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Abstract

Large protein complexes are assembled from protein subunits to form a specific structure. In

our theoretic work, we propose that assembly into the correct structure could be reliably achieved

through an assembly line with a specific sequence of assembly steps. Using droplet interfaces to

position compartment boundaries, we show that an assembly line can be self organized by active

droplets. As a consequence, assembly steps can be arranged spatially so that a specific order of

assembly is achieved and incorrect assembly is strongly suppressed.
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I. INTRODUCTION

Large complexes play important roles in several critical aspects of life. Examples are

bacterial flagellar motors, viral capsids, proteasomes, and ribosomes. Many of such com-

plexes must be assembled into a specific arrangement in order to function. An important

question is how such complexes can be created at high efficiency and fast rate, avoiding the

formation of incorrect and incomplete assemblies [1–14]. One strategy of self assembly is

complex formation through a thermodynamic process where the assembled state is a free

energy minimum [2, 3]. There could exist several accessible minima such that self assembly

would not lead to a unique structure [1–3, 11]. Furthermore, assembly can often be slowed

by trapping in metastable intermediates. An example of complexes that have been proposed

to employ a thermodynamic assembly strategy are viral capsids [15].

Alternative strategies based on non-equilibrium assembly could avoid the problems of

thermodynamic self assembly such as kinetic traps and allow for the assembly of structures

that cannot be reached by minimizing the free energy [1, 11, 14]. This can for example be

achieved when components assemble in a specific temporal order. One of these strategies

is separation of assembly timescales. Here the assembly of the components that need to be

added early have high association kinetics while components that need to be added late have

slow association kinetics. This biases the addition of subunits towards a correct temporal

ordering. For this strategy to yield a robust temporal ordering, it requires kinetics that

span many orders of magnitude. Another non-equilibrium strategy uses a carefully timed

sequential synthesis to provide subunits when specific assembly phases have completed.

In this process, incorrect binding of subunits is prevented by allowing them to encounter

the nascent complex when only the correct binding site is accessible. This strategy requires

specific gene expression programs which limit the rate of complex formation. It is for example

employed in the assembly of the bacterial flagella motor [16].

These examples of non-equilibrium assembly lead us to the question of whether complex

assembly could emerge as a non-equilibrium pattern in a self-organized process. More pre-

cisely, we ask whether reliable and high-throughput assembly of a complex with a specific

structure can be achieved in a steady state where components flow in and complexes flow

out. We show that this is possible in a self-organized assembly line. The assembly line or-

ganizes assembly steps in space, thereby providing a specific temporal order during complex
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assembly. Such an assembly line could be organized within a biochemical compartment.

Biochemical compartments in cells either have a membrane or are membraneless. Mem-

braneless compartments are often liquid like biomolecular condensates that can be described

as droplets that phase separate from their surroundings [17–20]. A rich diversity of geome-

tries for coexisting droplets have been observed in cells. One example is a smaller droplet

inside a larger droplet [21, 22]. It remains an open question of what functions such an

arrangement of compartments can have.

Here we present the theory of non-equilibrium complex formation by a self organized as-

sembly line. These emerge as patterns in an active reaction-diffusion system that is confined

in droplets. These patterns consist of separated bands of distinct reactions which corre-

spond to different assembly steps. Chemical patterns are typically viewed through the lens

of patterns of concentrations. Note that the bands discussed here reflect the localization

of distinct reactions while the molecular species are not localized. The spatial arrangement

of different assembly steps defines the temporal order in which subunits are added to the

complex. This process can occur at steady state with a constant influx of subunits and

constant outflux of finished complexes. This scenario allows a high rate of assembly and

ensures the formation of correctly assembled complexes.

We first develop these ideas using a simplified one dimensional model where the position

and width of the reaction bands can be calculated analytically. We consider a 1D geometry

of three distinct volumes separated by two boundaries, see figure 1a. These volumes could

correspond to an arrangement of droplets. Subunits enter the central stage volume from the

left and right volumes. Assembly of complexes occurs in the stage volume, and is considered

irreversible. We show that if the assembly is fast, association happens at a specific location

in the stage volume. This location depends on the physical properties of the components

and their supply at the boundaries.

