
ARTICLE OPEN

Genetic associations with learning over 100 days of practice
Cherry Youn1✉, Andrew D. Grotzinger1, Christina M. Lill2,3, Lars Bertram 2,4, Florian Schmiedek5,6, Martin Lövdén7,8,
Ulman Lindenberger6,9, Michel Nivard10, K. Paige Harden1,11 and Elliot M. Tucker-Drob1,11

Cognitive performance is both heritable and sensitive to environmental inputs and sustained practice over time. However, it is
currently unclear how genetic effects on cognitive performance change over the course of learning. We examine how polygenic
scores (PGS) created from genome-wide association studies of educational attainment and cognitive performance are related to
improvements in performance across nine cognitive tests (measuring perceptual speed, working memory, and episodic memory)
administered to 131 adults (N= 51, ages= 20–31, and N= 80, ages= 65–80 years) repeatedly across 100 days. We observe that
PGS associations with performance on a given task can change over the course of learning, with the specific pattern of change in
associations differing across tasks. PGS correlations with pre-test to post-test scores may mask variability in how soon learning
occurs over the course of practice. The associations between PGS and learning do not appear to simply reconstitute patterns of
association between baseline performance and subsequent learning. Associations involving PGSs, however, were small with large
confidence intervals. Intensive longitudinal research such as that described here may be of substantial value for clarifying the
genetics of learning when implemented as far larger scale.
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INTRODUCTION
Intelligence, educational attainment (EA), and academic perfor-
mance are all substantially heritable, meaning that much of the
variation in outcomes is attributable to genetic differences1–7.
Intelligence has often been conceptualized as the ability to learn8,
and has also been shown to be sensitive to learning. EA and
academic performance are themselves conceptualized as outcomes
of prolonged learning that has occurred, and may themselves be
predictive of future, ongoing, learning. Thus, all three phenotypes
implicitly involve a dynamic process of learning that unfolds over
time. Here, we provide one of the first direct tests that examines
how static differences in DNA sequence are associated with the
dynamic process of learning. Theoretically, the concept of the
“reaction norm” describes how genetic variation is more appro-
priately thought of as governing a dynamic phenotypic response to
environmental input, rather than as governing a fixed end state9–11.
Yet theoretical reaction norm conceptions have rarely been tested
vis-à-vis complex human phenotypes like cognition.
In the context of cognitive and academic learning, genetic

effects are often assumed to be consistently amplified over the
course of a learning regime12. However, other potential patterns
are possible (Fig. 1). For instance, exposure to practice may reduce
the effect of genetic differences in cognitive performance in a
compensatory pattern: practice gives individuals at lower levels of
initial performance additional opportunity to increase their skill
while producing relatively less benefit to those who are already
performing at closer to maximum performance levels. Alterna-
tively, exposure to practice may benefit all individuals uniformly,
thereby increasing mean levels of performance without changing
the magnitude of differences in performance across genotypes. A

combination of all three patterns is also possible: during early
phases of practice, genetic effects on performance might be
magnified, as some individuals learn faster than others. Later,
however, those who were initially slower to learn eventually make
large gains with practice, while those who have already gained
remain at close to asymptote. Cross-over interactions, where
genotypes related to the highest ultimate skill acquisition exhibit
the lowest initial levels of performance during early phases of
practice, are also possible but perhaps least likely.
Moreover, how differences in genotype relate to the shape and

rate of skill acquisition might be universal across cognitive tasks,
or it may differ by content domain or superficial demands of the
to-be-learned task13. Outside of a genetic context, Ackerman
reported that tasks requiring speed and accuracy of motor
movements often exhibit decreased inter-individual variability
with practice14, particularly when several alternative approaches
or strategies can be developed to perform the tasks. In such
scenarios, content ability, like verbal and math skill, may play a
role during early phases of skill acquisition during which time
individuals have identified the task demands and determined an
efficient strategy, but become less relevant during later phases of
skill acquisition15,16.
In contrast, when learning more complex tasks that rely less on

