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ABSTRACT
Actual causality and a closely related concept of responsibility attri-
bution are central to accountable decision making. Actual causality
focuses on specific outcomes and aims to identify decisions (actions)
that were critical in realizing an outcome of interest. Responsibility
attribution is complementary and aims to identify the extent to
which decision makers (agents) are responsible for this outcome.
In this paper, we study these concepts under a widely used frame-
work for multi-agent sequential decision making under uncertainty:
decentralized partially observable Markov decision processes (Dec-
POMDPs). Following recent works in RL that show correspondence
between POMDPs and Structural Causal Models (SCMs), we first es-
tablish a connection between Dec-POMDPs and SCMs. This connec-
tion enables us to utilize a language for describing actual causality
from prior work and study existing definitions of actual causality
in Dec-POMDPs. Given that some of the well-known definitions
may lead to counter-intuitive actual causes, we introduce a novel
definition that more explicitly accounts for causal dependencies
between agents’ actions. We then turn to responsibility attribution
based on actual causality, where we argue that in ascribing respon-
sibility to an agent it is important to consider both the number of
actual causes in which the agent participates, as well as its abil-
ity to manipulate its own degree of responsibility. Motivated by
these arguments we introduce a family of responsibility attribu-
tion methods that extends prior work, while accounting for the
aforementioned considerations. Finally, through a simulation-based
experiment, we compare different definitions of actual causality and
responsibility attribution methods. The empirical results demon-
strate the qualitative difference between the considered definitions
of actual causality and their impact on attributed responsibility.
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1 INTRODUCTION
Ex-post analysis of a decision making outcome, be it perceived pos-
itive or negative, is central to accountability, which is considered
to be one of the pillars of trustworthy AI [11]. Such an analysis can
enable us to pinpoint decisions (hereafter actions) that caused fail-
ures and assign responsibility to decision makers (hereafter agents)
involved in the decision making process. When the emphasis is put
on a specific outcome and circumstances, actions that were critical
in realizing this outcome constitute actual causes. The extent to
which the agents’ actions were critical for the outcome of interest
determines the agents’ degrees of responsibility. Both actual causal-
ity and responsibility attribution have been well studied in moral
philosophy, law, AI and related fields [3, 8–10, 17, 22, 27, 28, 32, 52].

A canonical approach to actual causality is based on the but-for
test, which examines the counterfactual dependence of the outcome
on agents’ actions. It states that an action (or more generally, a set
of actions) is a but-for cause of the outcome if the outcome would
not have occurred had the action (resp. the set of actions) not been
taken. It is well-known that but-for causes do not always align
with human intuition—we refer the reader to [17] for an extensive
discussion. Given this, much of the recent work on actually causality
has tried to extend but-for causes in order to capture nuances of
decision making scenarios where they seem to fail.

Some of the most influential extensions are due to Halpern and
Pearl [16, 20, 21], who use Structural Causal Models (SCMs) [41]
as a framework for reasoning about actual causality. Focusing on
the modified Halpern-Pearl (HP) definition [16], actual causes are
identified through an extended but-for test, evaluated relative to
some contingency. As argued by Halpern [16], placing appropriate
restrictions on contingencies is subtle; in themodified HP definition,
contingencies can only be formed from non-causal variables set to
their actual values.

While the modified HP definition generalizes but-for causality,
it may still yield counter-intuitive actual causes when applied to
sequential decision making [16]. An example that illustrates this
is a variant of the bogus prevention scenario [27]. In this example,
we have two agents, Assassin 𝐴 and Bodyguard 𝐵, whose actions
influence Victim𝑉 . By poisoning𝑉 ’s coffee, 𝐴 can cause𝑉 ’s death,
whereas 𝐵 can prevent 𝑉 from dying by putting an antidote. One
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may ask, if 𝐴 decides on its action after observing the action of 𝐵
and only poisons𝑉 ’s coffee if 𝐵 has put the antidote, which actions
should constitute the actual causes of 𝑉 ’s survival, in case 𝐵 puts
the antidote and then 𝐴 poisons the coffee? As argued by Halpern
[16], in contrast to what our intuitions would suggest, under the
modified HP definition (as well as other variants of the HP defini-
tion), 𝐵’s action is an actual cause. Namely, putting the antidote
passes the but-for test under the contingency that 𝐴 poisons 𝑉 ’s
coffee. However, this is not an answer that one would expect, since
𝐴 had no intention of poisoning 𝑉 in the first place. To correct for
this, one may resort to normality considerations and extend the HP
definition accordingly [18]. For example, when examining causality,
the extended definition would exclude the “abnormal world” where
𝐵 does not add the antidote and 𝐴 poisons 𝑉 ’s coffee [16].

However, as we show in this paper, there are sequential deci-
sion making scenarios where the HP definitions provide counter-
intuitive actual causes, even under the normality considerations.
These novel scenarios demonstrate that existing definitions of ac-
tual causality (i.e., the but-for definition and the HP definitions) do
not fully account for conditions under which an agent decides on
its actions. These conditions generally depend on the interaction
history, i.e., the previous actions of the agent or the other agents.

In this paper, we study actual causation in decentralized partially
observable Markov decision processes (Dec-POMDPs) [38], which
are widely used for modeling multi-agent interactions under un-
certainty. Our goal is to utilize this framework in order to derive a
novel definition of actual causality that more explicitly accounts for
causal dependencies between agents’ actions and their policies. As a
down-stream task of interest, we consider responsibility attribution
based on actual causality. Our contributions are as follows.

Framework. By relying on the recent results in reinforcement
learning [7, 37], which show the correspondence between POMDPs
and SCMs, we establish a connection between Dec-POMDPs and
SCMs. This allows us to study existing definitions of actual causality
and responsibility attribution methods in Dec-POMDPs.

Formal Properties. Using sequential decision making scenarios
inspired by those from the moral philosophy literature, we argue
that some of the most prominent definitions of actual causality (i.e.,
the but-for definition and the modified HP definition) do not fully
account for causal dependencies between agents’ actions. The cor-
responding nuances are formally captured by two novel properties:
Counterfactual Eligibility and Actual Cause-Witness Minimality.

New Definition of Actual Causality. We then propose a def-
inition of actual causality that satisfies the two novel properties.
This definition utilizes additional variables, which are a part of the
standard agent modeling approach in Dec-POMDPs [38] that as-
signs to each agent an information state specifying how the agent’s
policy depends on the interaction history.

Responsibility Attribution.We additionally study responsibil-
ity attribution based on actual causality. We introduce a family of
responsibility attribution methods that extends the responsibility
attribution method of Chockler and Halpern [8]. These methods
take into consideration the number of actual causes an agent par-
ticipates in and preserve a type of performance incentive akin to
the one studied by [48]—an agent cannot reduce its own degree of
responsibility by increasing the number of its actions that must be
changed in order to obtain a different final outcome.

Experimental Results. Using a simulation-based experiment,
we test the qualitative properties of different definitions of actual
causation and we quantify their influence on responsibility as-
signments. The experimental results show that the modified HP
definition violates the two novel properties rather frequently in
one of the standard benchmarks for multi-agent RL—the card game
Goofspiel. For example, for a game configuration in which agents
can take 12 actions in total, we find that in the majority of trajec-
tories, 2 or more actions (i.e., more than 16% of actions) do not
conform to Counterfactual Eligibility. Similarly, 4 or more actual
causes do not conform to Actual Cause-Witness Minimality. Note
that the majority of trajectories have at least 13 actual causes. The
but-for definition, which satisfies Actual Cause-Witness Minimality,
violates Counterfactual Eligibility even more often than the HP defi-
nition: in the game configuration from above, 3 or more actions (i.e.,
25%) do not conform to Counterfactual Eligibility. The results also
show that these property violations can have a significant effect on
agents’ degrees of responsibility. When we correct for them, the
agents’ degrees of responsibility change in total by up to 50%-112%,
depending on the responsibility attribution method.

We believe that these results shed a new light on actual causality
and responsibility attribution, as they showcase additional chal-
lenges related to multi-agent sequential decision making. To the
best of our knowledge, this is the first work that aims to tackle
these challenges.

1.1 Related Work
In this subsection we provide a brief overview of the most relevant
prior work, categorized in three different research topics: actual
causality, responsibility and blame attribution, and other works.

Actual Causality. Arguably the closest to this paper is a recent
line of work on actual causality in AI due to Halpern and Pearl
[16, 20, 21], who introduced different versions of the HP defini-
tion of actual causality. Works that are closely related to the HP
definitions are extensively surveyed in [16, 17], and they include:
Pearl [40], who introduced the notion of causal beam that inspired
the HP definitions; Hitchcock [26], who identifies a variable as an
actual cause by searching for a causal path in which the variable
passes the but-for test; Hall [14], who considers the H-account defi-
nition, which identifies a subset of actual causes identified by the
HP definitions; and Halpern and Hitchcock [18] who extend the
HP definitions by incorporating normality considerations. As we
already mentioned, we extend this line of work by studying ac-
tual causality in Dec-POMDPs, which enables us to more explicitly
model causal dependencies between agents’ actions. This paper
is also closely related to a more recent work by Baier et al. [2],
who model multi-agent interaction via extensive form games, ac-
counting for the conditions under which an agent decides on its
actions through information states. However, Baier et al. [2] study
orthogonal aspects, primarily focusing on responsibility attribu-
tion. In contrast, we contribute to the literature on actual causality
by proposing a new definition that tackles challenges related to
multi-agent sequential decision making, identified in this paper.