We then consider a simplified model in 3-dimensions based on two concentric droplets, see

figure 1b. Here the stage volume is defined by a spherical droplet that coexisting with both

an outer liquid phase and an inner droplet. Components enter the stage via the boundaries

from opposite directions. Such a geometry of droplets inside droplets can be found in cells,

for example in the nucleolus [21–23].
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Figure 1: Spatial organization of macromolecular assembly. a) 1D arrangement of compartments

for molecular assembly. Component C1 is produced in the left volume (green) and component C2

is produced in the right volume (blue). Assembly of the complex C12 occurs in the stage volume

(orange). Assembly can be localized to a band between the left and right volumes (dashed line).

The complex is exported via the right volume. b) 3D arrangement of compartments for molecular

assembly. Component C1 is produced in the inner volume (green) and component C2 is produced

in the outer volume (blue). Assembly of the complex C12 occurs in the stage volume (orange).

Assembly can be localized to a spherical band between the inner and outer volumes (dashed line).

The complex is exported via the outer volume.

II. LOCALIZING ASSEMBLY STEPS IN ONE DIMENSION

First we examine a minimal model in one dimension where molecular assembly steps can

be positioned along a line and separated in space. The region, [0, L], corresponds to the

stage where assembly steps occur. The left boundary connects the stage to the inner volume,

and the right boundary connects the stage to the outer volume which serve as reservoirs that

provide components. We consider two components C1 and C2, which enter from the left and

right boundaries respectively. These components bind irreversibly to form a complex,

C1 + C2 → C12 .

After the formation of the complex C12 it will leave the stage into the outer volume via

diffusion. All molecular species move by diffusion and associate following mass action kinet-
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ics. The system is thus described by the association diffusion equations along the position

coordinate x given by

∂

∂t
n1 = D

∂2

∂x2
n1 − kn1n2 , (1a)

∂

∂t
n2 = D

∂2

∂x2
n2 − kn1n2 . (1b)

Here n1 and n2 are the concentrations of components C1 and C2 respectively andD and k are

the diffusion constant and association rate. For simplicity we have chosen equal diffusivities

for both species. These equations are complemented by boundary conditions that connect

the stage to the inner and outer volumes. We consider the case where there are no sinks in the

inner volume and C1 and C2 are produced only in the inner and outer volumes respectively.

Accordingly, we impose constant influx J of component C1 and no flux of component C2 at

x = 0. At x = L we impose boundary conditions that depend on the concentrations n1 and

n2 which describe a partitioning of molecules between the stage and the outer volume. The

boundary conditions then read

D∂xn1|x=0 =− J , (2a)

D∂xn2|x=0 =0 , (2b)

D∂xn1|x=L =− β1n1(x = L) , (2c)

D∂xn2|x=L =α− β2n2(x = L) . (2d)

Here α corresponds to the source of C2 and β1 and β2 correspond to sinks of C1 and C2

respectively.

Of particular interest to us is the steady state solution of equations (1) with boundary

conditions (2), and the profile of the association flux Φ ≡ kn1n2 as a function of x. In

figure 2a we show examples of stationary profiles of the association flux that reveal the

localization of the association to different positions depending on the magnitude of α, the

source of C2. Interestingly, by changing the magnitude of of α, the location xM of the peak

of the association flux is changed, but the shape remains essentially unchanged. Figure 2b

shows the corresponding steady state concentration profiles for component C1 and C2 as

dashed and solid lines, respectively.

Away from the region of high association flux, the concentration profiles are linear, cor-

responding to a constant flux. These fluxes for the two components are equal and opposite
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because assembly consumes an equal number of both components. As a result equation (1)

has symmetric solutions with respect to xM if the boundaries are far from the assembly

volume. In this limiting case, assembly is fully efficient within x = [0, L], and we can calcu-

late the exact position xM and the variance σ2 of the association flux profile in a Gaussian

approximation, see appendix,

xM = L−D
α− J

Jβ2
, (3)

σ ≈
√

2

π
(1 +

π

2
+
√
1 + π)1/3

(

D2

kJ

)1/3

. (4)

The limit where boundaries are far from the assembly volumes corresponds to σ ≪ xm and

σ ≪ L− xm.

