beyond
the standard model [28] and quantum computing and quan-
tum simulation [29–31]. At the same time, optical traps are
compatible with laser [32] and sideband [33] cooling of the
trapped molecules as well as with control of the molecules’
mutual interactions [34–36], both critical to achieving quan-
tum degeneracy in molecular systems [37]. The compatibility
of optical traps also extends to optical imaging of the trapped
molecules [38] as well as to optical cavities [39]. Finally,
optical tweezers have played a central role as “beakers” for
building molecules atom by atom via photoassociation and
in studying the detailed dynamics of the collisional processes
involved [40,41].

In addition, an optical trap makes the trapped molecules di-
rectional, i.e., aligned, by virtue of the anisotropic interaction
of the molecular polarizability with the polarization vector of
the optical trapping field [42,43]. If the trapped molecules are
polar, their alignment (which corresponds to a double-headed
arrow) by the optical field can be converted to orientation
(corresponding to a single-headed arrow) by superimposing
an electrostatic field [44–46]. Polar molecules confined in
tweezer arrays [47,48] entangled via the electric dipole–dipole
interaction between the molecules have been envisioned as
platforms for quantum computing with the oriented molecular
states serving as qubits [30,49].

Herein we provide a detailed quantum treatment of the
optical trap for molecules and extend it to the case when the
optical trap is embedded within a uniform electrostatic field.
For polar molecules, the resulting electro-optical trap offers
significant advantages over trapping by an optical field alone
that include increased trap depth, apart from orienting the
trapped molecules. The quantum effects involved in increas-
ing the effective inhomogeneity of the optical field (due to a
focused Gaussian laser beam) by a uniform electrostatic field
as well as the enhancement of molecular orientation due to
the electrostatic field by the optical field have been of interest
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FIG. 1. Electrostatic field ε1 and optical field ε2 of a linearly
polarized laser acting jointly on the molecular dipole moment μ and
the parallel α‖ and perpendicular α⊥ components of the molecular
polarizability. Also shown are the polar angle θ between the space-
fixed axis Z , as defined by the common direction of the field vectors,
and the body-fixed (molecular) axis z, as well as the projection M of
the angular momentum J on the Z axis together with the uniformly
distributed azimuthal angle φ of J ⊥ z about Z . For further details
see the text and Appendix A.

in their own right [50–52] and will be laid out and explored
below in the context of molecular trapping.

This paper is structured as follows. In Sec. II the permanent
and induced dipole interactions are introduced and the corre-
sponding molecular potentials derived for a far-off-resonant
Gaussian optical field and a uniform electrostatic field. Sec-
tion III treats the eigenproblem of a polar and polarizable
rigid rotor subject to the combined permanent and induced
electric dipole potentials. Sections III A and III B present the
eigenproperties due to the induced dipole potential alone and
due to the combined permanent and induced dipole potentials,
respectively. Included is a table of molecular constants for a
selection of polar molecules together with their relation to the
dimensionless parameters used to characterize the strengths
of the permanent and induced dipole interactions. Section IV
explores the properties of the optical trap (Sec. IV A) and
of the electro-optical trap (Sec. IV B) as given by the para-
metric dependence of the eigenvalues of the corresponding
Hamiltonians on the spatial coordinates. Section IV C deals
with the electro-optical trap in the harmonic approximation.
Finally, trapping in perpendicular optical and electrostatic
fields is treated in Sec. IV D. Section V provides a summary of
the present work and extols its most promising applications.
Appendixes A and B provide details of the derivations and
calculations presented in this paper.

II. PERMANENT AND INDUCED ELECTRIC DIPOLE
INTERACTIONS

We consider a polar and polarizable linear rotor subject to
a combination of an electrostatic field ε1 = (ε1,X , ε1,Y , ε1,Z )
and a far-off-resonant or nonresonant optical field ε2 =
(ε2,X , ε2,Y , ε2,Z ) and assume that the fields only possess
nonzero components ε1,Z ≡ ε1 and ε2,Z ≡ ε2 along the Z axis
of the space-fixed frame (X,Y, Z ) (see Fig. 1). For a molecule
whose permanent dipole moment μ = (μx, μy, μz ) has only
a nonvanishing z component μz ≡ μ in the body-fixed frame

(x, y, z) and whose polarizability tensor α,

α =
⎛
⎝αxx 0 0

0 αyy 0
0 0 αzz

⎞
⎠, (1)

has principal components αxx = αyy ≡ α⊥ < αzz ≡ α‖ in that
frame, the permanent and induced dipole potentials are given,
respectively, by

Vμ(θ ) = −μ(ε1 + ε2) cos θ (2)

and

Vα (θ ) = −(ε1 + ε2)2(�α cos2 θ + α⊥), (3)

where θ is the polar angle between the body- and space-fixed
axes z and Z and �α ≡ α‖ − α⊥ (see also Appendix A). In
what follows we assume that ε2 is due to a far-off-resonant
electromagnetic wave plane polarized along the space-fixed
axis Z ,

ε2 = ε0 cos(2πνt ), (4)

where ε0 is the wave’s amplitude and ν its frequency. Then, for
nonresonant frequencies much greater than the reciprocal of
the time τ the field is on, ν � τ−1, averaging over τ quenches
the permanent dipole interaction with ε2,

V μ(θ ) = 1

τ

∫ τ

0
Vμdt = −με1 cos θ, (5)

and converts ε2
2 in the polarizability term to 1

2ε2
0,

V α (θ ) = 1

τ

∫ τ

0
Vαdt = −1

2
ε2

0�α cos2 θ − 1

2
ε2

0α⊥, (6)

where we made use, in addition, of the disparity in the magni-
tudes of the electrostatic and optical fields, ε1 � ε2.