motor movement and speed, Ackerman reported that whether
individuals diverge vs. converge over the course of practice is
primarily determined by whether there is a bound on the upper
range of performance14,17. Tasks in which the upper reasonable
range of performance is bounded are known as “closed” tasks, and
performance typically converges with practice (e.g., a “catch up”
pattern). Conversely, for “open” tasks in which the upper range of
performance is unbounded, “rich-get-richer” effects are typically
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observed, where individual differences in intelligence, working
memory, and performance are magnified with practice. As
genetically informative research on learning across different
cognitive tasks is rare, whether such patterns are observed with
respect to convergence and divergence of heritable variation in
task performance is an open question. We emphasize the
necessity of detecting different patterns of genetic effects on
the shape of learning because effects such as “catch up” and “rich-
get-richer” may pose new questions in research as well as
challenges for educational systems.
Few studies have used longitudinal data to estimate the role of

genetics in individual differences in rate of learning over time. One
exception is a previous twin study by Fox et al.18, which concluded
that the heritability of performance increased across multi-trial
motor skill learning. Studies by Hambrick and Tucker-Drob and by
Mosing et al. found that music practice was not only substantially
heritable19,20, but also genetically associated with musical
expertize and accomplishment. These results suggest a genetic
effect on rate of skill acquisition. Here, we supplement previous
research by examining genetic associations with rate of learning
using a polygenic score (PGS) approach and estimating learning
on nine cognitive tasks spanning three cognitive domains over
100 days of intensive practice.
To examine genetic correlates of learning, we use a PGS derived

from the genome-wide association studies (GWAS) of EA (N=
1,131,881) and cognitive performance (CP; N= 257,841)4,21. These
GWAS of EA and CP have reported that the corresponding EAPGS
and CPPGS explain 9% and up to 4% of the variance in cognitive
outcomes, respectively4,21, although prediction may of course vary
by sample characteristics due to issues of both portability and
statistical variation.

We examine how these same PGS relate to rate and shape of
learning on nine tasks that measure episodic memory, working
memory, and perceptual speed across 100 days of practice. During
practice phase, the difficulties of all tasks, except for the three
comparison tasks, were individualized based on pre-test perfor-
mance. This individualization allows for the experimental decon-
founding of individual differences in rate and shape of learning. In
other words, by tailoring task difficulty to individual pre-test
scores, individuals did not differ as greatly from one another in
their distance from an upper reasonable bound on performance.
Furthermore, adaptive task difficulty challenges even the high
performing participants to ensure that all sessions are utilized as
effective learning opportunities. Finally, we examined PGS
prediction among some of the most extreme scores within the
sample, building off recent observations that extreme PGS can be
particularly predictive22. Owing to the intensive nature of the
protocol, with extensive pre- and post-testing, and 100 days of
practice on nine different cognitive tasks (for a total of 155,002
observations), the sample size (N= 131) is relatively small by the
standards of genetic research. As such, our study is exploratory,
emphasizing the conceptual models of change in individual
differences and descriptive patterns of results rather than null
hypothesis significance tests.

RESULTS
Most people improve over time, but people differ in their rate
of learning
Supplementary Fig. 3 presents a ridge plot of the distribution of
the standardized differences between pre- and post-test scores,
classified by task types. Standardized post-test scores represent

Fig. 1 Conceptualization of the genetic effects on rates of learning. Top left figure is an example of magnification of genetic effects on
initial levels of performance across time, where there are differences in the slope of learning between high and low PGS groups and the
differences translate to more variance accounted for by genes. Top right figure is an example of a negative association between PGS and rates
of change, where the genetic effects on initial levels of performance decrease over time and the experience equalizes differences between the
two groups. Bottom left figure is an example that shows no association between the PGS and rates of change, indicating that the genetic
effects remain constant across the environmental range and there is no genetic effect of PGS on learning. Lastly, bottom right figure is an
example that shows a combination of all three patterns.
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the difference between the pre- and post-test and the standard
deviation of the difference in pre-test units. All mean differences
for each of the nine cognitive tasks are positive, suggesting that
on average, performance improved during the practice phase and
most individuals scored higher at post-test than at pre-test
(Supplementary Table 3). Furthermore, substantial standard
deviations that range from 0.75 to over 1 indicate considerable
individual differences in learning. The 95%-ile range of changes is
largely positive, but also includes some people who decreased in
performance at post-test compared to pre-test.

