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The search for departures from standard hydrodynamics in many-body systems has yielded a num-
ber of promising leads, especially in low dimension. Here we study one of the simplest classical
interacting lattice models, the nearest-neighbour Heisenberg chain, with temperature as tuning pa-
rameter. Our numerics expose strikingly different spin dynamics between the antiferromagnet, where
it is largely diffusive, and the ferromagnet, where we observe strong evidence either of spin super-
diffusion or an extremely slow crossover to diffusion. This difference also governs the equilibration
after a quench, and, remarkably, is apparent even at very high temperatures.

Introduction.—Hydrodynamics has long been a cor-
nerstone of our understanding of many-body systems,
and has recently become the focus of renewed inquiry.
Phenomena of interest in low-dimensional quantum sys-
tems include equilibration [1, 2], anomalous diffusion and
transport [3–12], fracton and dipole-moment conserving
hydrodynamics [13–15], generalised hydrodynamics in in-
tegrable quantum systems [16–28], and weak integrability
breaking [29, 30]. Hydrodynamics in classical many-body
systems in low dimensions also poses many questions,
perhaps most notably the appearance of anomalous dif-
fusion and anomalous transport, often attributed to the
Kardar-Parisi-Zhang (KPZ) universality class [31–46].

The focus of this work is the classical Heisenberg spin
chain, for which the nature of hydrodynamics has pro-
voked extensive debate. Based on the lack of integrabil-
ity, it has been argued that ordinary diffusion holds for
both spin and energy [47–53]. However, there have also
been proposals of anomalous behaviour [54–57], including
an argument for logarithmically enhanced diffusion [57],
based on the emergence of the linear momentum from
the continuum limit as a hydrodynamic mode. Ref. [53],
in contrast, has argued from a theory of non-abelian hy-
drodynamics that each component of the spin follows a
separate, ordinary diffusion equation.

In this paper, we present a systematic numerical study
of the dynamical correlations and equilibration dynamics
over a wide range of temperatures, T < |J | to T = ∞.
We provide strong numerical evidence for ordinary dif-
fusion of both spin and energy at T = ∞ and ordinary
diffusion of energy at all (nonzero) temperatures in both
the ferromagnetic (FM) and antiferromagnetic (AFM)
chains. Most strikingly, we find a qualitative difference
between ferromagnetic and antiferromagnetic models at
finite temperatures. This manifests as a temperature-
dependent finite-time dynamical exponent in the spin
correlations of the ferromagnetic chain, which departs
from the diffusive exponent α = 1/2 at T =∞; whereas
the antiferromagnetic chain displays behaviour compati-

ble with spin diffusion at all temperatures studied. Im-
portantly, this deviation is apparent even at high temper-
atures, where the correlation length is still of the order
of a single lattice spacing – far from the low-temperature
regime where the distinction between quadratic ferro-
and linear antiferromagnetic spin-wave spectra may play
a role. We have thus identified a, hitherto perhaps unap-
preciated, fundamental difference between the dynamics
of the FM and AFM models. Conceptually, this suggests
that microscopic details may be essential to an under-
standing of long length- and timescale properties.

The behaviour of the ferromagnet could be interpreted
as anomalous diffusion with a temperature-dependent ex-
ponent, or alternatively as a crossover at remarkably
large timescales, rendering diffusion in practice unobserv-
able experimentally for a wide range of temperatures. In-
triguingly, at low temperatures where we obtain the best
fit to a single power-law, we observe almost perfect KPZ
scaling across three decades in time. This suggests that
claims of KPZ behaviour also merit careful examination.

As a related phenomenon, we study equilibration dy-
namics after quenches from an XY to a Heisenberg
chain. We establish that the observed equilibrium ex-
ponents also determine the equilibration tails of observ-
ables. Equilibration is shown to proceed via a power-law
approach to the equilibrium value, with an exponent de-
termined by that observed in the corresponding unequal-
time equilibrium correlation function, again displaying
anomalous finite-time exponents in the case of the FM.