A Gaussian laser beam [53] of power P plane-polarized
along the Z axis propagating along the X axis and focused to
a waist w0 has an intensity I (X, Z ),

I (X, Z ) = 2P

πw2(X )
exp

(
− 2Z2

w2(X )

)

= I0

1 + (
X
XR

)2 exp

(
− 2Z2

w2(X )

)
, (7)

with

w(X ) = w0

[
1 +

( X

XR

)2]1/2

, (8)

where

XR ≡ πνw2
0

c
(9)

is the Rayleigh length and I0 ≡ I (0, 0) the maximum beam
intensity. The Gaussian beam gives rise to an electric field
amplitude along the Z axis

ε0 =
(

2I

ε0c

)1/2

, (10)

where ε0 is the electric permittivity and c the speed of light
in vacuum. As a result, the induced dipole optical potential
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TABLE I. Molecular parameters of representative linear molecules. Also given are the values of the permanent η and induced dipole �ζ

interaction parameters at chosen values of the electrostatic field ε and laser intensity I . Note that η = 0.0168μ (D) ε1 (kV/cm)/B (cm−1) =
5.05 × 102μ (D) ε1 (kV/cm)/B (MHz), ζ‖,⊥ = 1.05 × 10−11I (W/cm2) α‖,⊥ (Å3)/B (cm−1) = ζ‖,⊥ = 3.15 × 10−7I (W/cm2) α‖,⊥ (Å3)/B
(MHz). In particular, ε0 (kV/cm) = 1.941 × 10−2I (W/cm2). For a laser power P = 0.4 W at λ = c/ν = 780 nm focused to a waist w0 = 2λ,
the laser intensity I ≈ 1 × 107 W/cm2; for a polarizability anisotropy �α = 1 Å3 and rotational constant B = 1 cm−1, the dimensionless
interaction parameter �ζ ≈ 10−4. The conversion factor for the rotational period τr = π h̄

B is τr (ps) = 16.65/B (cm−1) = 4.98 × 105/B (MHz).
The table lists only static polarizabilities, with estimates based on bond polarizabilities in parentheses [54] as well as Refs. [55,56].

Molecule B (cm−1) μ (D) η at 10 kV/cm �α (Å3) �ζ at I = 1 × 107 W/cm2 τr (ps)

CsF(X 1�) 0.1843 7.87 7.17 (3.0) (0.0163) 90.33
ICN(X 1�) 0.1075 3.72 5.81 (7.0) (0.0651) 154.87
LiCs(X 1�) 0.188 5.52 4.93 49.5 0.2633 88.56
NaK(X 1�) 0.091 2.76 5.10 39.5 0.4341 182.95
KCs(X 1�) 0.033 1.92 9.77 64.6 1.9576 504.51
RbCs(X 1�) 0.016 1.27 13.34 72.8 4.5500 1040.54
ICl(X 1�) 0.1142 1.24 1.82 (9.0) (0.0788) 145.79
CO(A 3�) 1.681 1.37 0.14 (1.5) (0.0009) 9.90
OCS(X 1�) 0.2039 0.709 0.58 4.1 0.0201 81.65
KRb(X 1�) 0.032 0.76 3.99 54.1 1.6906 520.27
LiNa(X 1�) 0.38 0.566 0.25 24.7 0.0650 43.81
NO(X 2�) 1.703 0.16 0.016 2.8 0.0016 9.78
CO(X 1�) 1.931 0.10 0.009 1.0 0.0005 8.62
HD(X 1�) 45.644 5 × 10−4 2 × 10−6 0.305 6.7×10−6 0.36

V α (θ ) becomes

V α (θ ) = − I

ε0c
(�α cos2 θ + α⊥). (11)

The polarizability components α‖ and α⊥ depend on the
frequency ν of the laser field. A detailed treatment of this
dependence and more has been given in Refs. [18,33]. Static
polarizabilities, such as those listed in Table I, approximate
well the dynamic ones at low-enough laser frequencies [cf.
Eq. (76) of Ref. [18]]. The theory of electric multipole mo-
ments has been reviewed in Ref. [57]. We note that for tight
focusing of the optical field, linear polarization may not be
achievable [53], in which case an interaction with additional
components of the polarizability tensor of the molecule be-
yond those included in Eq. (A9) has to be considered.

III. EIGENPROBLEM FOR A POLAR AND POLARIZABLE
RIGID-ROTOR MOLECULE SUBJECT TO COMBINED

PERMANENT AND INDUCED ELECTRIC DIPOLE
INTERACTIONS

The Hamiltonian of a 1� rigid-rotor molecule subject to
the combined permanent and induced dipole potentials of
Eqs. (5) and (11) is given by

H = BJ2 + V μ + V α, (12)

where J2 is the operator of the angular momentum squared
and B is the rotational constant [42,43,46]. By dividing
through B, the Hamiltonian becomes dimensionless,

H

B
= J2 + V μ

B
+ V α

B
. (13)

In particular, the dimensionless potentials become

V μ(θ )

B
= −η cos θ (14)

and

V α (θ )

B
= −�ζ cos2 θ − ζ⊥, (15)

where

η ≡ με1

B
, ζ‖,⊥ ≡ I

ε0cB
α‖,⊥, �ζ ≡ ζ‖ − ζ⊥ (16)

are dimensionless parameters that characterize the strengths
of the permanent and induced dipole (polarizability) interac-
tions.

The eigenenergies EJ̃,|M|/B and eigenfunctions
|J̃, |M|; η,�ζ 〉 obtained from the Schrödinger equation per-
taining to the dimensionless Hamiltonian (13)

H

B
|J̃, |M|; η,�ζ 〉 = EJ̃,|M|

B
|J̃, |M|; η,�ζ 〉 (17)

are arbitrarily “transferrable” for given values of the interac-
tion parameters from one molecular species to another. Table I
lists the molecular parameters for a set of representative lin-
ear molecules as well as the corresponding values of the
dimensionless parameters η and �ζ for chosen values of the
strength of the electrostatic field and of the laser intensity.
Also included in Table I are the requisite conversion factors.

The eigenproperties of Hamiltonian (13) can be obtained
by expanding its eigenfunctions in the free-rotor basis set
|J, |M|〉,

|J̃, |M|; η,�ζ 〉 =
Jmax∑

J=|M|
cJ̃,|M|

J (η,�ζ ) |J, |M|〉 , (18)

and diagonalizing the resulting Hamiltonian matrix truncated
at J = Jmax. The matrix elements 〈J ′, M ′|H |J, M〉 are listed in
Appendix B.

The wave functions |J̃, |M|; η,�ζ 〉 are thus recognized as
coherent linear superpositions, or hybrids, of the field-free
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rotor states |J, |M|〉 for a fixed value of the good quantum
number |M| and for a range of values of J , which is, alas, not a
good quantum number. Nevertheless, the states created by the
combined interaction can be labeled by |M| and the nominal
value J̃ of the angular momentum quantum number of the
free-rotor state |J, |M|〉 with which they adiabatically corre-
late, |J̃, |M|; η = 0,�ζ = 0〉 → |J, |M|〉. The hybridization
coefficients cJ̃,|M|

J (η,�ζ ) depend, for a given hybrid state
|J̃, |M|; η,�ζ 〉, solely on the interaction parameters η and
�ζ . Since the sense of rotation of the molecular dipole makes
no difference in the combined collinear electric fields, only
|M|, the magnitude of M, matters. The hybrid states are also
referred to as pendular states, a term emphasizing that the axis
of molecules in these state can no longer rotate through 2π but
rather librates within a limited angular range less than 2π .