Genetic associations with overall learning from the beginning
and end of practice are modest and unreliable
Regression models of individual tasks. The simplest way to model
genetic associations with learning is to estimate the associations
of PGSs with task performance at the beginning and the end of
practice, and with the overall change in performance over the
course of practice. In our first set of analyses, we fitted linear
regression models to test the associations between (1) EAPGS and
pre-test scores, (2) EAPGS and post-test scores, and (3) EAPGS and
the difference between pre- and post-test scores (Table 1). In line
with the power analysis, we conducted one-tailed tests of
statistical significance and standardized pre- and post-test scores
relative to the mean and standard deviation of the pre-test scores.
EAPGS was positively correlated with pre-test scores of N-Back
Spatial and pre- and post-test scores of Number-Noun. In contrast,
EAPGS was negatively correlated with pre-test scores (mean
correct response times) of Figural/Spatial Comparison, indicating
that individuals with higher EAPGS tend to respond slower. This
may be explained by the response time-accuracy tradeoff, where
participants with higher EAPGS prioritize higher accuracy at the
expense of slower speed. EAPGS was also negatively correlated
with the difference between pre-test and post-test scores on the
N-Back. This suggests that the EAPGS negatively affects the rate of
learning for this task and practice equalizes performance:
individuals with lower EAPGS “catch up” to individuals with
higher EAPGS by the end of the practice phase. We also
conducted the same analyses with CPPGS and EA, which are
detailed in the Supplementary Information (see Supplementary
Tables 4–6).

Latent difference score models. Many of the results from the
regression analyses show small effects that are very close to 0 and
failed to reject the null after Bonferroni correction for multiple
testing (p < 0.05). Observed difference scores for individual

variables may be problematic due to the influence of measure-
ment error, which can reduce power and bias associations toward
zero23,24. We therefore went on to conduct analyses at the level of
latent factors representing the individual ability domains, utilizing
latent difference score modeling (LDSM) in Mplus, version 8 (see
Supplementary Notes and Supplementary Fig. 4)13,25,26, to
represent error free change in the latent factors. This has the
added benefit of increasing power to detect correlates of changes
that occur at the level of the broad ability domains, rather than for
the individual tasks. For LDSM analyses, we used the full sample,
including non-genotyped individuals via maximum-likelihood
estimation, for the measurement models to increase the stability
in the estimation of the cognitive structure. Measurement
invariance across time was imposed to ensure that the latent
difference score could be meaningfully interpreted. To account for
the possible role of age22,27–29, we included age group and PGS as
covariates along with the interactions between PGS and age
group (i.e., EA/CPPGS × age; see Supplementary Tables 7–12 for
parameter estimates). Analyses produced similar patterns to those
described earlier: despite grouping cognitive tasks by type to
aggregate power across related outcomes, all but one pathway
from PGS to the pre- or the latent difference score were small in
magnitude and statistically nonsignificant. The interactions with
age were also nonsignificant, indicating that stronger effects were
not masked by the aggregation of data from younger and older
participants. In contrast, we found consistently significant path-
ways (1) from age to the pre-test factor model and (2) from age to
the latent difference score.