Responsibility and Blame Attribution. This paper is also
related to the literature on responsibility attribution in multi-agent
decision making. We already mentioned Chockler and Halpern [8],
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who consider a causality-based notion of responsibility, and Baier
et al. [3], who provide a game-theoretic account of the forward and
backward notions of responsibility from [43]. Alechina et al. [1]
extend the decision-oriented notion of responsibility from Chockler
and Halpern [8] to assign responsibility to agents for the failure of a
team plan [36, 51]. In our work, we use their method as a baseline for
responsibility attribution. Yazdanpanah et al. [53] study a notion of
responsibly akin to the notion of blame from [8],1 and similar to this
paper, they explicitly incorporate time. However, their framework
is based on alternating-time temporal logic (ATL), whereas we
utilize Dec-POMDPs, which are more suitable for decision making
under uncertainty. Halpern and Kleiman-Weiner [19] formalize
the notions of blameworthiness and intent using actual causality;
similar to the degree of blame from [8] (see Footnote 1.1), these
notions depend on the epistemic state of an agent. Friedenberg and
Halpern [12] extend the notion of blameworthiness to cooperative
multi-agent settings. In contrast, this paper takes the notion of
responsibility defined by Chockler and Halpern [8] as its starting
point. The work by Triantafyllou et al. [48] is perhaps the closest
in spirit to this paper as it studies blame attribution in multi-agent
Markov decision processes. However, the focus of that work is on
average performance as an outcome of interest, whereas we focus
on specific events along a decision making trajectory. Naturally,
this paper broadly relates to (cooperative) game theory and cost
sharing games [30, 50], since attribution methods such as Shapley
value [46, 47] or Banzhaf index [4, 5] are often utilized for defining
degrees of blame, responsibility and blameworthiness [3, 12, 48].

Other Works. From a technical point of view, this paper closely
relates to RL approaches that utilize SCMs. Buesing et al. [7] lever-
ages SCMs for policy evaluation, which in turn can improve policy
search methods in model-based RL. Oberst and Sontag [37] ex-
tend the framework of Buesing et al. [7], allowing for off-policy
evaluation in POMDPs with stochastic transition dynamics. Mad-
umal et al. [34] utilize causal models to generate explanations for
actions taken by a RL agent. Tsirtsis et al. [49] consider a causal
model of the environment based on Markov decision processes
(MDPs). They use this model to find an alternative sequence of
actions that maximizes the counterfactual outcome, but is within a
certain Hamming distance from the original action sequence. This
alternative sequence serves as a counterfactual explanation. We
contribute to this line of work by establishing a connection between
Dec-POMDPs and SCMs and utilizing it for actual causality and
responsibility attribution in multi-agent sequential decision mak-
ing. Finally, this paper relates to the recent work on counterfactual
credit assignment in RL [23, 35], where the goal is to improve an
agent’s learning efficiency by properly crediting an action for its
effect on the obtained rewards. Our focus is not on improving the
learning process of an agent, but on accountability considerations.

2 FORMAL SETTING AND PRELIMINARIES
In this section, we describe our formal setting, based on decentral-
ized partially observable Markov decision processes (Dec-POMDPs)
[6, 38] and structural causal models (SCMs) [41, 42]. We also review

1Chockler and Halpern [8] differentiate responsibility and blame. For example, one of
the key difference is that an agent’s degree of blame depends on its epistemic state
(i.e., the agent’s belief about the underlying causal model).

and adopt to our setting a language for reasoning about actual
causality [17], and we formally model the actual causality problem
in the context of multi-agent sequential decision making.

2.1 Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs)

We consider a Dec-POMDP M = (S, {1, ..., 𝑛},A, 𝑃,O,Ω,𝑇 , 𝜎)
with 𝑛 agents, where: S is the state space; {1, ..., 𝑛} is the agents’
set;A = ×𝑛

𝑖=1A𝑖 is the joint action space, withA𝑖 being the action
space of agent 𝑖; 𝑃 specifies transitions with 𝑃 (𝑠, 𝑎, 𝑠 ′) denoting the
probability of the process transitioning to 𝑠 ′ from 𝑠 when agents
{1, ..., 𝑛} take joint action𝑎 = (𝑎1, ..., 𝑎𝑛);O = ×𝑛

𝑖=1O𝑖 is the joint ob-
servation space, with O𝑖 being the observation space of agent 𝑖; Ω is
an observation probability function with Ω(𝑠, 𝑜) denoting the prob-
ability of agents {1, ..., 𝑛} receiving joint observation 𝑜 = (𝑜1, ..., 𝑜𝑛)
when in state 𝑠; 𝑇 is the finite time horizon; 𝜎 is the initial state
distribution. We assume S, A and O to be finite and discrete. For
ease of notation, we additionally assume that the agents’ immediate
rewards are part of their observations. Throughout the paper, we
denote random variables with capital letters, e.g., 𝑆 , 𝐴 and 𝑂 .

We also consider for each agent 𝑖 a model𝑚𝑖 = (I𝑖 , 𝜋𝑖 , 𝑍𝑖 , 𝑍𝑖,0)
[38], where: I𝑖 is the (finite and discrete) information state space of
𝑖; 𝜋𝑖 is the policy of agent 𝑖 , i.e., a mapping 𝜋𝑖 : I𝑖 → Δ(A𝑖 ), where
Δ(A𝑖 ) is a probability simplex over A𝑖 ; 𝑍𝑖 is agent 𝑖’s information
probability function with 𝑍𝑖 (𝚤𝑖 , 𝑎𝑖 , 𝑜𝑖 , 𝚤′𝑖 ) denoting the probability
of 𝑖’s information state changing from 𝚤𝑖 to 𝚤′𝑖 , after 𝑖 takes action 𝑎𝑖
and observes 𝑜𝑖 ; 𝑍𝑖,0 is 𝑖’s initial information probability function
depending only on 𝑜𝑖,0. We use 𝜋𝑖 (𝑎𝑖 |𝚤𝑖 ) to denote the probability
of agent 𝑖 taking action 𝑎𝑖 given information state 𝚤𝑖 . The agents’
joint policy is denoted by 𝜋 , and we assume that 𝜋 (𝑎 |𝚤1, ..., 𝚤𝑛) =
𝜋1 (𝑎1 |𝚤1) · · · 𝜋𝑛 (𝑎𝑛 |𝚤𝑛). Note that information states are a way to
encode the information that an agent uses in its decision making.

2.2 Dec-POMDPs and Structural Causal Models
Although Dec-POMDPs are a very general and useful modelling
tool for multi-agent sequential decision making, they are not suf-
ficient to reason counterfactually about alternate outcomes [33],
and hence actual causality.2 For instance, given a trajectory 𝜏 =

{(𝑠𝑡 , 𝑎1,𝑡 , ..., 𝑎𝑛,𝑡 )}𝑇−1𝑡=0 generated by Dec-POMDP M under joint
policy 𝜋 , we would like to predict what would have happened,
had agent 𝑖 taken action 𝑎′

𝑖
instead of action 𝑎𝑖,𝑡 . However, even

though we have access throughM to the probability distribution
of the next state 𝑃 (𝑠𝑡 , (𝑎1,𝑡 , ..., 𝑎′𝑖 ..., 𝑎𝑛,𝑡 ), ·), we do not have a way
to infer what would be the value of 𝑆𝑡+1.3 Following Buesing et al.
[7], to overcome this limitation we viewM under joint policy 𝜋
as a structural causal model (SCM) C. To do this, we express 𝑃 , Ω,
{𝑍𝑖 }𝑖∈{1,...,𝑛} and {𝜋𝑖 }𝑖∈{1,..,𝑛} as deterministic functions 𝑔 with
independent noise variables 𝑈 , such as

𝑆𝑡 = 𝑔𝑆𝑡 (𝑆𝑡−1, 𝐴𝑡−1,𝑈𝑆𝑡 ), 𝑂𝑡 = 𝑔𝑂𝑡
(𝑆𝑡 ,𝑈𝑂𝑡

),
𝐼𝑖,𝑡 = 𝑔𝐼𝑖,𝑡 (𝐼𝑖,𝑡−1, 𝐴𝑖,𝑡−1,𝑂𝑖,𝑡 ,𝑈𝐼𝑖,𝑡 ), 𝐴𝑖,𝑡 = 𝑔𝐴𝑖,𝑡

(𝐼𝑖,𝑡 ,𝑈𝐴𝑖,𝑡
), (1)

where𝑈𝑆𝑡 ,𝑈𝑂𝑡
,𝑈𝐼𝑖,𝑡 and𝑈𝐴𝑖,𝑡

are |S|-, |O|-, |I𝑖 |- and |A𝑖 |- dimen-
sional, respectively. It can be shown that such a parameterization