In practice, the number Jmax of J’s in the ground-state hy-
brid wave function is on the order of the interaction parameter,
i.e., if the eigenproperties are to be evaluated with an accuracy
sufficient for most applications. Generally, the higher the J̃
of a given state, the fewer rotational basis states are drawn
into its hybrid wave function at a given value of �ζ . This is
because of the J (J + 1) rotational energy ladder and hence
the increasing separation of the rotational basis states that
make up the hybrid. That there is no hybridization of the
angular momentum projection quantum number M has to do
with the cylindrical symmetry of the problem about the two
collinear electric field vectors ε1 and ε2. Once this symmetry
is broken, i.e., if the field vectors are tilted, M ceases to be
a good quantum number and states with different M’s are
drawn into the hybrid wave function as well. Moreover, the
±M degeneracy of the energy levels is lifted [44,45,58].

Note that in the absence of an anisotropic polarizabil-
ity, i.e., for �α = 0, the �α cos2 θ term vanishes, thereby
precluding hybridization of rotational states by the parity-
preserving induced dipole interaction. Likewise, the absence
of the body-fixed permanent dipole moment, i.e., for μ = 0, as
is the case for nonpolar molecules, would preclude hybridiza-
tion of the rotational states by the parity-mixing permanent
dipole interaction.

A. Eigenproperties due to an induced dipole potential alone

A key feature of the induced dipole interaction is that it
couples free-rotor states whose J’s are either the same or differ
by ±2. As a result, the |J̃, |M|; �ζ 〉 states have definite parity
p = (−1)J̃ .

The double-well nature of the induced dipole potential
(15) causes all states bound by it to occur as doublets split
by tunneling through the equatorial barrier [Fig. 2(a)]. The
members of any given tunneling doublet have the same |M|
but opposite parities.

The dependence of the eigenenergies of the six lowest
pendular states on �ζ is shown in Fig. 3(a). The tunneling
splitting scales proportionally to exp(−�ζ 1/2), which means
that the members of a given tunneling doublet can be drawn
arbitrarily close to one another by boosting �ζ (cf. Ref. [46]).
This is exemplified in the figure by the |J̃ = 0, |M| = 0; �η〉
and |J̃ = 1, |M| = 0; �η〉 and the |J̃ = 1, |M| = 1; �η〉 and
|J̃ = 2, |M| = 1; �η〉 tunneling doublets.

The states that are created by the induced dipole interaction
of Eq. (6) are aligned, i.e., they behave like double-headed

arrows pointing along the space-fixed axis Z . A measure of the
alignment of the states is the expectation value of the cos2 θ

operator,

〈cos2 θ〉J̃,|M| = 〈J̃, |M|; �ζ | cos2 θ |J̃, |M|; �ζ 〉, (19)

termed the alignment cosine. It can be evaluated for a given
state either directly from the state’s wave function or via the
Hellmann-Feynman theorem

〈cos2 θ〉J̃,|M| = −∂EJ̃,|M|(�ζ )

∂�ζ
. (20)

Since the induced dipole interaction is purely attractive, all
states created by it are high-field seeking [cf. Fig. 3(a)], mak-
ing the alignment cosine positive. However, a given state can
still be right- or wrong-way aligned, depending on whether
the induced dipole (the molecular axis z) points along or
perpendicular to the aligning field vector (the space-fixed
axis Z).

The eigenenergies, as well as alignment cosines, in the low-
and high-field limits have been obtained in analytic form [43]
and are listed in Tables II and III. Given the small values of the
interaction parameter �ζ that can be attained at feasible cw
laser intensities (I ≈ 107 W/cm2) (cf. Table I) (�ζ � 1 for
most of the molecules listed), the low-field limit is the relevant
one for optical traps. In this case, the ground-state energy and
alignment are accurately given by

E0,0

B
= −1

3
�ζ − ζ⊥ (21)

and

〈cos2 θ〉0,0 = 1
3 + 2

135�ζ, (22)

revealing that the reduced eigenenergy is on the order of
the interaction parameter �ζ [see the black dashed curve in
Fig. 3(a)] and that the alignment is puny (the spatial distribu-
tion of the molecular axis is nearly isotropic). Moreover, in
the low-field limit, the upper member of the corresponding
tunneling doublet (with J̃ = 1, |M| = 0) will not be bound
by the optical potential. Notable exceptions to the above are
the highly polarizable heavy rotors such as RbCs or KRb (cf.
Table I), for which �ζ on the order of 10 would be achieved
at I ≈ 107 W/cm2. The eigenenergies of the lowest states are
well rendered by the analytic expressions of Table II in the
low-field limit up to about �ζ � 1 (cf. Fig. 3). For stronger
interactions, the eigenenergy of the molecule subject to the
optical potential of Eq. (15) has to be calculated by diagonal-
izing the corresponding truncated Hamiltonian matrix.

B. Eigenproperties due to combined permanent and induced
dipole potentials

Superimposing an electrostatic field onto the optical field
changes dramatically the interaction potential and conse-
quently the eigenstates of the polar and polarizable rotor.
On the one hand, the permanent dipole interaction orients
the molecules. On the other, it changes the order of the en-
ergy levels: While for the pure induced dipole interaction
the lowest-energy state for a given J̃ has |M| = 0, it is the
“stretched state,” with |M| = J̃ , that has the lowest energy for
the pure permanent dipole interaction [cf. Figs. 2(a) and 4(a)].
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FIG. 2. (a) Induced dipole potential V α (θ ) [Eq. (15)] as a function of the polar angle θ . Note that V α (θ ) is a double-well potential with
equivalent minima −ζ‖ at θ = 0◦ and 180◦ and a maximum −ζ⊥ at θ = 90◦. The potential (in blue) has been drawn and the energy levels
calculated for �ζ = 10 and ζ⊥ = 2.5, which implies ζ‖ = 12.5. At these values of �ζ and ζ⊥, only one tunneling doublet comprised of the
|0, 0; 10〉 and |1, 0; 10〉 states is created by the double-well potential. Note that while the lower member |1, 1; 10〉 of the next tunneling doublet
is bound by the V α (θ ) potential, its upper member |2, 1; 10〉 is not. Generally, the tunneling splitting decreases for more deeply bound doublets.
Also note that the members of a given tunneling doublet have the same |M| but opposite parity (levels with p = +1 are shown in green and
levels with p = −1 are shown in ochre). The ζ⊥ term shifts the potential, as well as the energy levels it binds, uniformly along the energy axis.
The calculated energy levels bound by the induced dipole potential are also shown along with the numerical values of their eigenenergies (left)
and alignment cosines (right). The blue double-headed arrow indicates that the states created by the induced dipole potential are aligned but
not oriented. (b) Combined permanent and induced dipole potential V (θ ) = V μ(θ ) + V α (θ ) (black) of form A drawn for η = 1, �ζ = 10, and
ζ⊥ = 2.5. The permanent dipole potential V μ(θ ) and the induced dipole potential V α (θ ) are shown in red and blue, respectively. The calculated
energy levels bound by the combined potential are also shown along with the numerical values of their eigenenergies (left) and orientation
cosines (right). For further details see the text.