People may differ in the shape of learning over 100 days
Examining only the overall difference in task performance from
the beginning to the end of practice might mask heterogeneity in
the shape of learning over that time. To probe for potential
differences in the shape of learning, we correlated pre-test scores
with performance at every practice session for each task (Fig. 2).
Correlations between pre-test scores and the average perfor-
mance across blocks of 10 days and by age group are in
Supplementary Figs. 5 and 6, respectively. Correlations in the first
practice sessions for all perceptual speed tasks ranged from 0.40
to 0.80, indicating moderate to strong differences between
participants with high and low scores at baseline. On the other
hand, correlations in the first practice sessions for all episodic
memory tasks and the N-Back ranged from ~0.20 to 0.50,
indicating modest differences between participants with high
and low scores at baseline. In contrast, the average correlations in
the first practice sessions for Alpha Span and Memory Updating
were −0.20 and 0, respectively, indicating little to no differences
between participants with high and low scores at baseline.
Although most results were nonsignificant, we qualitatively

observed three stylized patterns of change in the correlations
between pretest scores and practice session performance across
the sessions: upward trend, downward trend, and constant. The
upward trend of correlations is seen most prominently in Alpha
Span, indicating that higher pretest scores were associated with
both greater initial performance and greater learning across time.
In contrast, the downward trends in correlations across practice
sessions is seen for Object Position, Memory Updating, and
Numerical Comparison. This pattern indicates that participants
with high pre-test scores start practicing with slight advantage,
but the difference between high and low score groups equalize
over time, and even lead to the low score group performing better
for Memory Updating.
All other tasks show correlations that generally remain constant

throughout the practice phase. This trend suggests that partici-
pants with high scorers begin with slight advantage, and its
effects remain constant throughout the practice phase. However,
note that we were only able to qualitatively describe these

Table 1. Linear regression analysis between EAPGS and test scores by
cognitive task.

Pre-test scores Post-test scores Difference

Estimate SE Estimate SE Estimate SE

Episodic Memory Tasks

Word List Memory Task 0.074 0.095 0.050 0.062 0.042 0.094

Number-Noun Pairs 0.189a 0.091 0.134a 0.098 0.086 0.124

Object Position Memory 0.093 0.094 −0.000 0.082 −0.121 0.107

Working Memory Tasks

Alpha Span −0.030 0.104 0.010 0.087 0.092 0.150

Memory Updating Numerical 0.039 0.108 0.063 0.117 0.026 0.141

N-Back Spatial 0.159a 0.092 −0.004 0.088 −0.245a 0.112

Perceptual Speed Tasks

Numerical Comparison −0.065 0.088 −0.023 0.027 −0.019 0.029

Verbal Comparison −0.049 0.088 −0.037 0.042 −0.047 0.057

Figural/Spatial Comparison −0.199a 0.086 −0.046 0.031 −0.034 0.039

EAPGS educational attainment polygenic score, SE standard error.
aRegression is significant at the 0.05 level (one-tailed).
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patterns, and cannot make strong statistical inferences given the
large confidence intervals, and nonsignificant nature, of most
parameter estimates.

Genetics of performance over the 100 days of learning
We examined performance over the practice phase across every
day of practice (Fig. 3), across blocks of 10 days (Supplementary
Fig. 7), and by age group (Supplementary Fig. 8) as correlates of
EAPGS to examine how genetic associations transform with
learning. Pre-test scores, PGS, and cognitive scores at all individual
waves were computed to be independent of age at pre-test and
PC of ancestry before analyses to calculate their residuals. With
residuals of variables that were independent of baseline age and
PC, three different trajectories of correlations were qualitatively
observed: upward trend, downward trend, and constant. Correla-
tions for Alpha Span showed an upward trend from ~−0.25 to
0.05, indicating that participants with lower EAPGS perform better
at baseline, but the difference between the high and low EAPGS
equalize toward the end of practice. In contrast, Memory Updating
and N-Back showed a downward trend in correlations to ~r= 0,
such that initial EAPGS-associated differences in performance
decreased with practice.
All other tasks show correlations that generally remain constant

throughout the practice phase. The correlations and their
trajectories remain similar, even when creating means for blocks

of ten sessions (Supplementary Fig. 7). As the interpretation of
between-person differences in the daily practice data is compli-
cated by the individualized presentation times, we also looked at
the PGS correlations within groups who share the same
presentation time and confirmed that the different patterns were
not artifacts produced by the individualization procedure.
We also examined performance as correlates of CPPGS (see