2By counterfactual reasoning, we mean predicting what would have happened in a
specific instance of the decision process (trajectory) had some action(s) been different.
3Or in general the value of anything that comes (chronologically) after time-step 𝑡 .
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is always possible.4 Henceforth, we will refer to SCMs that are de-
fined in this way as Dec-POMDP SCMs. Consistent with the SCMs’
terminology [41], we also say that state variables 𝑆𝑡 , observation
variables 𝑂𝑡 , information variables 𝐼𝑖,𝑡 and action variables 𝐴𝑖,𝑡
constitute the endogenous variables of C, 𝑈 are the exogenous
variables, and equations (1) are the model’s structural equations.
The causal graph of the Dec-POMDP SCM can be found in Ap-
pendix A. We can generate a trajectory 𝜏 = {(𝑠𝑡 , 𝑎1,𝑡 , ..., 𝑎𝑛,𝑡 )}𝑇−1𝑡=0
using Dec-POMDP SCM by simply specifying a setting ®𝑢 for the
exogenous variables in 𝑈 , also called context, and then solving
the structural equations of C, i.e., Eq. (1). Note that for each Dec-
POMDP SCM-context pair (C, ®𝑢), also called causal setting, there is
a unique trajectory 𝜏 that can be generated in that way. Importantly,
we can also find out what would have happened in 𝜏 , had agent 𝑖
taken action 𝑎′

𝑖
instead of 𝑎𝑖,𝑡 in the following way:

(1) We perform the intervention5 𝐴𝑖,𝑡 ← 𝑎′
𝑖
on C, that is we

replace 𝑔𝐴𝑖,𝑡
(𝐼𝑖,𝑡 ,𝑈𝐴𝑖 ,𝑡 ) in Eq. (1) with the value 𝑎′

𝑖
. The re-

sulting SCM is denoted by C𝐴𝑖,𝑡←𝑎′𝑖 .
(2) We generate the counterfactual trajectory 𝜏cf from the causal

setting (C𝐴𝑖,𝑡←𝑎′𝑖 , ®𝑢), where ®𝑢 is the same context that we
used to generate 𝜏 .6

Note that when Dec-POMDPM or joint policy 𝜋 are stochastic,
the counterfactual trajectory 𝜏cf may not be identifiable without
further assumptions [37]. This is because, there may be multiple
parameterizations of a Dec-POMDP SCM, i.e., multiple functions
𝑔 and distributions over the exogenous variables 𝑈 , which are all
able to correctly representM under 𝜋 ,7 but which suggest different
counterfactual outcomes, e.g., 𝜏cf. Consequentially, the choice of
model can have a significant impact on claims of causality. In our
experiments, we choose to focus on a particular class of SCMs,
the Gumbel-Max SCMs [37]. This class of SCMs has been shown
to satisfy the desirable property of counterfactual stability, which
excludes a specific type of non-intuitive counterfactual outcomes.
Appendix B provides more details on Gumbel-Max SCMs and the
counterfactual stability property.

2.3 Actual Causality
We now review and adopt in our formal setting a language intro-
duced by prior work on actual causality with SCMs [17]. Consider
a Dec-POMDP SCM C and a context ®𝑢, and the (unique) trajectory
generated by the causal setting (C, ®𝑢), 𝜏 = {(𝑠𝑡 , 𝑎𝑡 )}𝑇−1𝑡=0 . We call
primitive event, any formula of the form 𝑉 = 𝑣 , where 𝑉 is an
endogenous variable in C, i.e., state, observation, information or
action variable, and 𝑣 is a valid value for 𝑉 . Let 𝜙 be an event, that
is any Boolean combination of primitive events. We use (C, ®𝑢) |= 𝜙
to denote that 𝜙 is true in the causal setting (C, ®𝑢), i.e., 𝜙 takes
place in 𝜏 . Furthermore, given a set of interventions on action vari-
ables ®𝐴 ← ®𝑎′, we write (C, ®𝑢) |= [ ®𝐴 ← ®𝑎′]𝜙 , if (C ®𝐴←®𝑎′, ®𝑢) |= 𝜙 .
For instance, consider the counterfactual scenario in which agent 𝑖
4In [7], they show how to represent an episodic POMDP as an SCM, and prove that
this is always possible. Their results can be directly extended to Dec-POMDPs.
5Interventions are also often modeled through the do-operator [39], do(𝐴𝑖,𝑡 = 𝑎′𝑖 ) .6Definitions for actual causality and responsibility, which are the focus of this paper,
are relative to a causal setting [8]. Therefore, we assume C and ®𝑢 to be fully known.
7For every state, observation, information or action variable𝑉 , it holds that variable
𝑉 ′ equals𝑉 in distribution, where𝑉 ′ = 𝑔𝑉 (𝑝𝑎𝑉 ,𝑈𝑉 ) , and 𝑝𝑎𝑉 are the parents of𝑉
in the causal graph.

takes the action 𝑎′
𝑖
instead of 𝑎𝑖,𝑡 in 𝜏 . If under this counterfactual

scenario the process transitions to state 𝑠 at time-step 𝑡 + 1, then
the following statement holds

(C, ®𝑢) |= [𝐴𝑖,𝑡 ← 𝑎′𝑖 ] (𝑆𝑡+1 = 𝑠).

Actual Causality in Multi-Agent Sequential Decision Making.
Our goal is to pinpoint the actions which caused a particular event
to happen. Given a causal setting (C, ®𝑢) and the event of interest
𝜙 , we want to determine the actual causes of 𝜙 in (C, ®𝑢). In this
paper, what can be an actual cause is a conjunction of primitive
events consisted only of action variables, abbreviated here as ®𝐴 = ®𝑎.
We say that every conjunct of actual cause ®𝐴 = ®𝑎 is part of that
cause. Furthermore, in some cases we want to define an actual cause
®𝐴 = ®𝑎 w.r.t. some contingency, that is ®𝐴 = ®𝑎 is an actual cause only
if that contingency holds. What can be a contingency in this paper
is again a conjunction of primitive events consisted only of action
variables, abbreviated as ®𝑊 = ®𝑤 ′. Finally, for ®𝐴 = ®𝑎 to be an actual
cause of 𝜙 in (C, ®𝑢) under contingency ®𝑊 = ®𝑤 ′, there has to exist a
setting ®𝑎′, such that (C, ®𝑢) |= [ ®𝐴← ®𝑎′, ®𝑊 ← ®𝑤 ′]¬𝜙 . We will often
refer to ®𝑎′ as (counterfactual) setting. Consistent with the actual
causality literature [17], we call the tuple ( ®𝑊, ®𝑤 ′, ®𝑎′) a witness to
the fact that ®𝐴 = ®𝑎 is an actual cause of 𝜙 in (C, ®𝑢).

Coming back to the introduction example, (C, ®𝑢) models the
considered trajectory: 𝐵 puts the antidote (𝐵 = antidote); 𝐴 poisons
𝑉 ’s coffee (𝐴 = poison);𝑉 survives. The outcome of interest 𝜙 is that
𝑉 survives. According to the HP definition, the action 𝐵 = antidote
consists the actual cause of 𝜙 in (C, ®𝑢) under the contingency that
𝐴 = poison. Indeed, there is a counterfactual setting for 𝐵 such that

(C, ®𝑢) |= [𝐵 = not antidote, 𝐴 = poison]¬(𝑉 survives) .

In Section 3, we consider several definitions of actual causality
w.r.t. a causal setting (C, ®𝑢), where C is always a Dec-POMDP SCM.
More specifically, in this paper an actual causality definition D has
to formally describe a process that receives as input a causal setting
(C, ®𝑢) and an event of interest 𝜙 , and outputs a set of actual cause-
witness pairs, i.e., a set of elements of the form ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)).
We use 𝐻D ((C, ®𝑢), 𝜙) (or just 𝐻D , when (C, ®𝑢) and 𝜙 are implied)
to denote the set of all actual cause-witness pairs of 𝜙 in (C, ®𝑢),
according to D. We also refer to (C, ®𝑢) as the actual world or
situation. Similarly, we refer to a causal setting as the counterfactual
world or scenario when it results from (C, ®𝑢) after an intervention
is performed on a subset of its action variables, e.g., (C ®𝐴←®𝑎′, ®𝑢).

3 DEFINITIONS FOR ACTUAL CAUSE
In this section, we analyze two of the most popular definitions of
actual causality that involve counterfactuals, the “but-for” defini-
tion8 (BF definition from now on) [22], and the Halpern and Pearl
definition (HP definition from now on) [16]. We provide two coun-
terexamples (both are new variants of the “bogus prevention” sce-
nario [25]) which expose several weaknesses of the two definitions.
We formally capture the insights we gain from these examples with
two novel properties. Subsection 3.3 introduces a new definition
for actual cause, which satisfies these two properties.

8Also known as cause-in-fact and sine qua non.
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3.1 The BF Definition
But-for cause is one of the fundamental definitions of causation in
law [22], and it states that 𝐶 is a cause of 𝐸 if but for 𝐶 , 𝐸 would not
have occurred. In other words, 𝐶 was necessary for 𝐸 to happen. In
our setting, we formally define but-for cause as follows.