Oriented states behave like single-headed arrows pointing
along the space-fixed axis Z . Their orientation is characterized
by the expectation value of the cos θ operator,

〈cos θ〉J̃,|M| = 〈J̃, |M|; η,�ζ | cos θ |J̃, |M|; η,�ζ 〉, (23)

termed the orientation cosine. Like the alignment cosine, it
can be evaluated for a given state either directly from the
state’s wave function or via the Hellmann-Feynman theorem

〈cos θ〉J̃,|M| = −∂EJ̃,|M|(η,�ζ )

∂η
. (24)

Depending on the relative magnitude of the permanent and
induced dipole interaction parameters η and �ζ , the com-
bined permanent and induced dipole potential

V (θ ) ≡ V μ(θ ) + V α (θ ) (25)

takes two distinct forms, termed A and B [59]. Form A
arises for η < 2�ζ , in which case the induced dipole po-
tential V α (θ ) dominates and the combined potential V (θ ) is
still a double-well potential, albeit an asymmetric one [see
Fig. 2(b)]. The combined potential has a global minimum of
−η − ζ‖ at θ = 0◦, a local minimum of η − ζ‖ at θ = 180◦,

and a global maximum of η2

4�ζ
− ζ⊥ at θ = arccos(− η

2�ζ
).

Conspicuously, the members of the tunneling doublets are
pushed apart and oriented due to their coupling by the per-
manent dipole interaction [see Figs. 2(a) and 2(b)]. The
orientation of the two members of a given tunneling doublet
thus has opposite sense [cf. the Hellmann-Feynman theorem
(24)]: along the electrostatic field for the lower member that
gets pushed down (this is termed right-way orientation) and
against the electrostatic field for the upper member that gets
pushed up (wrong-way orientation). This is reflected in the
opposite signs of the orientation cosine shown in Fig. 2(b).

On the other hand, form B arises for η > 2�ζ , in which
case V μ(θ ) dominates and V (θ ) becomes a single-well poten-
tial, with a minimum of −η − ζ‖ at θ = 0◦ and a maximum of
η − ζ‖ at θ = 180◦. The states produced by the form B com-
bined potential are oriented and their orientation is enhanced
compared with the orientation produced by the permanent
dipole interaction alone at the same value of η. Although quite
small for small �ζ , the enhancement becomes significant at
higher values of the �ζ parameter (see Fig. 8).

We note that for η = 2�ζ , the potential is a single well
whose maximum at θ = π is flat.
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(a) (b)

FIG. 3. (a) Dependence of the eigenenergies EJ̃,|M|/B on the induced dipole interaction parameter �ζ for the lowest six initial rotational
states of a linear polar molecule in the absence of an electrostatic field (η = 0). Even-parity levels are shown in green and odd-parity levels
in ochre, with pairs of similarly color-coded vertical arrows indicating the tunneling splitting of the tunneling doublets comprised of the
|J̃ = 0, |M| = 0; �η〉 and |J̃ = 1, |M| = 0; �η〉 and the |J̃ = 1, |M| = 1; �η〉 and |J̃ = 2, |M| = 1; �η〉 states [cf. Fig. 2(a)]. The black dotted
curve shows the dependence of the ground-state eigenenergy in the low-field limit (see also Table II and the text). (b) Dependence of the
eigenenergies on �ζ in the presence of a superimposed electrostatic field that gives rise to a permanent dipole interaction with η = 10. The
red vertical arrows illustrate how the splitting of the tunneling doublets of (a) has been altered or enhanced by the superimposed electrostatic
field. The blue arrow shows the position �ζ = 25 of the avoided crossing between the |2, 0; η = 10, �ζ = 25〉 and |1, 0; η = 10, �ζ = 25〉
states, corresponding to the topological index k = 1 (see the text for details).

The dependence of the eigenenergies of the six lowest pen-
dular states on �ζ for a fixed value of the permanent dipole
interaction parameter, η = 10, is shown in Fig. 3(b). The
closer the levels are in the optical field alone [cf. Fig. 3(a)],
the more they are pushed apart by the superimposed per-
manent dipole interaction. For any given tunneling doublet
and a value of �ζ , the levels are repelled proportionately
to the value of the permanent dipole interaction parameter,
i.e., proportionately to η. The members of the split-up tun-
neling doublets included in Fig. 3(b) are marked by the red
vertical arrows.

The linear scaling of the tunneling splitting with η results in
a pattern of intersections, as the pushed-up upper member of
a lower tunneling doublet is bound to meet the pushed-down
lower member of the upper tunneling doublet. The loci of the

intersections have an analytic form: They occur at

�ζ = η2

4k2
, (26)

with k an integer, k = 1, 2, 3, . . ., termed the topological in-
dex [50]. All the intersections are avoided as they originate
from opposite-parity levels coupled by the parity-mixing per-
manent dipole interaction. An example of such an avoided
crossing is included in Fig. 3(b) and its position marked by the
blue arrow. It entails the |J̃ = 1, |M| = 0; η,�ζ 〉 (upper mem-
ber of a lower tunneling doublet) and |J̃ = 2, |M| = 0; η,�ζ 〉
(lower member of an upper tunneling doublet) states. For
η = 10, their avoided crossing occurs at �ζ = 25 with k = 1.

We note that the eigenproblem for a rotor subject to the
combined interactions [Eq. (13)] is conditionally quasiana-

TABLE II. Limiting values of eigenenergy EJ̃,|M|/B of a linear molecule subject to the optical potential of Eq. (15). See the text and
Ref. [43] for details.

Limit EJ̃,|M|/B

�ζ → 0 J̃ (J̃ + 1) − �ζ

2

(
1 − (2|M|−1)(2|M|+1)

(J̃−1)(2J̃+3)

) − ζ⊥

�ζ → ∞ �ζ + 2�ζ 1/2(J̃ + 1) + |M|2
2 − J̃2

2 − J̃ − 1 − ζ⊥ for (J̃ − |M|) even

�ζ → ∞ �ζ + 2�ζ 1/2J̃ + |M|2
2 − J̃2

2 − 1
2 − ζ⊥ for (J̃ − |M|) odd
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TABLE III. Limiting values of alignment 〈cos2 θ〉J̃,|M| of a linear molecule subject to the optical potential of Eq. (15). See the text and
Ref. [43] for details.