Model.—We consider the periodic-boundary classical
Heisenberg chain, with Hamiltonian

H = −J
L∑
i=1

Si · Si+1, S1 = SL+1, (1)

for unit length classical spins Si ∈ S2. Here J = 1 for
the FM chain, and J = −1 for the AFM chain.

The dynamics is given by the classical Landau-Lifshitz
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equation of motion,

Ṡi = {Si,H} = JSi × (Si−1 + Si+1), (2)

which is solved numerically either with the standard
fourth-order Runge-Kutta (RK4) algorithm or, for longer
simulation times, a symplectic discrete-time odd-even
(DTOE) algorithm [58].

In equilibrium, we probe the spin-spin correlations

CS(j, t) = 〈Sj(t) · S0(0)〉 , (3)

and the energy correlations

CE(j, t) = 〈Ej(t)E0(0)〉 − E2, (4)

where Ej = −JSj ·Sj+1 is the bond energy, and E = 〈E〉
is the internal energy density. We use internal energy and
temperature interchangeably, via E(T ) = T − coth(1/T )
[58, 59]. Also, the (equal-time) spin correlation length is

ξ(E) = −1/ log(−E), (5)

which, as a function of E , is the same for the Heisenberg
(1) and XY chains (11) [58].

Both of these correlation functions are symmetric un-
der parity and time-reversal. To evaluate these corre-
lations for a given E , we first construct an ensemble of
20,000 initial states drawn from the canonical ensemble
of H at the temperature T (E) [58]. Each state is evolved
in time, cf. (2), with snapshots stored at intervals of
∆t = 10J−1. The correlation function at a fixed time
difference t is calculated by averaging over 1000 consec-
utive snapshots for every initial state.

Hydrodynamics and Scaling Functions.—The hydrody-
namic theory posits an asymptotic scaling form for the
correlations of the conserved densities,

C(x, t) ∼ t−αF(t−αx), (6)

with a scaling exponent α and universal function F .
Ordinary diffusion corresponds to an exponent of α =

1/2, and a Gaussian scaling function. Given the possibil-
ity of anomalous scaling we use a straightforward gener-
alisation of the diffusive scaling function, with arbitrary
exponent α,

C(x, t) =
κ

(Dt)α
exp

[
−
(

x

(Dt)α

)2
]
, (7)

where the factors κ and D may depend only on tempera-
ture. Assuming this scaling, we extract the exponent by
fitting a Gaussian to C(x, t) at fixed t, and then fitting
the inverse-widths to a power-law,

W (t)−1 = (Dt)−α. (8)

We also consider the possibility of KPZ scaling. Whilst
there is no elementary form for this function, it is tabu-
lated in [60]. This corresponds to a scaling exponent of
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FIG. 1. Anomalous hydrodynamics in the FM: power-law
scaling of the inverse-width of CS(x, t), and extracted expo-
nents and crossover scales for the FM (blue, +) and AFM
(orange, ×). Panels (a) & (c) show W (t)−1 for E = −0.3 &
E = −0.7, resp. The dotted lines show the power-law fit (8),
and the dashed lines show the finite-time corrected fit (9).
Panel (b) shows the estimated anomalous exponents, assum-
ing the scaling (7), whilst (d) shows the diffusion crossover
times estimated from (9) – the inset zooms in on the points
E = −0.4 to E = 0.

αKPZ = 2/3, and appears, e.g., in the spin correlations
of the integrable S = 1/2 Heisenberg chain [8, 12].

Even when the long-time behaviour is diffusive, cor-
rections are to be expected. For the classical SU(2) spin
chain, the lowest-order correction is O(

√
t) [53], and we

therefore also fit the inverse-widths to a combination of
power-laws,

W (t)−1 = (Dt)−1/2 + Λt−1. (9)

When finite-time observations, either numerical or ex-
perimental, display apparently anomalous or KPZ-like
behaviour, such a combination might be a plausible al-
ternative interpretation [1, 53].
Equilibrium Correlations.— We show in Fig. 1(a) and

1(c) the widths of CS(x, t) for the FM and AFM as a
function of time at E = −0.3 and E = −0.7, for times
t = 200 to t = 105.