Definition 3.1. (But-For Cause) ®𝐴 = ®𝑎 is a but-for cause of the
event 𝜙 in (C, ®𝑢) if the following conditions hold:
BFC1. (C, ®𝑢) |= ( ®𝐴 = ®𝑎) and (C, ®𝑢) |= 𝜙
BFC2. There is a setting ®𝑎′ of the variables in ®𝐴, such that

(C, ®𝑢) |= [ ®𝐴← ®𝑎′]¬𝜙

BFC3. ®𝐴 is minimal; there is no subset ®𝐴′ of ®𝐴, such that ®𝐴′ = ®𝑎′
satisfies BFC1 and BFC2, where ®𝑎′ is the restriction of ®𝑎 to
the variables of ®𝐴

We say that (∅, ∅, ®𝑎′) is a witness of ®𝐴 = ®𝑎 being a but-for cause of
𝜙 in (C, ®𝑢).

BFC1 requires that both ®𝐴 = ®𝑎 and 𝜙 happened in the actual
world, (C, ®𝑢). BFC2 implies the but-for condition, i.e., but for ®𝐴 = ®𝑎,
𝜙 would not have occurred. BFC3 is a minimality condition, which
ensures that an actual cause does not include any non-essential
elements. Unfortunately, but-for cause does not suffice for a good
definition of actual cause in the context of sequential decision
making, and the next example illustrates some of the reasons.

Example 3.2. Victim𝑉 dines at time-step 𝑡 . Assassin𝐴 has access
to 𝑉 ’s table at time-steps 𝑡 − 2 and 𝑡 − 1, when they can choose
whether to poison or not poison 𝑉 ’s water. 𝐴’s policy is to always
poison 𝑉 ’s water, unless it is already poisoned. We consider the
trajectory, in which𝐴 chooses to poison𝑉 ’s water only at time-step
𝑡 − 2, and 𝑉 dies from the poison at time 𝑡 .

To identify a but-for cause of𝑉 dying at time-step 𝑡 , consider an
intervention that sets 𝐴’s action at time-step 𝑡 − 2 to not poison. If
this is the only intervention, 𝐴 follows its policy at 𝑡 − 1 and takes
action poison, which results in the same outcome. To change the
outcome, we also need to intervene at time-step 𝑡 − 1 and set 𝐴’s
action to not poison. This implies that action poison taken at 𝑡 − 2
and action not poison taken at 𝑡 − 1 form a but-for cause of𝑉 dying
at time 𝑡 . We find this counter-intuitive because the action that has
to be changed at time-step 𝑡 − 1 is not the one that was taken in
the actual situation but the one that would have been taken in the
counterfactual scenario where 𝐴 does not poison the water at 𝑡 − 2.
Since the conditions that influence 𝐴’s decision at 𝑡 − 1 change
once we intervene at 𝑡 − 2, we argue that the action taken at 𝑡 − 1
should not be a part of an actual cause, but should be treated as a
contingency. The following property formalizes this insight.

Property 3.3 (Counterfactual Eligibility). We say that a defini-
tion for actual cause D satisfies Counterfactual Eligibility if for
every (C, ®𝑢), 𝜙 , ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) and 𝐴𝑖,𝑡 = 𝑎𝑖,𝑡 , where ( ®𝐴 =

®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) is an actual cause-witness pair of 𝜙 in (C, ®𝑢) ac-
cording to D, and 𝐴𝑖,𝑡 = 𝑎𝑖,𝑡 is part of ®𝐴 = ®𝑎, it holds that
(C, ®𝑢) |= [ ®𝐴 ← ®𝑎′, ®𝑊 ← ®𝑤 ′] (𝐼𝑖,𝑡 = 𝚤𝑖,𝑡 ), where 𝚤𝑖,𝑡 is agent 𝑖’s
information state in (C, ®𝑢), i.e., (C, ®𝑢) |= (𝐼𝑖,𝑡 = 𝚤𝑖,𝑡 ).

Property 3.3 states that an agent’s action is eligible for being a
part of an actual cause if the information state under which the

agent took that action in the actual world remains the same in the
witness world, i.e., the counterfactual world which corresponds
to the cause’s witness. As Example 3.2 suggests, the BF definition
violates Property 3.3.

3.2 The HP Definition
Arguably, one of themost influential accounts of causality is Halpern
and Pearl’s notion of actual causes in SCMs [21]. There are three
variants of the HP definition of actual causality [16, 20, 21]. In this
paper we consider and adopt in our setting the latest one [16].9

Definition 3.4. (HP) ®𝐴 = ®𝑎 is an actual cause of the event 𝜙 in
(C, ®𝑢) if the following conditions hold:
HPC1. (C, ®𝑢) |= ( ®𝐴 = ®𝑎) and (C, ®𝑢) |= 𝜙
HPC2. There is a set ®𝑊 of action variables and a setting ®𝑎′ of the

variables in ®𝐴 such that if (C, ®𝑢) |= ( ®𝑊 = ®𝑤 ′), then
(C, ®𝑢) |= [ ®𝐴← ®𝑎′, ®𝑊 ← ®𝑤 ′]¬𝜙

HPC3. ®𝐴 is minimal; there is no subset ®𝐴′ of ®𝐴, such that ®𝐴′ = ®𝑎′
satisfies HPC1 and HPC2, where ®𝑎′ is the restriction of ®𝑎 to
the variables of ®𝐴

We say that ( ®𝑊, ®𝑤 ′, ®𝑎′) is a witness of ®𝐴 = ®𝑎 being an actual cause
of 𝜙 in (C, ®𝑢).

HPC1 and HPC3 are similar to BFC1 and BFC3, respectively. HPC2
says that the but-for condition holds under the contingency ®𝑊 = ®𝑤 ′,
where the setting ®𝑤 ′ has the observed value of ®𝑊 in (C, ®𝑢). Roughly
speaking, thismeans that ®𝐴 = ®𝑎 is an actual cause of𝜙 in (C, ®𝑢) if but
for ®𝐴 = ®𝑎, 𝜙 would not have happened, had the action variables in
®𝑊 been fixed to their actual values. Themain intuition behindHPC2,
and what differentiates this HP definition from its predecessors, is
that “only what happens in the actual situation should matter” [17].

Coming back to Example 3.2, according to the HP definition,
the actual cause of 𝑉 dying at time-step 𝑡 is the action of 𝐴 to
poison the water at time-step 𝑡 − 2, under the contingency that 𝐴
would not poison the water at 𝑡 − 1. In other words, if we assume
that in the counterfactual world where 𝐴 does not poison the water
at 𝑡 − 2, they also do not poison the water at 𝑡 − 1, then the first
action is considered an actual cause of𝑉 dying. We find this answer
more intuitive than the one given by the BF definition. Despite the
success of the HP definition in Example 3.2 as well as in many more
examples in the moral philosophy literature [16, 17], we illustrate
with the next example that the HP definition is not sufficient for
multi-agent sequential decision making.

Example 3.5. Victim 𝑉 dines at time-step 𝑡 . Bodyguard 𝐵, who
suspects a poisonous attack, has access to 𝑉 ’s table at time-step
𝑡−2, when they can choose where to put an antidote, either into𝑉 ’s
water or into 𝑉 ’s wine. 𝐵 is right, indeed an assassin 𝐴 has access
to 𝑉 ’s table at time-step 𝑡 − 1, when they can choose where to put
the poison, again either into𝑉 ’s water or into𝑉 ’s wine. The poison
is neutralized by the antidote only if they have been put into the
same liquid, otherwise 𝑉 dies. We assume that 𝐴 observes where 𝐵
puts the antidote and that its intention is to poison 𝑉 . Therefore,
𝐴’s policy is to put the poison into the liquid that does not have
the antidote. Consider the trajectory, in which 𝐵 puts the antidote
9All definitions and their relations are extensively discussed in [17].

Contributed Paper  AIES ’22, August 1–3, 2022, Oxford, United Kingdom

743



into the water at time-step 𝑡 − 2, 𝐴 puts the poison into the wine at
time-step 𝑡 − 1, and 𝑉 dies at time 𝑡 .

According to both BF and HP definitions, an actual cause of 𝑉
dying at 𝑡 is the action of 𝐴 poisoning the wine at 𝑡 − 1. However,
according to the HP definition, this is not the only actual cause of
𝑉 ’s death. The action of 𝐵 putting the antidote into the water is also
considered an actual cause, under the contingency that 𝐴 would
poison the wine, i.e., 𝐵’s action is an actual cause assuming that 𝐴’s
action is fixed to its value in the “actual situation”. 10 In particular, 𝐵
did put the antidote into the water in the actual scenario, and since
it is a single action, it is also minimal, hence HPC1 and HPC3 are
satisfied. Furthermore, if we intervene on 𝐵’s action by changing it
to wine, and fix 𝐴’s action also to wine (the realized action), then 𝑉
does not die, and hence HPC2 is satisfied.

We find the latter actual cause to be counter-intuitive. Essentially
𝐵 had no control over the final outcome of this example, because
of the full observability and policy assumed for 𝐴. This counter-
intuitive result is due to the fact that the HP definition applies the
minimality condition (HPC3) only on the variables of the actual
cause ®𝐴 = ®𝑎, and does not include those of the contingency ®𝑊 = ®𝑤 ′
(here ®𝑊 = ®𝑤 ′ is in fact another actual cause). Motivated by Example
3.5, we introduce the following property.