Limit 〈cos2 θ〉J̃,|M|

�ζ → 0 1
2

(
1 − (2|M|−1)(2|M|+1)

(J̃−1)(2J̃+3)

) + �ζ
( (J̃−|M|+1)(J̃−|M|+2)(J̃+|M|+1)(J̃+|M|+2)

2(2J̃+1)(2J̃+3)3(2J̃+5)

)
�ζ → ∞ 1 − J̃+1

�ζ 1/2 for (J̃ − |M|) even

�ζ → ∞ 1 − J̃
�ζ 1/2 for (J̃ − |M|) odd

lytically solvable, i.e., some of its solutions can be obtained
analytically at particular conditions imposed on the parame-
ters η and �ζ . Remarkably, these conditions are fulfilled at
the loci of the avoided intersections [50,52]. For instance, for
the ground state |J̃ = 0, |M| = 0; η,�ζ = η2/4〉, the analytic
eigenenergy is E0,0 = −η2/4 = −�ζ and the orientation co-
sine 〈cos θ〉0,0 = coth η − 1/η (cf. Ref. [52]).

IV. TRAPPING POTENTIAL

We begin by noting that the characteristic timescale for
hybridizing the rotor states by the permanent or induced
dipole potential is given by the rotational period τr of the
molecule, as follows from the time-dependent Schrödinger
equation [60,61]. Table I lists the rotational periods for a
sampling of linear polar molecules. On the other hand, the
motion of the molecule’s center of mass in a trap is given by
the trapping frequency, ωX or ωZ (discussed below). Given
that the ratio of, say, νX = ωX /2π to the reciprocal of the ro-
tational period, νX τr, is typically on the order of 10−5, we see
that the eigenstates are created much faster than the molecule

can travel across the trap. This means that the eigenenergy of
the molecule in the trapping field can instantaneously adjust to
the local value of the field and thus play the role of the actual
trapping potential U acting on the molecule’s center of mass,
i.e., on its translation.

We begin by examining the properties of the optical trap
when the instantaneous eigenenergy of the molecule is given
solely by the induced dipole potential (15). Then we move
on to examine the electro-optical trap, which is realized by
superimposing a uniform (homogeneous) electrostatic field
onto the optical trap, assuming the molecule is polar and thus
subject to the permanent dipole potential (14), in addition to
the induced dipole potential due to the inhomogeneous laser
intensity distribution I (X, Z ) [Eq. (7)].

A. Optical trap

The optical trapping potential for a linear molecule in a
rotational state |J̃, |M|; �ζ 〉 is thus given by

U = EJ̃,|M|(�ζ ) − Bζ⊥

= EJ̃,|M|(�ζ (X, Z )) − Bζ⊥(X, Z ) = U (X, Z ), (27)
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FIG. 4. (a) Permanent dipole potential V μ(θ ) drawn for η = 10 along with the calculated energy levels and their numerical values (left) and
orientation cosine (right). The red vertical arrow indicates that the states created by the permanent dipole potential are oriented. (b) Combined
permanent and induced dipole potential V (θ ) = V μ(θ ) + V α (θ ) (black) of form B drawn for η = 10, �ζ = 1, and ζ⊥ = 0.25. The permanent
dipole potential V μ(θ ) and the induced dipole potential V α (θ ) are shown in red and blue, respectively. The calculated energy levels bound by
the combined potential are also shown along with the numerical values of their eigenenergies (left) and orientation cosines (right).
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FIG. 5. Dependence of the depth of the optical trap for the
|J̃ = 0, |M| = 0; �ζ 〉 state on the induced dipole parameter �ζ for
different values of the parameter ζ⊥. See the text for further details.

where EJ̃,|M|(�ζ (X, Z )) is the eigenenergy of the molecule at
the value of the interaction parameter

�ζ (X, Z ) = �α

ε0cB
I (X, Z ) (28)

and

ζ⊥(X, Z ) = α⊥
ε0cB

I (X, Z ), (29)

with I = I (X, Z ) the spatial distribution of the laser inten-
sity as given by Eq. (7). Figure 5 shows how the trap depth
U (X = 0, Z = 0) ≡ U0 for the |J̃ = 0, |M| = 0; �ζ 〉 ground
state varies with the parameters �ζ and ζ⊥: Clearly, the larger
the ζ⊥ for a given �ζ , the deeper the trap. We note that
ζ⊥ = �ζ/n implies ζ‖ = (n + 1)ζ⊥. Throughout this paper,
we consider the case when ζ⊥ = �ζ/4.

For weak interaction strengths �ζ � 1, the eigenenergy
can be approximated by its low-field limit (21). For a molecule
in the rotational ground state |J̃ = 0, |M| = 0,�ζ 〉, the opti-
cal trapping potential then takes the analytic form

U (LF)(X, Z ) ≈ −B

(
1

3
�ζ (X, Z ) + ζ⊥(X, Z )

)

= − I (X, Z )

ε0c

(
1

3
�α + α⊥

)
. (30)

By making use of the mean value of the polarizability

α ≡ 1
3 (αxx + αyy + αzz ) = 1

3 (2α⊥ + α‖) (31)

and of Eq. (7), we can recast Eq. (30) as

U (LF)(X, Z ) ≈ − α

ε0c
I (X, Z ) = − U (LF)

0

1 + (
X
XR

)2 exp

(
− 2Z2

w2(X )

)

(32)

with the trap depth

U (LF)
0 = α

ε0c
I0. (33)

B. Electro-optical trap

For a trap based on the combined permanent and induced
dipole interaction, the trapping potential for a molecule in a
|J̃, |M|; η,�ζ 〉 state becomes

U = U (η,�ζ (X, Z ), ζ⊥(X, Z ))

= EJ̃,|M|(η,�ζ (X, Z )) − Bζ⊥(X, Z ) − EJ̃,|M|(η, 0), (34)

where we took into account that the induced dipole interac-
tion parameters have spatial distributions �ζ = �ζ (X, Z ) and
ζ⊥ = ζ⊥(X, Z ) given by the distribution of the laser intensity
[cf. Eq. (7)] and that the permanent dipole interaction η is
isotropic (the electrostatic field is uniform). The second term
accounts for the overall, uniform shift due to the permanent
dipole interaction of the eigenenergy by which the molecule is
trapped. Note that for η = 0 this term vanishes identically and
we recover Eq. (27) for the optical trap. Like for the optical
trap, the minimum of the trapping potential for the electro-
optical trap, i.e., its trap depth U0, obtains at the maximum
laser intensity I (X = 0, Z = 0) ≡ I0 [cf. Eq. (7)],