Supplementary Figs. 9–11). Like that of EAPGS, we identified
different patterns of trajectories that do not appear to simply
reconstitute patterns of association between baseline perfor-
mance and subsequent learning. Details about pre-test scores as
correlates of subsequent performance and performance as
correlates of CPPGS are included in the Supplementary
Information.
Figure 4 includes correlations between EAPGS and performance

at day 1 and EAPGS and performance at day 100 of the practice
phase. Spearman correlations between CPPGS and performance at
day 1 and 100 of the practice phase are also shown in
Supplementary Fig. 12. To assess the standard errors of the
correlation coefficients, we performed the bootstrapping method
with 1,000 bootstraps for each cognitive task. We used the
Spearman correlations to reduce the potential influence of
outliers. Correlations between EAPGS and performance at day
1 show little to no differences, with correlations only ranging up to
0.155. However, more than half of the cognitive tasks (Word List,
Alpha Span, Memory Updating, Verbal Comparison, Figural/Spatial

Fig. 2 Paneled plot of correlations between pre-test scores and performance on all cognitive tasks over the practice phase. The black
circles indicate correlations between pre-test scores and performance, and the red dotted lines indicate 95% confidence intervals.
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Comparison) show an increase in correlations between EAPGS and
performance at day 100. A similar trend is observed from
correlations between CPPGS and initial performance at day 1 to
correlations between CPPGS and performance at day 100, where
the same five cognitive tasks showed an increase in correlations
over the practice phase.

Growth models of individual differences in change in
cognitive performance
We formally modelled individual trajectories of learning by fitting
linear, logarithmic, and exponential growth models to observa-
tions of cognitive performance in every task (Supplementary Fig. 13).
We incorporated EAPGS into the models and examined correlates

Fig. 3 Paneled plot of correlations between EAPGS and performance on all cognitive tasks over the practice phase. The black circles
indicate correlations between EAPGS and performance, and the red dotted lines indicate 95% confidence intervals.

Fig. 4 Spearman correlations between EAPGS and performance at day 1 (top) and at day 100 of the practice period (bottom) on all
cognitive tasks. The blue bars indicate Spearman correlation coefficients between EAPGS and test performance and orange lines indicate
error bars (i.e., ± standard error). Spearman correlations were used to reduce the potential influence of outliers.
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of learning by including it as a predictor of all parameters for
which there were random effects. Fit statistics and key parameter
estimates, including AIC of model comparisons, for exponential
and logarithmic models are presented in Supplementary Table 13.
Results indicated substantial variability in the shape and rate of
learning. However, there were no statistically significant associa-
tions between the EAPGS and this variation. This may be
attributable to lack of statistical power, as it is currently unknown
what size the effect of genetic variation on rate and shape of
learning may be. Thus, in the next section, we use the parameter
estimates, regardless of significance, to produce expectations for
trajectories at extreme PGSs, which we compare to observed
trajectories of groups with extreme PGSs.

Patterns of learning in individuals with extreme PGS
We examined how the rate and shape of learning differed
between individuals with the most extreme PGS values (Fig. 5)—
the highest 15 and lowest 15 EAPGS values in the samples. The
two groups have a relatively equal balance of older and younger
participants in each group, where the low EAPGS group (mean z-
score=−0.9059; range=−2.0808–−0.2635) includes six older
participants and nine younger participants, and the high EAPGS
group (mean z-score= 0.9059; range= 0.164–1.4496) consists of
eight older and seven younger participants. All outcomes are
scaled relative to the observed mean and standard deviation at
day 1 to ensure that all z-scores are relative to the distributions of
initial task performance. We considered exponential and logarith-
mic functions, but they were not included in the figure if there was
no convergence.