Property 3.6 (Actual Cause-Witness Minimality). We say that a
definition for actual cause D satisfies Actual Cause-Witness Mini-
mality if for every (C, ®𝑢), 𝜙 , ®𝐴 = ®𝑎 and ®𝑊 = ®𝑤 ′, where ®𝐴 = ®𝑎 is an
actual cause of 𝜙 in (C, ®𝑢) under contingency ®𝑊 = ®𝑤 ′ according
to D, there are no ®𝐴′, ®𝑊 ′ and ®𝑤 ′′, such that ®𝐴′ ∪ ®𝑊 ′ ⊂ ®𝐴 ∪ ®𝑊
and ®𝐴′ = ®𝑎′ is an actual cause of 𝜙 in (C, ®𝑢) under contingency
®𝑊 ′ = ®𝑤 ′′ according to D, where ®𝑎′ is the restriction of ®𝑎 to ®𝐴.

Roughly speaking, Property 3.6 extends HPC3 to also include
®𝑊 , i.e., ®𝐴 ∪ ®𝑊 is minimal. As Example 3.5 suggests, the HP defini-
tion violates Property 3.6. Additionally, Appendix C.1 describes a
scenario where the HP definition violates Property 3.3.

Example 3.5 also sets the ground for arguing about the inter-
pretation of the actuality test: “only what happens in the actual
situation should matter”. For instance, one can argue that 𝐴’s action
of putting the poison into the wine is a valid contingency for the
HP definition since this action did realize in the actual situation.
Arguably, this interpretation is adopted in [16]. In contrast, we
argue for an interpretation that focuses not just on agents’ actions,
but also on their information states, i.e., conditions under which
agents reach their decisions. Under this interpretation, 𝐴’s action
of putting the poison into the wine does not pass the actuality test
for the counterfactual world in which 𝐵 puts the antidote into the
wine. Namely, in the actual situation, 𝐴 put the poison into the
wine only because 𝐵 had put the antidote into the water. Now, this
interpretation may be restrictive if the actuality test is applied on
contingencies, as it is the case with the HP definition. For instance,
if condition HPC2 is modified accordingly, the HP definition would
identify no actual causes in Example 3.2. However, we believe that
the actuality test is not important for contingencies, but only for
actual causes. This is formalized by Property 3.3. Note also that the
BF definition satisfies Property 3.6 because of BFC3.
10Note that based on Theorem 2.3 from [16] both older versions of the HP definition
also consider 𝐵’s action as an actual cause of𝑉 ’s death in Example 3.5.

Normality and Defaults. The notions of normality and de-
faults have been shown to deal with a number of examples where
the HP definitions provide counter-intuitive actual causes [15, 18].
However, Example 3.5 is not one of them. More specifically, in this
example there are two possible worlds, one where 𝐵 and 𝐴 put the
antidote and the poison into the same liquid, and one where they
put them into different liquids. Given the intentions of 𝐴 and that
𝐴 observes 𝐵’s action in this example, one may consider the former
world less normal than the latter one. All 3 HP definitions, when
extended to account for the aforementioned normality ordering,
they provide no actual causes, although there is arguably one. We
conclude, that despite the usefulness of these notions, they do not
address the shortcomings of the core definition described above.

3.3 A New Definition for Actual Cause
We extend the BF definition with the notion of contingencies and
implement the insights we gain from Examples 3.2 and 3.5, to pro-
pose a new definition for actual cause. Intuitively, our definition
takes a but-for cause and splits its set of (action) variables into two
subsets: the actual cause and the contingency. The partition is based
on whether the conditions under which these actions were taken,
change between the actual world and the witness one.

Definition 3.7. (Actual Cause) ®𝐴 = ®𝑎 is an actual cause of the
event 𝜙 in (C, ®𝑢), under the contingency ®𝑊 = ®𝑤 ′ if the following
conditions hold:
AC1. There is a setting ®𝑎′ of the variables in ®𝐴, such that ®𝐴 =

®𝑎 ∧ ®𝑊 = ®𝑤 is a but-for cause of 𝜙 in (C, ®𝑢), and also satisfies
condition BFC2 with setting ( ®𝑎′, ®𝑤 ′)

AC2. For every agent 𝑖 and time-step 𝑡 such that 𝐴𝑖,𝑡 ∈ ®𝐴 and
(C, ®𝑢) |= (𝐼𝑖,𝑡 = 𝚤𝑖,𝑡 ), it holds that

(C, ®𝑢) |= [ ®𝐴← ®𝑎′, ®𝑊 ← ®𝑤 ′] (𝐼𝑖,𝑡 = 𝚤𝑖,𝑡 )

AC3. For every agent 𝑖 and time-step 𝑡 such that 𝐴𝑖,𝑡 ∈ ®𝑊 and
(C, ®𝑢) |= (𝐼𝑖,𝑡 = 𝚤𝑖,𝑡 ), it holds that

(C, ®𝑢) |= [ ®𝐴← ®𝑎′, ®𝑊 ← ®𝑤 ′]¬(𝐼𝑖,𝑡 = 𝚤𝑖,𝑡 )

We say that ( ®𝑊, ®𝑤 ′, ®𝑎′) is a witness of ®𝐴 = ®𝑎 being an actual cause
of 𝜙 in (C, ®𝑢).

AC1 says that combined ®𝐴 = ®𝑎 and ®𝑊 = ®𝑤 should form a but-for
cause of 𝜙 in (C, ®𝑢) using the settings ®𝑎′ and ®𝑤 ′. According to the
BF definition, this means that the following conditions should hold:

(1) (C, ®𝑢) |= ( ®𝐴 = ®𝑎), (C, ®𝑢) |= ( ®𝑊 = ®𝑤) and (C, ®𝑢) |= 𝜙
(2) (C, ®𝑢) |= [ ®𝐴← ®𝑎′, ®𝑊 ← ®𝑤 ′]¬𝜙
(3) ®𝐴 ∪ ®𝑊 is minimal w.r.t. conditions (1) and (2)

AC2 requires that the actual cause ®𝐴 = ®𝑎 should contain only (ac-
tion) variables for which their underlying conditions (information
states) in the counterfactual world (C ®𝐴←®𝑎′, ®𝑊← ®𝑤′, ®𝑢) are the same
as in the actual world (C , ®𝑢).AC3 says that the contingency ®𝑊 = ®𝑤 ′
should contain only variables for which these conditions change.
Regarding Example 3.2, our definition agrees with the HP definition,
because of condition AC3. Regarding Example 3.5, our definition
agrees with the BF definition because of condition AC1. Further-
more, conditions AC2 and AC1 guarantee Properties 3.3 and 3.6,
respectively.
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Definition 3.7 can also be extended with the notion of normality,
by following the same procedure as with the HP definition in [18].

4 RESPONSIBILITY
In this section, we study approaches to determining the agents’
degree of responsibility relative to a causal setting (C, ®𝑢) and an
event of interest 𝜙 . We focus on approaches that assign responsi-
bility based on the actual causes of 𝜙 in (C, ®𝑢). More specifically,
in Section 4.1, we adopt in our setting and analyze a well-known
definition of responsibility introduced by Chockler and Halpern
[8]. In Section 4.2, we introduce a new family of definitions that
extend the Chockler and Halpern definition.

4.1 The Chockler-Halpern Definition
Chockler and Halpern [8] show that the original HP definition of
causality [20] can be used to assign a degree of responsibility to
each primitive event, measuring how pivotal it was for the event
of interest. Halpern [17] modifies the Chockler-Halpern definition
(hereafter CH) to incorporate the other two HP definitions [16, 21].
Alechina et al. [1] extend the analysis by appraising the responsibil-
ity of each agent. In our framework and for a definition of causality
D, the CH notion of responsibility can be defined as follows.

Definition 4.1. (CH) Consider a causal setting (C, ®𝑢) and an event
of interest 𝜙 such that (C, ®𝑢) |= 𝜙 . Agent 𝑖’s degree of responsibility
for 𝜙 in (C, ®𝑢) is 0 if none of 𝑖’s actions is a part of an actual cause
according to D. Otherwise it is the maximum value 𝑚

𝑘
such that

if ®𝐴 = ®𝑎 is an actual cause of 𝜙 in (C, ®𝑢) under the contingency
®𝑊 = ®𝑤 ′ according to D, then 𝑘 = | ®𝐴| + | ®𝑊 | and 𝑚 denotes the
number of agent 𝑖’s action variables in ®𝐴.

The CH definition captures the important idea that an agent’s de-
gree of responsibility should depend on the size of the actual causes
it participates in, the size of their corresponding contingencies, and
its degree of participation. However, as mentioned by Baier et al.
[2], the CH definition does not take into consideration the number
of actual causes an agent is involved in, which is evidence of that
agent’s power over the final outcome. Additionally, the definition
also ignores other aspects of actual causality that one might con-
sider important for attributing responsibility, such as the number
of different contingencies an actual cause might have.

4.2 A Family of Methods that Extend CH
We consider the CH definition and extend it in a natural way, so
that an agent’s degree of responsibility is now determined by a
wider variety of actual causes, instead of just one. More specifically,
our new definition takes into account the whole set of actual cause-
witness pairs 𝐻D for some definitionD and applies weight vectors
over that set. These vectors are non-negative and agent-specific,
and they determine by howmuch an agent’s degree of responsibility
is affected by each pair in 𝐻D . Each weight vector ®𝑏 has to have at
least one strictly positive element.