U0 = U (η,�ζ (X = 0, Z = 0), ζ⊥(X = 0, Z = 0))

= EJ̃,|M|(η,�ζ (X = 0, Z = 0)) − Bζ⊥(X = 0, Z = 0)

−EJ̃,|M|(η, 0). (35)
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FIG. 6. Comparison of the trapping potentials for a purely optical
trap (blue) and for an electro-optical trap (red) for the same distribu-
tion of laser intensity I (X, Z = 0) and hence the same distributions
of the induced dipole interaction parameters �ζ (X, 0) and ζ⊥(X, 0)
along the laser propagation direction X , for �ζ (X = 0, Z = 0) = 1,
ζ⊥(X = 0, Z = 0) = 1

4 , and η = 10 (cf. Fig. 4). Note that the trap-
ping potential is expressed in terms of the rotational constant B of
the trapped molecule and that the length scale of the X coordinate is
expressed in terms of the wavelength λ of the optical field.
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(a) (b)

FIG. 7. (a) Dependence of the trap depth U0 for the |J̃ = 0, |M| = 0; �ζ, η〉 state on the induced dipole interaction parameter �ζ for
different constant values of the permanent dipole interaction parameter η. (b) Enhancement of the trap depth compared to that of a purely
optical trap as a function of the induced dipole interaction parameter �ζ for different constant values of the permanent dipole interaction
parameter η. The dots indicate loci where �ζ = η/2, i.e., form A and form B potentials are to the right and to the left of the dots, respectively.
See the text for details.

In what follows, we will consider the case when the po-
lar and polarizable molecule is trapped via its ground state
|J̃ = 0, |M| = 0; �ζ, η〉. We note that in order to evaluate
this state’s eigenenergy, and thus the trapping potential, the
Hamiltonian matrix has to be diagonalized point by point at
each value of the parameters �ζ (X, Z ) and ζ⊥(X, Z ) for a
given (constant) value of the parameter η. An example of
such a calculation is shown in Fig. 6 for η = 0 (optical trap)
and η = 10 (electro-optical trap). Clearly, the superimposed
electrostatic field increases the depth of the trap, typically by
25%–50%, depending on the combination of the values of the
parameters involved. However, how does the superimposed
uniform electrostatic interaction amplify the inhomogeneity
of the optical interaction as given by the spatial distribution of
the Gaussian laser beam?

A clue as to why this amplification takes place is pro-
vided by Fig. 7. Figure 7(a) shows the dependence of the
trap depth U0 on the induced dipole parameter �ζ for dif-
ferent fixed values of the permanent dipole parameter η:
For a given value of η, the greater the �ζ , the deeper the
trap. Figure 7(b) shows the enhancement of the trap depth
as a ratio of U0(�ζ, η)/U0(�ζ, η = 0), i.e., as the depth of
the electro-optical trap relative to the depth of the purely
optical trap. Thus when the trap depth of the optical trap
(blue) in Fig. 6 is at its maximum, so is the enhancement
of the trap depth by the superimposed permanent dipole
interaction (red).

There are two quantum mechanisms involved in enhanc-
ing the trap depth, depending on whether a form A or form
B potential is at play [cf. Sec. III B and Fig. 7(b), which
shows the loci where the form A potential morphs into the

form B potential]. Apparently, the transition between the two
forms as reflected in the trap depth enhancement is quite
smooth. For form A (double-well potential dominated by the
induced dipole interaction), the |J̃ = 0, |M| = 0; �ζ, η〉 state
is the lower member of a tunneling doublet (the upper mem-
ber does not have to be bound by the combined potential)
and therefore is pushed down as it is coupled to the upper
doublet member by the permanent dipole interaction. This
coupling, and thus the downward push of the energy level,
is the stronger the greater the value of the induced dipole
interaction parameter �ζ . On the other hand, the enhance-
ment of the trap depth for the form B potential (single well
dominated by the permanent dipole interaction), relevant to
what we see in Fig. 6, can be explained by the increased
right-way orientation (i.e., along the electrostatic field vector
ε1) of the |J̃ = 0, |M| = 0; �ζ, η〉 state and the correspond-
ing downward shift of its eigenenergy as ordained by the
Hellmann-Feynman theorem [cf. Eq. (24)]. The increase in the
orientation cosine 〈cos θ〉0,0 of the |J̃ = 0, |M| = 0; �ζ, η〉
state at a given η with �ζ is illustrated in Fig. 8. It arises in
turn from an increased confinement of the librational ampli-
tude of the molecular axis by the induced dipole interaction.
While Fig. 8(a) shows the effects of the induced dipole in-
teraction on the orientation cosine, Fig. 8(b) displays the
enhancement factor defined as the ratio of the orientation
cosine with the optical field on to the orientation cosine in the
absence of the optical field. Also shown are polar plots of the
squares of the wave functions of the |J̃ = 0, |M| = 0; �ζ, η〉
state at η = 5 and increasing values of �ζ , which attest to
the ever narrower angular confinement of the molecular axis
with increasing �ζ .
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=0.83

0.78

0.68

FIG. 8. (a) Dependence of the orientation cosine 〈cos θ〉0,0 of the |J̃ = 0, |M| = 0; �ζ, η〉 state on the permanent dipole interaction
parameter η for different constant values of the induced dipole interaction parameter �ζ . (b) Enhancement of the orientation cosine 〈cos θ〉0,0 of
the |J̃ = 0, |M| = 0; �ζ, η〉 state compared to that of the |J̃ = 0, |M| = 0; �ζ = 0, η〉 state as a function of the permanent dipole interaction
parameter η for different constant values of the induced dipole interaction parameter �ζ . Also shown are polar plots of the squares of the
corresponding wave functions for η = 5 and different values of �ζ whose color coding is the same as that of the labeled curves. See the text
for details.

Thus we see that the synergy between the permanent and
induced dipole interactions enhances the trap depth that would
be obtained for the optical field alone while at the same time
increasing the orientation of the trapped molecule beyond
what it would be in the electrostatic field alone.

C. Harmonic electro-optical trap

A power-series expansion of the laser intensity around
X, Z = 0 up to the second order approximates the laser in-
tensity at the center of the trap as

I (X → 0, Z → 0) ≈ I0

[
1 − X 2

X 2
R

+ 4I0X 2Z2

w2
0Z2

R

− 2Z2

w2
0

]

≈ I0

[
1 −

( X

XR

)2

− 2
( Z

w0

)2]
. (36)

The harmonic trapping potential

UH = −|U0|
[

1 −
( X

XR

)2

− 2
( Z

w0

)2]
(37)

is shown together with the trapping potential in Fig. 9. It
approximates well the trapping potential up to the Rayleigh
length XR.