The AFM displays ordinary spin diffusion, with the
widths collapsing to the diffusive power-law after a com-
paratively short time t ≈ 103. The FM does not exhibit
diffusion, at any finite temperature, over the timescales
of our simulations. Both (8) and (9) provide equally good
two-parameter fits at long times.

If we interpret the observed lack of diffusion as evi-
dence for superdiffusive scaling, the temperature depen-
dence of the anomalous exponent is shown in Fig. 1(b).
If, instead, we assume that we have a finite-time
crossover, we may define an effective exponent via

αeff(t) =
d log(W )

d log(t)
, (10)

and extract from (9) a crossover time t× defined, arbitrar-
ily, by αeff(t×) = 0.505. The resulting crossover times are



3

0

0.05

0.1

0

0.15

0.3

5 0 5
0

0.15

0.3

5 0 5
0

1

2

x/t

t
S (

x,
t)

(a) (b)

(c) (d)

= 1/2 = 1/2

0.532 0.648

FIG. 2. Scaling collapses of the spin correlations CS(x, t), with
the scaling function (7). Colours correspond to different fixed
times from t = 2000 to t = 105. Panel (a) shows the diffusive
collapse at E = −0.3 in the AFM; (b) shows the failure of the
diffusive collapse at E = −0.3 in the FM. Panels (c) and (d)
show anomalous collapses at E = −0.3 and E = −0.7 in the
FM, with exponents α = 0.532 and α = 0.648, resp.

shown in Fig. 1(d). Both Figs. 1(b) & 1(d) show a re-
markable difference in behaviour between the FM and
AFM models.

In Fig. 2 we show the scaling collapses at these tem-
peratures. The AFM is clearly consistent with a diffusive
collapse; the FM is not. A collapse with an anomalous
exponent provides a much better fit to the ferromagnetic
correlations, indicating anomalous scaling. However, we
cannot exclude the possibility of a crossover – especially
since the crossover times estimated from (9) are much
larger than the timescales of the simulations.

KPZ Scaling.—We briefly remark on the evidence for
KPZ scaling at low temperature in the FM, shown in
Fig. 3. We find that the inverse-widths at E = −0.8
fit almost perfectly to the power-law (8) with the KPZ
exponent, αKPZ = 2/3, for three orders of magnitude
in time. In isolation, the numerical evidence for KPZ
scaling at E = −0.8 is remarkably strong. Whilst it is not
surprising that a drifting exponent would pass through
αKPZ = 2/3, it is striking that all finite-time corrections
apparently vanish exactly at this KPZ value. This tempts
us to conclude that the model is in the KPZ universality
class here; but the fact that this holds only over a narrow
temperature range warrants caution.

Perhaps unsurprisingly, the KPZ scaling is less com-
pelling at the lower energy of E = −0.9 (T = 0.1), cf.
Fig. 3(c). Indeed, at the lowest temperatures a (short-
time) ballistic regime emerges, due to the increased spin-
wave lifetime [58, 61]. This will affect the observed scal-
ing on increasingly longer timescales.

Equilibration Dynamics.—In addition to our equilib-
rium simulations examining unequal-time correlations,
we perform equilibration simulations probing the relax-
ation to thermal equilibrium after a quench. This allows
us to test whether the anomalous behaviour or ultra-
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FIG. 3. Anomalous scaling in the FM. Panel (a) shows the
inverse-widths, vertically offset for clarity, for, in descending
order, E = −0.9 to E = 0 in steps of 0.1. The power-law
fits have the exponents of Fig. 1b, except the black lines at
E = −0.8 and E = −0.9, which are fit with the KPZ exponent
αKPZ = 2/3. Panels (b) and (c) show the KPZ scaling collapse
at E = −0.8 and E = −0.9, resp.

long-time crossover, and the distinction between FM and
AFM, are also present in out-of-equilibrium dynamics.