Definition 4.2. (Degree of Responsibility) Consider a causal set-
ting (C, ®𝑢) and an event of interest 𝜙 such that (C, ®𝑢) |= 𝜙 . Given a
weight vector ®𝑏 over the set 𝐻D , agent 𝑖’s degree of responsibility
for 𝜙 in (C, ®𝑢) is 0 if none of 𝑖’s actions is part of an actual cause

according to D; otherwise it is∑
𝑐∈{1,..., |𝐻D | } 𝑏𝑐 ·

𝑚𝑐

𝑘𝑐∑
𝑐∈{1,..., |𝐻D | } 𝑏𝑐

such that if ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) is the 𝑐-th actual cause-witness
pair of 𝐻D , then 𝑘𝑐 = | ®𝐴| + | ®𝑊 | −𝑤𝑐 , and𝑚𝑐 and 𝑤𝑐 denote the
number of agent 𝑖’s action variables in ®𝐴 and ®𝑊 , respectively.

Definition 4.2 is flexible in the sense that it can generate dif-
ferent responsibility attribution methods by changing the agents’
weight vectors. Compared to Definition 4.1, an agent’s degree of
responsibility does not depend anymore on the number of action
variables the agent has in a contingency of an actual cause in which
it participates. In simpler words, our definition guarantees that an
agent would not be attributed reduced responsibility had it adopted
a policy that would make more “mistakes” in the counterfactual
scenario.11 For instance, in Example 3.2, if 𝐴’s policy was to poison
𝐾 ’s water only at time-step 𝑡 − 2 then its degree of responsibility
according to CH (andD being either the HP definition or Definition
3.7) would be 1. However, it would be 1/2 if its policy was to always
poison the water. On the contrary, for responsibility attribution
methods from Definition 4.2, the agent’s degree of responsibility
is 1 in both cases. Note that, similar to CH, an agent’s degree of
responsibility according to Definition 4.2 is always between 0 and
1.12 More specifically, if the agent had no impact on the outcome,
its degree of responsibility would be 0, while if it was the only agent
with full control over the outcome, its responsibility would be 1.

5 EXPERIMENTS
In this section, we experimentally test the studied definitions of
actual causality (Section 3) and responsibility attribution methods
(Section 4) using an experimental testbed based on the card game
Goofspiel. Appendix E contains additional experimental results.

5.1 Environment and Policies
The game. Goofspiel(𝑁 ) is a two-person card game where each
player’s initial hand consists of the cards {1, ..., 𝑁 }. There is a face
down central pile of cards (also {1, ..., 𝑁 }) called the deck, which is
shuffled in the beginning of each game. In every round, the top card
of the deck is flipped. Then, both players choose a card from their
hand and simultaneously reveal it. The player with the higher card
wins the round, and in the case of a tie no player wins. If a player
manages to win the round, they are awarded a number of points
equal to the value of the flipped card, also called the prize, otherwise
they are awarded 0 points. All cards played in that round are then
discarded and a new round starts. After 𝑁 rounds, the player with
the most points wins the game. Note that typically 𝑁 = 13, making
the mathematical analysis of the game quite challenging [44, 45].
Moreover, it is worth mentioning that Goofspiel(𝑁 ) is part of a well
known framework for RL in games [24, 31]. We introduce a version
of this game which has two teams of two players. We call this
version TeamGoofspiel(𝑁 ). The game proceeds as before, with the
difference that now the team which cumulatively bids the higher
cards in a round is the team that obtains that round’s prize.
11This guarantee is aligned with the intuition behind the blame attribution property
of Performance Monotonicity, introduced by Triantafyllou et al. [48].
12The agents’ degrees of responsibility do not have to sum up to 1 [17].
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The players.We assume the agency over the members of one of
the teams, whose players are referred to as agents and are denoted
by Ag0 and Ag1. We treat the other team as a part of the environ-
ment, and we refer to its members as opponents. All the players are
assumed to keep similar information states at each time-step/round.
More specifically, the information state of a player at each round
consists of: the remaining cards on their hand; the round’s prize;
partial information about the current score–if their team is winning
or not. Notice that for simplicity, in this setting players do not keep
track of which cards the other players discarded in previous rounds,
i.e., they don’t condition their actions on the available moves of
other players, nor they try to infer their policies.

Policies. The policy of Ag0 is to always match the round’s prize
whenever possible. We differentiate two cases when this action is
not feasible, i.e., if the matching card is not on Ag0’s hand. If their
team is winning (resp. not winning) they play the card with the
highest (resp. lowest) value out of the cards with a value lower
(resp. higher) than the prize. In case such a card is not available,
they play the card with the lowest (resp. highest) value on their
hand. The policy of Ag1 is to always play the card with the highest
value on their hand, if the prize is greater than their hand’s average
card value minus 𝑋 , otherwise they play the card with the lowest
value on their hand. 𝑋 is 0 if their team is winning and 1 otherwise.

Both opponents follow the same stochastic policy defined as
follows. If their team is winning (resp. not winning) they randomly
choose a card from their hand with value lower (resp. higher) or
equal to the prize, and if they don’t have such a card in their hand
they randomly choose one of the cards available.

We choose the players’ policies to follow simple rules, and de-
pend on small size information states, so that the generated actual
causes are easy to interpret, but not too simple and small, so that
they become trivial. Note also that the random and the matching
policies are quite standard in Goofspiel(𝑁 ) analysis, and that the
latter have been shown to dominate the former [13, 45].

Actual Causes.We focus on trajectories, i.e., instances of the
game in which the final outcome is either a win for the opponents’
team or a draw. For each of these trajectories, our goal is to pin-
point those actions of the agents that caused them to not win the
game, and then quantify the agents’ influence on that outcome.
In particular, we specify the set of all actual cause-witness pairs
for each trajectory, and based on this set we compute the agents’
degrees of responsibility. Note that in order to generate a trajectory
in the TeamGoofspiel(𝑁 ) environment, we first need to sample from
the initial state distribution, i.e., shuffle the deck, and then at each
time-step sample the opponents’ actions based on the distributions
defined by their stochastic policies.

5.2 Demonstration Example
In this section, we focus on a particular trajectory of TeamGoof-
spiel(𝑁 ) and present the set of actual cause-witness pairs for that
trajectory based on Definition 3.7. To compute this set, we imple-
ment a simple tree search algorithm that iterates over all possible
alternative actions of the agents. In our experiments, we restrict
the size of actual cause-witness pairs to 4, in order to obtain more
interpretable actual causes. Namely, large actual causes suggest
a counterfactual world that is quite different from what actually

Table 1: Actual Cause-Witness Pairs Based on Definition 3.7

Actual Cause CF Setting Contingency Improvement
𝐴0,1 = 4, 𝐴1,1 = 4 1, 1 - 2

𝐴0,1 = 4, 𝐴1,3 = 2 1, 1 𝐴0,2 = 2 1
2, 1 𝐴0,2 = 1 1

𝐴0,1 = 4, 𝐴1,2 = 3 1, 1 - 2
𝐴1,1 = 4, 𝐴0,3 = 2 1, 1 - 1

𝐴1,1 = 4, 𝐴0,2 = 3 1, 1 𝐴1,2 = 3 2
𝐴1,2 = 4 1

𝐴0,0 = 5 1 - 1
2 - 1

𝐴1,0 = 5

1

𝐴0,3 = 1 1
𝐴1,3 = 4 1
𝐴1,1 = 3 3
𝐴1,1 = 4 1

2
𝐴1,2 = 3 1
𝐴1,1 = 3 3
𝐴1,1 = 4 1

3 𝐴1,2 = 2 1
𝐴1,0 = 5, 𝐴0,2 = 3 1, 2 - 1
𝐴1,0 = 5, 𝐴0,1 = 4 1, 2 - 1
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Figure 1: Responsibility Attribution Based on Table 1
happened, and they are also more difficult to comprehend. Thus,
smaller actual causes are usually preferred.

For 𝑁 = 5, we consider the trajectory where prizes show up in a
descending order (5, 4, 3, 2, 1). Both agents’ and opponents’ actions
in this scenario always match the prize, resulting in a 0 − 0 draw.
Table 1 shows the set of all actual cause-witness pairs for that tra-
jectory. Interestingly, and despite its simplicity, the considered tra-
jectory admits 19 different actual cause-witness pairs, each of them
representing a set of minimal changes that the agents could have
made in order to win the game. More specifically, each row of Table
1 corresponds to one actual cause-witness pair ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)),
where: column 1 includes the actual causes ®𝐴 = ®𝑎; column 2 includes
the counterfactual settings ®𝑎′; column 3 includes the contingencies
®𝑊 = ®𝑤 ′; column 4 includes the improvement in score difference
the agents achieve in the corresponding counterfactual worlds.

The corresponding tables for definitions BF and HP can be found
in Appendix C.1.

5.3 Instances of Definition 4.2
As mentioned in Section 4.2, by changing the values of the agent-
specific weight vectors ®𝑏 in Definition 4.2 we can generate multiple
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different responsibility attribution methods. Next, we present the
instances of Definition 4.2 we consider in our experiments. The
names of the corresponding attribution methods are derived from
the elements of actual causality which they consider distinct.