Descriptive results are plotted in Fig. 5. The predicted means in
performance for all tasks except for Word List (Panel a) and N-Back
(Panel f) follow relatively parallel trajectories for high and low PGS
groups. Parallel trajectories indicate that differences in perfor-
mance across the two groups remains over the course of the
practice, such that genetic effects remain constant across the
duration of practice.
Descriptive results for Word List (Panel a) indicate that although

the high and low groups share similar average performance,
trajectories of performance across practice appear to differ. The
low PGS group starts the practice phase with an advantage, but
the average performance remains relatively constant from the first
to last session, with the group even showing a slight downward
trend in performance starting at around session 60. In contrast,
high PGS group shows a steeper rate of learning, with average
performances dramatically increasing both at the beginning and
the end of the practice phase.
Descriptive results for N-Back (Panel f) indicate that low and

high PGS groups start at very similar points, with the high PGS
group at a slight performance advantage relative to the low PGS
group, and the low PGS group learning more over practice and
ultimately performing better than high PGS group.

DISCUSSION
We investigated how PGS for EA and cognitive function relate to
intensive learning over 100 days of practice. By examining PGS
associations across the full learning period, rather than simply
before and after learning provided the opportunity to observe the
patterns by which correlations transformed over the course of

Fig. 5 Paneled plot of means in performance over the practice phase. Subgroup means are created by extreme PGS groups (i.e., 15
participants with the lowest EAPGS vs. 15 participants with the highest EAPGS) on all cognitive tasks.
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learning. Despite the intensive longitudinal nature of the study
design, the sample size did not appear to be sufficiently powered
to detect PGS associations at statistically significant levels and we
found no evidence that the correlation between performance and
the PGS changes significantly over the course of learning.
However, we observed a variety of qualitative patterns of change
in PGS associations with cognitive performance over the course of
the learning period.
One qualitative pattern was characterized by decreasing PGS-

performance correlations with practice, indicating gradual equal-
ization of performance over the course of learning, where
participants with low PGS “catch up” to those with high PGS over
the practice phase. A second qualitative pattern was marked by
relatively constant correlations over the course of practice, such
that individuals learn relatively equivalently across the range
of PGS.
The qualitative patterns that we observed were inconsistent

across tasks, even within the same ability domain. Moreover, the
observed associations between PGS and learning do not appear to
simply reconstitute patterns of association between baseline
performance and subsequent learning. Rather, each cognitive task
appeared to show a unique pattern of PGS associations with
performance over practice, and patterns did not appear to cluster
by the type of cognitive ability that was being measured, even in
extreme PGS groups. Despite common speculations that genetic
correlates of task performance will magnify over the course of
learning, we did not observe this trend generally across the tasks.
It is important to call attention to several limitations. First,

results involving the PGSs were imprecise and did not appear to
be well powered. Investigations with larger sample sizes are
required to yield more precise estimates of genetic correlates of
learning. Such studies are costly to conduct, as a tremendous
amount of time is required from each participant. Not only was
the sample size small, but the PGS underperformed in terms of
effect on EA in this specific sample (R2= 1.97% [0.01%, 9.75%])
when compared with reasonable expectations based on previous
associations with EA4. Importantly, this considerable underperfor-
mance PGS prediction of EA at 2% undermines our expectations
regarding what might be reasonably observed for PGS prediction
of learning over time. Indeed, in light of this underperformance in
polygenic prediction of EA, it appears that our study was
underpowered to predict variation in learning. Second, this
sample was composed of individuals of European ancestry in
Germany. Whether the current findings generalize to other
populations is an open question, and we should consider this
work exploratory given low power and absence of pre-registration.
Lastly, it is unclear whether the observed gains in performance
should be interpreted as of practice-related gains in performance
on cognitive abilities unique to the individual tasks or as general
gains in the general cognitive abilities shared across tasks.
Although some evidence for transfer of training in the COGITO
study has been previously reported30, other studies have generally
failed to find that training or practice on specific cognitive tasks
transfers more generally to other external tasks or to real-life
skills31. Importantly, there is strong evidence that the long-term,
intensive, multimodal forms of learning characteristic of formal
education have general effects beyond the specific material
taught32,33. Notwithstanding these considerations, we believe that
understanding the mechanisms of task-specific learning may still
provide important insights into the processes that govern learning
more generally.
We investigated how EA/CPPGS relate to improvements in