We initially prepare the system in a thermal state of
the XY chain,

HXY = −J
L∑
i=1

Si · Si+1 = −J
L∑
i=1

cos(φi − φi+1), (11)

for unit length classical rotors Si ∈ S1. At time t = 0,
we quench the system, and evolve under the dynamics
(2) of the Heisenberg chain. We examine the relaxation
of the following observables:

Eµ(t) = −J
〈
Sµi (t)Sµi+1(t)

〉
, (12)

which measures the energy attributed to the µth spin
components; and

Qµ(t) =
〈
Sµi (t)2

〉
, (13)

which measures the total magnitude of the µth spin com-
ponents. These are natural measures of the anisotropy,
which characterises the relaxation from the initial state,
satisfying Szi = 0 ∀i, to a (quasi-)thermal state of the
isotropic Heisenberg chain. The equilibration of the en-
ergy fluctuations is measured using the heat capacity,

C(t) =
〈varEi(t)〉

T 2
, (14)

where we take the spatial variance before the ensemble
average to obtain a time-dependent quantity. As in the
equilibrium simulations, we average over an ensemble of
20,000 states, initially drawn from the canonical ensem-
ble of HXY.

We expect that the equilibration dynamics will be sim-
ilarly hydrodynamic, since the relaxation to the new
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FIG. 4. Equilibration dynamics of Oz(t) − Ozeq (blue) and

O||(t)−O||eq (orange), where O|| = (Ox+Oy)/2 is the average
of the in-plane components. Panels (a), (b), and (c) show the
equilibration of Q, E, and C at E = −0.5 in the FM; (d) shows
the equilibration of E at E = −0.5 in the AFM. Q and E
appear to equilibrate with an anomalous exponent of α ≈ 0.6
in the FM, though the data is equally well described by a
combination of power-laws. The energy fluctuations (heat
capacity) and the AFM equilibrate diffusively.

global equilibrium requires the transport of conserved
densities over long distances [1]. The relaxation of an
observable O is therefore expected to follow a power-law

δO(t) := |O(t)−Oeq| = λt−α, (15)

valid on some long timescale, where Oeq is the thermal
value of the observable in the Heisenberg chain.

These simulations exhibit complementary aspects of
the same broad phenomenology observed in equilibrium.
Fig. 4 shows the equilibration dynamics at E = −0.5.
The extracted (anomalous) equilibration exponents have
qualitatively similar dependence on energy as those ex-
tracted from equilibrium correlation functions [58]. The
energy fluctuations, as measured by the heat capacity,
always equilibrate diffusively. In the AFM, Eµ and Qµ

also show diffusive equilibration. In the FM, however, the
equilibration of Eµ and Qµ is anomalous. Although Eµ is
an energy, it is tied to the spin anisotropy, and therefore
equilibrates anomalously in the FM, rather than tracking
the diffusive behaviour of the energy fluctuations.

Thus, as in equilibrium, we observe a striking differ-
ence between the FM and AFM, with only the former
displaying anomalous exponents. Whilst our simulations
do not allow us to rule out a potential crossover to dif-
fusive scaling at even longer times, the observables can
reasonably be described to have (fully) equilibrated with
these anomalous exponents, in particular when consider-
ing a realistic experimental situation in which resolution
and time scales might be limited.

Discussion & Conclusions.—In summary, we have con-
ducted a detailed numerical study of the equilibrium and
out-of-equilibrium dynamics of the classical Heisenberg
chain, with the largest system sizes, simulation times,

and range of temperatures we are aware of so far for this
model.

Starting from the high-temperature paramagnetic
regime we observe strong numerical evidence for ordinary
diffusion of both spin and energy at T =∞. In contrast,
at intermediate temperatures the spin correlations of the
FM depart from diffusion and display anomalous scaling
over the accessible timescales in our simulations.