AC: For every actual cause ®𝐴 = ®𝑎, the weight of exactly one pair
( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) is 1, and all other weights are 0. For Table 1,
this means that we keep one row per actual cause, and we discard
every other row for that actual cause and the column Improvement.
For an agent 𝑖 , the actual cause-witness pair we choose for each
actual cause, i.e., the pair whose weight is 1, is one with the highest
value of 𝑚𝑐

𝑘𝑐
for that agent. This method takes into account the

number of distinct actual causes an agent participates in.
ACCS: For every actual cause ®𝐴 = ®𝑎 and counterfactual setting

®𝑎′, the weight of exactly one pair ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) is 1, and all
other weights are 0. For Table 1, this means that we keep exactly
one row per actual cause-counterfactual setting pair, and we discard
every other row for that pair and the column Improvement. For
an agent 𝑖 , the actual cause-witness pair we choose for each actual
cause-counterfactual setting pair, i.e., the pair whose weight is 1, is
one with the highest value of 𝑚𝑐

𝑘𝑐
for that agent. Additional to AC,

ACCS takes also into account the number of all the different coun-
terfactual actions that the agents who participate in ®𝐴 = ®𝑎 could
have taken in order for the final outcome to improve.

The remaining attribution methods assume the same weight
vectors for all agents.

ACW: The weight of each actual cause-witness pair is 1. For
Table 1, this means that we take its whole content into account
except for the column Improvement. Additional to ACCS, ACW
takes into account all the different contingencies under which ®𝐴 =

®𝑎 is an actual cause.
ACW-I: The weight of each actual cause-witness pair is equal to

the value of the counterfactual improvement it admits. This means
that we use the full information given in this table.13

Apart from AC, ACCS, ACW and ACW-I, we also consider in
our experiments the CH definition. Plot 1 shows the agents’ degrees
of responsibility for the trajectory from Section 5.2 and for the vari-
ous responsibility attribution methods. For this plot, the input of all
the methods is Table 1. Observe how in this example the lion’s share
of responsibility shifts gradually from Ag0 to Ag1, as we include
more information from Table 1 to our responsibility assignment
process. For instance, Ag1 could improve the outcome on their own
by playing one of 3 alternative actions at the first time-step (rows
10-16), while Ag0 had only 2 (rows 8, 9). Because of that, Ag1’s
responsibility increases relative to Ag0’s when we transition from
AC to ACCS. Appendix C.2 shows the attributed responsibilities,
when BF and HP are considered instead of Definition 3.7.

5.4 Violations of Properties 3.3 and 3.6
In this section, we compute the frequency of Property 3.3 and
Property 3.6 violations by the BF and HP definitions from Section 3.
Furthermore, we examine by how much these property violations
might affect the agents’ degrees of responsibility. We measure both
quantities for 𝑁 ∈ {4, 5, 6, 7, 8}, and 50 trajectories per value of 𝑁 .

13This approach to responsibility is aligned with the notion of graded causality [18].
However, here instead of using a normality ranking over the actual cause-witness
pairs, we evaluate them w.r.t. the counterfactual improvement they admit.

5.4.1 Property 3.3 Violations. Plot 2a summarizes the frequency
results for Property 3.3. More specifically, for each trajectory we
compute the number of actions that are, according to Property 3.3,
wrongfully characterized as part of one or more actual causes by
the BF and HP definitions. For instance, consider the boxplot which
corresponds to 𝑁 = 6 and HP. For half of the trajectories, the HP
definition considers at least 2 out of the total 12 actions as part of
one or more actual causes, when it should had instead considered
them as part of their contingencies.

Next, we want to measure by how much this mislabeling of ac-
tions, i.e., Property 3.3 violations, can affect the process of respon-
sibility attribution. In order to quantify this measure, we execute
the following procedure. For each trajectory, we first compute the
set of actual cause-witness pairs 𝐻D based on definition D, where
D can be either BF or HP. Then, for every approach from Section
5.3 we compute the agents’ degrees of responsibility utilizing the
set 𝐻D . Next, we correct 𝐻D for Property 3.3 violations, i.e., for
every actual cause-witness pair ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) in 𝐻D we re-
move from ®𝐴 = ®𝑎 and ®𝑎′ all actions that violate Property 3.3, and
we add them to the contingency set ®𝑊 = ®𝑤 ′. We then take the
newly defined set of actual cause-witness pairs𝐻 ′D , and recompute
the agents’ degrees of responsibility. Plot 2b shows the maximum
value of the total absolute difference between the two computed
degrees of responsibility, for every value of 𝑁 and responsibility
method. The maximum is taken over all trajectories. We choose
to plot the maximum differences to showcase the potential magni-
tude of unfairness that violating Property 3.3 might cause to the
responsibility assignment. The results demonstrate that correcting
BF and HP for these violations can have a significant impact on the
agents’ degrees of responsibility. It is also worth noting that the CH
definition seems to be the least resilient to this type of violations
among the definitions we consider here.

5.4.2 Property 3.6 Violations. Apart from Property 3.3, the HP
definition also violates Property 3.6 (Section 3.2). Plot 2c displays the
frequency of these violations (brown boxplots). More specifically,
the plot shows for all trajectories the number of distinct actual cause-
contingency pairs which are non-minimal, according to Property
3.6. While comparing this number to the total number of these
pairs which is shown in Plot 2d, we conclude that the HP definition
systematically violates Property 3.6.

To measure the impact of Property 3.6 violations on respon-
sibility attribution, we follow a procedure similar to the one for
Property 3.3 in Section 5.4.1. More specifically, we first compute the
agents’ degrees of responsibility based on 𝐻D , where D is the HP
definition. Next, we correct 𝐻D for Property 3.6 violations, i.e., we
remove all actual cause-witness pairs that violate Property 3.6, and
we recompute the degrees of responsibility. Similar to Plot 2b, Plot
2e shows the maximum value of the total absolute difference be-
tween the two computed degrees of responsibility, for every value
of 𝑁 and responsibility method. The maximum is taken over all
trajectories. The results indicate that Property 3.6 violations in the
HP definition can greatly affect the downstream task of responsi-
bility attribution. However, it is worth mentioning that for CH, the
agents’ degrees of responsibility changed only for 1 trajectory out
of the 250 we sampled in our experiments, indicating that it is the
most resilient to this type of property violations.
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Figure 2: Plots 2a and 2c show the number of violations of Properties 3.3 and 3.6. Plots 2b and 2e show the impact of these
violations on the agents’ degrees of responsibility. Plot 2d shows the number of distinct actual cause-contingency pairs.

Note that the HP definition allows for non-minimal contingen-
cies, that is ( ®𝐴 = ®𝑎, ( ®𝑊, ®𝑤 ′, ®𝑎′)) may be considered as a valid actual
cause-witness pair by HP even if there is a subset ®𝑊 ′ of ®𝑊 and a
setting ®𝑤 ′′ such that ( ®𝐴 = ®𝑎, ( ®𝑊 ′, ®𝑤 ′′, ®𝑎′)) is also an actual cause-
witness pair according to HP. As mentioned by Ibrahim [29], when
attributing responsibility based on the HP definition it would make
sense to impose the witness minimality condition in addition to
HPC3. We denote this enhanced version of the HP definition by HP-
MIN. Note that violations of the contingency minimality condition
fall under Property 3.6 violations. Therefore, we expect that HP-
MIN will do better than HP w.r.t Property 3.6 violations, and hence
have a lower impact on responsibility.14 Plots 2c and 2d verify this
intuition. They show that the number of violations is significantly
smaller for HP-MIN. However, these violations are not completely
vanished, meaning that there are still cases where they can have a
large impact on responsibility attribution. In Appendix D, we plot
again 2a, 2b and 2e, after replacing HP with HP-MIN.

6 CONCLUSION
To summarize, in this paper we studied actual causality and respon-
sibility attribution through the lens of sequential decision making
in Dec-POMDs. We identified some of the shortcomings of existing
definitions of actual causality and introduced a new definition to
address them. Furthermore, we extended one of the well known
causality-based approaches to responsibility attribution in order
to account for an agent’s power over the final outcome and its

14In particular, only ACCS, ACW and ACW-I are affected.

ability to manipulate its own degree of responsibility. While this
work focuses on particular challenges in defining actual causality
and attributing responsibility, we view it as an important step to-
ward establishing a formal framework that supports accountable
multi-agent sequential decision making.

Some of the most interesting future research directions are re-
lated to practical considerations. Given that our primary goal is to
formalize the notions of actual causality and responsibility attribu-
tion, we made simplifying assumptions that allowed more efficient
computation of experimental results. For example, even though the
Dec-POMDP framework adopted in this work does model uncer-
tainty, we assumed the full knowledge of random variables that
define contexts of the corresponding SCM. We also assumed that
the agents’ policies are given. Lifting these assumptions is critical
for making this work more applicable in practice. Furthermore, the
algorithmic solution for inferring actual causes and assign respon-
sibility in the experiments is based on exhaustive search. Therefore,
deriving more scalable algorithmic solutions is needed for applying
this work in challenging domains. Finally, we deem further analysis
of actual causality properties a meaningful extension of our work.
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A CAUSAL GRAPH OF DEC-POMDP SCM
In this section, we provide the causal graph of the Dec-POMDP
SCM from Section 2.2. The graph is shown in Figure 3.