This result shows that one can spatially localize an assembly step in a region of width

σ centered at position xM . This localization of assembly steps can be used to generate an

assembly line. In this assembly line, the complex grows as it diffuses towards one boundary

which we choose to be the one on the right side. Complex assembly is initiated by a molecule

that enters the stage from the left. It first encounters a single component from the right to

which it can bind. As the assembling complex diffuses toward the right, it will encounter

sequentially additional components that arrive from the right boundary. These components

can thus be incorporated sequentially to ensure correct assembly. This is schematically rep-

resented in figure 2c. We call the molecule entering from the left and initiating complex

formation the foundation, denoted F , and the components entering from the right the as-

sembly bricks, denoted Bi. Assembly regions can be arranged in space such that they are

separated by more than a distance σ. This implies that the addition of one type of compo-

nent is completed before the complex encounters the next component. The spatial order of

assembly regions specifies the dominant temporal order of assembly steps. This assembly

line can operate at steady state with all assembly steps being conducted in parallel.

III. ASSEMBLY LINES IN SPHERICAL GEOMETRY

We now discuss an example of how such an assembly line could be realized in three

dimensions using concentric spherical droplets where a small droplet is located in the center

of a larger droplet, see figure 1b. The foundational component, denoted F0 is produced

inside the small central droplet which defines the inner volume. In our example we consider
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Figure 2: Positioning of assembly steps in narrow regions. (a) Normalized assembly flux Φ

as a function of normalized position x in the stage region for different values of the normalized

influx α of component C2 (α = 70 (blue), 50 (orange), 30 (green), 10 (yellow)). (b) Steady

state concentrations of components C1(dashed) and C2(solid) for the same values of α as in (a).

Shown are numerical solutions of the minimal model given by equations (2) and (3). (c) Cartoon

schematic of how an assembly line could be organized. The foundation molecule tends to diffuse

to the right progressing through the different association bands. Progressing to each sequential

association bands adds another available brick that can bind to the foundation. Parameter values

are J = 0.31, D = 0.039, k = 5.9 β1 = 5, β2 = 10, and L = 1.

four assembly bricks, Bi, i = 1...4, which are provided in the outer volume that surrounds

both droplets. The stage volume is the space in the larger droplet between the inner volume

and outer volume.

The foundation and bricks enter the stage from opposite sides via diffusion. For simplicity
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we consider a simple model where the assembly bricks must bind to the foundation in a

specific sequential order for correct assembly. We call the intermediate assemblies assembled

in the correct sequential order the on-pathway intermediates, denoted by Fi where i is

the index of the last brick that was incorporated into the complex. In this logic, F4 is

the correctly assembled final complex. If binding occurs in a different order then complex

formation is unsuccessful and we call these configurations off-pathway. Figure 3a shows

a schematic of all constructs and associations, both on and off-pathway. We define our

model using concentration fields for all components and assembly intermediates. Inside the

stage these concentrations are described by association-diffusion equations that capture the

diffusion of components and their association steps,

∂

∂t
nF,i = DF,i∇2nF,i − knF,inB,i+1 − knF,iΘ(2− i)

4
∑

k=i+2

nB,k + knF,i−1nB,i , (5)

∂

∂t
nB,i = DB,i∇2nB,i − knF,i−1nB,i − knB,iΘ(i− 2)

i−2
∑

k=0

nF,k .