Thus, our study exposes a distinction, despite their
identical thermodynamics, between the dynamics of the
classical FM and AFM even when the correlation length
(5) is short. Indeed, at E = −0.3, where it is less than a
single lattice spacing, one already observes a clear differ-
ence between the FM and AFM in Figs. 1 & 2.

The central open question thence concerns the origin of
the vastly distinct scales and long-time dynamics. Whilst
there is an obvious difference in that the order parameter
of the FM (the magnetisation) is conserved, whereas the
staggered magnetisation in the AFM is not [58], it is
unclear why this should have such strong consequences
when all correlations are short ranged and weak.

At low temperatures, we observe remarkably clean
KPZ-like behaviour, in particular scaling with exponent
αKPZ = 2/3 in the FM spin correlations. However, this
is in evidence over a narrow temperature range only, and
in addition non-abelian hydrodynamics [53] would seem
to preclude KPZ scaling asymptotically. It is nonetheless
intriguing that it is precisely in this apparent KPZ regime
that finite-time corrections appear to be the weakest, and
hence the anomalous scaling appears most reliable. In a
different context, the numerical evidence for KPZ scaling
would thus have seemed quite compelling.

Finally, we note that even if the apparently anoma-
lous regimes eventually cross over to diffusion, their ex-
istence over extremely large intermediate scales is of ob-
vious experimental importance, as coherent dynamics on
the length- and timescales we have been able to probe
in this study will not be straightforwardly accessible in
most experimental platforms.
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Supplementary Material

CONTENTS

In this supplementary we provide further details of our
simulations, and further evidence for our conclusions. In
S-I we provide the exact thermodynamics of the XY and
Heisenberg chains. S-II contains an account of our nu-
merical methods for the construction of thermal states
and time evolution. In S-III we show evidence for spin
diffusion at infinite temperature, and in S-IV we show
the diffusion of energy at all temperatures.

In S-V we examine the staggered correlations – i.e. the
correlations of the AFM order parameter. Finally, in S-
VI we provide more information about our equilibration
simulations, and provide the extracted anomalous expo-
nents.

S-I. EXACT THERMODYNAMICS

For reference, we provide here the exact thermodynam-
ics of the classical Heisenberg [59] and XY chains. The
derivation is given with open boundary conditions, since
this is simpler - but the boundary effects vanish in the
thermodynamic limit.

Consider first the XY chain. The partition function is

ZXY =

∫ ( N∏
i=1

dφi
2π

)
exp(βJ

N−1∑
i=1

cos(φi − φi+1))

=

N−1∏
i=1

∫
dϕi
2π

exp(βJ cos(ϕi))×
∫
dϕN
2π

= I0(βJ)N−1, (S1)

where In denotes a modified Bessel function of the first
kind, and in the second line we have transformed the
coordinates to ϕi = φi − φi+1. Similarly, the partition
function of the Heisenberg chain is

Z =

∫ ( N∏
i=1

dSi
4π

)
exp(βJ

N−1∑
i=1

Si · Si+1)

=

∫
dΩ̂1

4π
×

N∏
i=2

∫
dΩ̂i
4π

exp(βJ cos(θi))

=

(
sinh(βJ)

βJ

)N−1

, (S2)

where, in the second line, we rotate the coordinate system
of Si+1 such that the z-axis aligns with Si.

From these expressions, all of the thermodynamic
quantities may be calculated. In particular, taking the

thermodynamic limit and setting J = 1, the internal en-
ergy density and specific heat are:

EXY(T ) = −I1(1/T )/I0(1/T ),

CXY(T ) =
1

T 2

(
I2(1/T ) + I0(1/T )

2I0(1/T )
− I1(1/T )2

I0(1/T )2

)
(S3)

for the XY chain, and:

E(T ) = T − coth(1/T ),

C(T ) = 1− csch(1/T )2

T 2
(S4)

for the Heisenberg chain. The equal-time two-point cor-
relation function is given by

〈Si · Sj〉 = (−E)|i−j| =: e−|i−j|/ξ, (S5)

and so the correlation length is

ξ(E) = −1/ log(−E), (S6)

which, as a function of internal energy, is the same for
both the XY and Heisenberg chains. In the antiferro-
magnet, the above is replaced with the staggered corre-
lator.