The characteristic trapping frequencies of the harmonic
electro-optical trap of Eq. (37) are obtained by equating the
mutually corresponding terms of the harmonic oscillator po-
tential,

|U0|
( X

XR

)2

= 1

2
mω2

X X 2, (38)

2|U0|
( Z

w0

)2

= 1

2
mω2

Z Z2, (39)

0 X

U0 U(X,0)

XR 50 

UH (X,0)

FIG. 9. Trapping potential U (X, Z ) of Eq. (34) shown in red
together with its harmonic counterpart UH(X, Z ) of Eq. (37) shown
in gray, plotted for Z = 0. Note that the harmonic trapping potential
approximates the electro-optical trapping potential faithfully up to
about the Rayleigh length XR.
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0.39

�

FIG. 10. (a) Dependence of the orientation cosine 〈cos θ〉0,0 of the |J̃ = 0, M̃ = 0; �ζ, η〉 state on the permanent dipole interaction
parameter η for different constant values of the induced dipole interaction parameter �ζ for perpendicular fields ε1 and ε2 (tilt angle β = π/2).
Also shown are polar plots of the squares of the corresponding wave functions for η = 5 and different values of �ζ whose color coding is the
same as that of the labeled curves. The horizontal bars run through the origin of the polar coordinate system and divide the right-way (upward)
and wrong-way (downward) oriented lobes of the wave functions. (b) Dependence of the trap depth U0 for the |J̃ = 0, M̃ = 0; �ζ, η〉 state in
perpendicular fields on the induced dipole interaction parameter �ζ for different constant values of the permanent dipole interaction parameter
η. See the text for further details.

yielding

ωX =
(

2|U0|
mX 2

R

)1/2

, ωZ =
(

4|U0|
mw2

0

)1/2

, (40)

with m the mass of the molecule. The trapping frequencies
(40) make it possible to evaluate the root-mean-square ve-
locity vrms of the molecules confined by the harmonic optical
trap. For instance, for the X direction (along the laser beam)
this is

vrms,X =
(

h̄ωX

m

)1/2

. (41)

For a time-of-flight expansion over time t of the molecular
cloud released from the trap, we then obtain

X (t )2 = X (0)2 + v2
rms,X t2 = X (0)2

(
1 + ω2

X t2
)
. (42)

Determining the expansion from an initial value X (0) to a
final value X then gives the temperature of the cloud in the
X direction,

T = 1

2kB
mω2

X X (0)2 = 1

2kB
mω2

X

(
X (t )2

1 + ω2
X t2

)
, (43)

where kB is Boltzmann’s constant.

D. Trapping of polar molecules in perpendicular optical
and electrostatic fields

In noncollinear, tilted fields, when the ε1 and ε2 vectors
make an angle β �= 0, π , the two fields compete with one

another and their effects are no longer synergistic as each
field forces the dipole to disfavor the direction of the other
field [44,45,58]. Maximum competition arises for perpen-
dicular fields, β = π/2, when an increased induced dipole
interaction suppresses the molecule’s orientation along the
electrostatic field [cf. Fig. 10(a)]. In addition, the competition
between the tilted fields causes the azimuthal angles of the
molecular axis about the two field vectors to be nonuniformly
distributed. However, the molecular axis remains symmet-
rically distributed with respect to the plane defined by the
two field vectors and for perpendicular fields, the problem
has a C2v symmetry. As noted, in Sec. III, M is no longer
a good quantum number in tilted fields but can serve, along
with J̃ , as an adiabatic label M̃ of a given field-dressed state:
|J̃, M̃; η = 0,�ζ = 0〉 → |J, |M|〉.

The competition between the perpendicular fields also tran-
spires in the shape of the corresponding eigenfunctions [cf.
the polar plots of the eigenfunctions squared in Fig. 10(a)].
Whereas in the absence of the electrostatic field, the wave
function has the shape of a horizontal p orbital (for a horizon-
tal polarization of the optical field), turning on the permanent
dipole interaction in the vertical direction adds new lobes. The
proportions (relative surface areas) of the lobes vary with the
values of the interaction parameters.

As illustrated in Fig. 10(b), adding a perpendicular elec-
trostatic field diminishes the trap depth due to the optical field
and does the more so, the greater the strength of the permanent
dipole interaction. This contrasts with the effect of a collinear
electrostatic field that enhances the trap depth.
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Given the opposite effects of collinear and perpendicular
fields on the trap depth and the orientation of the trapped
molecules, one could significantly (and quickly) alter either
by tilting the polarization plane of the optical field with
respect to the electrostatic field. Thereby an electro-optical
trap offers yet another element of control of the confined
molecules.

V. CONCLUSIONS AND PROSPECTS

The quantum treatment of optical traps (or tweezers) for
molecules presented herein provides a detailed recipe for de-
signing a trap with preordained effects on both the translation
and rotation of the molecules to be trapped. These effects
depend on the dimensionless parameter �ζ that reflects, apart
from the intensity of the optical field, the anisotropic polariz-
ability and the moment of inertia (or the rotational constant)
of the molecules. Only in the low-field limit, �ζ → 0, and
for the ground initial rotational state of the molecules does the
eigenenergy, and thus the trap depth, scale with the average
molecular polarizability and the rotational constant while the
alignment imparted to the molecules remains puny. In all other
cases, the anisotropy of the molecular polarizability has to
be taken into account and for interaction strengths such that
�ζ � 1 [corresponding to an intensity of the laser field of
107 W/cm2 or greater for a number of “popular” molecules
(cf. Table I)], the pendular eigenproperties that define the trap
have to be calculated by solving the eigenproblem for a rigid
rotor subject to the induced electric dipole interaction (see
Appendix B).

However, the main focus of the present paper is on the
electro-optical trap or tweezer, which is realized by embed-
ding an optical trap in a collinear uniform electrostatic field.
The effects of the electro-optical trap on molecular translation
and rotation depend on a pair of dimensionless parameters �ζ

and η. While the �ζ parameter retains its original meaning,
the η parameter takes into account the body-fixed electric
dipole moment and the moment of inertia of the molecules
to be confined. There is no low-field limit expression avail-
able for calculating the trap depth or the directionality (both
alignment and orientation) of the pendular states of molecules
confined by the electro-optical trap and so the trap’s effects
have to be evaluated by solving the eigenproblem for a rigid
rotor subject to a combined permanent and induced electric
dipole interaction (see Appendix B). However, analytic solu-
tions exist for particular ratios of the interaction parameters
η and �ζ corresponding to integer values of the topological
index k [cf. Eq. (26)].