learning across 100 days and found that there does not appear to
be a strong correlation between PGS and any cognitive measures.
Although estimates were imprecise, our exploratory study is
original in design and relevant for future studies that examine the
role of genetic in individual differences. The qualitative patterns
observed in the current study suggest that PGS associations with

performance may change over the course of learning, with the
pattern of change varying across tasks. Although it is commonly
hypothesized that pre-existing differences in performance will be
amplified by practice, it is also possible to observe “catch-up
effects”, whereby performance differences narrow over the course
of practice or training. Future research on the associations
between genetics and learning will benefit from considering that
changes between pre- and post-test scores may mask changes
that occur over the course of learning that reflects when the
learning occurs, and that genetic associations with learning may
not simply reconstitute patterns of association between baseline
performance and subsequent learning.

METHOD
Participants
This study included 51 younger (age range: 20–31 years, M= 25.6, SD=
2.7) and 80 older adults (age range: 65–80 years, M= 70.4, SD= 4.0) from
the COGITO study, a study of variability in cognitive performance over
100 days of measurement34. All research conducted by the COGITO study
was approved by the Max Planck Institute for Human Development, Berlin
and adhered to all ethical regulations regarding human subjects. The
COGITO study included a total sample of 101 younger and 103 older adults
with a wide range of EA (range: 3–26 years, M= 15.0, SD= 3.8), but our
analyses are restricted to participants for whom genetic data were
available. All participants provided written informed consent to take part in
the study.

PGS
PGS were computed based on GWAS summary data from recent large-
scale GWAS of EA and CP4. As participants from the COGITO study also
participated in the Berlin Aging Study II (BASE-II)35, and due to restrictions
by the 23andMe corporation on the sharing of summary GWAS data,
summary data were obtained for a version of the Lee et al.’s GWAS that
excluded BASE-II and 23andMe4. Genome-wide SNP genotyping in BASE-II
was performed using the “Genome-Wide Human SNP Array 6.0” from
Affymetrix Inc. and then processed as previously described (REF PMID
26821332). We constructed EA/CPPGS using a 500 kb clumping window, a
pruning R2 threshold of 0.25, and a p value threshold of 1.0 (all SNPs). We
did not consider other p value thresholds because we did not have a
separate tuning sample available for multi-trial learning that would be
required for such an analysis. EA/CPPGS were standardized within our
sample (M= 0, SD= 1) and adjusted for the top 10 principal components
(PC). This process identified no outliers in terms of ancestry (see
Supplementary Fig. 1 for a scatterplot matrix of the PC). The PCs were
estimated in a reference sample with European ancestry (1000 Genomes
Project, phase 1) and subsequently projected on to BASE-II participants
using the EIGENSTRAT software36. Previous work in the Twins Early
Development Study have reported that the EAPGS based on summary
statistics that exclude 23andMe data may account for upwards of 10% of
the variance in some cognitive and achievement test scores37,38, although
it is possible that this estimate is higher than would be obtained in other
samples. Moreover, as our focal analysis did not examine static levels of
cognition or achievement, but examined change in cognitive performance
over time, it is unclear what a reasonable expectation for R2 should be. It is
possible that by focusing specifically on change over time, pre-existing
sources of variation are controlled, such that effect sizes are larger than are
typically obtained for static levels. Alternatively, it is possible that learning
in a discrete period of time produces relatively little reordering of
individuals, such that effect sizes are smaller than are typically obtained for
static levels that themselves represent aggregation of learning across
many years. We therefore consider power across a range of R2 values. A
power analysis for R2 ranging from <1 to 10% is reported in Supplementary
Fig. 2. For an R2 of 9%, power is 97% to detect an association in this sample
at alpha of 5%. However, for an R2 of 2%, power is <50%.