S-II. NUMERICAL METHODS

A. Construction of Thermal States

Our initial thermal states are constructed using a heat-
bath Monte Carlo method [62], where we use the fact that
we can precisely invert the thermal probability distribu-
tion for a single spin in a magnetic field.

The general method is known as inverse transform
sampling. Let X ∈ [a, b] ⊆ R a random variable on
some real interval, with probability distribution p(X).
The cumulative distribution function (CDF) is

FX(x) =

∫ x

a

dX p(X), (S7)

i.e., the probability that a randomly sampled X is less
than or equal to x. Then the random variable Y =
F−1
X (u), where u is uniformly random over [0, 1], has the

same probability distribution as the original variable X
since, by construction,

FY (x) =

∫ u=FX(x)

0

du′ = FX(x). (S8)

The specific problem is to invert the CDF. For a
Heisenberg spin, this can be done analytically. Letting
h = hẑ, the CDF for Sz is

Fz(Sz) =

∫ Sz

−1

dz
eβhz

Z
=

∫ Sz

−1
dz eβhz∫ 1

−1
dz eβhz

=
eβhS

z − e−βh

eβh − e−βh
.

(S9)
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Then, using Fz(F−1
z (u)) = u, we find that we can sample

Sz as

Sz = F−1
z (u) = 1 +

log(1− u+ ue−2βh)

βh
. (S10)

The Sx and Sy components have random direction in
the plane, and magnitude set by the condition |S| = 1.
For a magnetic field of arbitrary direction, one need only
appropriately rotate the sampled spin.

For XY spins, the inversion cannot be performed an-
alytically. In this case, we let h = hx̂, and sample the
angle φ, where (Sx, Sy) = (cos(φ), sin(φ)), by numeri-
cally solving the integral equation

u =

∫ φ

−π
dφ′

eβh cos(φ′)

I0(βh)
, (S11)

for randomly generated u. Again, the generalisation to
arbitrary magnetic field direction is via a rotation.

To sample a state from the canonical ensemble, we ran-
domly generate the first spin S1. We then sweep through
the chain, generating Si+1 from the thermal distribution
of the effective field h = JSi. For open boundary con-
ditions, cf. the coordinate transformations used to cal-
culate the partition functions, this exactly samples the
canonical ensemble. For periodic boundary conditions we
perform an additional 1000 sweeps through the chain.

B. Time Evolution

For the equilibration simulations, we integrate the
equations of motion with the standard fourth-order
Runge-Kutta (RK4) method, using a fixed timestep of
∆t = 0.002J−1. This method conserves the magneti-
sation to machine precision, and for a system size L =
16384 and a final time tf = 4096J−1 the error in the
energy density is limited to ∼ 10−10.

For the equilibrium simulations, we use a system size of
L = 8192, but a much longer final time tf = 1.1×105J−1.
To achieve such times, we use the discrete-time odd-
even (DTOE) method, with a larger timestep of ∆t =
0.05J−1. The method consists of updating the odd spins
for a timestep ∆t by exactly solving the equations of mo-
tion with the even spins held fixed, and then vice versa.
This method conserves the energy to machine precision,
but the error in the magnetisation is suppressed only as
O(∆t2). However, this algorithm is symplectic, and thus
the error does not grow with time – for the timestep cho-
sen the magnetisation error is ∼ 10−5.

S-III. SPIN DIFFUSION AT INFINITE
TEMPERATURE

There has been some recent controversy over the na-
ture of the hydrodynamics at T = ∞ in the Heisenberg

chain, with [57] claiming logarithmically enhanced diffu-
sion and [53] arguing for ordinary spin diffusion. Here we
provide our own contribution to this debate: we see no
evidence for logarithmically enhanced diffusion.