Here nB,i is the concentration of brick i, nF,i is the concentration of the free foundation

(i = 0), the on-pathway intermediates (i = 1, 2, 3), and product (i = 4). Furthermore DF0,

DF i and DBi are the diffusion constants for foundation, complexes and bricks respectively,

and k is the rate constant for on and off pathway associations. The Laplace operator is

denoted ∇2 and the Heaviside function is denoted Θ with Θ(i) = 1 if i ≥ 0 and Θ(i) = 0

otherwise. The first term of the right hand sides in equations 5 describe diffusion, the second

terms describe the component loss due to on-pathway assembly, the third terms describe

loss via off-pathway associations that does not lead to correct assembly in our model, and

the fourth term is a source due to on-pathway assembly. These equations are supplemented

by boundary conditions at radii r1 and r2,

dnF,0

dr

∣

∣

∣

∣

r1

=− J

DF4πr
2
1

, (6a)

dnF,i

dr

∣

∣

∣

∣

r2

=− βFnF,i(r2)

DF4πr22
, (6b)

dnB,i

dr

∣

∣

∣

∣

r2

=
αB,i − βB,inB,i(r2)

DB,i4πr22
, (6c)

where J is the number of foundation molecules produced per unit time in the inner volume,

αBi is the influx of brick Bi from the outer volume, βF and βB,i describes the concentration
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dependence of the outflux of the components into the outer volume due to partitioning.

Furthermore, we have imposed no flux boundary conditions at r1 for intermediates Fi where

i ≥ 1 and the bricks Bi. These expressions can be derived for a droplet in a steady state

environment.

In spherical coordinates we define the total association flux as

Φi = 4πr2knF,i−1nB,i . (7)

In steady state the total association flux exhibits a maximum at position

rM,i ≈ r2 −
4πr22DB,i

βB,i

(

αB,i − J

J

)

, (8)

and a width given by

σi ≈ 1.33

(

4πr2M,iDFDB,i

kJ

)1/3

, (9)

see appendix. Figure 3b shows the fraction of complete, incomplete, and incorrect assemblies

leaving the stage at steady state as a function of association rate. The fraction of complete

assemblies defines the efficiency of the system. Figure 3c and d show the radial profiles of

the total association fluxes for two different association rates. The association rate primarily

changes the width of the peaks of the total association flux but not the position, see equations

(8) and (9). For more sharply peaked total association fluxes, the efficiency of assembly is

higher because different assembly steps are better separated in space. Accordingly, assembly

efficiency increases as the association rate increases and off-pathway associations are highly

suppressed, see figure 3b. The general requirement for assembly lines to improve assembly

fidelity is that the spacing between association bands is larger than the width of the bands.

Note that in spherical geometry the assembly steps occur in concentric shells around the

inner volume.

IV. DISCUSSION

Cells need to assemble molecular complexes in a correct and efficient manner and avoid

off-pathway dead ends. We have shown that molecular assembly lines can be self-organized in

cellular compartments such as phase separated condensates. Such an assembly line requires

a spatial organization of association steps which distinguishes it from well mixed association

scenarios. This spatial organization can lead to a high-throughput assembly by operating
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Figure 3: Self-organized molecular assembly lines. (a) Scheme of the on pathway assembly

steps (blue, red, green, and yellow arrows) and off-pathway dead ends (pink arrows). Here F0

represents the foundation and B1, B2, B3, B4 represent the bricks. The on-pathway intermediates

are denoted F1, F2, F3, and F4 is the correctly assembled product. (b) Fraction of completed

(green), incomplete (yellow), and incorrect (red) assemblies that leave the stage in steady state as

a function of the association rate k. (c) Radial profiles of total assembly fluxes Φ = 4πr2knF,inB,j

at steady state for the four on-pathway associations (blue, red, green, yellow) and the off-pathway

associations (pink) for association rate k = 0.038 nM−1s−1. Here nF,i and nB,j are concentrations

of associating components. (d) same as (c) but for k = 0.27 nM−1s−1. The curves shown in (c) and

(d) correspond to the assembly steps shown in (a) in the same color. Shown in (b-d) are numerical

solutions for spherical geometry and parameter values J = 10 µm3nMs−1, βF = 1.26 µm3s−1,

βB = 1.26 µm3s−1, r1 = 0.25 µm, r2 = 1.0 µm, DF = 0.01 µm2s−1, DB,i = 0.01 µm2s−1, and

αB,i = (276, 163, 100, 57) µm3nMs−1 for i = (1, 2, 3, 4).
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at steady state. Additionally, high-fidelity of assembly can be achieved by controlling the

temporal order in which subunits are added. Control over temporal order is possible by the

spatial separation of the assembly bands. The spatial arrangement of these bands could

be controlled by concentrations of components at their sources, which we note can be a

distance from the assembly line. The scenario proposed here has four hallmarks that could

be seen in experiments: i) association but not concentration is confined to distinct spatial

bands, ii) unbound components can be found close to their source but not past the position

where they are added to the complex, iii) the average complex size increases towards the

outer boundary, and iv) changing the concentration ratio of components yields incomplete

or incorrectly assembled complexes because assembly bands can become rearranged.