B GUMBEL-MAX SCMS AND
COUNTERFACTUAL STABILITY

In this section, we show how Gumbel-Max SCMs can be imple-
mented in our framework, and also provide the main intuition
behind the counterfactual stability property. For more details on
Gumbel-Max SCMs and the counterfactual stability property we
refer the interested reader to [37].

Under the Gumbel-Max model, the structural equations of Eq.
(1) become:

𝑆𝑡 = argmax
𝑠∈S

{log 𝑃 (𝑆𝑡−1, 𝐴𝑡−1, 𝑆𝑡 = 𝑠) +𝑈𝑆𝑡 }

𝑂𝑡 = argmax
𝑜∈O

{logΩ(𝑆𝑡 ,𝑂𝑡 = 𝑜) +𝑈𝑂𝑡
}

𝐼𝑖,𝑡 = argmax
𝚤𝑖 ∈I𝑖

{log𝑍𝑖 (𝐼𝑖,𝑡−1, 𝐴𝑖,𝑡−1,𝑂𝑡 , 𝐼𝑖,𝑡 = 𝚤𝑖 ) +𝑈𝐼𝑖,𝑡 }

𝐴𝑖,𝑡 = argmax
𝑎𝑖 ∈A𝑖

{log𝜋𝑖 (𝐴𝑖,𝑡 = 𝑎𝑖 |𝐼𝑖,𝑡 ) +𝑈𝐴𝑖,𝑡
}

where𝑈𝑆𝑡 ,𝑈𝑂𝑡
,𝑈𝐼𝑖,𝑡 and𝑈𝐴𝑖,𝑡

∼ Gumbel(0, 1).
The class of Gumbel-Max SCMs has been shown to satisfy the

desirable property of counterfactual stability, which excludes a spe-
cific type of non-intuitive counterfactual outcomes. We provide the
main intuition behind this property, with the help of an example.
Consider the observed trajectory 𝜏 = {(𝑠𝑡 , 𝑎𝑡 )}𝑇−1𝑡=0 , and the coun-
terfactual scenario in which agents {1, ..., 𝑛} take the joint action 𝑎′
at time-step 𝑡 , instead of 𝑎𝑡 . The counterfactual stability property
ensures that under this counterfactual scenario, it is impossible that
at time-step 𝑡 + 1 the process would transition to a state 𝑠 ′ different
than the observed state, i.e., 𝑠𝑡+1 if

𝑃 (𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎′, 𝑆𝑡+1 = 𝑠𝑡+1)
𝑃 (𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎𝑡 , 𝑆𝑡+1 = 𝑠𝑡+1)

≥ 𝑃 (𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎′, 𝑆𝑡+1 = 𝑠 ′)
𝑃 (𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎𝑡 , 𝑆𝑡+1 = 𝑠 ′)

.

In other words, in order for the state at time-step 𝑡 + 1 to change
under a counterfactual scenario, the relative likelihood of an alter-
native state 𝑠 ′ must have increased compared to that of 𝑠𝑡+1.

C RESULTS OF SECTIONS 5.2 AND 5.3 FOR
THE BF AND HP DEFINITIONS

C.1 Actual Cause-Witness Pairs
In this section, we provide the sets of actual cause-witness pairs for
the trajectory considered in Section 5.2, and definitions BF (Table
2) and HP (Table 3).

We also describe a scenario where the HP definition violates
Property 3.3. The actual cause-witness pair of Table 3 denoted by
red color fails to meet the conditions stated by Property 3.3. More
specifically, Ag0’s information state at time-step 2 is different be-
tween the actual world and the witness world, i.e., the agent’s hand
in the actual situation at time 2 is (1, 2, 3) and in the counterfactual
scenario is (2, 3, 4). Despite that, action 𝐴0,2 = 4 is still considered
as a part of the actual cause by the HP definition. Therefore, this
scenario shows that the HP definition does not satisfy Property 3.3.

C.2 Responsibility
In this section, we provide the agents’ degrees of responsibility
for the trajectory considered in Section 5.2, and definitions BF
(Plot 4) and HP (Plot 5). Compared to Plot 1, Plots 4 and 5 show
a similar albeit less prominent tendency, regarding the shift of
responsibility from Ag0 to Ag1, throughout the several approaches
to responsibility attribution considered in this paper.

D EXPERIMENTAL RESULTS FOR HP-MIN
In this section, we present the results from Section 5.4 after replac-
ing the HP definition for actual cause with its enhanced version,
HP-MIN, which was introduced in Section 5.4.2. As expected, Plots
2a and 6a are identical, since the number of Property 3.3 violations
is not affected by whether the contingency minimality condition is
satisfied or not. As a result, the differences in Plots 2c and 6c are
insignificant. As mentioned in Section 5.4.2, the number of Prop-
erty 3.6 violations is considerably reduced when replacing HP with
HP-MIN. Although, Plot 6e (compared to Plot 2e) shows a similar
tendency for the impact on the agents’ degrees of responsibility,15
it can be seen that this impact is still quite large.

E ADDITIONAL COMPARISON RESULTS OF
ACTUAL CAUSALITY DEFINITIONS

In this section, we provide some additional empirical insights that
we gain by comparing the actual causality definitions from Section
3, in the experimental test-bed of Section 5. Plots 7a and 7b display
the number of distinct actual causes and their corresponding size
(over all sampled trajectories), respectively. As expected, the BF
definition admits a larger number of distinct actual causes, and of
greater size than the other two definitions, since it is not equipped
with the notion of contingencies. Plot 7c shows the counterfactual
improvement admitted by the actual cause-witness pairs of each
definition. It can be seen that the HP definition provides pairs
that admit greater improvement in general. However, the main
reasonwhy this is happening, is because HP allows for non-minimal
contingencies (see Section 5.4.2 and Appendix D). Plot 7d validates
this intuition.

15At least for ACCS, ACW and ACW-I which are the only ones being affected.
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Figure 3: Causal Graph of Dec-POMDP SCM with Structural Equations (1)

Table 2: Actual Cause-Witness Pairs Based on the BF Definition

Actual Cause CF Setting Contingency Improvement
𝐴0,1 = 4, 𝐴1,1 = 4 1, 1 - 2

𝐴0,1 = 4, 𝐴0,2 = 3, 𝐴1,3 = 2 1, 2, 1 - 1
2, 1,1 - 1

𝐴0,1 = 4, 𝐴1,2 = 3 1, 1 - 2
𝐴1,1 = 4, 𝐴0,3 = 2 1, 1 - 1

𝐴1,1 = 4, 𝐴0,2 = 3, 𝐴1,2 = 3 1, 1, 3 - 2
1, 1, 4 - 1

𝐴0,0 = 5 1 - 1
2 - 1

𝐴1,0 = 5, 𝐴0,3 = 2 1, 1 - 1
𝐴1,0 = 5, 𝐴1,3 = 2 1, 4 - 1

𝐴1,0 = 5, 𝐴1,1 = 4

1, 3 - 3
1, 4 - 1
2, 3 - 3
2, 4 - 1

𝐴1,0 = 5, 𝐴1,2 = 3 2, 3 - 1
3, 2 - 1

𝐴1,0 = 5, 𝐴0,2 = 3 1, 2 - 1
𝐴1,0 = 5, 𝐴0,1 = 4 1, 2 - 1

Table 3: Actual Cause-Witness Pairs Based on the HP Definition

Actual Cause CF Setting Contingency Improvement
𝐴0,1 = 4, 𝐴1,1 = 4 1, 1 - 2

𝐴0,1 = 4, 𝐴0,2 = 3, 𝐴1,3 = 2 1, 2, 1 - 1
2, 1, 1 - 1

𝐴0,1 = 4, 𝐴1,2 = 3 1, 1 - 2
𝐴1,1 = 4, 𝐴0,3 = 2 1, 1 - 1
𝐴1,1 = 4, 𝐴0,2 = 3 1, 1 𝐴1,2 = 3 2

𝐴0,0 = 5 1 - 1
2 - 1

𝐴1,0 = 5

1 𝐴1,1 = 4 1
𝐴1,1 = 4, 𝐴1,2 = 3 1

2
𝐴1,2 = 3 1
𝐴1,1 = 4 1

𝐴1,1 = 4, 𝐴1,2 = 3 1
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Figure 4: Responsibility Attribution Based on Table 2
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Figure 5: Responsibility Attribution Based on Table 3
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(c) Property 3.6: Number of Violations
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(d) Actual Cause-Contingency Pairs
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Figure 6: Plots 6a and 6c show the number of violations of Properties 3.3 and 3.6. Plots 6b and 6e show the impact of these
violations on the agents’ degrees of responsibility. Plot 6d shows the number of distinct actual cause-contingency pairs.
Compared to Plots 2a, 2b and 2e, Plots 6a, 6b and 6e have the HP definition replaced by the HP-MIN definition.
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Figure 7: Plots 7a and 7b show the number and size of distinct actual causes. Plots 7c and 7d show the counterfactual improvement
admitted by the actual cause-witness pairs of each actual causality definition.
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