In Fig. S1 we show, for T = ∞, the inverse-widths fit
to the diffusive power-law, and the scaling collapse of the
spin correlations from t = 2000 to t = 105. Note that the
ferromagnet and antiferromagnet are indistinguishable at
infinite temperature.

103 104 105

10 3

10 2

5 0 5
0

0.15

t x/t

W
(t)

1

t
S (

x,
t)

(a) (b)

FIG. S1. Spin diffusion at infinite temperature. Panel (a)
shows the fit to the power-law with α = 1/2; panel (b) shows
the scaling collapse.

S-IV. ENERGY CORRELATIONS

We have reported in the main text that the energy
correlations are found to be diffusive for both the FM and
the AFM. We show the evidence for this in Fig. S2, where
we plot the Gaussian width of the energy correlations
CE(x, t) as a function of time. We find that, except at
the lowest temperatures, they are well-fit by the diffusive
power-law.

At low temperatures, ballistically propagating spin-
wave modes persist to intermediate times. This makes

103 104 105 103 104 105
10 3

10 2

10 1

t

W
(t)

1

(a) (b)

FIG. S2. Energy diffusion in (a) the FM and (b) the AFM.
The inverse-widths of CE(x, t) with the fit to the diffusive
power-law are plotted, in ascending order, for E = 0 to E =
−0.7, in steps of −0.1. The data are shifted vertically for
clarity.
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0.000
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x/t
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E (
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FIG. S3. Short time ballistic propagation of the energy cor-
relations at low temperature, E = −0.9 (T = 0.1), for (a) the
FM and (b) the AFM. The fixed times are: t = 20 (blue),
t = 40 (orange), t = 60 (green), t = 80 (red), t = 100 (pur-
ple), t = 200 (brown), t = 400 (pink), and t = 600 (grey).

the observation of diffusion in our simulations rather dif-
ficult – even at longer times where the ballistic modes
have decayed – because, over their lifetime, the ballistic
modes increase the width of the correlations much faster
than diffusion. By the time this effect is negligible, the
width is comparable to the system size, and finite size ef-
fects take over. We show in Fig. S3 the ballistic collapse
of the front.

S-V. DECAY OF STAGGERED CORRELATIONS

The most striking result of our study is the appar-
ently different hydrodynamics of the ferromagnetic and
antiferromagnetic chains, manifested in the spin correla-
tions. We speculate in our discussion that this is related
to the fact that the hydrodynamic mode, the magnetisa-
tion, is the order parameter of the FM but not the AFM
– though precisely how this feeds into the scaling is not
resolved.

The correlations of the staggered magnetisation are not
conserved. Attempting to construct such a correlator, we
find:

CA(i, t; j, t′) =
〈
(−1)iSi(t) · (−1)jSj(t

′)
〉

= (−1)i+j 〈Si(t) · Sj(t′)〉
= (−1)i−j+2j 〈Si(t) · Sj(t′)〉
= (−1)|i−j| 〈Si(t) · Sj(t′)〉 , (S12)

and so, writing CA(i− j, t− t′) = CA(i, t; j, t′), we have

CA(j, t) = (−1)jCS(j, t). (S13)

Now, CS(j, t) is conserved in the sense that

∑
j

CS(j, t) =

L/2−1∑
j=−L/2

e−|j|/ξ (S14)

is independent of time. The sum
∑
j CA(j, t) is not simi-

larly conserved, and its rapid decay with time is plotted
in Fig. S4.

0 5 10 15 20
t

0

1

2

3

j
A(j, t)

FIG. S4. Decay of the total staggered correlations as a func-
tion of time at E = −0.5 in the antiferromagnet.