Self organized molecular assembly lines can be compared to assembly under well mixed

conditions where concentrations are constant in space. Using the parameter values given

in the caption for figure 3b, but considering assembly in well mixed conditions, we find

an export fraction of correct assemblies E =
∏4

i kn∞,i/
∑4

j=i kn∞,j ≃ 15%. This is much

smaller than values approaching 100% which can be obtained in the self-organized assembly

line for the same parameter values, see figure 3b. This reduction in export fraction of

correct assemblies occurs because intermediates are exposed to all the binding bricks and

incorrect binding steps therefore become likely. This contrasts with an efficient assembly line

where binding bricks are added sequentially in the correct order. In well mixed conditions,

high fidelity can be achieved if time scales are separated such that different assembly steps

occur at different rates. In particular, components that need to bind early should have the

fastest association kinetics. However, in order to achieve an export fraction E of correctly

assembled complexes, this strategy requires association rates that span at least a factor of

(E−1/(N−1)−1)N−1 where N is the number of assembly bricks in the complex, see appendix.

For 80% efficiency of assembly with four bricks, matching our assembly line example, the

association rates would need to span a factor of 2200. Such a large range of rates suggests

that some steps must be slow and thus rate limiting for assembly. This is in contrast to

the assembly line proposed here where the example in figure 3 uses parameters that span

a factor of 5. Indeed, a large span of assembly rates manifests as a equally large range of

concentration levels at steady state. Therefore, the well mixed scenario requires much larger

amounts of unfinished complexes to achieve the same export rate. This consumes more

resources and materials and is therefore less efficient.
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For simplicity we considered simplified geometries in one and three dimensions, using a

spherical geometry motivated by liquid-like condensates. However, the strategy discussed

here is more general and can also work in other geometries. As illustrated in the one

dimensional case, the assembly steps are positioned at specific distances from the outer

surface. Therefore, our work suggests that in non-spherical geometries, assembly steps

will be positioned to non-intersecting manifolds inside the outer surface. We expect this

mechanism to robustly self organize assembly lines in three dimensions in a broader collection

of geometries, including multiple spherical inner volumes.

The assembly line described here can control the temporal order of assembly steps. In

principle, complexes can also form without a fixed temporal order. For example, if many

identical components, such as a viral capsid, then the time order is irrelevant. On the other

extreme, if all components are different then temporal order can be helpful. In this case it

is likely that several local minima exist which correspond to different assembled structures.

In principle a unique structure emerges as the lowest energy configuration but this may

take a long time to reach. However, if the temporal order is controlled, a specific local

minima could be consistently reached. Therefore time ordered assembly provides a strategy

to reliably assemble many components into a specific structure. For simplicity we have

considered irreversible assembly steps. In practice molecular binding events are not fully

irreversible and the limit of irreversible steps corresponds to a situation where the time scale

for an unbinding event is slower than the time between subsequent assembly steps. In this

case unbinding events become rare enough to become negligible.

An important example of molecular assembly are RNA-protein complexes. The compo-

nents of such complexes can fit well into our simplified assembly scheme, shown in figure 3a.

Here bricks (proteins) are added to a foundational element (RNA) and the bricks and foun-

dation are supplied from different regions (translation in the cytoplasm and transcription in

the nucleus respectively).