Although the optical trap or tweezer obtains as a special
case of the electro-optical trap for η = 0, the combined inter-
action amounts to more than a sum of its parts. In the context
of molecular trapping, this shows in enhancing the trap depth
due to the optical field alone and the orientation due to the
electrostatic field alone. Both enhancement effects are quite
subtle and have to do with the synergy of the two collinear
permanent and induced dipole interactions that derives from
their distinct eigenenergy level structures and the avoided
crossings that arise from their combination. The enhancement

effects are illustrated in dedicated figures [Figs. 7(b) and 8(b)]
as well as in a generic plot of the trap depth (Fig. 6).

Apart from enhancing the trap depth and lending orienta-
tion to the trapped polar molecules, the electro-optical trap
offers the possibility to lift the degeneracy of the ±M levels
as well as to rapidly vary both the orientation and trap depth by
tilting the polarization plane of the optical field with respect
to the electrostatic field (Fig. 10).

Thus electro-optical trapping via a certain oriented state
of a polar polarizable molecule amounts to state preparation
of this particular directional state. The electro-optical trap or
tweezer may therefore facilitate some of the applications of
molecular trapping mentioned in the Introduction, especially
of quantum computing and simulation [62] and detailed col-
lision stereodynamics [63] that distinguishes between heads
versus tails in molecular encounters. The added electrostatic
field may also decouple hyperfine levels and thereby prolong
the rotational coherence times achieved so far in an optical
field alone [27]. The beneficial effect of a superimposed elec-
trostatic field onto an optical trap has in fact been already
demonstrated as a means to enhance the dipolar evaporative
cooling rate by making tunable dipolar interactions dominate
over all inelastic processes [64,65]. Alternatively, the syner-
gistic enhancement of the trap depth of an electro-optical trap
affords a reduced intensity of the optical field which would
foster microwave shielding of the elastic channel and thereby
the elastic-to-inelastic collision rate [35].
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APPENDIX A: PERMANENT AND INDUCED DIPOLE
POTENTIALS

The transformation from the body-fixed frame (x, y, z) to
the space-fixed frame (X,Y, Z ) (see Fig. 11) is effected by the
direction cosine matrix �, given by

� =
⎛
⎝Xx Xy Xz

Y x Y y Y z
Zx Zy Zz

⎞
⎠, (A1)
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FIG. 11. Transformation from the space-fixed frame (X,Y, Z ) to the body-fixed frame (x, y, z), effected by the inverse direction cosine
matrix �. Also shown is the parametrization of the transformation by the Euler angles φ, θ , and χ . (Figure has been adapted from Ref. [66].)

where

Xx = cos φ cos θ cos χ − sin φ sin χ,

Xy = − cos φ cos θ sin χ − sin φ cos χ,

Xz = cos φ sin θ,

Y x = sin φ cos θ cos χ + cos φ sin χ,

Y y = − sin φ cos θ sin χ − cos φ cos χ,

Y z = sin φ sin θ, Zx = − sin θ sin χ,

Zy = sin θ sin χ, Zz = cos θ.

(A2)

Assuming that the space-fixed electric field has only a Z
component of magnitude ε in the space-fixed frame, εF =
(0, 0, ε1), and that the body-fixed permanent dipole moment
has only a z component of magnitude μ in the body-fixed
frame, μg = (0, 0, μ),1 we have

μgεg = �−1μF �−1εF = �−1�μg�
−1εF

= μg�
−1εF = με1 cos θ (A3)

and

μF εF = �μgεF = με1 cos θ. (A4)

Thus, the potential energy of the interaction of the permanent
body-fixed dipole μg with a space-fixed electric field εF is
given by

Vμ(θ ) = −μgεg = −μF εF = −με1 cos θ. (A5)

1Herein, all products involving vectors, tensors, and matrices are
dot products.

For the induced dipole interaction Vα (θ ) due to the electric
field εF acting on the induced dipole μ̃F produced by the very
same field acting on the molecular polarizability αg, we have,
in the space-fixed frame,

Vα (θ ) = −μ̃F εF = −�μ̃gεF = −�αgεgεF

= −�αg�
−1εF εF , (A6)

with μ̃g = αgεg the body-fixed induced dipole moment and
αg the body-fixed polarizability tensor. This second-order
Cartesian tensor can be diagonalized and represented by its
principal components (components along the principal body-
fixed axes x, y, and z)

αg =
⎛
⎝αxx 0 0

0 αyy 0
0 0 αzz

⎞
⎠. (A7)

Moreover, for a linear molecule, αxx = αyy ≡ α⊥ < αzz ≡ α‖.
By substituting αg from Eq. (A7) into Eq. (A6) and keeping
in mind that εF = (0, 0, ε2), we obtain, for the induced dipole
potential,

Vα (θ ) = −ε2
2 (α‖ cos2 θ + α⊥ cos2 θ )

= −ε2
2[(α‖ − α⊥) cos2 θ + α⊥], (A8)

which we write as

Vα (θ ) = −ε2
2 (�α cos2 θ + α⊥) (A9)

by setting �α ≡ α‖ − α⊥.
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APPENDIX B: MATRIX ELEMENTS OF THE HAMILTONIAN OF A POLAR AND POLARIZABLE ROTOR SUBJECT TO
COMBINED PERMANENT AND INDUCED DIPOLE INTERACTIONS

The matrix elements of the Hamiltonian of a polar and polarizable rotor subject to combined permanent and induced dipole
interactions characterized, respectively, by the dimensionless parameters η and �ζ in the free-rotor basis set | j, |m|〉 are given
by

〈 j′, m′|H/B| j, m〉 = δ j j′δmm′ [ j( j + 1) − ζ⊥ − η cos β(2 j + 1)1/2(2 j′ + 1)1/2(−1)m

(
j 1 j′

−m 0 m

)(
j 1 j′
0 0 0

)

− η sin β(2 j + 1)1/2(2 j′ + 1)1/2(−1)m(1/2)1/2

×
[(

j 1 j′
−m −1 m′

)(
j 1 j′
0 0 0

)
−

(
j 1 j′

−m 1 m′

)(
j 1 j′
0 0 0

)]

− �ζ (2 j + 1)1/2(2 j′ + 1)1/2(−1)m

(
j 2 j′

−m 0 m

)(
j 2 j′
0 0 0

)
, (B1)

where δx,x′ is Kronecker’s delta and β is the tilt angle between the electrostatic field vector ε1 and the optical field vector ε2.
In the calculations presented herein, the Hamiltonian matrix was truncated at Jmax = 60, sufficient to achieve convergence

within 0.1% for all states and field strengths considered.
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