Note that this does not imply that the staggered order
itself decays – in our equilibrium simulations, the sys-
tem remains in a thermal state throughout, and thus, in
expectation,

CA(i, t; j, t) = CA(i, 0; j, 0) = e−|i−j|/ξ. (S15)

What is implied by the decay of
∑
j CA(j, t) is that

the staggered magnetisation at one time is uncorrelated
with the staggered magnetisation at another. It therefore
does not constitute a hydrodynamic mode, and it does
not make sense to consider any scaling of this correlator.

S-VI. EQUILIBRATION DYNAMICS

We provide here some further details of the equilibra-
tion simulations - in particular, how we determine the
thermal values, and the temperature dependence of the
(finite-time) anomalous exponents.

We begin from a thermal state of the XY chain, with
every spin confined to the plane Sz = 0, and evolve to-
wards a quasi-thermal state of the Heisenberg chain. Re-
call from the main text that we measure the degree of
anisotropy with the observables

Eµ(t) = −J
〈
Sµi (t)Sµi+1(t)

〉
(S16)

and

Qµ(t) =
〈
Sµi (t)2

〉
. (S17)

For a state with energy density E , these observables are
constrained by

∑
µQ

µ = 1 and
∑
µE

µ = E . Their
Heisenberg equilibrium values are thus determined by
isotropy, to wit, Qµeq = 1/3 and Eµeq = E/3.

There is a caveat: at finite size there is a small, but
conserved, total magnetisation, which prevents Qµ and
Eµ from attaining their precise equilibrium values. How-
ever, this correction may be calculated exactly. Given, at
system size L, the q = 0 component of the static struc-
ture factor,

∆(L) =
1

L

L/2−1∑
j=−L/2

(−E)|j|, (S18)



10

0.8 0.6 0.4 0.2 0.0
0.50

0.55

0.60

0.65

0.70
(

)
E

Q

FIG. S5. Anomalous equilibration exponents αE and αQ for
the observables Eµ and Qµ in the FM. The measured equilib-
rium exponent is also shown for comparison. The discrepancy
at low-temperature is probably due to timescales – the equi-
librium exponent is extracted over the range t = 10,000 to t =
100,000, whereas the equilibration exponents are extracted up
to t = 4096.

the asymptotic values are:

Qz → 1/3−∆/3, Q‖ → 1/3 + ∆/6,

Ez → E/3 + J∆/3, E‖ → E/3− J∆/6, (S19)

where we have defined the averages of the in-plane ob-
servables, Q‖ = (Qx + Qy)/2 and E‖ = (Ex + Ey)/2.
We take the average of the two in-plane components to
account for the finite-size magnetisation spontaneously
breaking the rotational symmetry of the initial XY state
– which means we can read off the initial values exactly
from the sum rules.

To examine the equilibration of energy fluctuations, we
consider the heat capacity. Recall that the heat capacity
can be estimated from a thermal ensemble as

C =
∂ 〈E〉
∂T

=

〈
E2
〉
− 〈E〉2

T 2
, (S20)

where E is the energy of the state and the angle brackets
denote the ensemble average. Since the energy of each
state is conserved by the Hamiltonian dynamics, this is
time-independent.

However, we define the heat capacity of a single state
as

C =
varEi
T 2

, (S21)

where the variance is taken over the spatial distribu-
tion of the energy. In equilibrium, this is equal to the
ensemble-based definition (S20), but it is not conserved
by the dynamics. The initial value, of course, is the heat
capacity (S3) of the XY chain, except that, since the cor-
respondence between internal energy and temperature is
different in the two chains, we must multiply the above
by (TXY/TH)2, with TXY and TH the temperatures that
correspond to E . The equilibrium value Ceq is then given
by the heat capacity of the Heisenberg chain (S4).

As mentioned in the main text, the equilibration sim-
ulations probe a different aspect of the underlying phe-
nomenology: Qµ and Eµ equilibrate diffusively in the
AFM, but anomalously in the FM. The heat capacity
always equilibrates diffusively.

The anomalous exponents obtained from the equilibra-
tion in the FM are shown in Fig. S5.
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