The most prominent example of an RNA-protein complex is the ribosome which mainly

consists of large RNA and many different small proteins [24–26]. Ribosomes are assembled in

the nucleolus, a liquid-like droplet-inside-droplet compartment in the cell nucleus. Ribosomal

RNA is produced in the inner compartment of the nucleolus called the Dense Fibrillar

Component, corresponding to the inner volume. Ribosomal proteins are provided in the

nucleoplasm, corresponding to the outer volume. The assembly occurs in the Granular
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Component of the nucleolus corresponding to the stage volume. Given this arrangement,

ribosome assembly is an ideal candidate for the molecular assembly line proposed here.

It will be interesting to explore whether signatures of an assembly line can be found in

ribosome assembly. An interesting question is whether assembly bands could be directly

observed experimentally. This poses a challenge because labeling components alone may not

reveal the spatial organization of an assembly line. This is because florescent labels would

be attached to a component as well as to the assembled complex. Even if the assembly is

organized into distinct bands, the florescent signal would not show this structure. Techniques

such as FRET could differentiate between bound and unbound components and thus are

promising to reveal spatial patterns of assembly processes.

In addition to the nucleolus, other liquid like compartments could play a role to organize

the assembly of macromolecular complexes. An example is p-granules in C. elegans which

can be located on the nuclear membrane and cover nuclear pores [27]. This setting has

the important feature that p-granules can communicate with two different compartments at

the same time, the cytoplasm and nucleoplasm, allowing opposing fluxes from both com-

partments. This suggests that p-granules are also naturally suited for reliable molecular

processing using assembly lines of the type proposed here. More generally, we expect that

liquid like compartments are used to self organize biochemical processes in space. Our work

therefor provides new insights into the possible role of liquid like condensates for biological

processes.
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I. APPROXIMATE SOLUTION IN ONE DIMENSION

From integrating n′′

1 = n′′

2 we obtain

n1 + a(x− xM) = n2 − a(x− xM) . (10)

We define these as θ because when substituted into equation (1a),

θ =n1 + a(x− xM ) , (11a)

θ′′ =θ2 − a2(x− xM )2 , (11b)

highlights the symmetry of the differential equations around x = xM . Using (11a) and

considering the full consumption limit where n1(L) → 0, we can rewrite our boundary

conditions in equation (2) in the form,

∂xθ|x=0 =− J

D
+ a , (12a)

∂xθ|x=0 =− a , (12b)

∂xθ|x=L =a , (12c)

∂xθ|x=L =
α

D
− 2aβ2

D
(L− xM )− a . (12d)

From equation (12b) and (12c) it is clear that the boundary conditions for θ are also sym-

metric. With symmetric differential equations and symmetric boundary conditions, θ must

be symmetric. Thus if there is a single maximum in the association flux Φ = Dθ′′ then xM

must be the location of this maximum. Equating the first two boundary conditions gives us

a =
J

2D
. , (13)

and equating the last two boundary conditions gives us

xM = L− D

β2

α− J

J
. (14)

For values of xM between 0 and L, xM is the position of the maximum association flux. This

corresponds to the association being targeted to a specific region inside the stage. We can

also estimate the width of the association volume, or how well the association is restricted

to that position by approximating Φ as a normal distribution with a width of σ,

log(Φ) = log(
J

σ
√
2π

)− (x− xM)2

2σ2
, (15)

log(Φ) = log(kθ2 − ka2(x− xM)2) . (16)

2



Taylor expanding log(Φ) around xM gives us

log(Φ) = log(kθ2(xM )) +
θ(x0)θ

′′(xM)− a2

θ2(xM )
(x− x0)

2 +O((x− xM)4) . (17)

Equating terms and substituting in equation (11b) gives us

kθ2(xM ) =
J

σ
√
2π

, (18)

− 1

σ2
=2θ(xM )− J2

2θ2(xM)
. (19)

Solving for σ gives us the width of our association volume,

σ =

√

2

π

(

1 +
π

2
+
√
1 + π

)1/3(
D2

kJ

)1/3

≈ 1.33

(

D2

kJ

)1/3

. (20)