Procedure
The COGITO study protocol consisted of three primary phases: an
extensive pre-test evaluation, a practice phase of ~100 days (M= 101)
on 12 cognitive tasks, and a post-test evaluation in which the same
measures administered during pre-test were re-administered. Three choice
reaction time tasks were excluded from our study, leaving with nine
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cognitive tasks for analyses. The practice phase included daily sessions that
consisted of twelve different cognitive tasks. The average time elapsed
between pre- and post-test was 197 days for the younger group, and 188
for the older group.

Measures
Cognitive tasks were selected to measure episodic memory, working
memory, and processing speed. Tasks were selected such that they could
be used in a repeated fashion over multiple occasion.

Pre- and post-tests. Participants underwent 10 days of pre-testing with
baseline measures of cognitive abilities. Based on pre-test performance,
each participant was given different masking time, presentation time, or
interstimulus interval at the practice phase. All tasks were tailored to each
participant except for processing speed tasks. For all other tasks, difficulty
levels at the practice phase were individualized by using different
presentation time based on the average accuracies achieved at four
different presentation time levels pre-test34. After the practice phase,
participants completed post-testing. The same test blocks presented at
pre-test were repeated at post-test, but without practice blocks.
Pre- and post-test scores for episodic and working memory tasks were

calculated by averaging the proportion of correct trials across four different
presentation times. As perceptual speed tasks were not individualized
based on pre-test performance, no mean response time was calculated.
Instead, we calculated the reciprocal of the mean correct response time
from correct response time to calculate pre- and post-test scores. In doing
so, higher scores translate to better performance across all tasks. The use of
only correct responses is preceded by publications on the COGITO study.

Cognitive tasks. All cognitive tasks were selected to measure three
fundamental aspects of commonly measured cognitive abilities, including
episodic memory, working memory, and perceptual speed. The visual,
numerical, and figural/spatial versions of the episodic memory tasks
included: Word List, Number-Noun, and Object Position, respectively. The
verbal, numerical, and spatial versions of the working memory are adapted
versions of the Alpha Span39, Memory Updating40, and N-Back41,
respectively. These tasks have shown to be valid indicators to test working
memory42. Lastly, perceptual speed was measured with numerical, verbal,
and figural/spatial versions of comparison tasks. More detailed descriptions
of each cognitive task are reported in Supplementary Table 1.

Analytic approach
Specifications for all growth models are found in Supplementary Table 2.
We used the NLMIXED function within SAS to fit nonlinear growth curve
models of changes in cognitive performance task in 131 participants over
100 days of practice. The NLMIXED procedure can be found on OSF:
https://mfr.osf.io/render?url=https%3A%2F%2Fosf.io%2Fn2h3k%
2Fdownload. We considered exponential and logarithmic models, each of
which can capture learning responses consistently increasing at early
stages but have diminishing marginal rates, as is typical for learning43. We
fit exponential and logarithmic models to the observations (i.e., correlates
between EAPGS and performance) and compared the correlates of
learning between two groups that are distinguished by EAPGS.

Data preprocessing
To remove the possible collinearity of the analytic variables with age and
ancestry, we computed residuals of EA/CPPGS using linear regression
models that predicted each PGS, and cognitive scores at pre-test, post-test,
and practice phase from age and PCs of ancestry. Age was used as a
continuous variable to run partial correlations and maintain consistency
with ancestry variables. Results were similar when age was used as a
categorical variable.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available on request from the
corresponding authors [F.S., M.L., & U.L.] from the COGITO study. The data are not
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