II. APPROXIMATE SOLUTION IN SPHERICAL COORDINATES

We begin by making several approximations consistent with our minimal model. First,

that the associations happen away from the interfaces. Because the associations happen at

a rate proportional to both concentrations, this means that the brick concentration must

be zero at the inner interface and the foundation concentration must be zero at the outer

interface. Additionally, we assume that the on-pathway associations are all well separated

in space. This means we can neglect all off pathway associations and can solve each brick

concentration independently from the rest. This reduces the steady state problem to

DF∇2nF =knFnB,i , (21)

DB,i∇2nB,i =knFnB,i ,

with boundary conditions

dnF

dr

∣

∣

∣

∣

r1

=− J

DF4πr21
, (22a)

dnB,i

dr

∣

∣

∣

∣

r1

=0 , (22b)

dnF,i

dr

∣

∣

∣

∣

r2

=− βFnF (r2)

DF4πr22
, (22c)

dnB,i

dr

∣

∣

∣

∣

r2

=
αB,i − βB,inB,i(r2)

DB,i4πr22
. (22d)
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From integrating DF∇2nF = DB,i∇2nB,i from equation (21) we have

rDFnF + ai(r − rM,i) = rDB,inB,i − ai(r − rM,i) . (23)

We define this as θi because when substituted into equation (21),

θi =rDFnF + ai(r − rM,i) , (24a)

θ′′i =
k

rDFDB,i
(θ2i − a2i (r − rM,i)

2) , (24b)

highlights that as long as the association volume is small compared to rM,i then θi must

be symmetric around r = rM,i just like the one dimensional case. Thus if there is a single

maximum in the association flux Φi = 4πrθ′′i then rM must be the location of this maximum.

Substituting equation (24a) into our boundary conditions at r = r1, equations (22a) and

(22b), gives us

ai =
J

8πrM,i

(25)

Considering the full consumption limit where nF,i(r2) → 0, substituting equation (24a) and

(25) into the boundary conditions at r = r2, equations (22c) and (22d), gives us the position

of the maximum association,

1

rM,i
=

1

r2
+

4πDB,i(αB,i − J)

βB,iJ
. (26)

For values of rM,i between r1 and r2, rM,i is the position of the maximum association flux.

This corresponds to the association being targeted to a specific region inside the stage.

We can also estimate the width of the association volume, or how well the association is

restricted to that position by approximating Φi as a normal distribution with a width of σi,

log(Φi) = log(
J

σi

√
2π

)− (r − rM,i)
2

2σ2
i

, (27)

log(Φi) = log(
4πk

DFDB,i

(θ2i − a2i (r − rM,i)
2)) (28)

Taylor expanding log(Φi) around rM,i gives us

log(Φi) ≈ log(
4πk

DFDB,i
θ2i (rM,i)) +

θi(rM,i)θ
′′(rM,i)− a2i

θ2(rM,i)
(r − rM,i)

2 (29)

Equating terms and substituting in equations (24b) and (25) allows us to solve

σi ≈
√

2

π
(1 +

π

2
+
√
1 + π)1/3

(

4πr2M,iDFDB,i

kJ

)1/3

(30)
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III. EFFICIENCY OF SEPARATION OF TIMESCALES

We consider a system with N + 2 components that are assembled into a complex. We

impose the rule that a component can be added to a complex as long its numeric index is

higher than the largest component currently added. In this way, the only complexes with

N + 2 components are ones that were assembled in numeric order. We use the denote the

first component in the unbound state as the i = 0 complex. The rate of adding the i’th

component is ki. The probability that a complex assembled up to i − 1 will add the i’th

component is given by

Pi−1→i =
ki

∑N+1
j=i kj

. (31)

The efficiency of assembly is the probability that every step was assembled in the right order

is thus given by the product of each step,

E =

N
∏

i=1

ki
∑N+1

j=i kj
. (32)

If the reaction rates are evenly spaced on a logarithmic scale then we can express ki = βαi.

This gives a total probability as

E =
N
∏

i=1

αi

∑N+1
j=i αj

. (33)

If α ≪ 1 then we can truncate the summation after the second term yielding

E =
1

(1 + α)N
. (34)

Thus in order to achieve a given efficiency we need to have a separation between steps

α = E−1/N − 1 , (35)

and a total separation of αN .
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